JP4453707B2 - Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system - Google Patents

Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system Download PDF

Info

Publication number
JP4453707B2
JP4453707B2 JP2007030257A JP2007030257A JP4453707B2 JP 4453707 B2 JP4453707 B2 JP 4453707B2 JP 2007030257 A JP2007030257 A JP 2007030257A JP 2007030257 A JP2007030257 A JP 2007030257A JP 4453707 B2 JP4453707 B2 JP 4453707B2
Authority
JP
Japan
Prior art keywords
production system
scale formation
green liquor
scale
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007030257A
Other languages
Japanese (ja)
Other versions
JP2008196064A (en
Inventor
啓隆 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007030257A priority Critical patent/JP4453707B2/en
Publication of JP2008196064A publication Critical patent/JP2008196064A/en
Application granted granted Critical
Publication of JP4453707B2 publication Critical patent/JP4453707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/40Production or processing of lime, e.g. limestone regeneration of lime in pulp and sugar mills

Landscapes

  • Paper (AREA)

Description

本発明は、緑液製造系におけるスケール形成を抑制するスケール形成抑制剤、スケール形成抑制方法、及び緑液製造系に関する。   The present invention relates to a scale formation inhibitor that suppresses scale formation in a green liquor production system, a scale formation inhibition method, and a green liquor production system.

紙は、木材チップに水酸化ナトリウムを含む処理水を加え蒸解することによりパルプを調製し、このパルプを漂白し、抄紙することにより製造される。木材チップやパルプには、カルシウム塩、バリウム塩、シュウ酸塩等が豊富に含まれているため、紙製造の過程で、多量のカルシウムイオン、バリウムイオン、シュウ酸イオンが処理水中に溶出する。   Paper is manufactured by preparing pulp by adding treated water containing sodium hydroxide to wood chips and cooking, bleaching this pulp, and making paper. Since wood chips and pulp contain abundant calcium salts, barium salts, oxalates, etc., a large amount of calcium ions, barium ions, and oxalate ions are eluted in the treated water during the paper manufacturing process.

これらシュウ酸イオンや硫酸イオンと、カルシウムイオン、バリウムイオンとが結合すると、硫酸カルシウム、硫酸バリウム、シュウ酸カルシウムといった水に極めて難溶性の物質がスケールとして生成される。スケールは、緑液製造系のあらゆる部位に付着して、処理水の流量低下、電力の消費効率の低下を誘発し、場合によっては緑液製造系を構成する機器を破損する。   When these oxalate ions and sulfate ions are combined with calcium ions and barium ions, substances extremely insoluble in water such as calcium sulfate, barium sulfate, and calcium oxalate are generated as scales. The scale adheres to every part of the green liquor production system, induces a decrease in the flow rate of the treated water and a reduction in power consumption efficiency, and in some cases damages the equipment constituting the green liquor production system.

そこで、緑液製造系に付着するスケールを低減する必要がある。従来、定期的な清掃や酸による洗浄によって、付着したスケールを除去することで対応するのが一般的である。しかし、このような除去作業では、緑液製造系の操業を一時的に停止せざるを得ず、紙製造効率を大きく減少させる。   Therefore, it is necessary to reduce the scale attached to the green liquor production system. Conventionally, it is common to remove the adhered scale by periodic cleaning or acid cleaning. However, in such a removal operation, the operation of the green liquor production system must be temporarily stopped, and the paper production efficiency is greatly reduced.

このため、操業中の緑液製造系に所定の組成物を投入することで、スケールの形成を抑制する技術が要請される。このような組成物として、特許文献1は、1,2−ジヒドロキシ−3−ブテン、マレイン酸、アクリル酸等をモノマー単位とする多成分系の共重合体を開示している。
特表2003−520117号公報
For this reason, the technique which suppresses formation of a scale is requested | required by throwing a predetermined composition into the green liquid manufacturing system in operation. As such a composition, Patent Document 1 discloses a multi-component copolymer having monomer units of 1,2-dihydroxy-3-butene, maleic acid, acrylic acid and the like.
Special table 2003-520117 gazette

しかし、前述した組成物では、多成分をモノマー単位として採用するため、組成物の製造コストが上昇したり、製造系が煩雑化したりといった問題がある。   However, since the composition described above employs multiple components as monomer units, there is a problem that the production cost of the composition increases and the production system becomes complicated.

本発明は、以上の実情に鑑みてなされたものであり、安価且つ簡素な製造系で製造できる材料を用いて、緑液製造系におけるスケールの形成を充分に抑制できるスケール形成抑制剤、スケール形成抑制方法、及び緑液製造系を提供することを目的とする。   The present invention has been made in view of the above circumstances, and using a material that can be manufactured in an inexpensive and simple manufacturing system, a scale formation inhibitor and scale formation that can sufficiently suppress the formation of scale in a green liquor manufacturing system. It aims at providing the suppression method and a green liquor manufacturing system.

本発明者らは、実質的にマレイン酸及びアクリル酸をモノマー単位とし且つ重量平均分子量が3000以上の共重合体を使用することで、緑液製造系におけるスケールの形成を劇的に抑制できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。   The present inventors have found that the formation of scale in the green liquor production system can be drastically suppressed by using a copolymer having maleic acid and acrylic acid as monomer units and having a weight average molecular weight of 3000 or more. The headline and the present invention were completed. Specifically, the present invention provides the following.

(1) モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体を含有する緑液製造系におけるスケール形成抑制剤。   (1) A scale formation inhibitor in a green liquor production system containing a copolymer having a monomer unit substantially consisting of maleic acid and acrylic acid and having a weight average molecular weight of 3000 or more.

(2) スケール形成イオンを含有する緑液製造系における流体に、モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体を導入することにより、スケールの形成を抑制する緑液製造系におけるスケール形成抑制方法。   (2) By introducing a copolymer having monomer units substantially consisting of maleic acid and acrylic acid and having a weight average molecular weight of 3000 or more into a fluid in a green liquor production system containing scale forming ions, A method for suppressing scale formation in a green liquor production system for suppressing formation.

(3) 前記共重合体を、前記流体に対する前記共重合体の濃度が0.1〜1000mg/Lとなるように導入する(2)記載の緑液製造系におけるスケール形成抑制方法。   (3) The scale formation suppression method in the green liquor production system according to (2), wherein the copolymer is introduced so that the concentration of the copolymer with respect to the fluid is 0.1 to 1000 mg / L.

(4) 前記共重合体を、前記流体に対する前記共重合体の濃度が0.1〜100mg/Lとなるように導入する(3)記載の緑液製造系におけるスケール形成抑制方法。   (4) The scale formation suppression method in the green liquor production system according to (3), wherein the copolymer is introduced so that a concentration of the copolymer with respect to the fluid is 0.1 to 100 mg / L.

(5) スケール形成イオンを含有する流体が流通する流体流路を備える緑液製造系であって、
前記流体流路に、モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体を含有するスケール形成抑制剤を導入する導入手段を更に備える緑液製造系。
(5) A green liquor production system comprising a fluid flow path through which a fluid containing scale-forming ions flows,
A green liquor production system further comprising introducing means for introducing a scale formation inhibitor containing a copolymer having monomer units substantially consisting of maleic acid and acrylic acid and having a weight average molecular weight of 3000 or more into the fluid channel. .

本発明によれば、モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体でスケール形成抑制剤を構成したので、スケール形成抑制剤を安価で簡素な製造系で製造できる。また、このスケール形成イオンを含有する緑液製造系における流体に、モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体を含有するスケール形成抑制剤を導入したので、スケール形成イオンの結合が阻害される。これにより、スケールの形成を充分に抑制できる。   According to the present invention, since the scale formation inhibitor is composed of a copolymer in which the monomer unit is substantially composed of maleic acid and acrylic acid and the weight average molecular weight is 3000 or more, the scale formation inhibitor is inexpensive and simple. Can be manufactured in a manufacturing system. Further, a scale formation inhibitor containing a copolymer having a monomer unit substantially consisting of maleic acid and acrylic acid and having a weight average molecular weight of 3000 or more is added to the fluid in the green liquor production system containing the scale-forming ions. Since it was introduced, the binding of scale-forming ions is inhibited. Thereby, scale formation can be sufficiently suppressed.

以下、本発明の実施形態について説明するが、本発明はこれに特に限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not specifically limited to this.

<パルプ製造系>
図1は、本発明の一実施形態に係る緑液製造系を備えたパルプ製造系1の概略構成図である。パルプ製造系1は、蒸解系10と、黒液処理系20と、緑液製造系30と、緑液処理系40と、を備え、これらは、図1において実線で示される管で互いに連通され、全体として循環路を構成している。また、緑液製造系30は、図示しない導入手段としての導入部を更に備える。以下、各構成要素について詳細に説明する。
<Pulp production system>
FIG. 1 is a schematic configuration diagram of a pulp manufacturing system 1 including a green liquor manufacturing system according to an embodiment of the present invention. The pulp production system 1 includes a cooking system 10, a black liquor treatment system 20, a green liquor production system 30, and a green liquor treatment system 40, which are communicated with each other through a pipe indicated by a solid line in FIG. As a whole, it constitutes a circulation path. The green liquor production system 30 further includes an introduction section as introduction means (not shown). Hereinafter, each component will be described in detail.

[蒸解系]
蒸解系10は、蒸解釜11を有し、この蒸解釜11の下流にはパルプ精製部が設けられている。蒸解釜11には、パルプの原料である木材チップと、水酸化ナトリウムを含有する白液とが投入され、木材チップの蒸解が行われる。これによって生じたパルプはパルプ精製部へと移送され、漂白、抄紙工程等を順次受け、紙が製造される。一方、廃液である黒液は、水酸化ナトリウムの回収等のため、後述するエバポレータ21へと移送される。
[Cooking system]
The cooking system 10 has a digester 11, and a pulp refining section is provided downstream of the digester 11. In the digester 11, wood chips that are raw materials for pulp and white liquor containing sodium hydroxide are charged to digest the wood chips. The resulting pulp is transferred to the pulp refining section, where it is subjected to bleaching, paper making processes, etc., and paper is produced. On the other hand, the black liquor, which is a waste liquid, is transferred to an evaporator 21 described later for recovery of sodium hydroxide and the like.

[黒液処理系]
黒液処理系20は、上流から順に、エバポレータ21と、ボイラ22と、を有する。黒液は、エバポレータ21で濃縮された後、ボイラ22へと移送され、このボイラ22内で燃焼される。すると、黒液に含有されていた無機ナトリウム塩が溶融し、ボイラ22の底部からスメルトとして排出される。排出されたスメルトは、溶解タンク31へと移送される。
[Black liquor treatment system]
The black liquor processing system 20 includes an evaporator 21 and a boiler 22 in order from the upstream. The black liquor is concentrated by the evaporator 21, transferred to the boiler 22, and burned in the boiler 22. Then, the inorganic sodium salt contained in the black liquor is melted and discharged as smelt from the bottom of the boiler 22. The discharged smelt is transferred to the dissolution tank 31.

なお、ボイラ22には、熱エネルギーを回収するための熱回収系が設けられていてよい。このような熱回収系としては、従来公知のものが使用できる(例えば、特開平6−212586号公報参照)。   The boiler 22 may be provided with a heat recovery system for recovering thermal energy. As such a heat recovery system, a conventionally known one can be used (for example, see JP-A-6-212586).

[緑液製造系]
緑液製造系30は、上流から順に、溶解タンク31と、緑液クラリファイア32と、緑液タンク33と、を有する。スメルトは、溶解タンク31において水に撹拌され溶解する。これにより、水酸化ナトリウムに加え、炭酸ナトリウムを豊富に含有する緑液が生成される。溶解タンク31には図示しない送液ポンプが設けられており、緑液はこの送液ポンプに吸引され、緑液クラリファイア32へと移送される。緑液は、残存する未溶解成分が緑液クラリファイア32において除去される。その後、緑液タンク33へと移送されて貯留され、やがて苛性化系41へと移送される。
[Green liquid production system]
The green liquor production system 30 includes a dissolution tank 31, a green liquor clarifier 32, and a green liquor tank 33 in order from the upstream. The smelt is stirred and dissolved in water in the dissolution tank 31. Thereby, in addition to sodium hydroxide, a green liquor rich in sodium carbonate is produced. The dissolution tank 31 is provided with a liquid feed pump (not shown), and the green liquid is sucked into the liquid feed pump and transferred to the green liquid clarifier 32. In the green liquor, the remaining undissolved components are removed by the green liquor clarifier 32. Thereafter, it is transferred to the green liquor tank 33 and stored, and is eventually transferred to the causticizing system 41.

[緑液処理系]
緑液処理系40は、苛性化系41と、白液クラリファイア42と、白液タンク43と、この43の下流に位置するキルン44と、を有する。苛性化系41、白液クラリファイア42、白液タンク43は、互いに連通され、全体として循環路を構成する。
[Green liquid treatment system]
The green liquor treatment system 40 includes a causticizing system 41, a white liquor clarifier 42, a white liquor tank 43, and a kiln 44 located downstream of the 43. The causticizing system 41, the white liquor clarifier 42, and the white liquor tank 43 are in communication with each other and constitute a circulation path as a whole.

苛性化系41へと移送された緑液は、この苛性化系41において、キルン44から供給された酸化カルシウムと混合される。この混合に関して、より詳細に説明する。   The green liquor transferred to the causticizing system 41 is mixed with calcium oxide supplied from the kiln 44 in the causticizing system 41. This mixing will be described in more detail.

苛性化系41は、スレーカ411と、このスレーカ411の下流に位置する複数の苛性化反応槽412とを有する。スレーカ411に移送された緑液(通常、90〜100℃、pH13〜14)は、同じくスレーカ411に供給された酸化カルシウムと混合される。すると、酸化カルシウムが水で消和されて水酸化カルシウムが生成される。その後、苛性化反応槽412へと移送されると、緑液中の炭酸ナトリウムが水酸化カルシウムと反応し、水酸化ナトリウム及び炭酸カルシウムが生成される。   The causticizing system 41 includes a slaker 411 and a plurality of causticizing reaction tanks 412 located downstream of the slaker 411. The green liquor (usually 90 to 100 ° C., pH 13 to 14) transferred to the breaker 411 is mixed with calcium oxide supplied to the breaker 411 as well. Then, calcium oxide is dehydrated with water to produce calcium hydroxide. Thereafter, when transferred to the causticizing reaction tank 412, sodium carbonate in the green liquor reacts with calcium hydroxide to produce sodium hydroxide and calcium carbonate.

このようにして得られた白液は、白液クラリファイア42へと移送される。この白液クラリファイア42において、不溶性の炭酸カルシウムが沈降され分離された後、白液は白液タンク43に貯留され、やがて蒸解釜11へと循環して再利用されることになる。一方、分離された炭酸カルシウムはキルン44へと回収され、焙焼されて酸化カルシウムへと戻って、苛性化系41において再利用される。   The white liquor thus obtained is transferred to the white liquor clarifier 42. In this white liquor clarifier 42, after insoluble calcium carbonate is settled and separated, the white liquor is stored in the white liquor tank 43 and eventually circulated to the digester 11 for reuse. On the other hand, the separated calcium carbonate is recovered into the kiln 44, roasted, returned to calcium oxide, and reused in the causticizing system 41.

本実施形態において、スケール形成イオンを含有する緑液製造系における流体が流通する、溶解タンク31、緑液クラリファイア32、緑液タンク33、及びこれらを連通する管等は、流体流路を構成する。   In the present embodiment, the dissolution tank 31, the green liquor clarifier 32, the green liquor tank 33, and the pipes that communicate these constitute the fluid flow path through which the fluid in the green liquor production system containing scale-forming ions circulates. To do.

ここで、スケール形成イオンとは、互いに結合してスケールを形成するイオン群を意味し、具体的には、カルシウムイオン、バリウムイオン、硫酸イオン、シュウ酸イオン等が挙げられる。   Here, the scale-forming ions mean a group of ions that combine with each other to form a scale, and specifically include calcium ions, barium ions, sulfate ions, oxalate ions, and the like.

[導入部]
導入部は、スケール形成の抑制が求められる緑液製造系30における適宜の部位に、後述するスケール形成抑制剤を導入する。緑液製造系30は、流体流路のあらゆる個所においてスケール形成イオンが存在し、スケールの付着の問題が懸念される。導入部によって導入されたスケール形成抑制剤は、導入個所及びその下流においてスケール形成イオンの結合を阻害するため、スケールの形成を充分に抑制できる。
[Introduction section]
The introduction unit introduces a scale formation inhibitor, which will be described later, into an appropriate site in the green liquor production system 30 where suppression of scale formation is required. In the green liquor production system 30, scale forming ions exist everywhere in the fluid flow path, and there is a concern about the problem of scale adhesion. Since the scale formation inhibitor introduced by the introduction part inhibits the binding of scale forming ions at the introduction site and downstream thereof, scale formation can be sufficiently suppressed.

導入個所は、前述した流体流路の任意の個所であってよく、スケール形成の抑制が求められる部位又はその上流であることが好ましい。例えば、溶解タンク31や緑液クラリファイア32に導入したり、スメルトを溶解させるための水に導入したりすることができる。   The introduction part may be an arbitrary part of the fluid flow path described above, and is preferably a part where suppression of scale formation is required or upstream thereof. For example, it can be introduced into the dissolution tank 31 or the green liquor clarifier 32, or can be introduced into water for dissolving the smelt.

スケール形成抑制剤の導入量は、スケール形成イオンの存在量、流通する流体量等に応じて、適宜設定されてよい。導入量は、スケール形成を充分に抑制でき且つ経済的である点で、流体(例えば、緑液)に対する後述する共重合体の濃度が好ましくは0.1〜1000mg/L、より好ましくは0.1〜100mg/Lとなるように設定される。なお、流通する流体の体積は、例えば、流体流路の適宜の個所に流量計を設け、その測定値に基づいて算出できる。   The amount of the scale formation inhibitor introduced may be appropriately set according to the amount of scale-forming ions present, the amount of fluid flowing, and the like. The introduction amount is preferably 0.1 to 1000 mg / L, more preferably 0.1 to 1000 mg / L, as described later, with respect to the fluid (for example, green liquor) in that the formation of scale can be sufficiently suppressed and is economical. It is set to be 1 to 100 mg / L. Note that the volume of the fluid flowing can be calculated based on the measured value by providing a flow meter at an appropriate location in the fluid flow path, for example.

<スケール形成抑制剤>
[組成]
本発明のスケール形成抑制剤は、モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体を含有する。
<Scale formation inhibitor>
[composition]
The scale formation inhibitor of the present invention contains a copolymer having monomer units substantially consisting of maleic acid and acrylic acid and having a weight average molecular weight of 3000 or more.

「実質的にマレイン酸及びアクリル酸からなる」とは、マレイン酸及びアクリル酸以外の化合物が、スケール形成を抑制できる量以上には、モノマー単位として含有されていないことを意味する。   The phrase “consisting essentially of maleic acid and acrylic acid” means that compounds other than maleic acid and acrylic acid are not contained as monomer units in an amount that can suppress scale formation.

なお、マレイン酸とアクリル酸との含有比は、特に限定されず、例えば、30:70〜70:30(モル%)であってよい。   In addition, the content ratio of maleic acid and acrylic acid is not particularly limited, and may be, for example, 30:70 to 70:30 (mol%).

スケール形成抑制剤は、通常、移送効率を考慮して共重合体が水に溶解された状態で使用されるが、これに限定されず、スラリー状、粉末状で使用されてもよい。   The scale formation inhibitor is usually used in a state where the copolymer is dissolved in water in consideration of the transfer efficiency, but is not limited thereto, and may be used in a slurry form or a powder form.

[製造方法]
本発明のスケール形成抑制剤は、従来公知の方法、例えば、溶液重合法、塊状重合法によって製造できる。具体的には、無水マレイン酸、アクリル酸、メタノール、キシレンを撹拌下還流しながら、ジ−t−ブチルパーオキサイドを少量ずつ添加する。この混合液を撹拌した後、約90℃に冷却する。続いて、純水を加え、更に撹拌して加水分解を行う。その後、水蒸気蒸留によってキシレンを分離することで、共重合体の水溶液としてスケール形成抑制剤が得られる。
[Production method]
The scale formation inhibitor of the present invention can be produced by a conventionally known method, for example, a solution polymerization method or a bulk polymerization method. Specifically, di-t-butyl peroxide is added little by little while refluxing maleic anhydride, acrylic acid, methanol, and xylene with stirring. The mixture is stirred and then cooled to about 90 ° C. Subsequently, pure water is added and the mixture is further stirred for hydrolysis. Thereafter, xylene is separated by steam distillation to obtain a scale formation inhibitor as an aqueous solution of the copolymer.

スケール形成抑制剤の構成成分として有用なものを選定するべく、表1に示される重合体A〜Xを作製した。添加量及び反応時間を適宜変更することを除き作製手順が共通するため、本明細書では重合体Cの作製方法についてのみ説明する。   Polymers A to X shown in Table 1 were prepared in order to select useful components as a constituent of the scale formation inhibitor. Since the production procedure is the same except that the addition amount and the reaction time are appropriately changed, only the production method of the polymer C will be described in this specification.

まず、無水マレイン酸49g(0.5モル)、アクリル酸36g(0.5モル)、メタノール30g(0.94モル)、キシレン232g(2.2モル)を撹拌下還流しながら、ジ−t−ブチルパーオキサイド6.6g(0.045モル)を3時間に亘って少量ずつ添加した。この混合液を140℃で約2時間撹拌した後、約90℃に冷却した。続いて、純水350gを加え、50℃で2時間撹拌して加水分解を行った。その後、水蒸気蒸留によってキシレンを分離することで、重合体Cの水溶液を得た。なお、この水溶液の一部をメタノールに添加し、沈殿した重合体の質量を測定した結果、収率は92%であった。   First, 49 g (0.5 mol) of maleic anhydride, 36 g (0.5 mol) of acrylic acid, 30 g (0.94 mol) of methanol, and 232 g (2.2 mol) of xylene were refluxed with stirring. -6.6 g (0.045 mol) of butyl peroxide was added in small portions over 3 hours. The mixture was stirred at 140 ° C. for about 2 hours and then cooled to about 90 ° C. Subsequently, 350 g of pure water was added and the mixture was stirred at 50 ° C. for 2 hours for hydrolysis. Then, xylene was isolate | separated by steam distillation, and the aqueous solution of the polymer C was obtained. In addition, as a result of adding a part of this aqueous solution to methanol and measuring the mass of the precipitated polymer, the yield was 92%.

Figure 0004453707
Figure 0004453707

作製した重合体A〜Xの各々について、スケール形成イオンとしてのカルシウムイオンからのスケール形成抑制能を、以下のようにして評価した。   About each of produced polymer AX, the scale formation inhibitory ability from the calcium ion as a scale formation ion was evaluated as follows.

(試験例1)
まず、クラフトパルプ製造工程で発生した緑液(pH13.5、全アルカリ度(NaO換算値)135g/L、ナトリウム濃度9質量%、カルシウム濃度10mg/L)に、塩化カルシウム二水和物185mg/Lを溶解し、試験水を調製した。この試験水をろ紙(5C)を通してろ過し、ろ液中のカルシウム濃度を原子吸光法により測定したところ、65mg/Lであった。
(Test Example 1)
First, calcium chloride dihydrate was added to the green liquor (pH 13.5, total alkalinity (Na 2 O conversion value) 135 g / L, sodium concentration 9 mass%, calcium concentration 10 mg / L) generated in the kraft pulp manufacturing process. 185 mg / L was dissolved and test water was prepared. The test water was filtered through a filter paper (5C), and the calcium concentration in the filtrate was measured by an atomic absorption method, and found to be 65 mg / L.

重合体A(ポリマレイン酸)10mg/Lを添加した試験水100mLを、ステンレス鋼性の容器に注ぎ、95℃の油浴で1時間浸漬した。その後、ろ紙(5C)を通してろ過し、ろ液中のカルシウム濃度を原子吸光法により測定したところ、14mg/Lであった。一方、重合体Aを添加していない試験水100mLを用いた点を除き同様の手順で得たろ液中のカルシウム濃度は、13mg/Lであった。この値をブランク値とした。   100 mL of test water added with 10 mg / L of polymer A (polymaleic acid) was poured into a stainless steel container and immersed in an oil bath at 95 ° C. for 1 hour. Then, it filtered through the filter paper (5C), and it was 14 mg / L when the calcium concentration in a filtrate was measured by the atomic absorption method. On the other hand, the calcium concentration in the filtrate obtained by the same procedure except that 100 mL of test water to which polymer A was not added was used was 13 mg / L. This value was taken as a blank value.

これら2つの測定値に基づいて、試験水に存在したカルシウム成分の析出抑制率は、{1−(65−14)/(65−13)}×100=2(%)と算出された。   Based on these two measured values, the precipitation inhibition rate of the calcium component present in the test water was calculated as {1- (65-14) / (65-13)} × 100 = 2 (%).

同様の手順で、重合体B〜Xの各々について、カルシウム成分の析出抑制率を算出した。この結果を図2及び図3に示す。図2は、重合体A〜Rによるカルシウム成分の析出抑制率を示す図であり、図3は、重合体C〜E、S〜Xによるカルシウム成分の析出抑制率を示す図である。   In the same procedure, the precipitation suppression rate of the calcium component was calculated for each of the polymers B to X. The results are shown in FIGS. FIG. 2 is a diagram showing the precipitation inhibition rate of the calcium component by the polymers A to R, and FIG. 3 is a diagram showing the precipitation inhibition rate of the calcium component by the polymers C to E and S to X.

図2に示されるように、重合体D〜Hは、重合体A、I〜Rに比べて顕著に高い析出抑制効果を発揮していた。これにより、モノマー単位を実質的にマレイン酸及びアクリル酸で構成することが、スケール形成の抑制能の向上に必要であることが示唆される。   As shown in FIG. 2, the polymers D to H exhibited a significantly higher precipitation suppressing effect than the polymers A and I to R. This suggests that the monomer unit is substantially composed of maleic acid and acrylic acid to improve the ability to suppress scale formation.

また、重合体D〜Hは、重合体Cに比べて顕著に高い析出抑制効果を発揮していた。これにより、重量平均分子量を3000以上とすることが、スケール形成の抑制能の向上に必要であることが示唆される。   Further, the polymers D to H exhibited a significantly higher precipitation suppressing effect than the polymer C. This suggests that a weight average molecular weight of 3000 or more is necessary for improving the ability to suppress scale formation.

一方、図3に示されるように、モノマー単位が実質的にマレイン酸及びアクリル酸からなる共重合体は、マレイン酸/アクリル酸のモル比が3/7〜7/3の範囲にある限りにおいて、析出抑制効果がモル比に依存しないことが確認された。   On the other hand, as shown in FIG. 3, the copolymer whose monomer units are substantially composed of maleic acid and acrylic acid, as long as the maleic acid / acrylic acid molar ratio is in the range of 3/7 to 7/3. Thus, it was confirmed that the precipitation suppressing effect does not depend on the molar ratio.

(試験例2)
前述した緑液製造系30(緑液製造量:50m/時間)において、重合体B、Eのスケール形成抑制能の評価を行った。まず、重合体濃度が緑液に対して10mg/Lとなるように、導入部を介して重合体を溶解タンク31に導入した。この状態で3ヶ月間、緑液製造系30を操業した。なお、操業時における緑液の条件は、以下の通りであった。
pH:13.5〜13.8
全アルカリ度(NaO換算値):125〜140g/L
ナトリウムイオン濃度:7〜9質量%
カルシウムイオン濃度:5〜15mg/L
(Test Example 2)
In the above-described green liquor production system 30 (green liquor production amount: 50 m 3 / hour), the ability of the polymers B and E to inhibit scale formation was evaluated. First, the polymer was introduced into the dissolution tank 31 via the introduction part so that the polymer concentration was 10 mg / L with respect to the green liquor. In this state, the green liquor production system 30 was operated for 3 months. In addition, the conditions of the green liquor at the time of operation were as follows.
pH: 13.5 to 13.8
Total alkalinity (Na 2 O conversion value): 125 to 140 g / L
Sodium ion concentration: 7-9% by mass
Calcium ion concentration: 5-15mg / L

3ヶ月の間に、溶解タンク31に設けられた送液ポンプにスケールが付着し、送液ポンプの洗浄が必要となった時期及び回数を求めた。この結果を、重合体を導入しなかった対照区の結果とあわせて表2に示す。

Figure 0004453707
During the three months, the scale and the liquid feed pump provided in the dissolution tank 31 adhered, and the time and number of times when the liquid feed pump had to be washed were determined. This result is shown in Table 2 together with the result of the control group in which the polymer was not introduced.
Figure 0004453707

表2に示されるように、無処理の対照区及び重合体Bを導入した緑液製造系30では、送液ポンプへのスケールの付着により、洗浄によるスケールの除去を頻繁に行う必要があった。これに対して、重合体Eを導入した緑液製造系30では、3ヶ月間に亘り、目立ったスケールの付着がなく、洗浄を行う必要がなかった。   As shown in Table 2, in the green liquid production system 30 in which the untreated control group and the polymer B were introduced, it was necessary to frequently remove the scale by washing due to the scale adhering to the liquid feed pump. . On the other hand, in the green liquor production system 30 into which the polymer E was introduced, there was no noticeable scale adhesion over 3 months, and there was no need to perform cleaning.

このように、緑液製造系30を用いた試験例2の結果が、試験例1の結果と相関性を有していることから、試験例1において優れた機能を発揮した重合体D〜Hは、いずれも、実際の緑液製造系において優れたスケール形成抑制能を発揮できることが示唆される。   Thus, since the result of Test Example 2 using the green liquor production system 30 has a correlation with the result of Test Example 1, the polymers D to H that exhibited excellent functions in Test Example 1 It is suggested that both can exhibit an excellent ability to suppress scale formation in an actual green liquor production system.

本発明の一実施形態に係る緑液製造系を備えたパルプ製造系の概略構成図である。It is a schematic block diagram of the pulp manufacturing system provided with the green liquor manufacturing system which concerns on one Embodiment of this invention. 本発明の実施例に係るスケール形成抑制剤によるスケール形成効果を示す図である。It is a figure which shows the scale formation effect by the scale formation inhibitor which concerns on the Example of this invention. 本発明の実施例に係るスケール形成抑制剤によるスケール形成効果を示す図である。It is a figure which shows the scale formation effect by the scale formation inhibitor which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 パルプ製造系
10 蒸解系
11 蒸解釜
20 黒液処理系
21 エバポレータ
22 ボイラ
30 緑液製造系
31 溶解タンク
32 緑液クラリファイア
33 緑液タンク
40 緑液処理系
41 苛性化系
42 白液クラリファイア
43 白液タンク
44 キルン
411 スレーカ
412 苛性化反応槽
DESCRIPTION OF SYMBOLS 1 Pulp production system 10 Digestion system 11 Distilling pot 20 Black liquor processing system 21 Evaporator 22 Boiler 30 Green liquor production system 31 Dissolution tank 32 Green liquor clarifier 33 Green liquor tank 40 Green liquor treatment system 41 Causticizing system 42 White liquor clarifier 43 White liquor tank 44 Kiln 411 Slaker 412 Caustic reaction tank

Claims (5)

モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体を含有する緑液製造系におけるスケール形成抑制剤。   A scale formation inhibitor in a green liquor production system comprising a copolymer having a monomer unit substantially consisting of maleic acid and acrylic acid and having a weight average molecular weight of 3000 or more. スケール形成イオンを含有する緑液製造系における流体に、モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体を導入することにより、スケールの形成を抑制する緑液製造系におけるスケール形成抑制方法。   Inhibition of scale formation by introducing a copolymer having monomer units substantially consisting of maleic acid and acrylic acid and having a weight average molecular weight of 3000 or more into a fluid in a green liquor production system containing scale forming ions A method for suppressing scale formation in a green liquor production system. 前記共重合体を、前記流体に対する前記共重合体の濃度が0.1〜1000mg/Lとなるように導入する請求項2記載の緑液製造系におけるスケール形成抑制方法。   The method for inhibiting scale formation in a green liquor production system according to claim 2, wherein the copolymer is introduced so that the concentration of the copolymer with respect to the fluid is 0.1 to 1000 mg / L. 前記共重合体を、前記流体に対する前記共重合体の濃度が0.1〜100mg/Lとなるように導入する請求項3記載の緑液製造系におけるスケール形成抑制方法。   The method for inhibiting scale formation in a green liquor production system according to claim 3, wherein the copolymer is introduced so that the concentration of the copolymer with respect to the fluid is 0.1 to 100 mg / L. スケール形成イオンを含有する流体が流通する流体流路を備える緑液製造系であって、
前記流体流路に、モノマー単位が実質的にマレイン酸及びアクリル酸からなり且つ重量平均分子量が3000以上である共重合体を含有するスケール形成抑制剤を導入する導入手段を更に備える緑液製造系。
A green liquor production system comprising a fluid flow path through which a fluid containing scale-forming ions flows,
A green liquor production system further comprising introducing means for introducing a scale formation inhibitor containing a copolymer having monomer units substantially consisting of maleic acid and acrylic acid and having a weight average molecular weight of 3000 or more into the fluid channel. .
JP2007030257A 2007-02-09 2007-02-09 Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system Active JP4453707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030257A JP4453707B2 (en) 2007-02-09 2007-02-09 Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030257A JP4453707B2 (en) 2007-02-09 2007-02-09 Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system

Publications (2)

Publication Number Publication Date
JP2008196064A JP2008196064A (en) 2008-08-28
JP4453707B2 true JP4453707B2 (en) 2010-04-21

Family

ID=39755265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030257A Active JP4453707B2 (en) 2007-02-09 2007-02-09 Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system

Country Status (1)

Country Link
JP (1) JP4453707B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104854263A (en) * 2012-10-01 2015-08-19 日本制纸株式会社 Continuous electrolysis method by means of electrolytic bath for polysulfide manufacturing, and electrolysis device for implementing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272462B2 (en) * 2008-03-17 2013-08-28 栗田工業株式会社 Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system
JP2011132637A (en) * 2009-12-25 2011-07-07 Taihokohzai:Kk Green liquor system scale formation inhibitor, and method for inhibiting scale formation
CN117083401A (en) * 2023-06-29 2023-11-17 青美邦新能源材料有限公司 Multistage descaling system and multistage descaling method in laterite nickel ore high-pressure leaching process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104854263A (en) * 2012-10-01 2015-08-19 日本制纸株式会社 Continuous electrolysis method by means of electrolytic bath for polysulfide manufacturing, and electrolysis device for implementing same
US9951432B2 (en) 2012-10-01 2018-04-24 Nippon Paper Industries Co., Ltd. Continuous electrolysis method with electrolytic bath for polysulfide production and electrolysis device for implementing the same

Also Published As

Publication number Publication date
JP2008196064A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP3897530B2 (en) Method for inhibiting scale in harsh systems and novel scale inhibitor for the same
JP5353960B2 (en) Scale prevention method
CN105439390B (en) A kind of lignin waste water recycling process
US20160060147A1 (en) Scale-inhibiting polymers and methods for preventing scale formation
JP4453707B2 (en) Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system
JP4080994B2 (en) Calcium salt scale control method
JP4672531B2 (en) Green liquid processing method
JP2004532945A (en) How to control calcium salt scale
JP5272462B2 (en) Scale formation inhibitor, scale formation suppression method, and green liquid production system in green liquid production system
JP2008202185A (en) Scale development inhibitory agent in green liquor production system, method for inhibiting scale development and green liquor production system
CN105254821B (en) Terpolymer and multifunctional water treating agent and preparation method containing the copolymer
CA2182411C (en) Calcium carbonate scale controlling method
US6063289A (en) Method for controlling scale using synergistic phosphonate blends
CN107055886B (en) A kind of depth graded divides salt technique
CN110407351A (en) A kind of processing method of brine waste
CN105565562B (en) A kind of processing viscous crude super-viscous oil chemical engineering sewage system and method
CN106745846A (en) A kind of boiler scale inhibitor and preparation method thereof
JP4314626B2 (en) Scale prevention method for alkali recovery process of pulp and paper mill
JP6365639B2 (en) Sodium salt scale inhibitor, sodium salt scale prevention method, aqueous viscosity reducing agent, aqueous management method, and aqueous viscosity reducing method
CN208234692U (en) Brine waste evaporative crystallization dual treatment device
KR20220034140A (en) Kraft Pulp Mill Scale Control Using End-Group Modified Polycarboxylates
CN107619116B (en) Use of inorganic salt or acid in reducing hardness/alkalinity of water system
CN103420500A (en) Preparation method for compound-type maleic acid-acrylic acid copolymer scale inhibitor
JP6542966B1 (en) Scale inhibitor and method for producing the same and method for preventing scale
CN212982705U (en) Silicon and hardness removing treatment system for coal gasification ash water

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090717

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090717

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4453707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250