JP4452339B2 - Battery with cooling function - Google Patents

Battery with cooling function Download PDF

Info

Publication number
JP4452339B2
JP4452339B2 JP26292998A JP26292998A JP4452339B2 JP 4452339 B2 JP4452339 B2 JP 4452339B2 JP 26292998 A JP26292998 A JP 26292998A JP 26292998 A JP26292998 A JP 26292998A JP 4452339 B2 JP4452339 B2 JP 4452339B2
Authority
JP
Japan
Prior art keywords
battery
monoblock
side wall
heat
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26292998A
Other languages
Japanese (ja)
Other versions
JP2000090988A (en
Inventor
佳行 中山
和夫 戸島
豊彦 江藤
正彦 三井
究 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP26292998A priority Critical patent/JP4452339B2/en
Publication of JP2000090988A publication Critical patent/JP2000090988A/en
Application granted granted Critical
Publication of JP4452339B2 publication Critical patent/JP4452339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、複数の電池セルが電池電槽内に設けられて構成されているモノブロック電池、特にその電池の放熱構成に関する。
【0002】
【従来の技術】
図7に示すように、それぞれが極板群を備えた電池セルを複数個同一電池電槽内に直列接続して配置してモノブロック電池を構成することが知られている。また、例えば電気自動車用の蓄電池として用いる場合等には、より大電流、高電圧出力を得るため、図7のモノブロック電池(モジュール)を更に図8に示すように複数個組み合わせて組電池として用いることが知られている。
【0003】
このような電池においては、充放電等による発熱に起因して電池特性が劣化するため、電池の冷却はその特性向上のために重要である。例えば図8のように複数のモノブロック電池を組み合わせた組電池において、中央部のモノブロック電池でも放熱できるようにする必要があり、そのため各モノブロック電池には、他のモノブロック電池と対向配置される対向側壁の外面に図7のような複数のリブを突設し、自分のリブと他のモノブロック電池のリブが当接するように組み合わせることで、他のモノブロック電池の電池電槽側壁との間に放熱用空気通路を形成している。そして、このような組電池を箱体内に配置して電池パックを構成し、図示しない冷却ファンから、箱体に形成された冷却空気入口から箱体内に強制的に空気が送り込まれ、放熱用空気通路を経由して箱体の出口から空気を排出することで、各モノブロック電池の冷却を行っている。
【0004】
【発明が解決しようとする課題】
ここで、充放電による電池内部の発熱は主に極板群で生じ、その熱を上記リブで構成した放熱用空気通路から電池外部へ放熱させるには、樹脂製の電池電槽の熱抵抗が支配的となる。しかし、電池電槽に用いられる樹脂は一般的に熱抵抗が大きいため、電池電槽の内面と外面とで温度差が生ずるだけであり、電池電槽内での発熱は、電池外に放熱され難いという問題がある。電池電槽を薄くすれば、樹脂製の電池電槽でもその放熱性を高めることができるが、電槽強度が低下してしまうため、電槽の厚さはある程度までしか薄くすることはできない。
【0005】
また、複数の電池セルを直列接続してモノブロック電池を構成しているため、一部の電池セルでの温度上昇が防げたとしても電池セル間で温度のバラツキが発生すると電池全体の特性の低下につながってしまう。ところが、各モノブロック電池において、その中央部に位置する電池セルは、両側端(他のモノブロック電池が対向配置されない非対向側部)にある電池セルよりも特に放熱し難い。組電池の中央部のモノブロック電池の中央部であればなおさらである。例えば、図8に示すように、電池パック内において、他の電池が対向配置されないモノブロック電池の両端部には、各電池を接続するためのバスバーを設置する空間が取られており、ここで熱交換が行われやすい。更に、このようなモノブロック電池の両端部にある電池セルは、電極が電槽外へ接続されているため、その接続部からの放熱も起こる。一方、モノブロック電池の中央部に位置する電池セルでは、各電池セルが内部接続されているため、直接電池外部に放熱できるのは、上述の放電用空気通路経由のみである。従って、1つのモノブロック電池内で考えた場合に、その両側端に位置する電池セルと中央の電池セルとでは温度差が生じ、電池全体の特性向上の妨げとなっている。
【0006】
上記課題を解決するために、本発明では、電池電槽の強度を維持しつつ、各電池セル間での温度差を小さく、かつ各電池セルが効率的に放熱することの可能な電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するためにこの発明は、以下のような特徴を有する。
【0008】
まず、この発明は、それぞれ極板群を備えてなる複数の電池セルが電池電槽内に配置されて構成されたモノブロック電池であって、複数のモノブロック電池と組み合わせて組電池を構成するモノブロック電池において、前記電池電槽の側壁の内、他のモノブロック電池の電池電槽と対向配置される対向側壁の外面上には、前記他のモノブロック電池との間で放熱用空気通路を形成するための複数のメインリブが突設形成され、前記対向側壁のメインリブが形成されていない部分の厚さは、前記他のモノブロック電池が対向配置されない非対向側壁の厚さよりも薄く形成され、前記各電池セルは、その極板群を共通接続する集電板を備え、該集電板の少なくとも一部がそれぞれ対向側壁の内面に接触するように構成されていることを特徴とする。
【0009】
他のモノブロック電池が対向配置される電池電槽の対向側壁を薄くすることで、モノブロック電池の中央部の放熱を容易とし、かつ比較的放熱しやすい他のモノブロック電池の対向配置されない側壁を厚くすることで、モノブロック電池中央部と側部での放熱性の差を縮める。また、電池電槽の側壁内面に接触した集電板により、極板群で発生した熱を電池電槽の対向側壁へ伝えることができ、その熱を放熱用空気通路によって放熱することができる。従って、電池内で発生した熱を非常に効率的に電池外部へと放熱することが可能となる。
【0012】
また、本発明においては、前記対向側壁外面上には、更に前記メインリブより高さが低い放熱用フィンが形成されていることが好ましい。
【0013】
上記構成により、メインリブによって、電池電槽の対向側壁外面上に放熱用空気通路を構成すると共に、この対向側壁上に放熱用フィンを形成することで、放熱性向上のため薄くすることで低下した電池電槽側壁の強度をこの放熱用フィンで補いつつ、放熱用空気通路での放熱性をより高めている。
【0014】
【発明の実施の形態】
以下、図面を用いてこの発明の好適な実施の形態(以下実施形態という)について説明する。
【0015】
図1(a)及び(b)は、この発明の実施形態に係るモノブロック電池の構造を示し、図2は、モノブロック電池を構成する各電池セルのより詳細な構造を示している。なお、図1及び図2に示すモノブロック電池は、従来同様に他のモノブロック電池と組み合わせられて図8に示すような組電池とし、箱体内に配置されて電池パックを構成することができる。
【0016】
図1に示すように、モノブロック電池20は、図1のように樹脂製の電池電槽30内に一列に配置された複数の電池セル10を備え、各電池セル10は、図2に示すように正極及び負極の極板群12(12+、12−)を備え、各極板群12+、12−は、それぞれ対応する集電板14(14+、14−)に接続されている。なお、図示しないが電池電槽30内には構成する電池種類に応じた電解質物質が充填され、また極板材料としても電池種類に応じた材料が用いられている。また、隣接する電池セル10の集電板14+と14−とが、バスバー16によって接続されており、各電池セル10は電池電槽30内部で直列接続され1つのモノブロック電池20を構成している。
【0017】
このようなモノブロック電池20において、その樹脂製電池電槽30の側壁の内、他のモノブロック電池20が対向配置される対向側壁30oの外面に、従来と同様のメインリブ32を一体的に突設形成し、組電池とした場合に他のモノブロック電池20との間で放熱用空気通路を構成する。更に本実施形態では、同じ対向側壁30oの外面に、例えば対向側壁30oの中央で交わる筋交状の放熱用フィン34を電池電槽30及びメインリブ32と一体的に形成している。この放熱用フィン34を対向側壁30oに形成することにより、その分側壁30oの表面積が増大して放熱性が高まる。更に、この放熱用フィン34の高さは、メインリブ32よりも低く形成されている。従って、放熱用フィン34を形成しても放熱用空気通路がメインリブ32の間に確保されており、かつこの放熱用空気通路を通る空気により放熱用フィン34から放射される熱が効率的に除去される。
【0018】
更に、本実施形態において、メインリブ32及び放熱用フィン34の形成される電池電槽30の対向側壁30oの厚さtoを、他のモノブロック電池20が対向配置されずリブの形成されない非対向側壁30sの厚さtsよりも薄く形成している。対向側壁の厚さtoが薄くなることで、例えば従来と同一の樹脂材料を用いて電池電槽30を構成した場合に、対向側壁30oの強度が薄くなった分低下するが、本実施形態ではこの側壁30oに放熱用フィン34が形成されていて、強度低下を補っている。そして、この放熱用フィン34による放熱と、薄い側壁30oによる放熱性の向上により、電池電槽30の中央両領域に位置する電池セルで発生する熱を効率的に除去可能となっている。
【0019】
また、モノブロック電池20の長手方向の両側部(非対向側壁側)では、上述したように電池パックとした場合に空間に余裕があるため放熱性がよく、かつ外部に引き出される配線等からも放熱される。従って、この両側部とモノブロック電池20の中央部と比較すると、これらの放熱性に差が生ずる。しかし、本実施形態ではこのような両端部に位置する非対向側壁30sの厚さtsを、対向側壁30oより厚くすることで熱抵抗を大きくしており、電池電槽30の中央部と両側部とでの放熱性の差を小さくしている。
【0020】
更に、本実施形態では、図2(b)に示すような各電池セル10の正極板群12+を共通接続する集電板14+、及び負極板群12−を共通接続する集電板14−として、板バネなど、例えばバネ加工などを施した導電板部材を電池電槽30内に配置している。集電板14(14+,14−)をバネ構造とすることでその側部が電池電槽30の外側に向けて付勢され、図2(a)のように電槽内面に密着する。集電板14は、多くの場合、熱伝導性にも優れた金属材料が用いられており、このような集電板14を電池電槽30に密着させれば、電池セル10の極板群12で発生した熱が、この集電板14を介して電池電槽30に容易に伝達される。
【0021】
ここで、複数の電池セル10が一列に並べられて構成されるモノブロック電池20の構成上、多くの場合、集電板14の密着する電池電槽側壁は、対向側壁30oであり、本実施形態ではその外面にメインリブ32及び放熱用フィン34が形成されている。従って、集電板14を介して電池電槽側壁30oに伝わる熱が、放熱用フィン34及び薄く形成された該側壁30oから放射され、メインリブ32によって構成される放熱用空気通路を通る冷却空気によって電池外部へと除去される。
【0022】
なお、集電板14は、図2(a)のように板バネ構成としてその側部の全てが電池電槽30に密着する構成としたほうが、電池内部の熱をより多く電池電槽30に伝えることができる。但し、集電板14の一部が電池電槽30に接触する構成であっても、電池内部の熱が該集電板14を介して電池電槽30に伝達され放熱性向上効果が得られる。
【0023】
図5は、本実施形態のモノブロック電池20と従来構成のモノブロック電池における図3各位置(T1〜T3、T11〜T19)における温度分布を示している。温度分布測定に用いた本実施形態のモノブロック電池の外寸は、ここでは、厚さw20mm、高さh100mm、横幅x250mm程度である。また、本実施形態のモノブロック電池は、図4(a)に示すように、メインリブ32の高さを約1mm、放熱用フィン34の高さを0.5mm付近に設定し、電池電槽30の両側部の側壁30sの厚さtsを約4mm、対向側壁30oの厚さtoを約1mmに設定している。更に、集電板14は上述のようにバネ加工して電池電槽内面に接触させている。これに対し、従来のモノブロック電池は、その外寸が本実施形態と同一であるが、図4(b)に示すように、電池電槽の側壁の厚さは2mm均一で、リブの高さが1mmであり、放熱用フィンが存在せず、また本実施形態のような集電板構成を備えない電池を用いている。
【0024】
図5(a)のように、モノブロック電池の中央部において電槽表面T1、その内面T2、中央部の電池セル内の極板群中央T3の温度を比較したところ、電槽表面T1の温度は、従来と本実施形態とで殆ど差はない。しかし、本実施形態の電池の電槽内面T2及び極板群中央T3での温度は、共に従来の電池の同一位置の温度よりも大きく低下している。なお、T2及びT3での温度低下の度合いは、例えば電流量大の条件で従来温度が40℃〜50℃に対して10℃程度或いはそれ以上の低下に相当する(但し、低下の度合いは電池種類や充放電条件等によって異なるため、これらの数値には限られない)。
【0025】
また、図3に示すような電池内部のモノブロック電池の長手方向に沿った各位置T11〜T19においてそれぞれ温度を測定したところ、図5(b)に示すように、従来の電池では、モノブロック電池の両端部から中央部に行くにつれて温度が高くなり、両端部と中央部の温度差が大きい。しかし、本実施形態のモノブロック電池では、端面集電板T11、T19での温度が従来電池に対して殆ど差がないのに対し、モノブロック電池の中央部付近の温度が、中央の集電板付近(T13,T15,T17)及び各電池セル中央(T12,T14,T16,T18)のいずれの位置においても低下している。このように、本実施形態ではモノブロック電池の両端部(T11、T19)と、モノブロック電池中央付近(T12〜T18)の温度差が小さくなっている。
【0026】
以上のことから本実施形態のような電池構成により、モノブロック電池内での熱の放熱性が高まり、かつモノブロック電池内の位置による温度差が緩和されることが分かる。このため、本実施形態のモノブロック電池を図8に示すように、組電池として電池パックを構成した場合にも、組電池の中央に位置するモノブロック電池の放熱性、そして、該モノブロック電池の中央部での放熱性を高めることができる。よって、組電池全体の温度が低下し、かつ組電池の位置による温度差が解消されて信頼性が高くかつ高性能の電池パックを提供することも可能となる。
【0027】
なお、本実施形態において、例えば、上述のモノブロック電池の外寸に関し、側壁30sの厚さtsを4mm程度とした場合に、対向側壁30oの厚さtoは、例えば1mm〜1.5mm程度とすることが好適であり、また、メインリブ32の高さを1mm程度とした場合に、放熱用フィン34の高さは、1mmより小さく、0.5mm程度で十分な放熱効果と対向側壁30oの補強効果とを奏する。但し、各部の寸法は、電池電槽材料や、電池種類等によっても異なり、例示したこれらの値には限られない。
【0028】
次に、放熱用フィン34の他の構成例について説明する。放熱用フィン34は上述の図1(a)のような対向側壁30oの中心付近で交わる筋交状のリブとすることで、放熱性の向上と、対向側壁30oの強度向上とに寄与するが、図6(a)のように、対向側壁30oに複数本形成されるメインリブ32の各間に筋交状の放熱用フィン34を形成し放熱能力及び強度の向上を図っても良い。また、これらの筋交状の形状には限らず、その他、図6(b)〜(d)に示すような様々な形状を採用しても効果が得られる。例えば、図6(b)のように、放熱用フィン34をメインリブ32(放熱用空気通路)の長手方向に平行に複数本ストライプ状に形成したり、図6(c)のようにメインリブ間にその長手方向と直交する方向に複数本ストライプ状の放熱用フィン34を形成してもよい。更に、図6(d)のように、メインリブ32の各間隙にドット状の放熱用フィン34を複数個マトリクス状に形成してもよい。更に、モノブロック電池20の中央部と、両側部(非対向側壁側)とでは、両側部の方が本来的には放熱性が高いため、この放熱用フィン34を対向側壁30oの中央部に選択的に形成したり、中央部の放熱用フィン34の数を両側部付近での数より多くするなどして、対向側壁30oの中央部での放熱面積を両端部付近より大きくしてもよい。
【0029】
なお、電池は、例えばニッケル水素電池を想定しているが、その他の蓄電池においても、電池電槽の構造及び集電体の構造を上述のようにすることで同様な効果を奏する。
【0030】
【発明の効果】
以上説明したように、この発明においては、モノブロック電池の放熱性を高めると共に、該電池の中央部と両端部との放熱特性を近づけ、これらの位置での温度差を解消することが可能である。従って、複数の電池セルを直列接続してモノブロック電池を構成した場合にも、各電池セルを低温とでき、また出力特性のバラツキを解消し、モノブロック電池全体の出力特性を向上することが容易となる。
【0031】
また、各電池セルにおいて極板群を共通接続する集電板を少なくともその一部が電池電槽に接触する構成を採用することで、極板群での充放電によって発生する熱をこの集電板を介して効率的に電池電槽に伝え、該電槽から放熱させることが可能である。また、集電板を例えばバネ加工するなどで電池電槽に接触させることができるため、新たな部材や特別な機構を設けなくても放熱性向上を図ることが可能となる。
【0032】
更に、上記集電板の構成を放熱用フィンを備え、かつ電池電槽の対向側壁が薄く、両側部が厚い構成と組み合わせて用いれば、電池内部の放熱性がより高まると共に、電池の中央部と端部との温度差を小さくすることが容易となる。
【図面の簡単な説明】
【図1】 本実施形態のモノブロック電池の電池電槽を示す概略図である。
【図2】 本実施形態のモノブロック電池の電池セル及びその集電板の具体的構成を示す図である。
【図3】 温度測定を行ったモノブロック電池の各位置を示す図である。
【図4】 温度測定に用いた従来電池と本実施形態の電池の構造を説明する図である。
【図5】 図4の本実施形態及び従来の電池に対して図3の各位置で測定して得られた温度分布を示す図である。
【図6】 本実施形態の放熱用フィンの他の構成例を示す図である。
【図7】 従来のモノブロック電池の構成を示す図である。
【図8】 モノブロック電池を用いた電池パックの構成及びその冷却機構を説明する図である。
【符号の説明】
10 電池セル、12,12+,12− 極板群、14,14+,14− 集電板、16 バスバー、20 モノブロック電池、30 電池電槽、30o 電池電槽の対向側壁、30s 電池電槽の非対向側壁、32 メインリブ、34 放熱用フィン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a monoblock battery in which a plurality of battery cells are provided in a battery battery case, and more particularly to a heat dissipation configuration of the battery.
[0002]
[Prior art]
As shown in FIG. 7, it is known that a plurality of battery cells each having an electrode plate group are connected in series in the same battery battery case to constitute a monoblock battery. For example, when used as a storage battery for an electric vehicle, in order to obtain a higher current and higher voltage output, a plurality of monoblock batteries (modules) shown in FIG. It is known to use.
[0003]
In such a battery, the battery characteristics are deteriorated due to heat generation due to charging / discharging or the like, and thus cooling of the battery is important for improving the characteristics. For example, in the assembled battery in which a plurality of monoblock batteries are combined as shown in FIG. 8, it is necessary to be able to dissipate heat even with the monoblock battery in the center portion. Therefore, each monoblock battery is arranged opposite to other monoblock batteries. A plurality of ribs as shown in FIG. 7 are provided on the outer surface of the opposite side wall so that the ribs of the other monoblock battery come into contact with the ribs of the other monoblock battery. An air passage for heat dissipation is formed between the two. Then, such an assembled battery is arranged in the box to constitute a battery pack, and air is forcibly sent from a cooling fan (not shown) into the box from a cooling air inlet formed in the box. Each monoblock battery is cooled by discharging air from the outlet of the box through the passage.
[0004]
[Problems to be solved by the invention]
Here, heat generation inside the battery due to charging / discharging mainly occurs in the electrode plate group, and in order to dissipate the heat to the outside of the battery from the heat dissipation air passage constituted by the ribs, the thermal resistance of the resin battery case is Become dominant. However, since the resin used in the battery case generally has a large thermal resistance, only a temperature difference occurs between the inner surface and the outer surface of the battery case, and the heat generated in the battery case is dissipated outside the battery. There is a problem that it is difficult. If the battery case is made thin, the heat dissipation can be improved even with a resin battery case, but since the strength of the case is reduced, the thickness of the case can only be reduced to a certain extent.
[0005]
In addition, since a plurality of battery cells are connected in series to form a monoblock battery, even if temperature rise in some battery cells can be prevented, if the temperature varies between battery cells, the characteristics of the entire battery It will lead to a decline. However, in each monoblock battery, the battery cell located at the center part thereof is particularly difficult to dissipate heat than the battery cells located at both side ends (non-opposing side parts where other monoblock batteries are not opposed to each other). This is especially true if the central portion of the monoblock battery is the central portion of the assembled battery. For example, as shown in FIG. 8, in the battery pack, spaces are provided at both ends of the monoblock battery where other batteries are not opposed to each other, where bus bars for connecting each battery are installed. Heat exchange is easily performed. Furthermore, since the battery cell in the both ends of such a monoblock battery has the electrode connected to the outside of the battery case, heat is also radiated from the connecting part. On the other hand, in the battery cell located in the center part of the monoblock battery, since each battery cell is internally connected, the heat can be directly radiated to the outside of the battery only through the above-described discharge air passage. Therefore, when considered in one monoblock battery, a temperature difference is generated between the battery cell located at both ends and the central battery cell, which hinders improvement of the characteristics of the entire battery.
[0006]
In order to solve the above problems, the present invention provides a battery in which the temperature difference between the battery cells is small and the battery cells can efficiently dissipate heat while maintaining the strength of the battery battery case. The purpose is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following features.
[0008]
First, this invention is a monoblock battery in which a plurality of battery cells each having an electrode plate group are arranged in a battery battery case, and constitutes an assembled battery in combination with a plurality of monoblock batteries In the monoblock battery, on the outer surface of the opposing side wall disposed opposite to the battery battery case of the other monoblock battery, the air passage for heat dissipation with the other monoblock battery A plurality of main ribs for projecting are formed in a protruding manner, and the thickness of the portion of the opposed side wall where the main rib is not formed is formed thinner than the thickness of the non-opposed side wall where the other monoblock battery is not disposed oppositely. Each of the battery cells includes a current collector plate commonly connecting the electrode plate groups, and at least a part of the current collector plate is configured to be in contact with the inner surface of the opposing side wall.
[0009]
By thinning the opposite side wall of the battery case where the other monoblock battery is placed opposite to the other, the side wall of the other monoblock battery that is easier to dissipate the center of the monoblock battery and relatively easier to dissipate By increasing the thickness, the difference in heat dissipation between the central part and the side part of the monoblock battery is reduced . In addition, the current collecting plate in contact with the inner surface of the side wall of the battery case can transmit heat generated in the electrode plate group to the opposite side wall of the battery case, and the heat can be dissipated by the heat dissipation air passage. Therefore, the heat generated in the battery can be dissipated to the outside of the battery very efficiently.
[0012]
In the present invention, the on opposing side walls on the outer surface is preferably formed more radiation fins than the height is low the main ribs.
[0013]
With the above configuration, the main rib forms a heat radiation air passage on the outer surface of the opposite side wall of the battery battery case, and by forming a heat radiation fin on the opposite side wall, it is reduced by thinning to improve heat dissipation. The heat dissipation in the air passage for heat dissipation is further enhanced while the strength of the side wall of the battery case is supplemented by the heat dissipation fins.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0015]
1A and 1B show the structure of a monoblock battery according to an embodiment of the present invention, and FIG. 2 shows a more detailed structure of each battery cell constituting the monoblock battery. The monoblock battery shown in FIGS. 1 and 2 can be combined with other monoblock batteries to form an assembled battery as shown in FIG. 8 and can be arranged in a box to constitute a battery pack. .
[0016]
As shown in FIG. 1, the monoblock battery 20 includes a plurality of battery cells 10 arranged in a line in a resin battery case 30 as shown in FIG. 1, and each battery cell 10 is shown in FIG. Thus, the positive electrode plate group 12 (12+, 12−) is provided, and each electrode plate group 12+, 12− is connected to the corresponding collector plate 14 (14+, 14−). Although not shown, the battery case 30 is filled with an electrolyte substance corresponding to the type of battery to be configured, and a material corresponding to the type of battery is also used as the electrode plate material. Further, current collecting plates 14+ and 14− of adjacent battery cells 10 are connected by a bus bar 16, and each battery cell 10 is connected in series inside the battery battery case 30 to constitute one monoblock battery 20. Yes.
[0017]
In such a monoblock battery 20, a main rib 32 similar to the conventional one protrudes integrally on the outer surface of the opposite side wall 30o on which the other monoblock battery 20 is disposed to face the resin battery battery case 30. When the battery pack is formed into an assembled battery, a heat radiating air passage is formed with the other monoblock battery 20. Furthermore, in the present embodiment, bracing heat radiation fins 34 that intersect at the center of the opposite side wall 30o, for example, are formed integrally with the battery battery case 30 and the main rib 32 on the outer surface of the same opposite side wall 30o. By forming the heat radiating fins 34 on the opposite side wall 30o, the surface area of the side wall 30o is increased by that amount, and the heat dissipation is improved. Further, the height of the heat dissipating fin 34 is formed lower than that of the main rib 32. Therefore, even if the heat radiating fins 34 are formed, the heat radiating air passages are secured between the main ribs 32, and the heat radiated from the heat radiating fins 34 by the air passing through the heat radiating air passages is efficiently removed. Is done.
[0018]
Furthermore, in this embodiment, the thickness to of the opposing side wall 30o of the battery battery case 30 in which the main rib 32 and the heat radiating fin 34 are formed is set to the non-opposing side wall where the other monoblock battery 20 is not disposed oppositely and the rib is not formed. It is formed thinner than the thickness ts of 30 s. By reducing the thickness to of the opposing side wall, for example, when the battery case 30 is configured using the same resin material as the conventional one, the strength of the opposing side wall 30o is reduced, but in this embodiment, A heat radiating fin 34 is formed on the side wall 30o to compensate for a decrease in strength. The heat generated by the battery cells located in both central regions of the battery case 30 can be efficiently removed by the heat dissipation by the heat dissipation fins 34 and the improvement of the heat dissipation by the thin side walls 30o.
[0019]
In addition, the both sides (non-opposing side walls) of the monoblock battery 20 in the longitudinal direction have a sufficient space when used as a battery pack as described above, so that heat dissipation is good, and from the wiring drawn out to the outside, etc. Heat is dissipated. Therefore, compared with the both side portions and the central portion of the monoblock battery 20, there is a difference between these heat dissipation properties. However, in the present embodiment, the thermal resistance is increased by making the thickness ts of the non-opposing side wall 30s located at both end portions larger than that of the opposing side wall 30o. The difference in heat dissipation is reduced.
[0020]
Further, in the present embodiment, as shown in FIG. 2B, the current collector plate 14+ that commonly connects the positive electrode plate group 12+ of each battery cell 10 and the current collector plate 14- that commonly connects the negative electrode plate group 12-. A conductive plate member, such as a leaf spring, which has been subjected to spring processing or the like, is disposed in the battery battery case 30. Since the current collector plate 14 (14+, 14-) has a spring structure, the side portion thereof is urged toward the outside of the battery battery case 30, and is in close contact with the inner surface of the battery case as shown in FIG. In many cases, the current collector plate 14 is made of a metal material having excellent thermal conductivity. If such a current collector plate 14 is brought into close contact with the battery battery case 30, the electrode plate group of the battery cell 10 is used. The heat generated at 12 is easily transmitted to the battery case 30 via the current collector plate 14.
[0021]
Here, on the configuration of the monoblock battery 20 in which a plurality of battery cells 10 are arranged in a row, in many cases, the battery battery case side wall with which the current collector plate 14 is in close contact is the opposite side wall 30o, and this embodiment In the form, the main rib 32 and the heat radiation fin 34 are formed on the outer surface. Therefore, the heat transmitted to the battery case side wall 30o through the current collector plate 14 is radiated from the heat radiation fins 34 and the thinly formed side walls 30o, and is cooled by the cooling air passing through the heat radiation air passage constituted by the main ribs 32. It is removed outside the battery.
[0022]
In addition, the current collector plate 14 has a leaf spring configuration as shown in FIG. 2A, and has a configuration in which all of the side portions are in close contact with the battery battery case 30. I can tell you. However, even if a part of the current collector plate 14 is in contact with the battery case 30, the heat inside the battery is transmitted to the battery case 30 via the current collector plate 14 and an effect of improving heat dissipation is obtained. .
[0023]
FIG. 5 shows the temperature distribution at each position (T1 to T3, T11 to T19) in FIG. 3 in the monoblock battery 20 of the present embodiment and the monoblock battery of the conventional configuration. Here, the outer dimensions of the monoblock battery of the present embodiment used for the temperature distribution measurement are about a thickness w20 mm, a height h100 mm, and a width x250 mm. In the monoblock battery of this embodiment, as shown in FIG. 4A, the height of the main rib 32 is set to about 1 mm, and the height of the heat dissipating fins 34 is set to about 0.5 mm. The side wall 30s has a thickness ts of about 4 mm and a side wall 30o has a thickness to of about 1 mm. Further, the current collector plate 14 is spring-processed as described above and is brought into contact with the inner surface of the battery battery case. In contrast, the conventional monoblock battery has the same outer dimensions as the present embodiment, but as shown in FIG. 4 (b), the thickness of the side wall of the battery case is 2 mm, and the rib height is high. A battery having a thickness of 1 mm, no heat dissipating fins, and having no current collecting plate configuration as in this embodiment is used.
[0024]
As shown in FIG. 5A, when the temperature of the battery case surface T1, its inner surface T2, and the center of the electrode plate group T3 in the central battery cell is compared in the center part of the monoblock battery, the temperature of the battery case surface T1 is compared. There is almost no difference between the conventional and the present embodiment. However, the temperatures at the battery case inner surface T2 and the electrode plate group center T3 of the battery of this embodiment are both greatly lower than the temperature at the same position of the conventional battery. The degree of temperature decrease at T2 and T3 corresponds to, for example, a decrease of about 10 ° C. or more with respect to the conventional temperature of 40 ° C. to 50 ° C. under the condition of a large current amount (however, the degree of decrease is the battery level). Because it varies depending on the type and charging / discharging conditions, it is not limited to these values).
[0025]
Further, when the temperature was measured at each of the positions T11 to T19 along the longitudinal direction of the monoblock battery inside the battery as shown in FIG. 3, in the conventional battery, as shown in FIG. The temperature increases from the both ends of the battery to the center, and the temperature difference between the ends and the center is large. However, in the monoblock battery of the present embodiment, the temperature at the end face current collectors T11 and T19 is almost the same as that of the conventional battery, whereas the temperature near the center of the monoblock battery is the current collector at the center. It decreases at any position in the vicinity of the plate (T13, T15, T17) and the center of each battery cell (T12, T14, T16, T18). Thus, in this embodiment, the temperature difference between the both end portions (T11, T19) of the monoblock battery and the vicinity of the center of the monoblock battery (T12 to T18) is small.
[0026]
From the above, it can be seen that the battery configuration as in the present embodiment improves the heat dissipation of the heat in the monoblock battery and reduces the temperature difference depending on the position in the monoblock battery. Therefore, even when the monoblock battery according to the present embodiment is configured as a battery pack as shown in FIG. 8, the heat dissipation of the monoblock battery located in the center of the battery pack and the monoblock battery The heat dissipation at the center of the can be improved. Therefore, the temperature of the entire assembled battery is reduced, and the temperature difference due to the position of the assembled battery is eliminated, so that it is possible to provide a highly reliable and high-performance battery pack.
[0027]
In the present embodiment, for example, regarding the outer dimensions of the monoblock battery described above, when the thickness ts of the side wall 30s is about 4 mm, the thickness to of the opposing side wall 30o is, for example, about 1 mm to 1.5 mm. In addition, when the height of the main rib 32 is about 1 mm, the height of the heat radiation fin 34 is smaller than 1 mm, and a sufficient heat radiation effect and reinforcement of the opposing side wall 30o are about 0.5 mm. There are effects. However, the dimension of each part changes also with battery battery case materials, a battery kind, etc., and is not restricted to these illustrated values.
[0028]
Next, another configuration example of the heat radiation fin 34 will be described. Although the heat dissipating fins 34 are bracing ribs that intersect in the vicinity of the center of the opposing side wall 30o as shown in FIG. 1A, it contributes to improving heat dissipation and improving the strength of the opposing side wall 30o. As shown in FIG. 6A, bracing heat radiation fins 34 may be formed between the plurality of main ribs 32 formed on the opposing side wall 30o to improve heat radiation capability and strength. Further, the present invention is not limited to these muscular shapes, and in addition, effects can be obtained even if various shapes as shown in FIGS. For example, as shown in FIG. 6B, the heat dissipating fins 34 are formed in a plurality of stripes parallel to the longitudinal direction of the main rib 32 (heat dissipating air passage), or between the main ribs as shown in FIG. A plurality of stripe-shaped heat radiation fins 34 may be formed in a direction orthogonal to the longitudinal direction. Further, as shown in FIG. 6D, a plurality of dot-like heat radiation fins 34 may be formed in a matrix in each gap of the main rib 32. Furthermore, since the heat dissipation is inherently higher at the central portion of the monoblock battery 20 and both side portions (non-opposing side wall side), the heat radiating fins 34 are placed at the central portion of the opposing side wall 30o. The heat radiation area at the central portion of the opposite side wall 30o may be made larger than the vicinity of both end portions by selectively forming or by increasing the number of heat radiation fins 34 in the central portion near the both side portions. .
[0029]
The battery is assumed to be, for example, a nickel metal hydride battery. However, the same effect can be obtained in other storage batteries by making the structure of the battery case and the structure of the current collector as described above.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to improve the heat dissipation of the monoblock battery, bring the heat dissipation characteristics between the center and both ends of the battery closer, and eliminate the temperature difference at these positions. is there. Therefore, even when a monoblock battery is configured by connecting a plurality of battery cells in series, each battery cell can be kept at a low temperature, and variations in output characteristics can be eliminated, improving the output characteristics of the entire monoblock battery. It becomes easy.
[0031]
Further, by adopting a configuration in which at least a part of the current collector plate commonly connecting the electrode plate groups in each battery cell is in contact with the battery battery case, the heat generated by charging and discharging in the electrode plate group is collected. It is possible to efficiently transmit to the battery battery case through the plate and to dissipate heat from the battery case. Further, since the current collector plate can be brought into contact with the battery battery case by, for example, spring processing, it is possible to improve heat dissipation without providing a new member or a special mechanism.
[0032]
Furthermore, if the structure of the current collector plate is used in combination with a structure in which a fin for heat dissipation is provided and the opposite side wall of the battery battery case is thin and both sides are thick, the heat dissipation inside the battery is further improved and the center part of the battery It becomes easy to reduce the temperature difference between the end portions.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a battery case of a monoblock battery according to an embodiment.
FIG. 2 is a diagram showing a specific configuration of a battery cell of a monoblock battery and a current collector plate of the present embodiment.
FIG. 3 is a diagram showing each position of a monoblock battery for which temperature measurement was performed.
FIG. 4 is a diagram for explaining the structure of a conventional battery used for temperature measurement and the battery of this embodiment.
5 is a diagram showing temperature distributions obtained by measuring at the respective positions in FIG. 3 with respect to the present embodiment of FIG. 4 and the conventional battery.
FIG. 6 is a view showing another configuration example of the heat dissipating fin of the present embodiment.
FIG. 7 is a diagram showing a configuration of a conventional monoblock battery.
FIG. 8 is a diagram illustrating a configuration of a battery pack using a monoblock battery and a cooling mechanism thereof.
[Explanation of symbols]
10 battery cell, 12, 12+, 12- electrode plate group, 14, 14+, 14- current collector plate, 16 bus bar, 20 monoblock battery, 30 battery battery case, 30o battery battery case opposite side wall, 30s battery case Non-opposing side walls, 32 main ribs, 34 heat dissipation fins.

Claims (2)

それぞれ極板群を備えてなる複数の電池セルが電池電槽内に配置されて構成されたモノブロック電池であって、複数のモノブロック電池と組み合わせて組電池を構成するモノブロック電池において、
前記電池電槽の側壁の内、他のモノブロック電池の電池電槽と対向配置される対向側壁の外面上には、前記他のモノブロック電池との間で放熱用空気通路を形成するための複数のメインリブが突設形成され、
前記対向側壁のメインリブが形成されていない部分の厚さは、前記他のモノブロック電池が対向配置されない非対向側壁の厚さよりも薄く形成され、
前記各電池セルは、その極板群を共通接続する集電板を備え、該集電板の少なくとも一部がそれぞれ対向側壁の内面に接触するように構成されていることを特徴とするモノブロック電池。
A monoblock battery in which a plurality of battery cells each provided with an electrode plate group are arranged in a battery battery case, and in combination with a plurality of monoblock batteries, constitutes an assembled battery.
A heat dissipating air passage is formed between the battery battery case and the other monoblock battery on the outer surface of the opposite side wall disposed opposite to the battery battery case of the other monoblock battery. A plurality of main ribs are formed to project,
The thickness of the portion of the opposed side wall where the main rib is not formed is formed thinner than the thickness of the non-opposed side wall where the other monoblock battery is not disposed oppositely,
Each of the battery cells includes a current collecting plate that commonly connects the electrode plate groups, and at least a part of the current collecting plate is configured to contact an inner surface of the opposing side wall. battery.
請求項1に記載のモノブロック電池において、
前記対向側壁外面上には、更に前記メインリブより高さが低い放熱用フィンが形成されていることを特徴とするモノブロック電池。
The monoblock battery according to claim 1,
A monoblock battery characterized in that a heat dissipating fin having a height lower than that of the main rib is further formed on the outer surface of the opposing side wall.
JP26292998A 1998-09-17 1998-09-17 Battery with cooling function Expired - Fee Related JP4452339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26292998A JP4452339B2 (en) 1998-09-17 1998-09-17 Battery with cooling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26292998A JP4452339B2 (en) 1998-09-17 1998-09-17 Battery with cooling function

Publications (2)

Publication Number Publication Date
JP2000090988A JP2000090988A (en) 2000-03-31
JP4452339B2 true JP4452339B2 (en) 2010-04-21

Family

ID=17382557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26292998A Expired - Fee Related JP4452339B2 (en) 1998-09-17 1998-09-17 Battery with cooling function

Country Status (1)

Country Link
JP (1) JP4452339B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534268B2 (en) * 1999-02-05 2010-09-01 トヨタ自動車株式会社 Battery cooling plate and battery system
JP4921629B2 (en) * 2000-03-31 2012-04-25 パナソニック株式会社 Fluid-cooled battery pack system
JP4757369B2 (en) * 2000-05-08 2011-08-24 パナソニック株式会社 Rectangular alkaline storage battery, unit battery and assembled battery using the same
JP3850688B2 (en) * 2001-07-19 2006-11-29 松下電器産業株式会社 Cooling device for prismatic battery and battery pack
JP5240963B2 (en) * 2003-10-01 2013-07-17 日産自動車株式会社 Assembled battery
JP2007311124A (en) * 2006-05-17 2007-11-29 Toyota Motor Corp Battery pack and vehicle
JP5535520B2 (en) * 2009-05-21 2014-07-02 三洋電機株式会社 Battery system for vehicle
JP5456371B2 (en) * 2009-05-28 2014-03-26 三洋電機株式会社 Battery system for vehicle and vehicle equipped with this battery system
US8790812B2 (en) 2010-05-10 2014-07-29 Denso Corporation Battery pack
JP2011253734A (en) * 2010-06-02 2011-12-15 Toyota Motor Corp Battery pack and vehicle
JP5614107B2 (en) * 2010-06-02 2014-10-29 トヨタ自動車株式会社 Battery pack and vehicle
JP5344009B2 (en) * 2011-07-28 2013-11-20 トヨタ自動車株式会社 Battery pack
JP5287950B2 (en) * 2011-07-28 2013-09-11 トヨタ自動車株式会社 Battery pack
JP2013211197A (en) * 2012-03-30 2013-10-10 Primearth Ev Energy Co Ltd Battery module and battery pack
KR101925978B1 (en) 2014-08-22 2018-12-06 엘에스엠트론 주식회사 Energy storage device module
CN106972209B (en) * 2017-05-26 2023-04-18 广西科技大学鹿山学院 Battery with circuit breaking function
JP7266569B2 (en) * 2020-11-17 2023-04-28 プライムプラネットエナジー&ソリューションズ株式会社 secondary battery

Also Published As

Publication number Publication date
JP2000090988A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP4452339B2 (en) Battery with cooling function
CN102315501B (en) Battery module
JP4415570B2 (en) Battery
US20050026014A1 (en) Polymer batteries having thermal exchange apparatus
KR100944980B1 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
US20110104545A1 (en) Battery, Particularly for a Hybrid Drive
US20080248379A1 (en) Battery unit
JP6581699B2 (en) Battery module
JP2000164186A (en) Storage battery
CN111033876A (en) Battery pack
JP2012156057A (en) Battery module and battery pack including the same
US20230231221A1 (en) Tab Cooling for Batteries
JP2009266773A (en) Battery device
WO2024082591A1 (en) Frame heat dissipation structure, and power battery module having same
CN110190228A (en) Power battery pack and vehicle
JP5327016B2 (en) Battery module
JP3241876U (en) Battery module with thermally conductive structure
JPH11213962A (en) Storage battery
KR100627396B1 (en) Secondary battery module
JP5876057B2 (en) Battery compartment for vehicles
JPH10106514A (en) Cylindrical secondary battery and battery pack using this secondary battery
US20100136403A1 (en) Electric facility operating according to galvanic principles
CN216624395U (en) Battery module
CN216720066U (en) Box body for accommodating battery module, battery and electric equipment
CN218996865U (en) Battery pack and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees