JP4452992B2 - Manufacturing method of sintered body for solid electrolytic capacitor - Google Patents

Manufacturing method of sintered body for solid electrolytic capacitor Download PDF

Info

Publication number
JP4452992B2
JP4452992B2 JP2004091840A JP2004091840A JP4452992B2 JP 4452992 B2 JP4452992 B2 JP 4452992B2 JP 2004091840 A JP2004091840 A JP 2004091840A JP 2004091840 A JP2004091840 A JP 2004091840A JP 4452992 B2 JP4452992 B2 JP 4452992B2
Authority
JP
Japan
Prior art keywords
niobium
powder
aluminum
sintered body
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004091840A
Other languages
Japanese (ja)
Other versions
JP2005277301A (en
Inventor
進 七尾
和幸 飯田
成興 西村
Original Assignee
日立化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成エレクトロニクス株式会社 filed Critical 日立化成エレクトロニクス株式会社
Priority to JP2004091840A priority Critical patent/JP4452992B2/en
Publication of JP2005277301A publication Critical patent/JP2005277301A/en
Application granted granted Critical
Publication of JP4452992B2 publication Critical patent/JP4452992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、固体電解コンデンサの製造方法に関する。特に、固体電解コンデンサ用燒結体の製造方法に関する。さらにはこれを用いた固体電解コンデンサに関するものである。
The present invention relates to a method for manufacturing a solid electrolytic capacitor. In particular, a method of manufacturing a burn sintered body for a solid electrolytic capacitor. Furthermore, the present invention relates to a solid electrolytic capacitor using the same.

現在の携帯電話やパーソナルコンピュータなどの電子機器には、小型・大容量のコンデンサが使われている。各種コンデンサのなかでもタンタルコンデンサは、単位容積当たりの容量が大きい、小型・大容量コンデンサであり、熱安定性や電気的特性が良好であるため、電子機器に好んで使用されている。このタンタルコンデンサの陽極体には、単位容積当たりの表面積を増大するため、タンタル微粉末の多孔焼結体が使用されている。
しかし、タンタル鉱石は、地球的にその存在量が希少であり、産出する場所が限られている。このため、タンタルは供給が不安定となりやすく、価格の高騰を招きやすい。また、大容量化するためには粉末をさらに微細化して表面積を稼ぐ必要があるが、微細化すると焼結体の強度が低下するとともに焼結体細孔径の確保が困難になる。細孔経が小さくなると陰極材料の含浸が困難となり、所定のコンデンサ性能を発現できない。そのため資源としての埋蔵量がタンタルの10倍以上と豊富で、比誘電率が大きい五酸化ニオブ誘電体皮膜を誘電体隔膜として用いる、ニオブ金属粉末、酸化ニオブ粉末を陽極材料とするコンデンサの提案がなされている。
Current electronic devices such as cellular phones and personal computers use small and large capacitors. Among various capacitors, a tantalum capacitor is a small-sized and large-capacity capacitor having a large capacity per unit volume, and has good thermal stability and electrical characteristics. For the anode body of this tantalum capacitor, a porous sintered body of fine tantalum powder is used in order to increase the surface area per unit volume.
However, tantalum ore is rare in the earth and the place where it is produced is limited. For this reason, the supply of tantalum tends to be unstable, and the price is likely to rise. In order to increase the capacity, it is necessary to further refine the powder to increase the surface area. However, if the powder is refined, the strength of the sintered body is reduced and it is difficult to ensure the pore diameter of the sintered body. When the pore diameter becomes small, impregnation with the cathode material becomes difficult, and a predetermined capacitor performance cannot be expressed. Therefore, there are proposals for capacitors using niobium pentoxide dielectric film, which has abundant reserve as resources more than 10 times that of tantalum and has a large relative dielectric constant as a dielectric diaphragm, and uses niobium metal powder and niobium oxide powder as anode materials. Has been made.

しかし、この構成の固体電解コンデンサはニオブ酸化物からなる誘電体層の安定性に問題がある。それは、ニオブを高電圧で陽極酸化すると、アモルファスの酸化膜が結晶化し、もれ電流が増加するとともに、コンデンサの故障頻度の増加をもたらすという問題があった。また、ニオブ酸化物からなる誘電体皮膜は酸素欠陥が多く、熱に不安定であるため、コンデンサをリフローはんだ付けする際の熱履歴によって、もれ電流特性が変化したり、コンデンサ容量が変動したりする等の問題がある。またさらに、陽極は極めて多孔質な燒結体であるため、その強度が弱くなると、もれ電流の増大を招いていた。   However, the solid electrolytic capacitor having this configuration has a problem in the stability of the dielectric layer made of niobium oxide. That is, when niobium is anodized at a high voltage, an amorphous oxide film is crystallized to increase leakage current and increase the frequency of capacitor failure. In addition, since the dielectric film made of niobium oxide has many oxygen defects and is unstable to heat, the leakage current characteristics change or the capacitor capacity fluctuates due to the thermal history when reflow soldering the capacitor. There are problems such as. Furthermore, since the anode is a very porous sintered body, when its strength is weakened, the leakage current is increased.

そこで、これらの問題を解決するために、ニオブとアルミニウム等の合金化またはニオブ表面を合金化する方法が提案されている。こうすることにより、ニオブ金属の表面にはアルミニウムが存在するので、形成された誘電体皮膜はニオブ酸化物とアルミニウム酸化物が複合したものであり、この複合効果はその皮膜中にある酸素欠陥を補い、酸化ニオブの安定化に寄与する。また、アルミニウム酸化物が、ニオブ酸化物の近傍にナノ分散するか、あるいはアルミニウム酸化物とニオブ酸化物の複合酸化物が形成していれば、酸化ニオブの結晶化を抑制し、アモルファス構造を安定化させるため、誘電体皮膜は高電圧まで安定で存在し、耐電圧は向上する。さらに、ニオブ−アルミニウム合金は純ニオブ金属より硬くなるために、陽極多孔燒結体の挫屈強度が向上するので、そのモールド形成時及び樹脂被覆後も樹脂からの応力やハンダリフローなどの熱負荷による応力を受けても、もれ電流の上昇を招くことを押さえることができる。さらに、表面あるいは内部がアルミニウム合金化しているため、純ニオブ金属に比べ、難燃性であり、コンデンサとしての安定性向上に寄与する。また、骨格はニオブあるいはニオブ−アルミニウム合金であるので電気抵抗値の変化は小さい。   In order to solve these problems, a method of alloying niobium and aluminum or a method of alloying the niobium surface has been proposed. By doing so, since there is aluminum on the surface of the niobium metal, the formed dielectric film is a composite of niobium oxide and aluminum oxide, and this combined effect reduces oxygen defects in the film. It supplements and contributes to the stabilization of niobium oxide. In addition, if aluminum oxide is nano-dispersed near niobium oxide or a composite oxide of aluminum oxide and niobium oxide is formed, crystallization of niobium oxide is suppressed and the amorphous structure is stabilized. Therefore, the dielectric film exists stably up to a high voltage, and the withstand voltage is improved. Further, since the niobium-aluminum alloy is harder than pure niobium metal, the buckling strength of the anode porous sintered body is improved, so that stress due to the stress from the resin and heat load such as solder reflow also occurs during the molding and after the resin coating. Even if stress is applied, it is possible to prevent the leakage current from increasing. Furthermore, since the surface or inside is made of an aluminum alloy, it is flame retardant compared to pure niobium metal, and contributes to the improvement of the stability as a capacitor. Further, since the skeleton is niobium or niobium-aluminum alloy, the change in electric resistance value is small.

しかし、ニオブとアルミニウムの合金化は、融点と比重が大きく異なるため急冷法など特殊な方法でないと、均一な合金物にすることが困難である。また、ニオブ表面を合金化する方法として、アルミニウムアルコキシド等をコーティング後加熱により内部拡散させ合金化する方法(特表2003−514378)が提案されてが、この方法はアルコキシドを加水分解後、できた表面の酸化アルミニウムをゲッター金属により還元するなど複雑な工程を経る欠点がある。また、この酸化物の内部拡散した酸素は還元されにくく、ニオブの伝導度を低下させやすいので、コンデンサとして等価直列抵抗(ESR)が増加しやすい。また、この酸素は化成の際に誘電体酸化被膜に欠陥を生じやすくする。
特表2003−514378号公報
However, the alloying of niobium and aluminum has a large difference in melting point and specific gravity, so it is difficult to obtain a uniform alloy product unless a special method such as a rapid cooling method is used. Further, as a method of alloying the niobium surface, a method of applying aluminum alkoxide or the like after coating and internally diffusing by heating (Special Table 2003-514378) has been proposed. This method was made after hydrolysis of the alkoxide. There is a drawback that a complicated process such as reduction of aluminum oxide on the surface with a getter metal is required. In addition, oxygen diffused in the oxide is difficult to be reduced, and the conductivity of niobium is likely to be reduced, so that the equivalent series resistance (ESR) is likely to increase as a capacitor. Also, this oxygen tends to cause defects in the dielectric oxide film during chemical conversion.
Special table 2003-514378 gazette

本発明は、ニオブ酸化物からなる誘電体皮膜の熱安定性を高め、もれ電流を低下するための課題や、焼結体の表面硬度の課題を解決する手段を安価に製造する方法を与えるものである。また、焼結体の電気伝導度を低下させないで製造する方法を与えるものである。   The present invention provides a method for inexpensively manufacturing a means for improving the thermal stability of a dielectric film made of niobium oxide, reducing the leakage current, and solving the problem of the surface hardness of the sintered body. Is. Moreover, the manufacturing method is given without reducing the electrical conductivity of the sintered body.

本発明の固体電解コンデンサは、上記の問題点を解決するために、ニオブ焼結体を、アルミニウム粉末を含むアルミニウム拡散剤中に分散配置し、加熱することにより、ニオブ焼結体にアルミニウムを拡散させる固体電解コンデンサ用焼結体の製造方法を提供するものである。
The solid electrolytic capacitor of the present invention, in order to solve the above problems, a niobium sintered body, and distributed in the aluminum diffusing agent containing aluminum powder, by heating, the aluminum niobium sintered body A method for producing a sintered body for a solid electrolytic capacitor to be diffused is provided.

本発明の製造方法によれば、以下の効果が得られる。
ニオブ粉末にアルミニウム粉末を混合し、加熱することにより、ニオブ粉末にアルミニウムを拡散させたり、または
ニオブ粉末にアルミニウム拡散剤を混合し、加熱することにより、ニオブ粉末にアルミニウムを拡散させたり、または
ニオブ焼結体をアルミニウム拡散剤中に分散配置し、加熱することにより、ニオブ焼結体にアルミニウムを拡散させたりすることにより、耐電圧を向上でき、もれ電流の低減が図れる、アルミニウムを拡散したニオブ粉末のコンデンサ用材料を安価で安定的に供給ができる。また、前記アルコキシド法のような酸化行程がないので焼結体の伝導度の低下を招かないで製造することができる。
According to the manufacturing method of the present invention, the following effects can be obtained.
Mixing and heating aluminum powder in niobium powder to diffuse aluminum in niobium powder, mixing aluminum diffusing agent in niobium powder and heating to diffuse aluminum in niobium powder, or niobium The sintered body is dispersed in an aluminum diffusing agent and heated to diffuse aluminum in the niobium sintered body, thereby improving the withstand voltage and reducing leakage current. Niobium powder capacitor materials can be supplied stably at low cost. Further, since there is no oxidation process as in the alkoxide method, it can be produced without causing a decrease in the conductivity of the sintered body.

以下、本発明に係わる固体電解コンデンサ用粉末または焼結体の製造方法の実施形態を説明する。
本発明に用いるニオブ粉末は、平均粒径が1μmから200μm程度の破砕粉末、球状粉末、または多孔質粉末で、好ましくは平均粒径が10μmから100μmの多孔質粉末を使用する。ニオブ粉末としては純ニオブ金属にはこだわらず、少量のボロン、マグネシウム、シリコン、リン、チタン、銅、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステンなどを含んだものや窒化ニオブなどでも可能である。本発明に用いるアルミニウム粉末は、1μmから200μm程度、好ましくは平均粒径が5μmから100μm程度で、好ましくは4N以上の純度のものを用いる。
Hereinafter, an embodiment of a method for producing a solid electrolytic capacitor powder or sintered body according to the present invention will be described.
The niobium powder used in the present invention is a crushed powder, a spherical powder, or a porous powder having an average particle diameter of about 1 μm to 200 μm, and preferably a porous powder having an average particle diameter of 10 μm to 100 μm. The niobium powder is not limited to pure niobium metal, but may be a niobium powder containing a small amount of boron, magnesium, silicon, phosphorus, titanium, copper, zirconium, molybdenum, hafnium, tantalum, tungsten, or the like, or niobium nitride. The aluminum powder used in the present invention is about 1 μm to 200 μm, preferably has an average particle size of about 5 μm to 100 μm, and preferably has a purity of 4N or more.

まず、ニオブ粉末にアルミニウム粉末を混合し、加熱することにより、ニオブ粉末にアルミニウムを拡散させる製造方法として、以下の方法が挙げられる。ニオブ粉末とアルミニウム粉末とを重量比で30対1から1対2の間の量比で混合する。混合にはV型混合器などを用いることができる。10分間以上の混合後、混合粉末を気密容器に移し、容器下部からアルゴンガスを流通させる。数分間のアルゴンガス置換後電気炉内にセットし、アルゴンガスを流しながら昇温する。流すガスは不活性ガスが望ましく、特にアルゴンガスが良好である。加熱雰囲気として高真空を使用すればさらによい。400℃から900℃の加熱処理をすることによりニオブ粉末中にアルミニウムが拡散浸透する。アルミニウム粉末表面には酸化物皮膜が形成しているため望ましくは550℃以上の加熱を必要とする。加熱は1時間から4時間が望ましい。アルゴンガスを流しながら、室温付近まで冷却し、粉末を取り出す。この粉末をふっ酸以外の酸、またはアルカリで処理することによりアルミニウムを拡散処理したニオブ粉末とアルミニウム粉末を分離する。なお、比重差による分離も可能である。
次に、ニオブ粉末に、アルミニウム粉末を含むアルミニウム拡散剤を混合し、加熱することにより、ニオブ粉末にアルミニウムを拡散させる製造方法として、以下の方法が挙げられる。ニオブ粉末にアルミニウム拡散剤としてアルミニウム粉末とハロゲン化アンモニウム粉末と焼結防止剤(アルミナ粉末、窒化アルミニウム粉末等)を混合して加熱する。ハロゲン化アルミニウム粉末も混合してもよい。ハロゲンは塩素、臭素、ヨウ素、またはアスタチンの何れかまたは混成のものを使用し、特に安価な塩化アンモニウム粉末を使用する。塩化アルミニウムをそのまま供給することも可能であるが、取り扱いが容易でないので下記の反応式で間接的に塩化アルミニウムを発生させ、拡散処理することが可能である。(sは固体、gは気体、xは数字を意味する)
Al(s)+3NH4Cl(s)=AlCl3(g)+3NH3(g)+3/2H2(g)------------(1)
3Nb(s)+AlCl3(g)+3/2H2(g)=Nb3Al(s)+3HCl(g)-------------(2)
塩化アンモニウム(NH4Cl)は、338℃以上で塩化水素(HCl)とアンモニアガス(NH3)とに乖離し、発生したHClはAlと反応して塩化アルミニウムガス(AlClx)と水素(H2)とを生成する。AlClxはNb粒子表面に吸着したあと、塩化物(Clx)がH2及び/またはNH3によって引き抜かれ、Nb金属表面に活性なAl層が形成される。Al層は不活性雰囲気で400℃以上の加熱処理することによりNb粒子内部へと拡散する。加熱は1時間から4時間が望ましい。アルゴンガスを流しながら、室温付近まで冷却し、粉末を取り出す。アルミニウムを拡散処理した粉末は比重差分離して求める。次に上記二方法により製造された原料粉末は、リード線の一端を埋め込んで、乾式プレスまたはスラリー成型法により所定の寸法のペレットを形成し、真空燒結し、コンデンサ用焼結体を得る。
次に、通常に製造したニオブ焼結体を、アルミニウム粉末を含むアルミニウム拡散剤中分散配置し、加熱することにより、ニオブ焼結体にアルミニウムを拡散させる第三方法の製造方法は、ニオブ多孔質粉末を乾式プレスまたはスラリー成型法により所定の寸法のペレットを形成し、真空燒結する。リード線はペレットを成形する前に埋め込んでもよいし、アルミニウムを拡散後、溶接等で接続してもよい。その燒結体を前記のアルミニウム拡散剤中に充填配置し、アルゴンガスを供給しながら昇温し、400℃から700℃の温度で加熱保持し、冷却する。次に、振動フルイ等の分離装置を用いることにより拡散処理した焼結体を拡散剤と分離し、コンデンサ用焼結体とする。
First, the following method is mentioned as a manufacturing method in which aluminum powder is mixed with niobium powder and heated to diffuse aluminum into niobium powder. Niobium powder and aluminum powder are mixed in a weight ratio of 30: 1 to 1: 2. A V-type mixer or the like can be used for mixing. After mixing for 10 minutes or more, the mixed powder is transferred to an airtight container, and argon gas is circulated from the lower part of the container. After replacing the argon gas for several minutes, it is set in an electric furnace, and the temperature is raised while flowing argon gas. The flowing gas is preferably an inert gas, and argon gas is particularly preferable. It is even better if high vacuum is used as the heating atmosphere. By heat treatment from 400 ° C. to 900 ° C., aluminum diffuses and penetrates into the niobium powder. Since an oxide film is formed on the surface of the aluminum powder, heating at 550 ° C. or higher is desirable. Heating is preferably 1 to 4 hours. While flowing argon gas, cool to near room temperature and take out the powder. The powder is treated with an acid other than hydrofluoric acid or an alkali to separate the niobium powder obtained by diffusing aluminum from the aluminum powder. Separation by specific gravity difference is also possible.
Next, as a manufacturing method for diffusing aluminum in niobium powder by mixing an aluminum diffusing agent containing aluminum powder with niobium powder and heating, the following method may be mentioned. Niobium powder is mixed with aluminum powder, ammonium halide powder and sintering inhibitor (alumina powder, aluminum nitride powder, etc.) as an aluminum diffusing agent and heated. Aluminum halide powder may also be mixed. As the halogen, chlorine, bromine, iodine, astatine or a mixture thereof is used, and particularly, an inexpensive ammonium chloride powder is used. Although it is possible to supply aluminum chloride as it is, since it is not easy to handle, it is possible to indirectly generate aluminum chloride by the following reaction formula and perform diffusion treatment. (S means solid, g means gas, x means number)
Al (s) + 3NH 4 Cl (s) = AlCl 3 (g) + 3NH 3 (g) + 3 / 2H 2 (g) ------------ (1)
3Nb (s) + AlCl 3 (g) + 3 / 2H 2 (g) = Nb 3 Al (s) + 3HCl (g) ------------- (2)
Ammonium chloride (NH 4 Cl) dissociates into hydrogen chloride (HCl) and ammonia gas (NH 3 ) at 338 ° C or higher, and the generated HCl reacts with Al to react with aluminum chloride gas (AlClx) and hydrogen (H 2 ) And generate. After AlClx is adsorbed on the surface of the Nb particles, chloride (Clx) is extracted by H 2 and / or NH 3 to form an active Al layer on the surface of the Nb metal. The Al layer diffuses into the Nb particles by heat treatment at 400 ° C or higher in an inert atmosphere. Heating is preferably 1 to 4 hours. While flowing argon gas, cool to near room temperature and take out the powder. The powder obtained by diffusion treatment of aluminum is obtained by separating the specific gravity difference. Next, the raw material powder produced by the above two methods embeds one end of the lead wire, forms pellets of a predetermined size by a dry press or slurry molding method, and vacuum-sinters to obtain a sintered body for a capacitor.
Next, the niobium sintered body manufactured normally is dispersed in an aluminum diffusing agent containing aluminum powder, and heated to diffuse aluminum in the niobium sintered body. The powder is formed into pellets of a predetermined size by a dry press or slurry molding method, and vacuum-sintered. The lead wire may be embedded before molding the pellet, or may be connected by welding or the like after aluminum is diffused. The sintered body is filled and arranged in the aluminum diffusing agent, heated while supplying argon gas, heated and held at a temperature of 400 ° C. to 700 ° C., and cooled. Next, the sintered body subjected to the diffusion treatment is separated from the diffusing agent by using a separating device such as a vibration sieve to obtain a sintered body for a capacitor.

なお、本発明した方法で作成したニオブ表面にアルミニウムを拡散浸透させた焼結体はこの後、例えば30〜90℃、濃度0.01〜5mol/l程度のリン酸、硝酸等の化成液中で15〜40mA/gの電流密度で所定の電圧まで昇圧後、1〜3時間の低電圧処理を行い、誘電体皮膜を形成する。さらに、公知の方法で、ポリアニリン、ポリピロールまたはポリエチレンジオキシチオフェン等の導電性高分子または、二酸化マンガン層等の陰極層を誘電体層上部に形成し、炭素粒子層、銀ペースト層を陽極焼結体外部に順次形成し、ついでその上に陰極端子を導電性ペースト等で接続する。陽極リード線は陽極端子に溶接等の手法で接合後、樹脂外装8をトランスファモールド等の手法により行い、コンデンサとする。   The sintered body produced by diffusing and infiltrating aluminum into the niobium surface prepared by the method of the present invention is then used in a chemical conversion solution such as phosphoric acid or nitric acid having a concentration of about 0.01 to 5 mol / l, for example, at 30 to 90 ° C. After boosting to a predetermined voltage at a current density of ˜40 mA / g, low voltage treatment for 1 to 3 hours is performed to form a dielectric film. Furthermore, a conductive polymer such as polyaniline, polypyrrole or polyethylenedioxythiophene, or a cathode layer such as a manganese dioxide layer is formed on the dielectric layer by a known method, and a carbon particle layer and a silver paste layer are anodic sintered. The electrodes are sequentially formed outside the body, and then the cathode terminal is connected thereto with a conductive paste or the like. After the anode lead wire is joined to the anode terminal by a technique such as welding, the resin sheath 8 is applied by a technique such as transfer molding to form a capacitor.

以下、本発明による実施例を挙げて具体的に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

平均粒径70μmのニオブ多孔体紛末にカンファー(樟脳)を2重量%添加、混合し、プレス成型用粉末とした。粉末重量61mgを採取し、縦×横×高さが4mm×3mm×2mmでプレス成型した。成型密度は2.80g/cm3であった。成型体を脱バインダー等の昇温工程を経て、1410℃で20分間、真空焼結を行い、冷却し、ニオブ焼結体とした。焼結体の密度は3.13g/cm3となった。収縮率は約12%である。造粒粉にアクリル樹脂を添加混合し、プレス成型用粉末とすることも可能である。このニオブ燒結体をアルミニウム拡散剤(Al:NH4Cl:Al2O3=1:0.1:2.9 (重量比))中に分散配置し、アルゴンガスを0.5l/minで流しながら、650℃まで昇温し、650℃で2時間保持後、室温まで冷却し、振動フルイを用いて燒結体を取り出した。燒結体表面のアルミニウム濃度は2.4重量%であった。燒結体の挫屈強度は1.6倍向上していた。
この焼結体を0.1mol/l、50℃のリン酸水溶液中で、電流密度20mA/gの定電流化成を、その後60Vで2時間定電圧化成を行うことにより、五酸化ニオブとアルミナの複合誘電体皮膜を有する化成体を作成した。誘電体の膜厚は192nmであった。誘電体被膜はニオブとアルミニウムの複合酸化物あるいはアルミニウム酸化物がナノ分散した酸化物である。
誘電体皮膜の上に、陽極の対極として、固体電解質層を従来工法で作成した。固体電解質層としては二酸化マンガン層を形成した。さらに従来工法と同様にグラファイトペースト、銀ペーストからなる陰極層を形成した。陰極層形成の素子に従来工法により、実装のために金属製端子を溶接・接着等で接合し、さらに耐湿性能向上とハンドリング性能向上のためにトランスファモールドによって樹脂外装を行い、固体電解コンデンサを得た。もれ電流は定格電圧6V印加1分値で0.2μAと良好な性能を示した。また−50℃から125℃のヒートサキクルを500回繰り返しても、ESR、もれ電流、容量に変化はなかった。容量に変化はなかった。
2% by weight of camphor (camphor) was added to and mixed with a niobium porous powder having an average particle size of 70 μm to obtain a powder for press molding. A powder weight of 61 mg was collected and press-molded with a length × width × height of 4 mm × 3 mm × 2 mm. The molding density was 2.80 g / cm 3 . The molded body was subjected to a heating step such as debinding, and then vacuum sintered at 1410 ° C. for 20 minutes and cooled to obtain a niobium sintered body. The density of the sintered body was 3.13 g / cm 3 . The shrinkage rate is about 12%. It is also possible to add and mix an acrylic resin to the granulated powder to obtain a powder for press molding. The niobium sintered body is dispersed in an aluminum diffusing agent (Al: NH4Cl: Al2O3 = 1: 0.1: 2.9 (weight ratio)), and heated to 650 ° C. while flowing argon gas at 0.5 l / min. After holding at 2 ° C. for 2 hours, it was cooled to room temperature, and the sintered body was taken out using a vibration sieve. The aluminum concentration on the sintered body surface was 2.4% by weight. The buckling strength of the sintered body was improved by 1.6 times.
This sintered body was subjected to constant current formation at a current density of 20 mA / g in a 0.1 mol / l, 50 ° C. phosphoric acid aqueous solution, and then a constant voltage formation at 60 V for 2 hours, thereby combining niobium pentoxide and alumina. A chemical compound having a dielectric film was prepared. The film thickness of the dielectric was 192 nm. The dielectric coating is a composite oxide of niobium and aluminum or an oxide in which aluminum oxide is nano-dispersed.
On the dielectric film, a solid electrolyte layer was prepared by a conventional method as a counter electrode for the anode. A manganese dioxide layer was formed as the solid electrolyte layer. Further, a cathode layer made of graphite paste and silver paste was formed as in the conventional method. A metal terminal is joined to the cathode layer-forming element by welding and bonding for mounting using a conventional method, and a resin exterior is applied by transfer molding to improve moisture resistance and handling performance, resulting in a solid electrolytic capacitor It was. The leakage current was 0.2μA at a rated voltage of 6V applied for 1 minute and showed good performance. Even when the heat cycle from −50 ° C. to 125 ° C. was repeated 500 times, the ESR, leakage current, and capacity did not change. There was no change in capacity.

Claims (1)

ニオブ焼結体を、アルミニウム粉末を含むアルミニウム拡散剤中に分散配置し、加熱することにより、ニオブ焼結体にアルミニウムを拡散させる固体電解コンデンサ用焼結体の製造方法。A method for producing a sintered body for a solid electrolytic capacitor in which a niobium sintered body is dispersed in an aluminum diffusing agent containing aluminum powder and heated to diffuse aluminum into the niobium sintered body.
JP2004091840A 2004-03-26 2004-03-26 Manufacturing method of sintered body for solid electrolytic capacitor Expired - Lifetime JP4452992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091840A JP4452992B2 (en) 2004-03-26 2004-03-26 Manufacturing method of sintered body for solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091840A JP4452992B2 (en) 2004-03-26 2004-03-26 Manufacturing method of sintered body for solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005277301A JP2005277301A (en) 2005-10-06
JP4452992B2 true JP4452992B2 (en) 2010-04-21

Family

ID=35176595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091840A Expired - Lifetime JP4452992B2 (en) 2004-03-26 2004-03-26 Manufacturing method of sintered body for solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4452992B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242814B2 (en) * 2012-12-27 2017-12-06 昭和電工株式会社 Niobium capacitor anode chemical and method for producing the same
CN103065797A (en) * 2013-01-15 2013-04-24 中国振华(集团)新云电子元器件有限责任公司 Powder mixing craft of niobium oxide capacitor
KR102078008B1 (en) * 2014-02-13 2020-02-17 삼성전기주식회사 Solid electrolytic capacitor, manufacturing of the same and chip-type electronic part

Also Published As

Publication number Publication date
JP2005277301A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4592034B2 (en) Niobium powder, niobium sintered body, capacitor using the sintered body, and method for manufacturing the capacitor
US9579725B2 (en) Method for producing metal powders
JPH0897095A (en) Tantalum powder and electrolytic capacitor employing it
CN1180101C (en) Production of nitrogen-containing tantalum or niobium powder and solid electrolytic capacitor
JP4527590B2 (en) Tantalum powder, anode for solid electrolytic capacitor and solid electrolytic capacitor
CN105339512A (en) Method for producing low-oxygen valve-metal sintered bodies having large surface area
JP5283240B2 (en) Niobium for capacitors and capacitors using the niobium sintered body
JP4527332B2 (en) Niobium powder, sintered body thereof and capacitor using the same
JP4178519B2 (en) Method for producing niobium alloy powder and sintered body for solid electrolytic capacitor
JP4452992B2 (en) Manufacturing method of sintered body for solid electrolytic capacitor
US9607770B2 (en) Method for producing capacitor
EP1501956B1 (en) Niobium powder, sintered body thereof and capacitor using the same
JP4683512B2 (en) Capacitor powder, sintered body using the same, and capacitor using the same
JP4521849B2 (en) Niobium powder for capacitor, sintered body using the niobium powder, and capacitor using the sintered body
JP5752270B2 (en) Tungsten capacitor anode and method of manufacturing the same
JP2005101562A (en) Chip solid electrolytic capacitor and its manufacturing method
JPWO2013118371A1 (en) Solid electrolytic capacitor
JP5020433B2 (en) Niobium powder for capacitor, sintered body and capacitor using the sintered body
EP2866237A1 (en) Capacitor element
TWI266661B (en) Niobium powder and solid electrolytic capacitor
JP2008095200A (en) Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
JP2006054449A (en) Method of manufacturing capacitor element
JP2009275289A (en) Method for producing nitrogen-containing metal powder
JP2009007675A (en) Nitrogen-containing metal powder, porous sintered compact and solid electrolytic capacitor using metal powder
JP2001155969A (en) Capacitor and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4452992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250