JP4452489B2 - Method for forming noble metal thin film of polymer electrolyte fuel cell separator - Google Patents

Method for forming noble metal thin film of polymer electrolyte fuel cell separator Download PDF

Info

Publication number
JP4452489B2
JP4452489B2 JP2003409899A JP2003409899A JP4452489B2 JP 4452489 B2 JP4452489 B2 JP 4452489B2 JP 2003409899 A JP2003409899 A JP 2003409899A JP 2003409899 A JP2003409899 A JP 2003409899A JP 4452489 B2 JP4452489 B2 JP 4452489B2
Authority
JP
Japan
Prior art keywords
thin film
noble metal
metal thin
fuel cell
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003409899A
Other languages
Japanese (ja)
Other versions
JP2005174624A (en
Inventor
直之 円城寺
俊樹 河村
健太郎 名越
修 石上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003409899A priority Critical patent/JP4452489B2/en
Publication of JP2005174624A publication Critical patent/JP2005174624A/en
Application granted granted Critical
Publication of JP4452489B2 publication Critical patent/JP4452489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子型燃料電池セパレータに用いる金属薄板の表面処理に係り、特に、金属薄板の表面への貴金属薄膜形成方法に関する。   The present invention relates to surface treatment of a thin metal plate used for a polymer electrolyte fuel cell separator, and more particularly to a method for forming a noble metal thin film on the surface of a thin metal plate.

固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層された積層体が1ユニットとされ、複数のユニットが積層されて燃料電池スタックとして構成される。電極構造体は、正極(カソード)および負極(アノード)を構成する一対のガス拡散電極の間にイオン交換樹脂等からなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層と、その外側に設けられたガス拡散層とから構成される。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路やセパレータ間に冷媒流路が形成されている。このような燃料電池によると、例えば、負極側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、正極側のガス拡散電極に面するガス流路に酸素や空気等の酸化性ガスを流すと電気化学反応が起こり、電気が発生する。   In the polymer electrolyte fuel cell, a laminated body in which separators are laminated on both sides of a planar electrode structure (MEA) is a single unit, and a plurality of units are laminated to form a fuel cell stack. The The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of gas diffusion electrodes constituting a positive electrode (cathode) and a negative electrode (anode). A gas diffusion electrode is comprised from the electrode catalyst layer which contacts an electrolyte membrane, and the gas diffusion layer provided in the outer side. In addition, the separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path for allowing gas to flow between the gas diffusion electrode and a refrigerant flow path is formed between the separators. According to such a fuel cell, for example, hydrogen gas, which is a fuel, is allowed to flow in a gas flow channel facing the negative electrode side gas diffusion electrode, and oxygen or air is oxidized in the gas flow channel facing the positive electrode side gas diffusion electrode. When a sex gas is flowed, an electrochemical reaction occurs and electricity is generated.

上記セパレータは、負極側の水素ガスの触媒反応により発生した電子を外部回路へ供給する一方、外部回路からの電子を正極側に送給する集電体機能を具備する必要がある。そこで、セパレータには黒鉛系材料や金属系材料からなる導電性材料が用いられており、特に金属系材料のものは、機械的強度に優れている点や、薄板化による軽量・コンパクト化が可能である点で有利であるとされている。金属製のセパレータは、ステンレス鋼やチタン合金等の耐食性を有する金属材料からなる薄板をプレス加工して断面凹凸状に成形したものが挙げられる。図1に、このようなセパレータの一例を示す。   The separator needs to have a current collector function of supplying electrons generated by the catalytic reaction of the hydrogen gas on the negative electrode side to the external circuit, and supplying electrons from the external circuit to the positive electrode side. Therefore, conductive materials such as graphite and metal materials are used for the separator. Especially metal materials are excellent in mechanical strength, and can be made lighter and more compact by making them thinner. It is said that it is advantageous at this point. Examples of the metal separator include those formed by pressing a thin plate made of a metal material having corrosion resistance such as stainless steel and titanium alloy so as to have a cross-sectional uneven shape. FIG. 1 shows an example of such a separator.

従来、上記のような耐食性を必要とするセパレータ材料には、ステンレス鋼、ニッケル基合金、チタン、チタン合金等の耐食性に優れた材料をそのまま用いるか、これらに銅、ニッケル、クロム等をメッキして用いており、更に高い耐食性を必要とする場合には、金、銀、白金等の貴金属をメッキして用いるのが一般的であった。   Conventionally, separator materials that require corrosion resistance as described above use materials with excellent corrosion resistance such as stainless steel, nickel-base alloys, titanium, titanium alloys, or are plated with copper, nickel, chromium, etc. When higher corrosion resistance is required, it is common to use a precious metal such as gold, silver or platinum after plating.

このようなメッキ製品を製造する場合、メッキした後に製品を加工するとメッキ膜が金属基材から剥離し易いことから、一般に、金属基材に対して製品の形状を付与する塑性加工を施した後にメッキを行っていた。しかしながら、この場合、金属基材の溝等のエッジ部分にメッキ膜が付き難く、その部分の耐食性に問題を有していた。また、メッキ膜は、微細な空隙を有するポーラス構造であるために、金属基材との密着力が弱いという問題もあった。さらに、メッキ膜には、ポーラス構造に起因するピンホールが形成され易いため、メッキ膜が薄いと耐食性が低くなってしまう。このため、耐食性を高めるためにメッキ膜を厚く形成する必要があり、貴金属メッキの場合にはコストが高くなるという問題があった。一方、メッキ膜のピンホールを有機物質によって封孔する処理が知られているが、燃料電池の稼動環境においては充分な効果がなく、所望の耐食性が得られないという問題があった。   When manufacturing such a plated product, since the plated film is easily peeled off from the metal base material when the product is processed after plating, generally, after performing plastic working to give the shape of the product to the metal base material I was plating. However, in this case, the plating film is difficult to be attached to the edge portion such as the groove of the metal base material, and there is a problem in the corrosion resistance of the portion. In addition, since the plating film has a porous structure having fine voids, there is also a problem that the adhesion with the metal substrate is weak. Further, since pinholes due to the porous structure are easily formed in the plated film, the corrosion resistance is lowered when the plated film is thin. For this reason, in order to improve corrosion resistance, it is necessary to form a thick plating film. In the case of noble metal plating, there is a problem that the cost is increased. On the other hand, a process of sealing the pinholes of the plating film with an organic substance is known, but there is a problem that a desired corrosion resistance cannot be obtained because there is no sufficient effect in the operating environment of the fuel cell.

このような要求に対し、鉄基合金、ニッケル基合金、チタン、チタン基合金等の金属基材の表面上に、金、銀、白金、パラジウム、およびこれらの合金等の貴金属層を形成し、これらを5%以上の圧延率で圧延加工してクラッド化する方法が提案されている(例えば、特許文献1参照。)。この方法によれば、鉄基合金等の金属基材の表面上に被覆した貴金属薄膜を、金属材料と共に圧延加工してクラッド化しているため、圧着材と同程度の密着力が得られ、また貴金属層のポーラス構造が緻密化されると共にピンホールが閉孔されるので、耐食性が改善される。したがって、上記貴金属層を薄くすることができ、コスト面でも改善される。また、上記貴金属層が形成されているため、接触電気抵抗を低減することができる。   In response to such a requirement, a noble metal layer such as gold, silver, platinum, palladium, or an alloy thereof is formed on the surface of a metal base material such as an iron base alloy, a nickel base alloy, titanium, or a titanium base alloy, A method has been proposed in which these are rolled at a rolling rate of 5% or more to be clad (see, for example, Patent Document 1). According to this method, the noble metal thin film coated on the surface of a metal base material such as an iron-based alloy is clad by rolling with a metal material, so that the same adhesion force as that of a pressure-bonding material can be obtained. Since the porous structure of the noble metal layer is densified and the pinhole is closed, the corrosion resistance is improved. Therefore, the noble metal layer can be thinned and the cost is improved. Further, since the noble metal layer is formed, the contact electric resistance can be reduced.

しかしながら、この方法で金属材料を圧延加工すると、金属基材に加工硬化が生じるため、燃料電池用セパレータ用金属材料にこの方法を適用した場合、燃料ガスおよび酸化性ガスの流通路を形成するために必要な塑性加工性が損なわれる。これに対して、特許文献1には、この問題を解決するため、圧延加工によって生じた貴金属層の加工硬化を除去するための熱処理方法が提案されている。   However, when a metal material is rolled by this method, work hardening occurs in the metal base material. Therefore, when this method is applied to a metal material for a fuel cell separator, a flow path for fuel gas and oxidizing gas is formed. The plastic workability required for the process is impaired. On the other hand, Patent Document 1 proposes a heat treatment method for removing work hardening of the noble metal layer caused by rolling in order to solve this problem.

特開2002−260681(要約書、0011)JP2002260681 (abstract, 0011)

しかしながら、加工硬化を除去しうる高温の熱処理を適用すると、金属基材との熱拡散により貴金属層が散逸または変質してしまい、また、熱処理のための工程が増えて製造コストが割高になるという問題が生じる。さらに、塑性加工性を維持するために圧下率を抑えると金属基材と貴金属層の密着性が充分に得られないという問題があった。   However, if a high-temperature heat treatment that can remove work hardening is applied, the noble metal layer is dissipated or deteriorated due to thermal diffusion with the metal substrate, and the number of steps for heat treatment increases and the manufacturing cost is expensive. Problems arise. Furthermore, if the rolling reduction is suppressed to maintain plastic workability, there is a problem that sufficient adhesion between the metal substrate and the noble metal layer cannot be obtained.

本発明は上記事情に鑑みてなされたものであり、金属基材をほとんど加工硬化させることなく耐食性、密着性、接触電気抵抗等が改善され、かつコストの低い固体高分子型燃料電池セパレータの貴金属薄膜形成方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and the precious metal of the solid polymer fuel cell separator is improved in corrosion resistance, adhesion, contact electric resistance, etc., and is low in cost without almost hardening the metal substrate. It aims at providing the thin film formation method.

本発明の固体高分子型燃料電池セパレータの貴金属薄膜形成方法は、耐食性金属基材の表面を脱脂および洗浄する工程と、上記金属基材の表面を貴金属薄膜で被覆する工程と、上記貴金属薄膜の両方の面にショットを吹き付けるショットピーニングを行って上記金属素材と上記貴金属薄膜とを密着させる工程と、上記貴金属薄膜が表面に形成された上記金属素材を、固体高分子型燃料電池セパレータの形状にプレス加工して断面凹凸状に成形する工程と、プレス加工された上記金属素材にショットピーニングを行って上記金属素材と上記貴金属薄膜とを密着させる工程とを備えたことを特徴としている。 A method for forming a noble metal thin film of a polymer electrolyte fuel cell separator of the present invention includes a step of degreasing and cleaning a surface of a corrosion-resistant metal base, a step of coating the surface of the metal base with a noble metal thin film, a step of shot peening I row to close contact with the metal material and the noble metal thin film blowing shots on both sides, the metal material in which the noble metal thin film is formed on the surface, the shape of the solid polymer fuel cell separator And a step of forming a concavo-convex shape by pressing, and a step of performing shot peening on the pressed metal material to bring the metal material and the noble metal thin film into close contact with each other.

上記構成の固体高分子型燃料電池セパレータの貴金属薄膜形成方法においては、まず、金属基材の片面あるいは必要に応じて両面を脱脂、洗浄する。この脱脂・洗浄工程は、金属基材と貴金属薄膜の密着性を高めるために行うものである。次に、メッキまたはスパッタ等の手段によって、金属基材の片面または両面に、貴金属薄膜を形成し、続いて、この貴金属薄膜上にショットピーニングを施す。ショットピーニングとは、ショットを金属表面に吹き付け、金属内部の大きな加工硬化を伴わずに、表面を押圧する処理である。次いで、貴金属薄膜が表面に形成された金属素材を、固体高分子型燃料電池セパレータの形状にプレス加工して断面凹凸状に成形し、プレス加工された金属素材の両方の面にショットを吹き付けるショットピーニングを行って金属素材と貴金属薄膜とを密着させる。 In the method for forming a noble metal thin film of the polymer electrolyte fuel cell separator having the above-described configuration, first, one side of the metal base material or both sides as necessary are degreased and washed. This degreasing / cleaning step is performed to improve the adhesion between the metal substrate and the noble metal thin film. Next, a noble metal thin film is formed on one or both sides of the metal substrate by means of plating or sputtering, and then shot peening is performed on the noble metal thin film. Shot peening is a process of spraying a shot onto a metal surface and pressing the surface without significant work hardening inside the metal. Next, a metal material with a noble metal thin film formed on the surface is pressed into the shape of a polymer electrolyte fuel cell separator to form a cross-sectional uneven shape, and shots are shot on both sides of the pressed metal material. Peening is performed to bring the metal material and the noble metal thin film into close contact.

このような本発明の固体高分子型燃料電池セパレータの貴金属薄膜形成方法によれば、金属基材表面を脱脂および洗浄しているので、金属基材表面の異物等が除去されて、金属基材と貴金属薄膜との密着性が高まる。また、貴金属薄膜上にショットピーニングを施しているので、貴金属薄膜が押圧されて金属基材表面にピーニングで生じた凹部に入り込んで、アンカー効果が生じる。これにより、貴金属薄膜の大きな加工硬化を伴うことなく密着性がさらに高まる。したがって、高い圧延率による圧延工程で従来問題になっていた貴金属薄膜の加工硬化を抑制することができ、続いて、燃料ガスおよび酸化性ガスの流通路を形成するために必要な成形加工を支障なく行うことができる。さらに、大きな加工硬化を伴わないから、加工硬化を除去するための熱処理工程が不要となり、コスト削減の観点からも有効である。また、金属基材と貴金属薄膜との充分な密着力によって、耐食性、接触電気抵抗が改善される。   According to such a method for forming a noble metal thin film of a solid polymer fuel cell separator of the present invention, since the surface of the metal substrate is degreased and washed, foreign matters and the like on the surface of the metal substrate are removed, and the metal substrate Adhesion between the film and the noble metal thin film increases. Further, since shot peening is performed on the noble metal thin film, the noble metal thin film is pressed and enters the concave portion generated by the peening on the surface of the metal base material, and an anchor effect is generated. Thereby, the adhesiveness is further increased without accompanying a large work hardening of the noble metal thin film. Therefore, the work hardening of the noble metal thin film, which has been a problem in the rolling process at a high rolling rate, can be suppressed, and subsequently, the molding process necessary for forming the flow path of the fuel gas and the oxidizing gas is hindered. Can be done without. Furthermore, since it does not involve a large work hardening, a heat treatment step for removing the work hardening is unnecessary, which is effective from the viewpoint of cost reduction. Moreover, corrosion resistance and contact electrical resistance are improved by sufficient adhesion between the metal substrate and the noble metal thin film.

以上説明したように、本発明によれば、加工硬化の原因となる圧延工程を経ることなく耐食性、密着性、接触電気抵抗等が改善され、かつコストの低い固体高分子型燃料電池セパレータの貴金属薄膜形成方法を提供することができる。   As described above, according to the present invention, the noble metal of the solid polymer fuel cell separator is improved in corrosion resistance, adhesion, contact electrical resistance, etc. without undergoing a rolling process that causes work hardening, and is low in cost. A thin film forming method can be provided.

以下、本発明の固体高分子型燃料電池セパレータの貴金属薄膜形成方法を説明する。   Hereinafter, a method for forming a noble metal thin film of the polymer electrolyte fuel cell separator of the present invention will be described.

1.貴金属薄膜の形成工程
まず、耐食性金属基材の表面を脱脂、洗浄し、金属基材表面の異物等を除去する。次に、金属基材表面に貴金属薄膜を形成する。貴金属薄膜は、ピンホールを充分少なくし、かつコストを低減するために膜厚が充分薄いものが好ましい。金属基材表面への貴金属薄膜の形成方法としては、メッキ、蒸着、スパッタやCVD等が考えられる。
1. Step of forming noble metal thin film First, the surface of the corrosion-resistant metal substrate is degreased and washed to remove foreign matters and the like on the surface of the metal substrate. Next, a noble metal thin film is formed on the surface of the metal substrate. The noble metal thin film is preferably thin enough to sufficiently reduce pinholes and reduce costs. As a method for forming the noble metal thin film on the surface of the metal substrate, plating, vapor deposition, sputtering, CVD or the like can be considered.

2.金属基材と貴金属薄膜のショットピーニング工程
図2は、本発明における貴金属薄膜上へのショットピーニングの例を示す概念図である。図2に示すように、金属基材1の表面に形成された貴金属薄膜2の表面上に、ショットを吹き付けることによって貴金属薄膜2の表面を打撃し、金属基材1に密着させることができる。
2. FIG. 2 is a conceptual diagram showing an example of shot peening on a noble metal thin film in the present invention. As shown in FIG. 2, the surface of the noble metal thin film 2 can be blown onto the surface of the noble metal thin film 2 formed on the surface of the metal base 1 so as to be brought into close contact with the metal base 1.

このようなショットとしては、スチール、ステンレス、アルミニウム、亜鉛等の金属系粒子、ガラスビーズ、ガラスパウダー等のガラス系粒子、ナイロン、ポリカーボネート、ポリプラス等の樹脂系粒子、ジルコニア、アルミナ等のセラミック系粒子、カーボランダム等のカーボン系粒子、または胡桃や杏粉等が用いられるが、これらに限定されない。   Examples of such shots include metal particles such as steel, stainless steel, aluminum and zinc, glass particles such as glass beads and glass powder, resin particles such as nylon, polycarbonate and polyplus, ceramic particles such as zirconia and alumina. Carbon-based particles such as carborundum, walnuts, apricot powder, etc. are used, but not limited to these.

3.固体高分子型燃料電池セパレータへの成形工程
上記のようにして得られた貴金属薄膜が表面に一体化した金属基材に、プレス成形加工等を施し、燃料ガスまたは酸化性ガスを通す流通路を形成し、固体高分子型燃料電池用金属セパレータ等に供することができる。そのようなセパレータの一例を、図1に示す。
3. Step of forming into a polymer electrolyte fuel cell separator A metal substrate in which the noble metal thin film obtained as described above is integrated on the surface is subjected to press molding or the like, and a flow passage through which fuel gas or oxidizing gas passes And can be used for a metal separator for a polymer electrolyte fuel cell. An example of such a separator is shown in FIG.

本発明で用いられる金属基材としては、特に限定されず、あらゆる種類の金属を挙げることができるが、固体高分子型燃料電池セパレータとして要求される耐食性、接触電気抵抗等の性能を考慮すると、アルミニウム基合金、鉄基合金、ニッケル基合金、チタン基合金等は、それ自体が高い耐食性と低い接触電気抵抗を有していることから、特に好ましい。   The metal substrate used in the present invention is not particularly limited and can include all kinds of metals, but considering the performance such as corrosion resistance and contact electric resistance required as a solid polymer fuel cell separator, Aluminum-based alloys, iron-based alloys, nickel-based alloys, titanium-based alloys and the like are particularly preferable because they themselves have high corrosion resistance and low contact electric resistance.

本発明で用いられる貴金属薄膜としては、上記の金属基材表面に被覆して耐食性、接触電気抵抗等の性能を向上させる観点から、金、銀、白金、パラジウム、またはこれらの金属の合金等が特に好ましい。   As the noble metal thin film used in the present invention, gold, silver, platinum, palladium, or an alloy of these metals is used from the viewpoint of improving the performance such as corrosion resistance and contact electric resistance by coating the surface of the metal substrate. Particularly preferred.

本発明のショットピーニング工程において用いられるショットは、平均粒径が3μm〜0.5mmであることが好ましく、吹き付け圧力0.01〜0.5MPaの圧縮空気によって吹き付けることが好ましい。特に、5〜20μmかつ0.05〜0.2MPaであればより好ましい。粒径が3μmより小さいか吹き付け圧力が0.01MPaより低い場合は、ショットが貴金属薄膜に与える圧力が不足するために貴金属薄膜の金属基材への密着性を充分に得ることができず、逆に、粒径が0.5mmより大きいか吹き付け圧力が0.5MPaより高い場合は、貴金属薄膜を損傷し、さらには貴金属薄膜が剥離してしまうおそれがある。   The shot used in the shot peening process of the present invention preferably has an average particle diameter of 3 μm to 0.5 mm, and is preferably sprayed with compressed air having a spraying pressure of 0.01 to 0.5 MPa. Particularly, 5 to 20 μm and 0.05 to 0.2 MPa are more preferable. When the particle size is smaller than 3 μm or the spraying pressure is lower than 0.01 MPa, the pressure applied to the noble metal thin film by the shot is insufficient, so that the adhesion of the noble metal thin film to the metal substrate cannot be sufficiently obtained, In addition, when the particle size is larger than 0.5 mm or the spraying pressure is higher than 0.5 MPa, the noble metal thin film may be damaged and the noble metal thin film may be peeled off.

上記範囲の粒径および吹き付け圧力でのショットピーニングを適用することにより、貴金属薄膜に加工硬化を起こすことなく金属基材表面に貴金属薄膜を密着させることができる。したがって、後の工程において、燃料ガスまたは酸化性ガスを通す流通路を形成するために行う塑性加工性が阻害されない。また、加工硬化を除去するための熱処理も不要になることから、金属基材との熱拡散により貴金属薄膜が散逸・変質するという問題や、熱処理に要する処理コストが割高になるという問題を解決することができて好適である。   By applying shot peening at a particle size and spraying pressure in the above ranges, the noble metal thin film can be brought into close contact with the surface of the metal substrate without causing work hardening on the noble metal thin film. Therefore, the plastic workability performed to form the flow path through which the fuel gas or the oxidizing gas passes is not hindered in the subsequent process. In addition, since no heat treatment is required to remove work hardening, it solves the problem that the noble metal thin film is dissipated and deteriorated due to thermal diffusion with the metal substrate, and the processing cost required for the heat treatment is high. This is preferable.

本発明のショットピーニング工程においては、金属基材の両面からショットを吹き付け。一般に固体高分子型燃料電池セパレータは厚さが非常に薄く、片面からのショットピーニングを施すと、金属基材に反りが生じてしまう。このため、金属基材の両面からショットピーニングを施すことにより、ショットピーニングによる貴金属薄膜の展延効果を表裏で相殺させて、反りを抑制することができる。 In the shot peening process of the present invention, Ru spraying shots from both sides of the metal substrate. In general, a polymer electrolyte fuel cell separator is very thin, and when a shot peening is performed from one side, the metal substrate is warped. For this reason, by performing shot peening from both surfaces of the metal base material, the spreading effect of the noble metal thin film by shot peening can be offset on the front and back sides, and warpage can be suppressed.

さらに、本発明のショットピーニングは、貴金属薄膜が表面に形成された金属基材を固体高分子型燃料電池セパレータの形状に成形加工した後に施すこともできる。このような態様によれば、セパレータ形状への成形加工によって金属基材と貴金属薄膜との間の密着性の低下が懸念される場合であっても、ショットピーニングを施すことで再度貴金属薄膜の金属基材への密着性を向上させることができて好適である。   Furthermore, the shot peening of the present invention can be performed after a metal base material having a noble metal thin film formed on the surface thereof is molded into the shape of a polymer electrolyte fuel cell separator. According to such an embodiment, even if there is a concern about the decrease in adhesion between the metal substrate and the noble metal thin film due to the molding into the separator shape, the metal of the noble metal thin film is again obtained by performing shot peening. The adhesiveness to the substrate can be improved, which is preferable.

本発明の固体高分子型燃料電池セパレータの貴金属薄膜形成方法では、金属基材の脱脂、洗浄工程の前に、金属基材表面に強固に付着した異物、偏析物の除去のためにショットピーニングを行うことができる。図3は、そのようなショットピーニングによる工程を示す概念図である。図3に示すように、このような態様によれば、金属基材1表面に存在する異物、偏析物3に対してショットを吹き付け、衝突させることによって、これらを除去することができる。この異物、偏析物が除去された金属基材1表面には、脱落痕である凹部が形成される。このような金属基材1表面に貴金属薄膜2を被覆し、本発明のショットピーニングを行うことによって、凹部に貴金属薄膜2が入り込み、アンカー効果が生じる。これにより、金属基材1と貴金属薄膜2との密着力がより高まり、接触電気抵抗を抑制することができる。   In the method for forming a noble metal thin film of a polymer electrolyte fuel cell separator according to the present invention, shot peening is performed to remove foreign substances and segregated substances firmly attached to the surface of the metal substrate before the degreasing and cleaning steps of the metal substrate. It can be carried out. FIG. 3 is a conceptual diagram showing a process by such shot peening. As shown in FIG. 3, according to such an aspect, these can be removed by spraying and colliding with the foreign material and the segregated material 3 which exist in the metal base material 1 surface, and making it collide. On the surface of the metal substrate 1 from which the foreign matters and segregated substances have been removed, a recess that is a drop mark is formed. By coating the surface of the metal base 1 with the noble metal thin film 2 and performing shot peening according to the present invention, the noble metal thin film 2 enters the recess, and an anchor effect is produced. Thereby, the adhesive force of the metal base material 1 and the noble metal thin film 2 increases more, and a contact electrical resistance can be suppressed.

また、本発明では、上記金属基材表面の異物、偏析物3の除去後にさらにショットピーニングを施すこともできる。図4は、上記異物、偏析物の脱落痕である凹部に対するショットピーニングを示す概念図である。金属基材1表面に形成された凹部が貴金属薄膜2の厚さと比較して無視できない大きさを有する場合、後のショットピーニングによって貴金属薄膜2がこの凹部に入り込み、貴金属薄膜2表面に凹部が形成されてしまう。この貴金属薄膜の凹部は、セパレータ形成後にMEA(電極構造体)とセパレータとを接触させて用いられる際に、接触電気抵抗を上昇させる要因となり、好ましくない。したがって、異物、偏析物の脱落痕である凹部をショットピーニングによって好適な表面性状に整えておくことが好ましい。   Moreover, in this invention, shot peening can also be given after the removal of the foreign material and the segregated material 3 on the surface of the metal substrate. FIG. 4 is a conceptual diagram showing shot peening with respect to a recess which is a drop mark of the foreign matter and segregated matter. When the recess formed on the surface of the metal base 1 has a size that cannot be ignored compared to the thickness of the noble metal thin film 2, the noble metal thin film 2 enters the recess by subsequent shot peening, and the recess is formed on the surface of the noble metal thin film 2. Will be. This concave portion of the noble metal thin film is not preferable because it causes the contact electrical resistance to increase when the MEA (electrode structure) and the separator are brought into contact with each other after the separator is formed. Therefore, it is preferable to arrange the concave portion, which is a drop mark of foreign matter and segregated matter, into a suitable surface property by shot peening.

以下、実施例によって本発明を詳細に説明する。
[実施例1]
金属基材として厚さ0.1mmのSUS316Lを用い、表面を脱脂、洗浄して異物、偏析物、酸化皮膜等を除去した。次に、この金属基材表面にメッキ法によって厚さ100nmの金薄膜を形成させた。ショットとして平均粒径10μmのガラスパウダーを用い、この金薄膜に対して吹き付け圧力0.1MPaで10秒間吹き付けた。
Hereinafter, the present invention will be described in detail by way of examples.
[Example 1]
SUS316L having a thickness of 0.1 mm was used as a metal substrate, and the surface was degreased and washed to remove foreign matter, segregated material, oxide film and the like. Next, a gold thin film having a thickness of 100 nm was formed on the surface of the metal substrate by a plating method. Glass powder having an average particle size of 10 μm was used as a shot, and sprayed on the gold thin film at a spraying pressure of 0.1 MPa for 10 seconds.

[実施例2]
吹き付け時間を30秒とした以外は実施例1と同様に金属基材上に金薄膜を形成し、実施例2とした。
[Example 2]
A gold thin film was formed on a metal substrate in the same manner as in Example 1 except that the spraying time was set to 30 seconds.

[実施例3]
吹き付け時間を60秒とした以外は実施例1と同様に金属基材上に金薄膜を形成し、実施例3とした。
[Example 3]
A gold thin film was formed on a metal substrate in the same manner as in Example 1 except that the spraying time was set to 60 seconds.

[実施例4]
吹き付け時間を120秒とした以外は実施例1と同様に金属基材上に金薄膜を形成し、実施例4とした。
[Example 4]
A gold thin film was formed on a metal substrate in the same manner as in Example 1 except that the spraying time was set to 120 seconds.

[比較例1]
ショットの吹き付けを行わなかった以外は実施例1と同様にして、金属基材上に金薄膜を形成し、比較例1とした。
[Comparative Example 1]
A gold thin film was formed on a metal substrate in the same manner as in Example 1 except that no shot was sprayed, and Comparative Example 1 was obtained.

[比較例2]
ショットの吹き付けの代わりに樹脂による封孔処理を行った以外は実施例1と同様に金属基材上に金薄膜を形成し、比較例2とした。
[Comparative Example 2]
A gold thin film was formed on a metal substrate in the same manner as in Example 1 except that a sealing treatment with a resin was performed instead of shot spraying, and Comparative Example 2 was obtained.

[比較例3]
ショットの吹き付けの代わりに、メッキ後に不動態処理を行った以外は実施例1と同様に金属基材上に金薄膜を形成し、比較例3とした。
[Comparative Example 3]
A gold thin film was formed on a metal substrate in the same manner as in Example 1 except that a passive treatment was performed after plating instead of shot spraying, and Comparative Example 3 was obtained.

実施例および比較例の実施条件および性能評価結果を表1に示す。   Table 1 shows implementation conditions and performance evaluation results of Examples and Comparative Examples.

Figure 0004452489
Figure 0004452489

上記の実施例および比較例で得られた金属基材と金薄膜の接合体にプレス加工を施してセパレータを作製し、燃料電池に組み込んで発電耐久試験を行った。それらのうち、実施例2および比較例の結果を図5のグラフに示す。このグラフから明らかなように、比較例では時間の経過とともに接触抵抗が増加したが、実施例2では接触抵抗の増加が緩やかであった。   A separator was produced by pressing the metal substrate / gold thin film assembly obtained in the above Examples and Comparative Examples, and the separator was assembled into a fuel cell and subjected to a power generation durability test. Among these, the result of Example 2 and a comparative example is shown in the graph of FIG. As is apparent from this graph, the contact resistance increased with time in the comparative example, but in Example 2, the increase in contact resistance was gradual.

以上説明したように、本発明の固体高分子型燃料電池セパレータの貴金属薄膜の形成方法によれば、耐食性、密着性、接触電気抵抗が改善され、かつ低コストで固体高分子型燃料電池用セパレータを作製することができる。   As described above, according to the method for forming a noble metal thin film of the polymer electrolyte fuel cell separator of the present invention, the corrosion resistance, adhesion, and contact electric resistance are improved, and the polymer polymer fuel cell separator is reduced in cost. Can be produced.

本発明の固体高分子型燃料電池セパレータの一例を示す写真である。It is a photograph which shows an example of the polymer electrolyte fuel cell separator of this invention. 本発明における金属基材および貴金属薄膜に対するショットピーニング工程を示す概念図である。It is a conceptual diagram which shows the shot peening process with respect to the metal base material and noble metal thin film in this invention. 本発明におけるショットピーニングによる金属基材表面の異物、偏析物の除去工程を示す概念図である。It is a conceptual diagram which shows the removal process of the foreign material on the surface of a metal base material by a shot peening in this invention, and a segregated material. 本発明において生じた異物、偏析物の脱落痕に対するショットピーニングを示す概念図である。It is a conceptual diagram which shows the shot peening with respect to the fallen trace of the foreign material and segregated material which arose in this invention. 本発明の発電耐久試験における実施例および比較例の経過時間と接触抵抗増加を示すグラフである。It is a graph which shows the elapsed time and contact resistance increase of the Example and comparative example in the electric power generation durability test of this invention.

符号の説明Explanation of symbols

1 金属基材
2 貴金属薄膜
3 異物、偏析物
1 Metal substrate 2 Precious metal thin film 3 Foreign material, segregated material

Claims (3)

耐食性金属基材の表面を脱脂および洗浄する工程と、
上記金属基材の表面を貴金属薄膜で被覆する工程と
上記貴金属薄膜の両方の面にショットを吹き付けるショットピーニングを行って上記金属素材と上記貴金属薄膜とを密着させる工程と、
上記貴金属薄膜が表面に形成された上記金属素材を、固体高分子型燃料電池セパレータの形状にプレス加工して断面凹凸状に成形する工程と、
プレス加工された上記金属素材にショットピーニングを行って上記金属素材と上記貴金属薄膜とを密着させる工程と
を備えたことを特徴とする固体高分子型燃料電池セパレータの貴金属薄膜形成方法。
Degreasing and cleaning the surface of the corrosion-resistant metal substrate ;
The surface of the metal substrate and the step of coating with a noble metal thin film,
A step of adhering the above metal material and the noble metal thin film both shot peening to blow shots to the plane of the I line of the noble metal thin film,
A step of pressing the metal material having the noble metal thin film formed on the surface thereof into a shape of a solid polymer type fuel cell separator to form a concavo-convex shape;
Performing shot peening on the pressed metal material to bring the metal material and the noble metal thin film into close contact with each other;
Noble metal thin film forming method of a polymer electrolyte fuel cell separator comprising the.
前記金属基材の表面を脱脂および洗浄する工程の前に、該金属基材の表面にショットピーニングを行うことにより、該表面の異物および偏析物を除去することを特徴とする請求項1に記載の固体高分子型燃料電池セパレータの貴金属薄膜形成方法。 The foreign matter and segregated matter on the surface are removed by performing shot peening on the surface of the metal base before the step of degreasing and cleaning the surface of the metal base. A method for forming a noble metal thin film of a solid polymer fuel cell separator. 前記金属基材の表面の異物および偏析物を除去した後、該金属基材の表面を貴金属薄膜で被覆する前に、該表面にショットピーニングを行って上記異物および偏析物の脱落痕の表面性状を整えることを特徴とする請求項1または2に記載の固体高分子型燃料電池セパレータの貴金属薄膜形成方法。 After removing the foreign matter and segregated material on the surface of the metal base material, before coating the surface of the metal base material with a noble metal thin film, the surface properties of the foreign matter and segregated material drop mark are shot peened on the surface. The method for forming a noble metal thin film for a polymer electrolyte fuel cell separator according to claim 1 or 2, wherein
JP2003409899A 2003-12-09 2003-12-09 Method for forming noble metal thin film of polymer electrolyte fuel cell separator Expired - Fee Related JP4452489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409899A JP4452489B2 (en) 2003-12-09 2003-12-09 Method for forming noble metal thin film of polymer electrolyte fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409899A JP4452489B2 (en) 2003-12-09 2003-12-09 Method for forming noble metal thin film of polymer electrolyte fuel cell separator

Publications (2)

Publication Number Publication Date
JP2005174624A JP2005174624A (en) 2005-06-30
JP4452489B2 true JP4452489B2 (en) 2010-04-21

Family

ID=34731111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409899A Expired - Fee Related JP4452489B2 (en) 2003-12-09 2003-12-09 Method for forming noble metal thin film of polymer electrolyte fuel cell separator

Country Status (1)

Country Link
JP (1) JP4452489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175799A (en) * 2005-12-27 2007-07-12 Sintokogio Ltd Shot peening method of precious metal product

Also Published As

Publication number Publication date
JP2005174624A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4327489B2 (en) Metal separator for fuel cell and manufacturing method thereof
CA2646189C (en) Noble metal plating of titanium components
CA2373344A1 (en) Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
KR101107862B1 (en) Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
JP2009170116A (en) Recycling method of separator for fuel cell, regenerated separator for the fuel cell, and the fuel cell
EP2031687B1 (en) Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
WO2010007918A1 (en) Fuel cell separator and fuel cell
JP5139997B2 (en) Fuel cell separator and method for producing the same
JP2008176988A (en) Titanium material for solid polymer fuel cell separator of low contact resistance and low ion elution property and its manufacturing method, separator made by using this titanium material, and solid polymer fuel cell made by using this separator
JP3468739B2 (en) Method for attaching metal having high corrosion resistance and low contact resistance to carbon to fuel cell separator
JP2007257883A (en) Fuel cell separator and its manufacturing method
JP4134257B2 (en) Alloy film for metal separator of fuel cell, production method thereof, sputtering target material, metal separator and fuel cell
JP4452489B2 (en) Method for forming noble metal thin film of polymer electrolyte fuel cell separator
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2008277287A (en) Manufacturing method of metallic separator for fuel cell
JP2005032594A (en) Method of manufacturing corrosion resistant metal plate
JP4516628B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2004071321A (en) Metal separator for fuel cell and manufacturing method therefor
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
JP2017088955A (en) Titanium material for separator of solid polymer form fuel cell and separator using the same
EP3702491A1 (en) Metal material and method for producing same
JP4585760B2 (en) Method for forming noble metal thin film of polymer electrolyte fuel cell separator
JP4790108B2 (en) Surface treatment method for passive metal to carbon with low contact resistance
JP5891849B2 (en) Fuel cell separator and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees