JP4454179B2 - Cross-flow type moving bed filter - Google Patents

Cross-flow type moving bed filter Download PDF

Info

Publication number
JP4454179B2
JP4454179B2 JP2001140817A JP2001140817A JP4454179B2 JP 4454179 B2 JP4454179 B2 JP 4454179B2 JP 2001140817 A JP2001140817 A JP 2001140817A JP 2001140817 A JP2001140817 A JP 2001140817A JP 4454179 B2 JP4454179 B2 JP 4454179B2
Authority
JP
Japan
Prior art keywords
water level
water
filter medium
turbidity concentration
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001140817A
Other languages
Japanese (ja)
Other versions
JP2002331205A (en
Inventor
崇史 鈴木
一幸 木坂
大輔 山本
和昌 笠倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suido Kiko Kaisha Ltd
Original Assignee
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suido Kiko Kaisha Ltd filed Critical Suido Kiko Kaisha Ltd
Priority to JP2001140817A priority Critical patent/JP4454179B2/en
Publication of JP2002331205A publication Critical patent/JP2002331205A/en
Application granted granted Critical
Publication of JP4454179B2 publication Critical patent/JP4454179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4668Regenerating the filtering material in the filter by moving the filtering element
    • B01D24/4689Displacement of the filtering material to a compartment of the filtering device for regeneration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、横流型移動床式ろ過装置に関し、さらに詳しくは、不必要な洗浄排水を抑制できると共に圧縮空気の消費を抑制することができる横流型移動床式ろ過装置に関する。
【0002】
【従来の技術】
従来の横流型移動床式ろ過装置は、例えば特表2000−516135号公報に開示されている。
【0003】
図10は、従来の横流型移動床式ろ過装置の一例を示す構成図である。
この横流型移動床式ろ過装置500は、ろ材(砂)10が下部に堆積したろ過槽1と、ろ過槽1の下部側壁に設置された流入チャンバー2と、流入チャンバー2から流入した原水がろ材10を通過してから流出するように流入チャンバー2の反対側の側壁に設置された流出チャンバー3と、流出チャンバー3から排出する処理水量を調節するための処理水調節弁5と、ろ過槽1の底部付近のろ材10を圧縮空気により水と共にろ材洗浄器20に搬送するエアリフトポンプ6およびエアリフト管7と、エアリフトポンプ6に供給する圧縮空気量を調節するための空気調節弁8と、ろ過槽1の上部に設置され且つ搬送されてきた圧縮空気と水とろ材10を分離して圧縮空気は排気し水は排水しろ材10は落下させるろ材洗浄器20と、ろ過槽1内の水位WLを計測する水位計30と、横流型移動床式ろ過装置500の運転を制御する制御装置45とを具備して構成されている。
【0004】
ろ過槽1は、角形筒状である。ろ材10をエアリフトポンプ6で集めやすくするため、ろ過槽1の底部は、テーパ状になっている。
【0005】
エアリフトポンプ6には、空気調整弁8を介して、圧縮空気が供給される。この圧縮空気は、エアリフト管7を上昇し、ろ材洗浄器20から排気される。この圧縮空気の流れに巻き込まれるように、エアリフトポンプ6に水が吸い込まれ、ろ材洗浄器20から排水される。そして、この水の流れに巻き込まれるように、ろ材10がエアリフトポンプ6に吸い込まれ、ろ材洗浄器20に搬送される。
【0006】
ろ材洗浄器20は、外筒21と、その外筒21の内側に設置された内筒22と、その内筒22から外部へ連通する洗浄排水管23とから構成される。
【0007】
原水は、流入チャンバー2によって、ろ材10に広く分配され、ろ材10内を横に流れ、集水ストレーナ4を介して、流出チャンバー3に流出する。この間に、原水はろ過される。流出チャンバー3に流出した処理水は、処理水調節弁5を通じて、図示せぬ処理水槽へ流出する。
【0008】
ろ過槽1の下部のろ材10は、エアリフトポンプ6およびエアリフト管7により、ろ材洗浄器20に搬送され、ろ材洗浄器20から、ろ過槽1の下部に堆積したろ材10の上面に落下する。この間に、ろ材10に付着した濁質成分が、ろ材10から剥離する。そして、剥離した濁質成分が混じった水が、オーバーフローによりオリフィス24から洗浄排水管23に流れ込み、排水される。
【0009】
図11は、横流型移動床式ろ過装置500の運転方法を示すフロー図である。
ステップP1では、処理水調節弁5を全閉にする。
ステップP2では、流入チャンバー2に原水を供給する。
ステップP3’では、ろ過槽1内の水位WLが設定水位Hに到達するまで待ち、水位WLが設定水位Hに到達したらステップP4へ進む。
ステップP4では、エアリフトポンプ6を起動する。すなわち、空気調節弁8を全開にしてエアリフトポンプ6に圧縮空気を供給する。
【0010】
ステップP6では、処理水調節弁5を現状の開度よりも所定量だけ開く。これにより、処理水が排出され始めるか又は処理水の排出量が増加する。
【0011】
ステップP7’では、ろ過槽1内の水位WLを計測し、設定水位Hより低くなっていたらステップP8へ進み、設定水位Hより高くなっていたらステップP9へ進み、設定水位Hが維持されていたらステップP10へ進む。
【0012】
ステップP8では、処理水調節弁5を現状の開度よりも所定量だけ閉じる。これにより、処理水の排出が止まるか又は処理水の排出量が減少する。そして、前記ステップP7’に戻る。
【0013】
ステップP9では、処理水調節弁5が限界開度に達していなかったら前記ステップP6に戻り、限界開度に達していたらステップP11へ進む。
【0014】
ステップP10では、ろ過処理を停止する指示があるまでは前記ステップP7’に戻り、ろ過処理を停止する指示があったらステップP11へ進む。
【0015】
ステップP11では、原水の供給を停止する。
ステップP12では、エアリフトポンプ6を停止する。すなわち、空気調節弁8を全閉にしてエアリフトポンプ6への圧縮空気の供給を止める。
ステップP13では、処理水調節弁5を全閉にする。
【0016】
図12は、ろ過槽1のろ過抵抗ΔPsの変化を示す例示図である。
原水の濁質濃度が高くなると、ろ材10間が詰まるために、ろ過抵抗ΔPsは高くなる。
【0017】
図13は、処理水調節弁5の開度の変化を示す例示図である。
ろ過抵抗ΔPsが高くなると、処理水調節弁5の開度が大きくなる。
【0018】
図14は、ろ過槽1内の水位WLの変化を示す例示図である。
水位WLは、設定水位Hに維持される。これは、ろ過抵抗ΔPsの変化に応じて処理水調節弁5の開度を調節するためである。
【0019】
図15は、空気調節弁8の開度の変化を示す例示図である。
空気調節弁8の開度は一定である。
【0020】
【発明が解決しようとする課題】
上記従来の横流型移動床式ろ過装置500では、原水の濁質濃度の変化によるろ槽抵抗ΔPsの変動を処理水調節弁5の開度により吸収し、水位WLを一定に制御している。このとき、原水が高濁質濃度になっても対応できるように、設定水位Hを高めに設定している。また、空気調節弁8の開度を大きめに設定している。
しかし、設定水位Hが高めに設定されていると、水位WLも高めに維持されるため、水位WLとオリフィス24の高さELの水位差hで決まる洗浄排水量が多めになる。つまり、低濁質濃度および中濁質濃度の時に、洗浄排水が不必要に多量になり、原水回収効率が悪くなる問題点がある。
また、空気調節弁8の開度が大きめに設定されていると、圧縮空気の消費量が多めになる。つまり、低濁質濃度および中濁質濃度の時に、圧縮空気が不必要に多量に消費される問題点がある。
そこで、本発明の目的は、不必要な洗浄排水を抑制できると共に圧縮空気の消費を抑制することができる横流型移動床式ろ過装置を提供することにある。
【0021】
【課題を解決するための手段】
第1の観点では、本発明は、原水中の濁質成分を付着捕捉するためのろ材(10)が下部に堆積したろ過槽(1)と、ろ過槽(1)の下部側壁に設置され原水をろ過槽(1)に供給するための流入チャンバー(2)と、流入チャンバー(2)の反対側のろ過槽(1)の下部側壁に設置され処理水を排出するための流出チャンバー(3)と、流出チャンバー(3)から排出する処理水量を調節するための処理水調節弁(5)と、ろ過槽(1)の底部付近のろ材(10)を圧縮空気により水と共にろ材洗浄器(20)に搬送するエアリフトポンプ(6)およびエアリフト管(7)と、エアリフトポンプ(6)に供給する圧縮空気量を調節するための空気調節弁(8)と、ろ過槽(1)の上部に設置され且つ搬送されてきた圧縮空気と水とろ材(10)から圧縮空気とろ材(10)から離脱した濁質成分を含む水とろ材(10)とを分離して、圧縮空気は排気し、ろ材(10)から離脱した濁質成分を含む水は排水し、ろ材(10)は落下させるろ材洗浄器(20)と、ろ過槽(1)内の水位(WL)を計測する水位計(30)と、運転を制御する制御装置(40)とを具備して構成され、前記制御装置(40)は、高濁質濃度に対応した設定水位(H3)とそれより低い濁質濃度に対応した設定水位(H1,H2)とを設定され、また、高濁質濃度に対応した空気調節弁(8)の開度(O3)とそれより低い濁質濃度に対応した空気調節弁(8)の開度(O1,O2)とを設定され、まず、高濁質濃度より低い濁質濃度に対応した空気調節弁(8)の開度(O1,O2)とした状態で水位計(30)で計測した水位(WL)が高濁質濃度より低い濁質濃度に対応した設定水位(H1,H2)に一致するように処理水調節弁(5)の開度を制御し、処理水調節弁(5)の開度を全開にしても水位計(30)で計測した水位(WL)が高濁質濃度より低い濁質濃度に対応した設定水位(H1,H2)より高くなる場合は、高濁質濃度に対応した空気調節弁(8)の開度(O3)とした状態で水位計(30)で計測した水位(WL)が高濁質濃度に対応した設定水位(H3)に一致するように処理水調節弁(5)の開度を制御することを特徴とする横流型移動床式ろ過装置を提供する。
上記第1の観点による横流型移動床式ろ過装置では、原水の濁質濃度に応じて設定水位を多段階に設定し、これにろ過槽の水位が一致するように処理水の排出量を調整するから、原水の濁質濃度が低い時には、ろ過槽の水位で決まる洗浄排水量が少なめになる。つまり、濁質濃度が低い時に洗浄排水が不必要に多量に排水されることがなくなり、原水回収効率を向上できる。
また、エアリフトポンプへ供給する圧縮空気量を原水の濁質濃度に応じて多段階に調節するから、原水の濁質濃度が低い時には、圧縮空気の消費量が少なめになる。つまり、不必要な圧縮空気の消費を防止することが出来る。
【0022】
第2の観点では、本発明は、原水中の濁質成分を付着捕捉するためのろ材(10)が下部に堆積したろ過槽(1)と、ろ過槽(1)の下部側壁に設置され原水をろ過槽(1)に供給するための流入チャンバー(2)と、流入チャンバー(2)の反対側のろ過槽(1)の下部側壁に設置され処理水を排出するための流出チャンバー(3)と、流出チャンバー(3)から排出する処理水量を調節するための処理水調節弁(5)と、ろ過槽(1)の底部付近のろ材(10)を圧縮空気により水と共にろ材洗浄器(20)に搬送するエアリフトポンプ(6)およびエアリフト管(7)と、エアリフトポンプ(6)に供給する圧縮空気量を調節するための空気調節弁(8)と、ろ過槽(1)の上部に設置され且つ搬送されてきた圧縮空気と水とろ材(10)から圧縮空気とろ材(10)から離脱した濁質成分を含む水とろ材(10)とを分離して、圧縮空気は排気し、ろ材(10)から離脱した濁質成分を含む水は排水し、ろ材(10)は落下させるろ材洗浄器(20)と、ろ過槽(1)内の水位(WL)を計測する水位計(30)と、運転を制御する制御装置(40)とを具備して構成され、前記制御装置(40)は、高濁質濃度に対応した設定水位(H3)とそれより低い濁質濃度に対応した設定水位(H1,H2)とを設定され、まず、水位計(30)で計測した水位(WL)が高濁質濃度より低い濁質濃度に対応した設定水位(H1,H2)に一致するように処理水調節弁(5)の開度を制御し、処理水調節弁(5)の開度を全開にしても水位計(30)で計測した水位(WL)が高濁質濃度より低い濁質濃度に対応した設定水位(H1,H2)より高くなる場合は、水位計(30)で計測した水位(WL)が高濁質濃度に対応した設定水位(H3)に一致するように処理水調節弁(5)の開度を制御することを特徴とする横流型移動床式ろ過装置を提供する。
上記第2の観点による横流型移動床式ろ過装置では、原水の濁質濃度に応じて設定水位を多段階に設定し、これにろ過槽の水位が一致するように処理水の排出量を調整するから、原水の濁質濃度が低い時には、ろ過槽の水位で決まる洗浄排水量が少なめになる。つまり、濁質濃度が低い時に洗浄排水が不必要に多量に排水されることがなくなり、原水回収効率を向上できる。
【0023】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。なお、これにより本発明が限定されるものではない。
【0024】
図1は、本発明の一実施形態にかかる横流型移動床式ろ過装置100の構成図である。
この横流型移動床式ろ過装置100は、ろ材(砂)10が下部に堆積したろ過槽1と、ろ過槽1の下部側壁に設置された流入チャンバー2と、流入チャンバー2から流入した原水がろ材10を通過してから流出するように流入チャンバー2の反対側の側壁に設置された流出チャンバー3と、流出チャンバー3から排出する処理水量を調節するための処理水調節弁5と、ろ過槽1の底部付近のろ材10を圧縮空気により水と共にろ材洗浄器20に搬送するエアリフトポンプ6およびエアリフト管7と、エアリフトポンプ6に供給する圧縮空気量を調節するための空気調節弁8と、ろ過槽1の上部に設置され且つ搬送されてきた圧縮空気と水とろ材10を分離して圧縮空気は排気し水は排水しろ材10は落下させるろ材洗浄器20と、ろ過槽1内の水位WLを計測する水位計30と、横流型移動床式ろ過装置100の運転を制御する制御装置40とを具備して構成されている。
【0025】
ろ過槽1は、角形筒状である。ろ材10をエアリフトポンプ6で集めやすくするため、ろ過槽1の底部は、テーパ状になっている。
【0026】
エアリフトポンプ6には、空気調整弁8を介して、圧縮空気が供給される。この圧縮空気は、エアリフト管7を上昇し、ろ材洗浄器20から排気される。この圧縮空気の流れに巻き込まれるように、エアリフトポンプ6に水が吸い込まれ、ろ材洗浄器20から排水される。そして、この水の流れに巻き込まれるように、ろ材10がエアリフトポンプ6に吸い込まれ、ろ材洗浄器20に搬送される。
【0027】
ろ材洗浄器20は、外筒21と、その外筒21の内側に設置された内筒22と、その内筒22から外部へ連通する洗浄排水管23とから構成される。
【0028】
原水は、流入チャンバー2によって、ろ材10に広く分配され、ろ材10内を横に流れ、集水ストレーナ4を介して、流出チャンバー3に流出する。この間に、原水はろ過される。流出チャンバー3に流出した処理水は、処理水調節弁5を通じて、図示せぬ処理水槽へ流出する。
【0029】
ろ過槽1の下部のろ材10は、エアリフトポンプ6およびエアリフト管7により、ろ材洗浄器20に搬送され、ろ材洗浄器20から、ろ過槽1の下部に堆積したろ材10の上面に落下する。この間に、ろ材10に付着した濁質成分が、ろ材10から剥離する。そして、剥離した濁質成分が混じった水が、オーバーフローによりオリフィス24から洗浄排水管23に流れ込み、排水される。
【0030】
ろ材洗浄器20から落下したろ材10は、その直下を頂点とする山形に堆積する。この山の斜面を、落下したろ材10が転がるが、粒径の大きいろ材10ほど遠くまで転がる。流入チャンバー2よりも流出チャンバー3寄りにろ材洗浄器20が設置されているため、流入チャンバー2の近くではろ材の粒径が大きく、流出チャンバー3へ近づくほどろ材10の粒径が小さくなり、流出チャンバー3の極く近くでろ材10の粒径がやや大きくなるという、ろ過に好ましい分布が自然に形成される。
【0031】
図2および図3は、横流型移動床式ろ過装置100の運転方法を示すフロー図である。
ステップP1では、処理水調節弁5を全閉にする。
ステップP2では、流入チャンバー2に原水を供給する。
【0032】
ステップP3では、ろ過槽1内の水位WLが設定水位H1に到達するまで待ち、水位WLが設定水位H1に到達したらステップP4へ進む。
ここで、H1は、原水が低濁質濃度の場合に対応できるような水位である。ちなみに、原水が中濁質濃度の場合に対応できるような設定水位をH2とし、原水が高濁質濃度の場合に対応できるような設定水位をH3とする。H1<H2<H3である。H3は、従来の設定水位Hと等しい。
【0033】
ステップP4では、エアリフトポンプ6を起動する。すなわち、空気調節弁8を全開にしてエアリフトポンプ6に圧縮空気を供給する。
ステップP5では、空気調節弁8の開度をO1として、エアリフトポンプ6に供給する圧縮空気を減らす。
ここで、O1は、原水が低濁質濃度の場合に対応できるような開度である。ちなみに、原水が中濁質濃度の場合に対応できるような開度をO2とし、原水が高濁質濃度の場合に対応できるような開度をO3とする。O1<O2<O3である。O3は、全開に相当する。
【0034】
ステップP6では、処理水調節弁5を現状の開度よりも所定量だけ開く。これにより、処理水が排出され始めるか又は処理水の排出量が増加する。
【0035】
ステップP7では、ろ過槽1内の水位WLを計測し、設定水位H1より低くなっていたらステップP8へ進み、設定水位H1より高くなっていたらステップP9へ進み、設定水位H1が維持されていたらステップP10へ進む。
【0036】
ステップP8では、処理水調節弁5を現状の開度よりも所定量だけ閉じる。これにより、処理水の排出が止まるか又は処理水の排出量が減少する。そして、前記ステップP7に戻る。
【0037】
ステップP9では、処理水調節弁5が限界開度に達していなかったら前記ステップP6に戻り、限界開度に達していたら図3のステップP20へ進む。
【0038】
ステップP10では、ろ過処理を停止する指示があるまでは前記ステップP7に戻り、ろ過処理を停止する指示があったらステップP11へ進む。
【0039】
ステップP11では、原水の供給を停止する。
ステップP12では、エアリフトポンプ6を停止する。すなわち、空気調節弁8を全閉にしてエアリフトポンプ6への圧縮空気の供給を止める。
ステップP13では、処理水調節弁5を全閉にする。
【0040】
図3のステップP20では、空気調節弁8の開度をO2として、エアリフトポンプ6に供給する圧縮空気を増やす。前述のように、O2は、原水が中濁質濃度の場合に対応できるような開度である。
【0041】
ステップP21では、ろ過槽1内の水位WLを計測し、設定水位H2より低くなっていたらステップP22へ進み、設定水位H2より高くなっていたらステップP23へ進み、設定水位H2が維持されていたら前記ステップP10に戻る。
【0042】
ステップP22では、処理水調節弁5を現状の開度よりも所定量だけ閉じる。これにより、処理水の排出が止まるか又は処理水の排出量が減少する。そして、前記ステップP21に戻る。
【0043】
ステップP23では、処理水調節弁5が限界開度に達していなかったらステップP24へ進み、限界開度に達していたらステップP25へ進む。
【0044】
ステップP24では、処理水調節弁5を現状の開度よりも所定量だけ開く。これにより、処理水が排出され始めるか又は処理水の排出量が増加する。そして、前記ステップP21に戻る。
【0045】
ステップP25では、空気調節弁8の開度をO3として、エアリフトポンプ6に供給する圧縮空気を増やす。前述のように、O3は、原水が高濁質濃度の場合に対応できるような開度である。
【0046】
ステップP26では、ろ過槽1内の水位WLを計測し、設定水位H3より低くなっていたらステップP27へ進み、設定水位H3より高くなっていたらステップP28へ進み、設定水位H3が維持されていたら前記ステップP10に戻る。
【0047】
ステップP27では、処理水調節弁5を現状の開度よりも所定量だけ閉じる。これにより、処理水の排出が止まるか又は処理水の排出量が減少する。そして、前記ステップP26に戻る。
【0048】
ステップP28では、処理水調節弁5が限界開度に達していなかったらステップP29へ進み、限界開度に達していたら前記ステップP11に戻る。
【0049】
ステップP29では、処理水調節弁5を現状の開度よりも所定量だけ開く。これにより、処理水が排出され始めるか又は処理水の排出量が増加する。そして、前記ステップP26に戻る。
【0050】
図4は、ろ過槽1のろ過抵抗ΔPsの変化を示す例示図である。
原水の濁質濃度が高くなると、ろ材10間が詰まるために、ろ過抵抗ΔPsは高くなる。
【0051】
図5は、処理水調節弁5の開度の変化を示す例示図である。
ろ過抵抗ΔPsが高くなると、処理水調節弁5の開度が一旦大きくなるが、空気調節弁8の開度を大きくするので、処理水調節弁5の開度が元に戻っている。
【0052】
図6は、ろ過槽1内の水位WLの変化を示す例示図である。
水位WLは、原水が低濁質濃度の場合は設定水位H1に維持される。原水が中濁質濃度の場合は設定水位H2に維持される。原水が高濁質濃度の場合は設定水位H3に維持される。これは、ろ過抵抗ΔPsの変化に応じて処理水調節弁5および空気調節弁8の開度を調節するためである。
【0053】
図7は、空気調節弁8の開度の変化を示す例示図である。
ろ過抵抗ΔPsが高くなると、空気調節弁8の開度が大きくなる。
【0054】
図8は、水位WLとオリフィス24の高さELの水位差hの変化を本発明と従来とで比較した例示図である。
実線で示すように、本発明の運転方法では、原水の濁質濃度が低/中の時は水位差hも小さくなる。このため、水位WLとオリフィス24の高さELの水位差hで決まる洗浄排水量が少なくなる。つまり、原水回収効率が向上する。
一方、破線で示すように、従来の運転方法では、原水の高濁質濃度に合わせて水位差hが大きい。このため、原水の濁質濃度が低/中の時は洗浄排水が不必要に多量になり、原水回収効率が悪くなる。
【0055】
図9は、空気供給量の変化を本発明と従来とで比較した例示図である。
実線で示すように、本発明の運転方法では、原水の濁質濃度が低/中の時は空気供給量も少なくなる。このため、圧縮空気の消費量を低減できる。
一方、破線で示すように、従来の運転方法では、原水の高濁質濃度に合わせて空気供給量が多い。このため、原水の濁質濃度が低/中の時は圧縮空気を不必要に多量に消費してしまう。
【0056】
他の実施形態としては、設定水位を2段階(例えばH1とH3、または、H2とH3)にしたもの、または、設定水位を4段階以上にしたものが挙げられる。
【0057】
【発明の効果】
本発明の横流型移動床式ろ過装置によれば、不必要な洗浄排水を抑制でき、原水回収効率を向上できる。また、圧縮空気の消費を抑制できる。これらにより、ランニングコストを低減できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る横流型移動床式ろ過装置の構成図である。
【図2】図1の横流型移動床式ろ過装置の運転動作を示すフロー図である。
【図3】図2の続きのフロー図である。
【図4】本発明におけるろ過抵抗の変化を示す例示図である。
【図5】本発明における処理水調節弁の開度の変化を示す例示図である。
【図6】本発明におけるろ過槽内の水位の変化を示す例示図である。
【図7】本発明における空気調節弁の開度の変化を示す例示図である。
【図8】水位差の変化を本発明と従来とで比較した例示図である。
【図9】空気供給量の変化を本発明と従来とで比較した例示図である。
【図10】従来の横流型移動床式ろ過装置の一例を示す構成図である。
【図11】図10の横流型移動床式ろ過装置の運転動作を示すフロー図である。
【図12】従来のろ過抵抗の変化を示す例示図である。
【図13】従来の処理水調節弁の開度の変化を示す例示図である。
【図14】従来のろ過槽内の水位の変化を示す例示図である。
【図15】従来の空気調節弁の開度の変化を示す例示図である。
【符号の説明】
1 ろ過槽
2 流入チャンバー
3 流出チャンバー
5 処理水調節弁
6 エアリフトポンプ
7 エアリフト管
8 空気調節弁
20 ろ材洗浄器
24 オリフィス
30 水位計
40 制御装置
100 横流型移動床式ろ過装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cross-flow type moving bed type filtration apparatus, and more particularly to a cross-flow type moving bed type filtration apparatus that can suppress unnecessary washing drainage and suppress consumption of compressed air.
[0002]
[Prior art]
A conventional cross-flow type moving bed type filtration apparatus is disclosed in, for example, JP 2000-516135 A.
[0003]
FIG. 10 is a block diagram showing an example of a conventional cross-flow type moving bed filtration device.
In this cross-flow type moving bed type filtration apparatus 500, a filter tank 1 in which a filter medium (sand) 10 is deposited in the lower part, an inflow chamber 2 installed on the lower side wall of the filter tank 1, and raw water flowing in from the inflow chamber 2 are filtered. An outflow chamber 3 installed on the opposite side wall of the inflow chamber 2 so as to flow out after passing through 10, a treated water control valve 5 for adjusting the amount of treated water discharged from the outflow chamber 3, and a filtration tank 1 An air lift pump 6 and an air lift pipe 7 for conveying the filter medium 10 near the bottom of the filter together with water to the filter medium cleaner 20 with compressed air, an air control valve 8 for adjusting the amount of compressed air supplied to the air lift pump 6, and a filtration tank A filter medium washer 20 that separates the compressed air, water, and the filter medium 10 that have been installed and transported, and exhausts the compressed air, drains the water, and drops the filter medium 10. A water level gauge 30 for measuring the water level WL, and and a control unit 45 for controlling the operation of the lateral flow moving bed filtration system 500 is constituted.
[0004]
The filtration tank 1 has a rectangular cylindrical shape. In order to make it easy to collect the filter medium 10 with the air lift pump 6, the bottom of the filtration tank 1 is tapered.
[0005]
Compressed air is supplied to the air lift pump 6 via the air adjustment valve 8. The compressed air moves up the air lift pipe 7 and is exhausted from the filter medium cleaner 20. Water is sucked into the air lift pump 6 so as to be caught in the flow of compressed air, and drained from the filter medium cleaner 20. Then, the filter medium 10 is sucked into the air lift pump 6 so as to be caught in the flow of water, and is conveyed to the filter medium cleaner 20.
[0006]
The filter medium cleaner 20 includes an outer cylinder 21, an inner cylinder 22 installed inside the outer cylinder 21, and a cleaning drain pipe 23 that communicates from the inner cylinder 22 to the outside.
[0007]
The raw water is widely distributed to the filter medium 10 by the inflow chamber 2, flows laterally through the filter medium 10, and flows out to the outflow chamber 3 through the water collection strainer 4. During this time, the raw water is filtered. The treated water that has flowed out to the outflow chamber 3 flows out to the treated water tank (not shown) through the treated water control valve 5.
[0008]
The filter medium 10 at the lower part of the filter tank 1 is conveyed to the filter medium cleaner 20 by the air lift pump 6 and the air lift pipe 7 and falls from the filter medium cleaner 20 to the upper surface of the filter medium 10 deposited at the lower part of the filter tank 1. During this time, the turbid component adhering to the filter medium 10 is peeled off from the filter medium 10. Then, the water mixed with the separated turbid component flows from the orifice 24 into the cleaning drain pipe 23 due to overflow, and is drained.
[0009]
FIG. 11 is a flowchart showing an operation method of the cross-flow type moving bed type filtration device 500.
In step P1, the treated water adjustment valve 5 is fully closed.
In Step P2, raw water is supplied to the inflow chamber 2.
In Step P3 ′, the process waits until the water level WL in the filtration tank 1 reaches the set water level H. When the water level WL reaches the set water level H, the process proceeds to Step P4.
In step P4, the air lift pump 6 is activated. That is, the air control valve 8 is fully opened to supply compressed air to the air lift pump 6.
[0010]
In Step P6, the treated water regulating valve 5 is opened by a predetermined amount from the current opening degree. Thereby, treated water begins to be discharged or the discharged amount of treated water increases.
[0011]
In Step P7 ′, the water level WL in the filtration tank 1 is measured, and if it is lower than the set water level H, the process proceeds to Step P8. If it is higher than the set water level H, the process proceeds to Step P9, and if the set water level H is maintained. Proceed to step P10.
[0012]
In Step P8, the treated water regulating valve 5 is closed by a predetermined amount from the current opening degree. Thereby, the discharge of the treated water stops or the discharged amount of the treated water decreases. Then, the process returns to Step P7 ′.
[0013]
In Step P9, if the treated water regulating valve 5 has not reached the limit opening, the process returns to Step P6, and if it has reached the limit opening, the process proceeds to Step P11.
[0014]
In Step P10, the process returns to Step P7 ′ until there is an instruction to stop the filtration process, and if there is an instruction to stop the filtration process, the process proceeds to Step P11.
[0015]
In Step P11, the supply of raw water is stopped.
In Step P12, the air lift pump 6 is stopped. That is, the air control valve 8 is fully closed to stop the supply of compressed air to the air lift pump 6.
In step P13, the treated water adjustment valve 5 is fully closed.
[0016]
FIG. 12 is an exemplary diagram showing a change in the filtration resistance ΔPs of the filtration tank 1.
When the turbidity concentration of the raw water increases, the space between the filter media 10 is clogged, so that the filtration resistance ΔPs increases.
[0017]
FIG. 13 is an exemplary diagram showing a change in the opening degree of the treated water regulating valve 5.
When the filtration resistance ΔPs increases, the opening degree of the treated water control valve 5 increases.
[0018]
FIG. 14 is an exemplary diagram showing a change in the water level WL in the filtration tank 1.
The water level WL is maintained at the set water level H. This is for adjusting the opening degree of the treated water control valve 5 according to the change of the filtration resistance ΔPs.
[0019]
FIG. 15 is an exemplary diagram showing a change in the opening degree of the air regulating valve 8.
The opening degree of the air control valve 8 is constant.
[0020]
[Problems to be solved by the invention]
In the conventional cross-flow type moving bed filtration apparatus 500, the fluctuation of the filter tank resistance ΔPs due to the change in the turbidity concentration of the raw water is absorbed by the opening degree of the treated water control valve 5, and the water level WL is controlled to be constant. At this time, the set water level H is set high so that the raw water can cope with a high turbidity concentration. Moreover, the opening degree of the air control valve 8 is set large.
However, if the set water level H is set high, the water level WL is also kept high, so that the amount of washing waste water determined by the water level difference h between the water level WL and the height EL of the orifice 24 becomes large. That is, there is a problem that the amount of washing wastewater becomes unnecessarily large at low turbidity concentration and medium turbidity concentration, and raw water recovery efficiency deteriorates.
Moreover, if the opening degree of the air control valve 8 is set to be larger, the consumption amount of compressed air becomes larger. That is, there is a problem that the compressed air is consumed unnecessarily in large amounts at low turbidity and medium turbidity concentrations.
Then, the objective of this invention is providing the cross-flow type moving bed type | formula filtration apparatus which can suppress the consumption of compressed air while suppressing unnecessary washing | cleaning waste_water | drain.
[0021]
[Means for Solving the Problems]
In the first aspect, the present invention provides a filter tank (1) in which a filter medium (10) for adhering and capturing turbid components in raw water is deposited in the lower part, and a raw water installed on the lower side wall of the filter tank (1). An inflow chamber (2) for supplying water to the filtration tank (1) and an outflow chamber (3) for discharging treated water installed on the lower side wall of the filtration tank (1) on the opposite side of the inflow chamber (2) And a treated water regulating valve (5) for regulating the amount of treated water discharged from the outflow chamber (3), and the filter medium (10) near the bottom of the filtration tank (1) together with water using a filter medium cleaner (20 Air lift pump (6) and air lift pipe (7) conveyed to the air lift pump (6), an air control valve (8) for adjusting the amount of compressed air supplied to the air lift pump (6), and an upper part of the filtration tank (1) Compressed air and water and filter media (1 ) Separated from the compressed air and the water containing the turbid component separated from the filter medium (10) and the filter medium (10), the compressed air is exhausted, and the water containing the turbid component separated from the filter medium (10) is discharged. The filter medium (10) includes a filter medium cleaner (20) for dropping, a water level meter (30) for measuring the water level (WL) in the filter tank (1), and a control device (40) for controlling the operation. The control device (40) is configured with a set water level (H3) corresponding to a high turbidity concentration and a set water level (H1, H2) corresponding to a lower turbidity concentration, The opening (O3) of the air control valve (8) corresponding to the turbidity concentration and the opening (O1, O2) of the air control valve (8) corresponding to the lower turbidity concentration are set. Water in the state of opening (O1, O2) of the air control valve (8) corresponding to a turbid concentration lower than the turbid concentration Controlling the opening of the treated water control valve (5) so that the water level (WL) measured by the meter (30) matches the set water level (H1, H2) corresponding to the turbidity concentration lower than the high turbidity concentration, Even if the opening of the treated water control valve (5) is fully opened, the water level (WL) measured by the water level meter (30) becomes higher than the set water level (H1, H2) corresponding to the turbidity concentration lower than the high turbidity concentration. In this case, the water level (WL) measured by the water level meter (30) in the state of the opening (O3) of the air control valve (8) corresponding to the high turbidity concentration is the set water level (H3 corresponding to the high turbidity concentration). ) To control the degree of opening of the treated water regulating valve (5).
In the cross-flow type moving bed filtration device according to the first aspect, the set water level is set in multiple stages according to the turbidity concentration of the raw water, and the discharge amount of the treated water is adjusted so that the water level of the filtration tank matches this. Therefore, when the turbidity concentration of the raw water is low, the amount of washing wastewater determined by the water level in the filtration tank becomes smaller. That is, when the turbidity concentration is low, the washing waste water is not drained in an unnecessarily large amount, and the raw water recovery efficiency can be improved.
Further, since the amount of compressed air supplied to the air lift pump is adjusted in multiple stages according to the turbidity concentration of the raw water, when the turbidity concentration of the raw water is low, the consumption amount of the compressed air becomes small. That is, unnecessary consumption of compressed air can be prevented.
[0022]
In a second aspect, the present invention provides a filter tank (1) in which a filter medium (10) for adhering and capturing turbid components in raw water is deposited in the lower part, and a raw water installed on the lower side wall of the filter tank (1). An inflow chamber (2) for supplying water to the filtration tank (1) and an outflow chamber (3) for discharging treated water installed on the lower side wall of the filtration tank (1) on the opposite side of the inflow chamber (2) And a treated water regulating valve (5) for regulating the amount of treated water discharged from the outflow chamber (3), and the filter medium (10) near the bottom of the filtration tank (1) together with water using a filter medium cleaner (20 Air lift pump (6) and air lift pipe (7) conveyed to the air lift pump (6), an air control valve (8) for adjusting the amount of compressed air supplied to the air lift pump (6), and an upper part of the filtration tank (1) Compressed air and water and filter media (1 ) Separated from the compressed air and the water containing the turbid component separated from the filter medium (10) and the filter medium (10), the compressed air is exhausted, and the water containing the turbid component separated from the filter medium (10) is discharged. The filter medium (10) includes a filter medium cleaner (20) for dropping, a water level meter (30) for measuring the water level (WL) in the filter tank (1), and a control device (40) for controlling the operation. The control device (40) is configured to set a set water level (H3) corresponding to a high turbidity concentration and a set water level (H1, H2) corresponding to a lower turbidity concentration. Controlling the opening of the treated water control valve (5) so that the water level (WL) measured by the meter (30) matches the set water level (H1, H2) corresponding to the turbidity concentration lower than the high turbidity concentration, Even if the opening of the treated water control valve (5) is fully opened, the water level (WL) measured by the water level gauge (30) is high. If it is higher than the set water level (H1, H2) corresponding to the turbidity concentration lower than the quality concentration, the water level (WL) measured by the water level meter (30) matches the set water level (H3) corresponding to the high turbidity concentration. Thus, a cross-flow type moving bed type filtration device is provided which controls the opening degree of the treated water regulating valve (5).
In the cross-flow type moving bed filtration device according to the second aspect, the set water level is set in multiple stages according to the turbidity concentration of the raw water, and the discharge amount of the treated water is adjusted so that the water level of the filtration tank matches this. Therefore, when the turbidity concentration of the raw water is low, the amount of washing wastewater determined by the water level in the filtration tank becomes smaller. That is, when the turbidity concentration is low, the washing waste water is not drained in an unnecessarily large amount, and the raw water recovery efficiency can be improved.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited thereby.
[0024]
FIG. 1 is a configuration diagram of a cross-flow type moving bed filtration apparatus 100 according to an embodiment of the present invention.
This cross-flow type moving bed type filtration apparatus 100 includes a filter tank 1 in which a filter medium (sand) 10 is deposited in the lower part, an inflow chamber 2 installed on the lower side wall of the filter tank 1, and raw water flowing from the inflow chamber 2 into the filter medium. An outflow chamber 3 installed on the opposite side wall of the inflow chamber 2 so as to flow out after passing through 10, a treated water control valve 5 for adjusting the amount of treated water discharged from the outflow chamber 3, and a filtration tank 1 An air lift pump 6 and an air lift pipe 7 for conveying the filter medium 10 near the bottom of the filter together with water to the filter medium cleaner 20 with compressed air, an air control valve 8 for adjusting the amount of compressed air supplied to the air lift pump 6, and a filtration tank A filter medium washer 20 that separates the compressed air, water, and the filter medium 10 that have been installed and transported, and exhausts the compressed air, drains the water, and drops the filter medium 10. A water level gauge 30 for measuring the water level WL, and and a control unit 40 for controlling the operation of the lateral flow moving bed filtration system 100 is constituted.
[0025]
The filtration tank 1 has a rectangular cylindrical shape. In order to make it easy to collect the filter medium 10 with the air lift pump 6, the bottom of the filtration tank 1 is tapered.
[0026]
Compressed air is supplied to the air lift pump 6 via the air adjustment valve 8. The compressed air moves up the air lift pipe 7 and is exhausted from the filter medium cleaner 20. Water is sucked into the air lift pump 6 so as to be caught in the flow of compressed air, and drained from the filter medium cleaner 20. Then, the filter medium 10 is sucked into the air lift pump 6 so as to be caught in the flow of water, and is conveyed to the filter medium cleaner 20.
[0027]
The filter medium cleaner 20 includes an outer cylinder 21, an inner cylinder 22 installed inside the outer cylinder 21, and a cleaning drain pipe 23 that communicates from the inner cylinder 22 to the outside.
[0028]
The raw water is widely distributed to the filter medium 10 by the inflow chamber 2, flows laterally through the filter medium 10, and flows out to the outflow chamber 3 through the water collection strainer 4. During this time, the raw water is filtered. The treated water that has flowed out to the outflow chamber 3 flows out to the treated water tank (not shown) through the treated water control valve 5.
[0029]
The filter medium 10 at the lower part of the filter tank 1 is conveyed to the filter medium cleaner 20 by the air lift pump 6 and the air lift pipe 7 and falls from the filter medium cleaner 20 to the upper surface of the filter medium 10 deposited at the lower part of the filter tank 1. During this time, the turbid component adhering to the filter medium 10 is peeled off from the filter medium 10. Then, the water mixed with the separated turbid component flows from the orifice 24 into the cleaning drain pipe 23 due to overflow, and is drained.
[0030]
The filter medium 10 that has fallen from the filter medium cleaner 20 accumulates in a mountain shape having the apex directly below it. The fallen filter medium 10 rolls on the slope of this mountain, but the filter medium 10 having a larger particle diameter rolls farther. Since the filter medium washer 20 is installed closer to the outflow chamber 3 than the inflow chamber 2, the particle diameter of the filter medium is larger near the inflow chamber 2, and the particle diameter of the filter medium 10 becomes smaller toward the outflow chamber 3. A distribution preferable for filtration in which the particle size of the filter medium 10 is slightly increased in the immediate vicinity of the chamber 3 is naturally formed.
[0031]
2 and 3 are flowcharts showing an operation method of the cross-flow type moving bed filtration apparatus 100. FIG.
In step P1, the treated water adjustment valve 5 is fully closed.
In Step P2, raw water is supplied to the inflow chamber 2.
[0032]
In Step P3, the process waits until the water level WL in the filtration tank 1 reaches the set water level H1, and when the water level WL reaches the set water level H1, the process proceeds to Step P4.
Here, H1 is a water level that can cope with the case where the raw water has a low turbidity concentration. By the way, the set water level that can be used when the raw water has a medium turbidity concentration is H2, and the set water level that can be used when the raw water has a high turbidity concentration is H3. H1 <H2 <H3. H3 is equal to the conventional set water level H.
[0033]
In step P4, the air lift pump 6 is activated. That is, the air control valve 8 is fully opened to supply compressed air to the air lift pump 6.
In Step P5, the opening of the air control valve 8 is set to O1, and the compressed air supplied to the air lift pump 6 is reduced.
Here, O1 is an opening degree that can cope with the case where the raw water has a low turbidity concentration. By the way, the opening degree that can correspond to the case where the raw water has a medium turbidity concentration is O2, and the opening degree that can correspond to the case where the raw water has a high turbidity concentration is O3. O1 <O2 <O3. O3 corresponds to full open.
[0034]
In Step P6, the treated water regulating valve 5 is opened by a predetermined amount from the current opening degree. Thereby, treated water begins to be discharged or the discharged amount of treated water increases.
[0035]
In Step P7, the water level WL in the filtration tank 1 is measured, and if it is lower than the set water level H1, the process proceeds to Step P8. If it is higher than the set water level H1, the process proceeds to Step P9, and if the set water level H1 is maintained, Step is performed. Proceed to P10.
[0036]
In Step P8, the treated water regulating valve 5 is closed by a predetermined amount from the current opening degree. Thereby, the discharge of the treated water stops or the discharged amount of the treated water decreases. Then, the process returns to Step P7.
[0037]
In Step P9, if the treated water regulating valve 5 has not reached the limit opening, the process returns to Step P6, and if it has reached the limit opening, the process proceeds to Step P20 in FIG.
[0038]
In Step P10, the process returns to Step P7 until there is an instruction to stop the filtration process, and if there is an instruction to stop the filtration process, the process proceeds to Step P11.
[0039]
In Step P11, the supply of raw water is stopped.
In Step P12, the air lift pump 6 is stopped. That is, the air control valve 8 is fully closed to stop the supply of compressed air to the air lift pump 6.
In step P13, the treated water adjustment valve 5 is fully closed.
[0040]
In Step P20 of FIG. 3, the opening of the air control valve 8 is set to O2, and the compressed air supplied to the air lift pump 6 is increased. As described above, O2 is an opening that can cope with the case where the raw water has a turbid concentration.
[0041]
In Step P21, the water level WL in the filtration tank 1 is measured. If the water level WL is lower than the set water level H2, the process proceeds to Step P22. If the water level WL is higher than the set water level H2, the process proceeds to Step P23. Return to Step P10.
[0042]
In Step P22, the treated water adjustment valve 5 is closed by a predetermined amount from the current opening degree. Thereby, the discharge of the treated water stops or the discharged amount of the treated water decreases. Then, the process returns to Step P21.
[0043]
In Step P23, if the treated water regulating valve 5 has not reached the limit opening degree, the process proceeds to Step P24, and if it has reached the limit opening, the process proceeds to Step P25.
[0044]
In Step P24, the treated water regulating valve 5 is opened by a predetermined amount from the current opening degree. Thereby, treated water begins to be discharged or the discharged amount of treated water increases. Then, the process returns to Step P21.
[0045]
In Step P25, the opening degree of the air control valve 8 is set to O3, and the compressed air supplied to the air lift pump 6 is increased. As described above, O3 is an opening degree that can cope with the case where the raw water has a high turbidity concentration.
[0046]
In Step P26, the water level WL in the filtration tank 1 is measured. If the water level WL is lower than the set water level H3, the process proceeds to Step P27. If the water level WL is higher than the set water level H3, the process proceeds to Step P28. Return to Step P10.
[0047]
In step P27, the treated water regulating valve 5 is closed by a predetermined amount from the current opening degree. Thereby, the discharge of the treated water stops or the discharged amount of the treated water decreases. Then, the process returns to Step P26.
[0048]
In Step P28, if the treated water control valve 5 has not reached the limit opening, the process proceeds to Step P29, and if it has reached the limit opening, the process returns to Step P11.
[0049]
In Step P29, the treated water regulating valve 5 is opened by a predetermined amount from the current opening degree. Thereby, treated water begins to be discharged or the discharged amount of treated water increases. Then, the process returns to Step P26.
[0050]
FIG. 4 is an exemplary diagram showing a change in the filtration resistance ΔPs of the filtration tank 1.
When the turbidity concentration of the raw water increases, the space between the filter media 10 is clogged, so that the filtration resistance ΔPs increases.
[0051]
FIG. 5 is an exemplary diagram showing a change in the opening degree of the treated water regulating valve 5.
When the filtration resistance ΔPs is increased, the opening degree of the treated water control valve 5 is once increased, but the opening degree of the air regulating valve 8 is increased, so that the opening degree of the treated water regulating valve 5 is restored.
[0052]
FIG. 6 is an exemplary diagram showing a change in the water level WL in the filtration tank 1.
The water level WL is maintained at the set water level H1 when the raw water has a low turbidity concentration. When the raw water has a turbidity concentration, it is maintained at the set water level H2. When the raw water has a high turbidity concentration, it is maintained at the set water level H3. This is for adjusting the opening degree of the treated water regulating valve 5 and the air regulating valve 8 according to the change of the filtration resistance ΔPs.
[0053]
FIG. 7 is an exemplary diagram showing a change in the opening degree of the air regulating valve 8.
As the filtration resistance ΔPs increases, the opening of the air control valve 8 increases.
[0054]
FIG. 8 is an exemplary diagram comparing the change in the water level difference h between the water level WL and the height EL of the orifice 24 between the present invention and the prior art.
As indicated by the solid line, in the operation method of the present invention, when the turbidity concentration of the raw water is low / medium, the water level difference h is also small. For this reason, the amount of washing waste water determined by the water level difference h between the water level WL and the height EL of the orifice 24 is reduced. That is, the raw water recovery efficiency is improved.
On the other hand, as shown by the broken line, in the conventional operation method, the water level difference h is large in accordance with the high turbidity concentration of the raw water. For this reason, when the turbidity concentration of raw water is low / medium, the amount of washing wastewater becomes unnecessarily large, and the raw water recovery efficiency deteriorates.
[0055]
FIG. 9 is an exemplary diagram comparing the change in the air supply amount between the present invention and the prior art.
As shown by the solid line, in the operation method of the present invention, when the turbidity concentration of the raw water is low / medium, the air supply amount is also reduced. For this reason, consumption of compressed air can be reduced.
On the other hand, as shown by the broken line, in the conventional operation method, the air supply amount is large in accordance with the high turbidity concentration of the raw water. For this reason, when the turbidity concentration of raw water is low / medium, a large amount of compressed air is consumed unnecessarily.
[0056]
Other embodiments include those in which the set water level is in two stages (for example, H1 and H3, or H2 and H3), or in which the set water level is in four or more stages.
[0057]
【The invention's effect】
According to the cross-flow type moving bed type filtration apparatus of the present invention, unnecessary washing drainage can be suppressed and raw water recovery efficiency can be improved. Moreover, consumption of compressed air can be suppressed. As a result, the running cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a cross-flow type moving bed type filtration apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing the operation of the cross-flow type moving bed type filtration device of FIG.
FIG. 3 is a flowchart subsequent to FIG. 2;
FIG. 4 is an exemplary diagram showing a change in filtration resistance in the present invention.
FIG. 5 is an exemplary diagram showing a change in the opening degree of the treated water regulating valve in the present invention.
FIG. 6 is an exemplary diagram showing a change in the water level in the filtration tank in the present invention.
FIG. 7 is an exemplary diagram showing a change in the opening of the air regulating valve in the present invention.
FIG. 8 is an exemplary diagram comparing changes in the water level difference between the present invention and the prior art.
FIG. 9 is an exemplary diagram comparing the change in the air supply amount between the present invention and the prior art.
FIG. 10 is a configuration diagram showing an example of a conventional cross-flow type moving bed type filtration device.
11 is a flowchart showing the operation of the cross-flow type moving bed type filtration device of FIG.
FIG. 12 is an exemplary diagram showing a change in conventional filtration resistance.
FIG. 13 is an exemplary diagram showing a change in the opening degree of a conventional treated water regulating valve.
FIG. 14 is an illustration showing a change in the water level in a conventional filtration tank.
FIG. 15 is an exemplary diagram showing a change in the opening of a conventional air control valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Filtration tank 2 Inflow chamber 3 Outflow chamber 5 Treated water control valve 6 Air lift pump 7 Air lift pipe 8 Air control valve 20 Filter material washing machine 24 Orifice 30 Water level meter 40 Control apparatus 100 Cross-flow type moving bed type filtration apparatus

Claims (2)

原水中の濁質成分を付着捕捉するためのろ材(10)が下部に堆積したろ過槽(1)と、ろ過槽(1)の下部側壁に設置され原水をろ過槽(1)に供給するための流入チャンバー(2)と、流入チャンバー(2)の反対側のろ過槽(1)の下部側壁に設置され処理水を排出するための流出チャンバー(3)と、流出チャンバー(3)から排出する処理水量を調節するための処理水調節弁(5)と、ろ過槽(1)の底部付近のろ材(10)を圧縮空気により水と共にろ材洗浄器(20)に搬送するエアリフトポンプ(6)およびエアリフト管(7)と、エアリフトポンプ(6)に供給する圧縮空気量を調節するための空気調節弁(8)と、ろ過槽(1)の上部に設置され且つ搬送されてきた圧縮空気と水とろ材(10)から圧縮空気とろ材(10)から離脱した濁質成分を含む水とろ材(10)とを分離して、圧縮空気は排気し、ろ材(10)から離脱した濁質成分を含む水は高さ(EL)が一定に保たれ変化しないオリフィス(24)からオーバーフローにより洗浄配水管(23)に流れ込み排水し、ろ材(10)は落下させるろ材洗浄器(20)と、ろ過槽(1)内の水位(WL)を計測する水位計(30)と、運転を制御する制御装置(40)とを具備して構成され、
前記制御装置(40)は、高濁質濃度に対応した設定水位(H3)とそれより低い濁質濃度に対応した設定水位(H1,H2)とを設定され、また、高濁質濃度に対応した空気調節弁(8)の開度(O3)とそれより低い濁質濃度に対応した空気調節弁(8)の開度(O1,O2)とを設定され、まず、高濁質濃度より低い濁質濃度に対応した空気調節弁(8)の開度(O1,O2)とした状態で水位計(30)で計測した水位(WL)が高濁質濃度より低い濁質濃度に対応した設定水位(H1,H2)に一致するように処理水調節弁(5)の開度を制御し、処理水調節弁(5)の開度を全開にしても水位計(30)で計測した水位(WL)が高濁質濃度より低い濁質濃度に対応した設定水位(H1,H2)より高くなる場合は、高濁質濃度に対応した空気調節弁(8)の開度(O3)とした状態で水位計(30)で計測した水位(WL)が高濁質濃度に対応した設定水位(H3)に一致するように処理水調節弁(5)の開度を制御することを特徴とする横流型移動床式ろ過装置。
A filter tank (1) for adhering and capturing turbid components in the raw water is deposited in the lower part, and is installed on the lower side wall of the filter tank (1) to supply the raw water to the filter tank (1). The inflow chamber (2), the outflow chamber (3) installed on the lower side wall of the filtration tank (1) on the opposite side of the inflow chamber (2) and the outflow chamber (3) for discharging treated water A treated water control valve (5) for adjusting the amount of treated water, an air lift pump (6) for conveying the filter medium (10) near the bottom of the filtration tank (1) to the filter medium cleaner (20) together with water by compressed air; and An air lift pipe (7), an air control valve (8) for adjusting the amount of compressed air supplied to the air lift pump (6), and the compressed air and water that have been installed and transported above the filtration tank (1) Filter media (10) to compressed air and filter media (1 ) Separating the water Toro material containing a breakaway turbid component (10) from the compressed air is exhausted, the coercive water height including turbid component was removed from the filter medium (10) (EL) is constant From the orifice (24) which does not change dripping, it flows into the drainage pipe (23) by overflow and drains, and the filter medium (10) measures the filter medium cleaner (20) to drop and the water level (WL) in the filter tank (1). Comprising a water level gauge (30) and a control device (40) for controlling operation,
The control device (40) is set with a set water level (H3) corresponding to a high turbidity concentration and a set water level (H1, H2) corresponding to a lower turbidity concentration, and also corresponding to a high turbidity concentration. The opening degree (O3) of the air regulating valve (8) and the opening degree (O1, O2) of the air regulating valve (8) corresponding to the lower turbidity concentration are set. Setting corresponding to the turbidity concentration where the water level (WL) measured by the water level meter (30) with the opening (O1, O2) of the air control valve (8) corresponding to the turbidity concentration is lower than the high turbidity concentration The water level (30) measured by the water level meter (30) is controlled even if the opening of the treated water control valve (5) is fully opened by controlling the opening of the treated water control valve (5) so as to coincide with the water level (H1, H2). WL) is higher than the set water level (H1, H2) corresponding to a turbidity concentration lower than the high turbidity concentration. Treated water so that the water level (WL) measured by the water level meter (30) with the opening (O3) of the corresponding air control valve (8) matches the set water level (H3) corresponding to the high turbidity concentration. A cross-flow type moving bed type filtration device that controls the opening degree of the control valve (5).
原水中の濁質成分を付着捕捉するためのろ材(10)が下部に堆積したろ過槽(1)と、ろ過槽(1)の下部側壁に設置され原水をろ過槽(1)に供給するための流入チャンバー(2)と、流入チャンバー(2)の反対側のろ過槽(1)の下部側壁に設置され処理水を排出するための流出チャンバー(3)と、流出チャンバー(3)から排出する処理水量を調節するための処理水調節弁(5)と、ろ過槽(1)の底部付近のろ材(10)を圧縮空気により水と共にろ材洗浄器(20)に搬送するエアリフトポンプ(6)およびエアリフト管(7)と、エアリフトポンプ(6)に供給する圧縮空気量を調節するための空気調節弁(8)と、ろ過槽(1)の上部に設置され且つ搬送されてきた圧縮空気と水とろ材(10)から圧縮空気とろ材(10)から離脱した濁質成分を含む水とろ材(10)とを分離して、圧縮空気は排気し、ろ材(10)から離脱した濁質成分を含む水は高さ(EL)が一定に保たれ変化しないオリフィス(24)からオーバーフローにより洗浄配水管(23)に流れ込み排水し、ろ材(10)は落下させるろ材洗浄器(20)と、ろ過槽(1)内の水位(WL)を計測する水位計(30)と、運転を制御する制御装置(40)とを具備して構成され、
前記制御装置(40)は、高濁質濃度に対応した設定水位(H3)とそれより低い濁質濃度に対応した設定水位(H1,H2)とを設定され、まず、水位計(30)で計測した水位(WL)が高濁質濃度より低い濁質濃度に対応した設定水位(H1,H2)に一致するように処理水調節弁(5)の開度を制御し、処理水調節弁(5)の開度を全開にしても水位計(30)で計測した水位(WL)が高濁質濃度より低い濁質濃度に対応した設定水位(H1,H2)より高くなる場合は、水位計(30)で計測した水位(WL)が高濁質濃度に対応した設定水位(H3)に一致するように処理水調節弁(5)の開度を制御することを特徴とする横流型移動床式ろ過装置。
A filter tank (1) for adhering and capturing turbid components in the raw water is deposited in the lower part, and is installed on the lower side wall of the filter tank (1) to supply the raw water to the filter tank (1). The inflow chamber (2), the outflow chamber (3) installed on the lower side wall of the filtration tank (1) on the opposite side of the inflow chamber (2) and the outflow chamber (3) for discharging treated water A treated water control valve (5) for adjusting the amount of treated water, an air lift pump (6) for conveying the filter medium (10) near the bottom of the filtration tank (1) to the filter medium cleaner (20) together with water by compressed air; and An air lift pipe (7), an air control valve (8) for adjusting the amount of compressed air supplied to the air lift pump (6), and the compressed air and water that have been installed and transported above the filtration tank (1) Filter media (10) to compressed air and filter media (1 ) Separating the water Toro material containing a breakaway turbid component (10) from the compressed air is exhausted, the coercive water height including turbid component was removed from the filter medium (10) (EL) is constant From the orifice (24) which does not change dripping, it flows into the drainage pipe (23) by overflow and drains, and the filter medium (10) measures the filter medium cleaner (20) to drop and the water level (WL) in the filter tank (1). Comprising a water level gauge (30) and a control device (40) for controlling operation,
The control device (40) is set with a set water level (H3) corresponding to a high turbidity concentration and a set water level (H1, H2) corresponding to a lower turbidity concentration. The opening of the treated water control valve (5) is controlled so that the measured water level (WL) matches the set water level (H1, H2) corresponding to the turbidity concentration lower than the high turbidity concentration. If the water level (WL) measured by the water level meter (30) is higher than the set water level (H1, H2) corresponding to the turbidity concentration lower than the high turbidity concentration even if the opening degree of 5) is fully opened, A cross-flow type moving bed characterized by controlling the opening of the treated water control valve (5) so that the water level (WL) measured in (30) matches the set water level (H3) corresponding to the high turbidity concentration. Type filtration device.
JP2001140817A 2001-05-11 2001-05-11 Cross-flow type moving bed filter Expired - Fee Related JP4454179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140817A JP4454179B2 (en) 2001-05-11 2001-05-11 Cross-flow type moving bed filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140817A JP4454179B2 (en) 2001-05-11 2001-05-11 Cross-flow type moving bed filter

Publications (2)

Publication Number Publication Date
JP2002331205A JP2002331205A (en) 2002-11-19
JP4454179B2 true JP4454179B2 (en) 2010-04-21

Family

ID=18987352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140817A Expired - Fee Related JP4454179B2 (en) 2001-05-11 2001-05-11 Cross-flow type moving bed filter

Country Status (1)

Country Link
JP (1) JP4454179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023959A (en) * 2021-04-20 2021-06-25 西安市天佑净化设备有限责任公司 Progressive selective wastewater recovery and purification equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336838B2 (en) * 2008-12-26 2013-11-06 水道機工株式会社 Start-up method of moving bed type filtration equipment
KR20120117836A (en) * 2010-01-08 2012-10-24 파크슨 코포레이션 Method and computer program product for treating liquid containing impurities
JP5618855B2 (en) * 2011-02-10 2014-11-05 株式会社タクマ Sand filter
JP6004872B2 (en) * 2012-09-28 2016-10-12 株式会社クボタ Moving bed filtration tank and septic tank
CN109718580B (en) * 2017-10-31 2024-08-30 帕克环保技术(上海)有限公司 Sand filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023959A (en) * 2021-04-20 2021-06-25 西安市天佑净化设备有限责任公司 Progressive selective wastewater recovery and purification equipment

Also Published As

Publication number Publication date
JP2002331205A (en) 2002-11-19

Similar Documents

Publication Publication Date Title
KR100229989B1 (en) Machining process waste liquor regeneration method and machining process waste liquor regenerating apparatus
JP4849383B2 (en) Operation control method for belt type concentrator
JP4454179B2 (en) Cross-flow type moving bed filter
WO2020261896A1 (en) Sludge treatment device and sludge treatment system work machine
JP2009106882A (en) Water softener
JP5441552B2 (en) Coolant supply device
JP5441553B2 (en) Coolant supply device
JPH1071305A (en) Moving filter bed type filter
JP6660730B2 (en) Solid recovery system and method of operating solid recovery system
JP6132104B2 (en) How to clean the filter
JP4758743B2 (en) Equipment for separating and removing solids in liquid
JP4455735B2 (en) Coagulation sedimentation equipment
JP3899792B2 (en) Wastewater treatment system
JP2003299911A (en) Filter medium cleaning system and water treatment system
RU2347751C2 (en) Device for purifying sewage water
JP4277589B2 (en) Upflow filter
JP4569772B2 (en) Sludge concentration apparatus and sludge concentration method
JP4699981B2 (en) Filtration apparatus and filtration method
US20180200648A1 (en) Pilot filter for a water treatment system
JP4551124B2 (en) Filtration pond system
JPH08266815A (en) Filter medium transfer device in moving filter bed type filter
JP2000202210A (en) Continuous filtering method and filter
JP2000202209A (en) Filtering method and filter device
JP3930754B2 (en) Distributor cleaning method and apparatus
WO2015052906A1 (en) Filtration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees