JP4452146B2 - Battery monitoring device - Google Patents

Battery monitoring device Download PDF

Info

Publication number
JP4452146B2
JP4452146B2 JP2004265587A JP2004265587A JP4452146B2 JP 4452146 B2 JP4452146 B2 JP 4452146B2 JP 2004265587 A JP2004265587 A JP 2004265587A JP 2004265587 A JP2004265587 A JP 2004265587A JP 4452146 B2 JP4452146 B2 JP 4452146B2
Authority
JP
Japan
Prior art keywords
storage battery
temperature
life
internal resistance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004265587A
Other languages
Japanese (ja)
Other versions
JP2006080032A (en
Inventor
知伸 辻川
火峰 藪田
傑 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2004265587A priority Critical patent/JP4452146B2/en
Publication of JP2006080032A publication Critical patent/JP2006080032A/en
Application granted granted Critical
Publication of JP4452146B2 publication Critical patent/JP4452146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、バックアップ用の蓄電池を監視する蓄電池監視装置に関する。   The present invention relates to a storage battery monitoring device that monitors a backup storage battery.

通信機器等のバックアップ用電源として、鉛蓄電池などの蓄電池が使用される。この蓄電池には、設計上、使用可能期間いわゆる寿命がある。ただし、寿命は、一定ではなく、使用環境温度の影響を受けて変化する。バックアップ時の放電電流や放電頻度によっても変化する。   A storage battery such as a lead storage battery is used as a backup power source for communication equipment and the like. By design, this storage battery has a so-called useful life. However, the service life is not constant and changes under the influence of the use environment temperature. It also varies depending on the discharge current and discharge frequency during backup.

蓄電池の取替時期の判断は、人為的な判断に委ねられている。たとえば、設置後の一定期間が経過した時点で、ユーザが自らの判断で取替えの必要性を判断するのが一般的である。このため、取替時期を逸してしまったり、まだ十分に使用し得る状況で取替えられてしまうこともある。   The determination of the replacement time of the storage battery is left to human judgment. For example, when a certain period of time has elapsed after installation, it is common for the user to determine the necessity of replacement based on his / her own judgment. For this reason, the replacement time may be lost, or the replacement may be performed in a situation where it can still be used sufficiently.

この発明は、上記の事情を考慮したもので、蓄電池の寿命および取替時期を適切かつ自動的に知ることが可能な蓄電池監視装置を提供することを目的としている。   The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a storage battery monitoring device capable of appropriately and automatically knowing the life and replacement time of a storage battery.

請求項1に係る発明の蓄電池監視装置は、蓄電池の内部抵抗を測定する内部抵抗測定手段と、上記蓄電池の温度を検出する温度検出手段と、上記内部抵抗測定手段の測定結果が予め定められた範囲から外れているとき、前記蓄電池が寿命切れであると判定する判定手段と、予め定められている蓄電池の寿命−温度特性に基づいて、上記温度検出手段の検出温度における蓄電池寿命の単位期間当たりの消耗度を求め、求めた消耗度と上記温度検出手段の検出タイミング間隔との乗算値を予め設定された基準温度での予測寿命期間から逐次に減算していくことにより、蓄電池の寿命の残存期間を求める算出手段と、を備えている。 In the storage battery monitoring device of the invention according to claim 1, the internal resistance measurement means for measuring the internal resistance of the storage battery, the temperature detection means for detecting the temperature of the storage battery, and the measurement results of the internal resistance measurement means are predetermined. Per unit period of the storage battery life at the detected temperature of the temperature detection means based on the determination means for determining that the storage battery has expired when out of range, and a predetermined storage battery life-temperature characteristic The remaining life of the storage battery is obtained by sequentially subtracting the product of the calculated wear level and the detection timing interval of the temperature detection means from the predicted life time at a preset reference temperature. Calculating means for obtaining a period.

請求項2に係る発明の蓄電池監視装置は、蓄電池の電圧を測定する電圧測定手段と、上記蓄電池の内部抵抗を測定する内部抵抗測定手段と、上記蓄電池の温度を検出する温度検出手段と、上記電圧測定手段の測定結果が予め定められた範囲から外れているとき、前記蓄電池が異常であると判定する第1判定手段と、前記内部抵抗測定手段の測定結果が予め定められた範囲から外れているとき、前記蓄電池が寿命切れであると判定する第2判定手段と、予め定められている蓄電池の寿命−温度特性に基づいて、上記温度検出手段の検出温度における蓄電池寿命の単位期間当たりの消耗度を求め、求めた消耗度と上記温度検出手段の検出タイミング間隔との乗算値を予め設定された基準温度での予測寿命期間から逐次に減算していくことにより、蓄電池の寿命の残存期間を求める算出手段と、を備えている。 The storage battery monitoring device of the invention according to claim 2 is a voltage measuring means for measuring the voltage of the storage battery, an internal resistance measuring means for measuring the internal resistance of the storage battery, a temperature detecting means for detecting the temperature of the storage battery, and the above When the measurement result of the voltage measurement means is out of the predetermined range, the first determination means for determining that the storage battery is abnormal and the measurement result of the internal resistance measurement means are out of the predetermined range. A second determination means for determining that the storage battery is out of life, and a consumption per unit period of the storage battery life at the temperature detected by the temperature detection means based on a predetermined life-temperature characteristic of the storage battery. By successively subtracting the product of the calculated wear level and the detection timing interval of the temperature detection means from the predicted lifetime at a preset reference temperature, It comprises a calculating means for determining the remaining life of the battery life, the.

請求項3に係る発明の蓄電池監視装置は、蓄電池の電圧を測定する電圧測定手段と、上記蓄電池の内部抵抗を測定する内部抵抗測定手段と、上記蓄電池の温度を検出する温度検出手段と、上記電圧測定手段の測定結果が予め定められた範囲から外れているとき、上記蓄電池が異常であると判定する第1判定手段と、上記内部抵抗測定手段の測定結果が予め定められた範囲から外れているとき、上記蓄電池が寿命切れであると判定する第2判定手段と、上記第1判定手段の判定結果が異常なしで、かつ上記第2判定手段の判定結果が寿命切れでないとき、予め定められている蓄電池の寿命−温度特性に基づいて、上記温度検出手段の検出温度における蓄電池寿命の単位期間当たりの消耗度を求め、求めた消耗度と上記温度検出手段の検出タイミング間隔との乗算値を予め設定された基準温度での予測寿命期間から逐次に減算していくことにより、蓄電池の寿命の残存期間を求める算出手段と、を備えている。 The storage battery monitoring device of the invention according to claim 3 is a voltage measuring means for measuring the voltage of the storage battery, an internal resistance measuring means for measuring the internal resistance of the storage battery, a temperature detecting means for detecting the temperature of the storage battery, and the above When the measurement result of the voltage measurement means is out of the predetermined range, the first determination means for determining that the storage battery is abnormal and the measurement result of the internal resistance measurement means are out of the predetermined range. when in the second judging means judges that the battery is life out, the determination result of the first determining means without abnormal, and when the determination result of the second judging means is not life out, predetermined On the basis of the life-temperature characteristics of the storage battery, the degree of consumption per unit period of the storage battery life at the temperature detected by the temperature detecting means is obtained, and the obtained degree of consumption and the detection timing of the temperature detecting means are determined. By going sequentially subtracted from the prediction lifetime of a preset reference temperature multiplication value with the grayed interval comprises a calculating means for calculating a remaining period of the life of the storage battery, the.

請求項4に係る発明の蓄電池監視装置は、複数の蓄電池を直列接続して構成された組電池を備えたものにおいて、上記各蓄電池の両端につながる通電路を順次に切替選定する切替手段と、上記切替手段で選定される通電路を通して、上記各蓄電池の電圧を順次に測定する電圧測定手段と、上記切替手段で選定される通電路を通して、上記各蓄電池の内部抵抗を順次に測定する内部抵抗測定手段と、上記各蓄電池の温度を検出する温度検出手段と、上記電圧測定手段の測定結果が予め定められた範囲から外れているとき、測定対象の蓄電池が異常であると判定する第1判定手段と、上記内部抵抗測定手段の測定結果が予め定められた範囲から外れているとき、測定対象の蓄電池が寿命切れであると判定する第2判定手段と、上記第1判定手段の判定結果が異常なしで、かつ上記第2判定手段の判定結果が寿命切れでないとき、予め定められている蓄電池の寿命−温度特性に基づいて、上記温度検出手段の検出温度における蓄電池寿命の単位期間当たりの消耗度を求め、求めた消耗度と上記温度検出手段の検出タイミング間隔との乗算値を予め設定された基準温度での予測寿命期間から逐次に減算していくことにより、蓄電池の寿命の残存期間を求める算出手段と、を備えている。 The storage battery monitoring device of the invention according to claim 4 is provided with an assembled battery configured by connecting a plurality of storage batteries in series, and a switching means for sequentially switching and selecting energization paths connected to both ends of each of the storage batteries, Voltage measuring means for sequentially measuring the voltage of each storage battery through the energization path selected by the switching means, and internal resistance for sequentially measuring the internal resistance of each storage battery through the energization path selected by the switching means A first determination for determining that the storage battery to be measured is abnormal when the measurement results of the measurement means, the temperature detection means for detecting the temperature of each storage battery, and the measurement result of the voltage measurement means are out of a predetermined range. means and, when the measurement result of the internal resistance measuring means is out of a predetermined range, battery to be measured and the second determination means determines that the life out of the first determination means Constant result is no abnormality, and when the determination result of the second judging means is not life out, the life of the storage battery is determined in advance - based on the temperature characteristics, the unit period of the storage battery lifetime in the detection temperature of the temperature detecting means The life of the storage battery is calculated by sequentially subtracting the product of the calculated wear and the detection timing interval of the temperature detection means from the expected life of the reference temperature set in advance. Calculating means for obtaining a remaining period .

請求項5に係る発明の蓄電池監視装置は、請求項1ないし請求項4に係る発明の内部抵抗測定手段について限定している。内部抵抗測定手段は、蓄電池を一定電流Isで一定時間Tsだけ放電させ、その放電時の蓄電池の電圧降下分を検出し、その電圧降下分を上記一定電流Isで除算することにより、蓄電池の内部抵抗を測定する。   The storage battery monitoring device of the invention according to claim 5 limits the internal resistance measuring means of the invention according to claims 1 to 4. The internal resistance measuring means discharges the storage battery at a constant current Is for a fixed time Ts, detects the voltage drop of the storage battery at the time of discharge, and divides the voltage drop by the constant current Is, thereby Measure resistance.

請求項6に係る発明の蓄電池監視装置は、請求項5に係る発明の一定電流Isおよび言って時間Tsについて限定している。一定電流Isは、蓄電池の定格容量Cに基づく0.01CA以上である。一定時間Tsは、msec以上である。 The storage battery monitoring device of the invention according to claim 6 limits the constant current Is of the invention of claim 5 and the time Ts. The constant current Is is 0.01 CA or more based on the rated capacity C of the storage battery. The fixed time Ts is 1 msec or more.

この発明の蓄電池監視装置によれば、蓄電池の寿命切れおよび寿命の残存期間を適切かつ自動的に判定することができる。   According to the storage battery monitoring device of the present invention, it is possible to appropriately and automatically determine the end of life and remaining life of the storage battery.

以下、この発明の一実施形態について図面を参照して説明する。
図1に示すように、電源1と負荷2との間の通電ラインに、組電池3が接続されている。組電池3は、複数の鉛蓄電池いわゆる単電池4a,4b,…4nの直列接続により構成されている。電源1が正常な場合は、電源1の出力(直流電力)により、負荷2が運転されるとともに、組電池3の単電池4a,4b,…4nがフロート充電される。停電や機器の異常などによって電源1の出力が低下した場合は、組電池3が瞬時に放電し、その放電電力によって負荷2の運転が継続される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, an assembled battery 3 is connected to an energization line between a power source 1 and a load 2. The assembled battery 3 is constituted by a series connection of a plurality of lead storage batteries, so-called single cells 4a, 4b,. When the power source 1 is normal, the load 2 is operated by the output (DC power) of the power source 1, and the cells 4a, 4b,. When the output of the power source 1 is reduced due to a power failure or an abnormality of equipment, the assembled battery 3 is instantaneously discharged, and the operation of the load 2 is continued by the discharged power.

このようなバックアップ電源システムにおいて、組電池3に、蓄電池監視装置10が接続されている。蓄電池監視装置10は、制御の中枢として制御部20を備え、電源1の出力を手動式の運転スイッチ11を介してDC−DCコンバータ12に取込み、そのDC−DCコンバータ12の出力電圧Vdによって動作する。制御部20には、切替部21、電圧測定部(電圧測定手段)22、内部抵抗測定部(内部抵抗測定手段)23、温度検出部(温度検出手段)24が接続されている。   In such a backup power supply system, a storage battery monitoring device 10 is connected to the assembled battery 3. The storage battery monitoring device 10 includes a control unit 20 as a control center, takes the output of the power supply 1 into the DC-DC converter 12 via the manual operation switch 11, and operates according to the output voltage Vd of the DC-DC converter 12. To do. A switching unit 21, a voltage measurement unit (voltage measurement unit) 22, an internal resistance measurement unit (internal resistance measurement unit) 23, and a temperature detection unit (temperature detection unit) 24 are connected to the control unit 20.

切替部21は、単電池4a,4b,…4nのそれぞれ両端に電気ケーブルを介して接続され、単電池4a,4b,…4nのそれぞれ両端につながる通電路を順次に切替選定する。切替のタイミングは、制御部20から指示される。電圧測定部22は、切替部21で選定される通電路を通して、単電池4a,4b,…4nの電圧Eをそれぞれ測定する。この測定結果が制御部20に供給される。   The switching unit 21 is connected to both ends of each of the cells 4a, 4b,. The switching timing is instructed from the control unit 20. The voltage measurement unit 22 measures the voltage E of each of the cells 4a, 4b,. The measurement result is supplied to the control unit 20.

内部抵抗測定部23は、切替部21で選定される通電路を通して、単電池4a,4b,…4nをそれぞれ一定電流Isで一定時間Tsだけ放電させ、その放電時の蓄電池の電圧降下分を検出し、その電圧降下分を上記一定電流Isで除算することにより、単電池4a,4b,…4nの内部抵抗Rをそれぞれ測定する。これら測定結果が制御部20に供給される。温度検出部24は、組電池3に設けられた温度センサ25を備え、その温度センサ25の出力により単電池4a,4b,…4nの温度tを所定時間Txごとに検出する。この検出温度tが制御部20に供給される。   The internal resistance measuring unit 23 discharges the single cells 4a, 4b,... 4n through the electrification path selected by the switching unit 21 at a constant current Is for a predetermined time Ts, and detects the voltage drop of the storage battery at the time of the discharge. Then, the internal resistance R of each of the cells 4a, 4b,... 4n is measured by dividing the voltage drop by the constant current Is. These measurement results are supplied to the control unit 20. The temperature detector 24 includes a temperature sensor 25 provided in the assembled battery 3, and detects the temperature t of the single cells 4a, 4b,..., 4n at predetermined times Tx based on the output of the temperature sensor 25. This detected temperature t is supplied to the control unit 20.

一方、保守員が待機する管理センタやユーザの建物などに遠隔監視装置30が設置され、これら遠隔監視装置30が通信線あるいは通信ネットワークを介して蓄電池監視装置10の制御部20に接続されている。また、蓄電池監視装置10の制御部20に対して、保守員等が携帯するパーソナルコンピュータ40の接続が可能となっている。   On the other hand, a remote monitoring device 30 is installed in a management center or a user's building where maintenance personnel stand by, and these remote monitoring devices 30 are connected to the control unit 20 of the storage battery monitoring device 10 via a communication line or a communication network. . Further, a personal computer 40 carried by a maintenance worker or the like can be connected to the control unit 20 of the storage battery monitoring device 10.

蓄電池監視装置10の制御部20は、主要な機能として次の(1)〜(4)の手段を備えている。
(1)電圧測定部22の測定結果に応じて、単電池4a,4b,…4nの異常を個々に判定する第1判定手段。
The control unit 20 of the storage battery monitoring device 10 includes the following means (1) to (4) as main functions.
(1) First determination means for individually determining abnormality of the cells 4a, 4b,..., 4n according to the measurement result of the voltage measurement unit 22.

(2)内部抵抗測定部23の測定結果に応じて、単電池4a,4b,…4nの寿命切れを個々に判定する第2判定手段。   (2) Second determination means for individually determining whether the cells 4a, 4b,..., 4n have expired, according to the measurement result of the internal resistance measurement unit 23.

(3)上記第1判定手段の判定結果が異常なしで、かつ上記第2判定手段の判定結果が寿命切れでないとき、温度検出部24の検出温度に基づいて、単電池4a,4b,…4nの寿命の残存期間を算出する算出手段。   (3) When the determination result of the first determination means is normal and the determination result of the second determination means is not out of service life, the cells 4a, 4b,. A calculating means for calculating the remaining period of the lifetime of the.

(4)上記各判定手段の判定結果および上記算出手段の算出結果を遠隔監視装置30およびパーソナルコンピュータ40を通じて報知する報知手段。   (4) Notification means for notifying the determination result of each determination means and the calculation result of the calculation means through the remote monitoring device 30 and the personal computer 40.

つぎに、蓄電池監視装置10の作用を図2のフローチャートを参照しながら説明する。定期的な監視タイミングにおいて(ステップ101のYES)、あるいは遠隔監視装置30やパーソナルコンピュータ40から監視指示を受けたとき(ステップ102のYES)、単電池4a,4b,…4nが順次に切替選定される(ステップ103)。この切替選定に伴い、単電池4a,4b,…4nの電圧Eがそれぞれ測定されるとともに(ステップ104)、単電池4a,4b,…4nの内部抵抗Rが短時間放電法によりそれぞれ測定される(ステップ105)。   Next, the operation of the storage battery monitoring device 10 will be described with reference to the flowchart of FIG. At regular monitoring timing (YES in step 101) or when a monitoring instruction is received from the remote monitoring device 30 or the personal computer 40 (YES in step 102), the cells 4a, 4b,. (Step 103). In accordance with this switching selection, the voltage E of each of the cells 4a, 4b,... 4n is measured (step 104), and the internal resistance R of each of the cells 4a, 4b,. (Step 105).

短時間放電法による内部抵抗Rの測定は、次のように行われる。すなわち、単電池が一定電流Isで一定時間Tsだけ放電され、その放電時の単電池の電圧降下分が検出され、その電圧降下分が上記一定電流Isで除算されることにより、単電池の内部抵抗Rが測定される。   The measurement of the internal resistance R by the short-time discharge method is performed as follows. That is, the cell is discharged at a constant current Is for a certain time Ts, and the voltage drop of the cell at the time of discharge is detected, and the voltage drop is divided by the constant current Is, so that the inside of the cell is Resistance R is measured.

図3に示すように、定格容量が150Ahの蓄電池の内部抵抗Rを“1”とした場合、定格容量が300Ahの蓄電池の内部抵抗Rは“0.7”である。つまり、蓄電池の定格容量が大きくなるほど、蓄電池の内部抵抗Rが小さくなる傾向がある。定格容量が大きくて内部抵抗Rが小さい蓄電池に対しては、放電電流である一定電流Isをある程度大きく設定しなければ、正確な測定ができない。また、放電初期は過渡現象のために蓄電池の電圧が安定しないため、放電時間である一定時間Tsをある程度大きく設定しなければ正確な測定ができないことが実験により確かめられている。この実験結果を示したのが図4である。   As shown in FIG. 3, when the internal resistance R of the storage battery having a rated capacity of 150 Ah is “1”, the internal resistance R of the storage battery having a rated capacity of 300 Ah is “0.7”. That is, as the rated capacity of the storage battery increases, the internal resistance R of the storage battery tends to decrease. For a storage battery having a large rated capacity and a small internal resistance R, accurate measurement cannot be performed unless the constant current Is, which is a discharge current, is set to be large to some extent. Further, since the voltage of the storage battery is not stable due to a transient phenomenon at the initial stage of discharge, it has been confirmed by experiments that accurate measurement cannot be performed unless a certain time Ts, which is a discharge time, is set to a certain extent. This experimental result is shown in FIG.

図4は、放電時間を0.2msecから1.0msecまで変えた場合に測定される内部抵抗Rを、複数の放電電流をパラメータとして、対比して示している。放電電流が0.01CA(Cは蓄電池の定格容量)、放電時間が0.2msecの場合に測定される内部抵抗Rを“1”で表わすと、放電電流が0.06CAで、放電時間が0.2msecの場合に測定される内部抵抗Rは、“0.6”付近となる。放電電流が0.1CAで、放電時間が0.2msecの場合に測定される内部抵抗Rは、約“0.5”付近となる。放電電流が0.15CAで、放電時間が0.2msecの場合に測定される内部抵抗Rは、約“0.4”付近となる。つまり、放電時間が0.2msecでは、放電電流の違いによって、測定値に差異が生じてしまう。これに対し、放電時間が0.9msec〜1.0msecにおいて測定される内部抵抗Rは、放電電流の違いにかかわらず、ほぼ一律に“0.4”付近となる。   FIG. 4 shows the internal resistance R measured when the discharge time is changed from 0.2 msec to 1.0 msec in comparison with a plurality of discharge currents as parameters. If the internal resistance R measured when the discharge current is 0.01 CA (C is the rated capacity of the storage battery) and the discharge time is 0.2 msec, the discharge current is 0.06 CA and the discharge time is 0. The internal resistance R measured in the case of 2 msec is around “0.6”. The internal resistance R measured when the discharge current is 0.1 CA and the discharge time is 0.2 msec is about “0.5”. The internal resistance R measured when the discharge current is 0.15 CA and the discharge time is 0.2 msec is about “0.4”. That is, when the discharge time is 0.2 msec, the measured value varies due to the difference in discharge current. On the other hand, the internal resistance R measured at a discharge time of 0.9 msec to 1.0 msec is almost uniformly “0.4” regardless of the difference in discharge current.

なお、放電電流が0.01CA未満では、測定そのものが不可能になるという実験結果が得られている。また、放電時間が1.0msecより長い場合は、放電時間が1.0msecの場合と同じ測定値が得られることが実験により確かめられている。   An experimental result has been obtained that the measurement itself is impossible when the discharge current is less than 0.01 CA. Further, it has been confirmed by experiments that when the discharge time is longer than 1.0 msec, the same measured value as that obtained when the discharge time is 1.0 msec can be obtained.

このような実験結果から、内部抵抗Rの測定に際しては、放電電流である一定電流Isとして、蓄電池の定格容量Cに基づく0.01CA以上の値が選定されるとともに、放電時間である一定時間Tsとして、0.9msec付近を含むほぼ1msec以上の値が選定される。ただ、放電時間があまり長くなると測定遅れにつながるので、一定時間Tsとしての現実的な値はほぼ1msecが望ましい。   From these experimental results, when measuring the internal resistance R, a value of 0.01 CA or more based on the rated capacity C of the storage battery is selected as the constant current Is that is the discharge current, and the constant time Ts that is the discharge time. As above, a value of approximately 1 msec or more including around 0.9 msec is selected. However, if the discharge time becomes too long, it will lead to measurement delay, so the realistic value as the fixed time Ts is preferably about 1 msec.

上記測定された電圧Eが、予め定められた設定値E1以上、設定値E2未満の範囲に入っていれば(ステップ106のYES)、そのときの測定対象である単電池が異常なしと判定される(ステップ107)。測定された電圧Eが、設定値E1以上、設定値E2未満の範囲から外れていれば(ステップ106のNO)、そのときの測定対象である単電池が異常であると判定される(ステップ108)。   If the measured voltage E is in a range not less than the preset value E1 and less than the preset value E2 (YES in step 106), it is determined that there is no abnormality in the unit cell to be measured at that time. (Step 107). If the measured voltage E is outside the range of the set value E1 or more and less than the set value E2 (NO in step 106), it is determined that the unit cell to be measured at that time is abnormal (step 108). ).

上記測定された内部抵抗Rが、予め定められた設定値R1以上、設定値R2未満の範囲に入っていれば(ステップ109のYES)、そのときの測定対象である単電池が寿命切れでないと判定される(ステップ110)。測定された内部抵抗Rが、設定値R1以上、設定値R2未満の範囲から外れていれば(ステップ109のNO)、そのときの測定対象である単電池が寿命切れであると判定される(ステップ111)。   If the measured internal resistance R is within the range of the preset value R1 or more and less than the preset value R2 (YES in step 109), the unit cell that is the measurement target at that time has not expired. A determination is made (step 110). If the measured internal resistance R is out of the range of the set value R1 or more and less than the set value R2 (NO in Step 109), it is determined that the unit cell as the measurement target at that time has expired ( Step 111).

設定値E1,E2および設定値R1,R2は、制御部20の内部メモリに記憶されており、単電池4a,4b,…4nの定格や種類などに応じて、かつ遠隔監視部30あるいはパーソナルコンピュータ40からの入力により、適宜に変更することができる。   The set values E1, E2 and the set values R1, R2 are stored in the internal memory of the control unit 20, and according to the rating and type of the single cells 4a, 4b,... 4n, and the remote monitoring unit 30 or personal computer According to the input from 40, it can be changed appropriately.

全ての単電池4a,4b,…4nに対する切替選定が終了したとき(ステップ112のYES)、いずれの単電池について異常ありという判定結果が得られ(ステップ113のYES)、あるいはいずれの単電池について寿命切れという判定結果が得られていれば(ステップ114のYES)、その判定結果が遠隔監視装置30およびパーソナルコンピュータ40の表示によって報知される(ステップ115)。保守員やユーザは、異常の発生あるいは寿命切れを察知し、対象の単電池を新品と交換することができる。   When the switching selection for all the unit cells 4a, 4b,..., 4n is completed (YES in step 112), a determination result is obtained that any unit cell is abnormal (YES in step 113), or for any unit cell If the determination result that the lifetime has expired is obtained (YES in step 114), the determination result is notified by the display of the remote monitoring device 30 and the personal computer 40 (step 115). Maintenance personnel and users can detect the occurrence of an abnormality or the end of the service life, and replace the target cell with a new one.

全ての単電池4a,4b,…4nに対する切替選定が終了したとき(ステップ112のYES)、いずれかの単電池についても異常なしの判定結果が得られていれば(ステップ113のNO)、かついずれかの単電池についても寿命切れでないという判定結果が得られていれば(ステップ114のNO)、単電池4a,4b,…4nの温度tが温度検出部24で検出される(ステップ116)。そして、検出された温度tに基づいて、単電池4a,4b,…4nの寿命の残存期間が算出される(ステップ117)。   When switching selection for all the unit cells 4a, 4b,..., 4n is completed (YES in step 112), if a determination result indicating no abnormality is obtained for any unit cell (NO in step 113), and If the determination result that any one of the single cells has not expired is obtained (NO in step 114), the temperature t of the single cells 4a, 4b,..., 4n is detected by the temperature detection unit 24 (step 116). . Based on the detected temperature t, the remaining lifetime of the unit cells 4a, 4b,..., 4n is calculated (step 117).

蓄電池には、図5に示すように、温度が10℃高くなるごとに寿命が半減するという寿命−温度特性いわゆる10℃半原則(アレニウス則ともいう)がある。この寿命−温度特性に基づいて、下式のように、温度検出部24の検出温度tにおける蓄電池寿命の単位期間当たりの消耗度(加速係数ともいう)が求められ、求められた消耗度と温度検出部24の検出タイミング間隔との乗算値が、予め設定された基準温度(例えば25℃)での予測寿命期間から逐次に減算されていくことにより、蓄電池の寿命の残存期間が求められる(ステップ117)。
消耗度=2(t−25℃)・/10℃
この数式において、“2”は、10℃半原則の“半減”に相当する値。25℃は、基準温度。10℃は、10℃半原則の“10℃”である。
As shown in FIG. 5, the storage battery has a so-called 10 ° C. semi-principle (also referred to as Arrhenius law) that the lifetime is halved every time the temperature increases by 10 ° C. Based on this life-temperature characteristic, the degree of consumption per unit period (also referred to as an acceleration factor) of the battery life at the detection temperature t detected by the temperature detector 24 is obtained as shown in the following equation. The remaining value of the remaining life of the storage battery is obtained by sequentially subtracting the multiplication value of the detection timing interval of the detection unit 24 from the predicted life period at a preset reference temperature (for example, 25 ° C.) (step S40). 117).
Degree of wear = 2 (t-25 ° C) / 10 ° C
In this formula, “2” is a value corresponding to “half” of the 10 ° C. half principle. 25 ° C is the reference temperature. 10 ° C. is the “10 ° C.” of the 10 ° C. semi-principle.

最初に求める残存期間=予測寿命期間−(消耗度×検出タイミング期間)
その後に求める残存期間=前回求めた残存期間−(消耗度×検出タイミング期間)
予測寿命期間は、遠隔監視部30あるいはパーソナルコンピュータ40から入力される。たとえば、入力された予測寿命期間が10年で、単電池4a,4b,…4nの温度tの検出タイミング間隔が1時間の場合、単電池4a,4b,…4nが設置された直後に求められる残存期間は、年単位で求めると、次のようになる。
残存期間=10年−{消耗度×1時間/(24時間×365日)}
その後に求められる残存期間は、次のようになる。
残存期間=前回求めた残存期間−{消耗度×1時間/(24時間×365日)}
求められた残存期間は、遠隔監視装置30およびパーソナルコンピュータ40の表示によって報知される(ステップ115)。これにより、保守員やユーザは、単電池4a,4b,…4nの交換時期を、離れた場所に居ながらにして、適切かつ容易に把握することができる。
First remaining period = predicted life period− (degree of wear × detection timing period)
Remaining period to be obtained after that = Remaining period to be obtained last time− (Degree of consumption × detection timing period)
The predicted lifetime is input from the remote monitoring unit 30 or the personal computer 40. For example, if the input predicted lifetime is 10 years and the detection timing interval of the temperature t of the single cells 4a, 4b,... 4n is 1 hour, it is obtained immediately after the single cells 4a, 4b,. The remaining period is as follows when calculated in units of years.
Remaining period = 10 years— {Depletion level × 1 hour / (24 hours × 365 days)}
The remaining period required thereafter is as follows.
Remaining period = remaining period obtained last time− {depletion level × 1 hour / (24 hours × 365 days)}
The obtained remaining period is notified by display of the remote monitoring device 30 and the personal computer 40 (step 115). Accordingly, the maintenance staff and the user can grasp the replacement time of the cells 4a, 4b,... 4n appropriately and easily while staying at a remote place.

以上のように、単電池4a,4b,…4nの寿命切れおよび寿命の残存期間を自動的に判定することができる。これにより、単電池4a,4b,…4nの寿命および取替時期を適切かつ自動的に知ることが可能となる。   As described above, it is possible to automatically determine the end of life and the remaining life of the cells 4a, 4b,. Thereby, it becomes possible to know appropriately and automatically the lifetime and replacement time of the cells 4a, 4b,.

なお、上記実施形態では、報知手段として外部の遠隔監視装置30およびパーソナルコンピュータ40を利用したが、装置本体に表示器を設け、その表示器を報知手段として使用してもよい。   In the above embodiment, the external remote monitoring device 30 and the personal computer 40 are used as the notification means. However, a display device may be provided in the apparatus main body, and the display device may be used as the notification device.

その他、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。   In addition, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment. 同実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of the embodiment. 同実施形態に関わる蓄電池の定格容量と内部抵抗の関係を示す図。The figure which shows the relationship between the rated capacity and internal resistance of the storage battery in connection with the embodiment. 同実施形態に関わる蓄電池の放電時間と測定内部抵抗との関係を放電電流をパラメータとして示す図。The figure which shows the relationship between the discharge time of the storage battery in connection with the embodiment, and measurement internal resistance as a parameter for discharge current. 同実施形態に関わる蓄電池の寿命−温度特性を示す図。The figure which shows the lifetime-temperature characteristic of the storage battery in connection with the embodiment.

符号の説明Explanation of symbols

1…電源、2…負荷、3…組電池、4a,4b,…4n……単電池、10…蓄電池監視装置、20…制御部、21…切替部、22…電圧測定部、23…内部抵抗測定部、24…温度検出部、30…遠隔監視装置、40…パーソナルコンピュータ   DESCRIPTION OF SYMBOLS 1 ... Power supply, 2 ... Load, 3 ... Assembly battery, 4a, 4b, ... 4n ... Single cell, 10 ... Storage battery monitoring device, 20 ... Control part, 21 ... Switching part, 22 ... Voltage measurement part, 23 ... Internal resistance Measurement unit, 24 ... temperature detection unit, 30 ... remote monitoring device, 40 ... personal computer

Claims (6)

蓄電池の内部抵抗を測定する内部抵抗測定手段と、
前記蓄電池の温度を検出する温度検出手段と、
前記内部抵抗測定手段の測定結果が予め定められた範囲から外れているとき、前記蓄電池が寿命切れであると判定する判定手段と、
予め定められている蓄電池の寿命−温度特性に基づいて、前記温度検出手段の検出温度における蓄電池寿命の単位期間当たりの消耗度を求め、求めた消耗度と前記温度検出手段の検出タイミング間隔との乗算値を予め設定された基準温度での予測寿命期間から逐次に減算していくことにより、蓄電池の寿命の残存期間を求める算出手段と、
を備えたことを特徴とする蓄電池監視装置。
An internal resistance measuring means for measuring the internal resistance of the storage battery;
Temperature detecting means for detecting the temperature of the storage battery;
When the measurement result of the internal resistance measurement unit is out of a predetermined range, a determination unit that determines that the storage battery has expired ,
Based on a predetermined life-temperature characteristic of the storage battery, the degree of consumption per unit period of the storage battery life at the temperature detected by the temperature detection means is obtained, and the calculated degree of consumption and the detection timing interval of the temperature detection means Calculating means for obtaining the remaining life of the storage battery by sequentially subtracting the multiplication value from the predicted life time at a preset reference temperature;
A storage battery monitoring device comprising:
蓄電池の電圧を測定する電圧測定手段と、
前記蓄電池の内部抵抗を測定する内部抵抗測定手段と、
前記蓄電池の温度を検出する温度検出手段と、
前記電圧測定手段の測定結果が予め定められた範囲から外れているとき、前記蓄電池が異常であると判定する第1判定手段と、
前記内部抵抗測定手段の測定結果が予め定められた範囲から外れているとき、前記蓄電池が寿命切れであると判定する第2判定手段と、
予め定められている蓄電池の寿命−温度特性に基づいて、前記温度検出手段の検出温度における蓄電池寿命の単位期間当たりの消耗度を求め、求めた消耗度と前記温度検出手段の検出タイミング間隔との乗算値を予め設定された基準温度での予測寿命期間から逐次に減算していくことにより、蓄電池の寿命の残存期間を求める算出手段と、
を備えたことを特徴とする蓄電池監視装置。
Voltage measuring means for measuring the voltage of the storage battery;
Internal resistance measuring means for measuring the internal resistance of the storage battery;
Temperature detecting means for detecting the temperature of the storage battery;
First determination means for determining that the storage battery is abnormal when a measurement result of the voltage measurement means is out of a predetermined range ;
Second determination means for determining that the storage battery has expired when the measurement result of the internal resistance measurement means is out of a predetermined range ;
Based on a predetermined life-temperature characteristic of the storage battery, the degree of consumption per unit period of the storage battery life at the temperature detected by the temperature detection means is obtained, and the calculated degree of consumption and the detection timing interval of the temperature detection means Calculating means for obtaining the remaining life of the storage battery by sequentially subtracting the multiplication value from the predicted life time at a preset reference temperature;
A storage battery monitoring device comprising:
蓄電池の電圧を測定する電圧測定手段と、
前記蓄電池の内部抵抗を測定する内部抵抗測定手段と、
前記蓄電池の温度を検出する温度検出手段と、
前記電圧測定手段の測定結果が予め定められた範囲から外れているとき、前記蓄電池が異常であると判定する第1判定手段と、
前記内部抵抗測定手段の測定結果が予め定められた範囲から外れているとき、前記蓄電池が寿命切れであると判定する第2判定手段と、
前記第1判定手段の判定結果が異常なしで、かつ前記第2判定手段の判定結果が寿命切れでないとき、予め定められている蓄電池の寿命−温度特性に基づいて、前記温度検出手段の検出温度における蓄電池寿命の単位期間当たりの消耗度を求め、求めた消耗度と前記温度検出手段の検出タイミング間隔との乗算値を予め設定された基準温度での予測寿命期間から逐次に減算していくことにより、蓄電池の寿命の残存期間を求める算出手段と、
を備えたことを特徴とする蓄電池監視装置。
Voltage measuring means for measuring the voltage of the storage battery;
Internal resistance measuring means for measuring the internal resistance of the storage battery;
Temperature detecting means for detecting the temperature of the storage battery;
First determination means for determining that the storage battery is abnormal when a measurement result of the voltage measurement means is out of a predetermined range ;
Second determination means for determining that the storage battery has expired when the measurement result of the internal resistance measurement means is out of a predetermined range ;
When the determination result of the first determination unit is normal and the determination result of the second determination unit is not out of service life, the temperature detected by the temperature detection unit is determined based on a predetermined life-temperature characteristic of the storage battery. The degree of wear per unit period of the battery life in the battery is obtained, and the product of the obtained degree of wear and the detection timing interval of the temperature detection means is successively subtracted from the expected life period at a preset reference temperature. By means of calculating the remaining life of the storage battery ,
A storage battery monitoring device comprising:
複数の蓄電池を直列接続して構成された組電池を備えたものにおいて、
前記各蓄電池の両端につながる通電路を順次に切替選定する切替手段と、
前記切替手段で選定される通電路を通して、前記各蓄電池の電圧を順次に測定する電圧測定手段と、
前記切替手段で選定される通電路を通して、前記各蓄電池の内部抵抗を順次に測定する内部抵抗測定手段と、
前記各蓄電池の温度を検出する温度検出手段と、
前記電圧測定手段の測定結果が予め定められた範囲から外れているとき、測定対象の蓄電池が異常であると判定する第1判定手段と、
前記内部抵抗測定手段の測定結果が予め定められた範囲から外れているとき、測定対象の蓄電池が寿命切れであると判定する第2判定手段と、
前記第1判定手段の判定結果が異常なしで、かつ前記第2判定手段の判定結果が寿命切れでないとき、予め定められている蓄電池の寿命−温度特性に基づいて、前記温度検出手段の検出温度における蓄電池寿命の単位期間当たりの消耗度を求め、求めた消耗度と前記温度検出手段の検出タイミング間隔との乗算値を予め設定された基準温度での予測寿命期間から逐次に減算していくことにより、蓄電池の寿命の残存期間を求める算出手段と、
を備えたことを特徴とする蓄電池監視装置。
In what has an assembled battery configured by connecting a plurality of storage batteries in series,
Switching means for sequentially switching and selecting energization paths connected to both ends of each storage battery;
Voltage measuring means for sequentially measuring the voltage of each storage battery through the energization path selected by the switching means;
An internal resistance measuring means for sequentially measuring the internal resistance of each of the storage batteries through the energization path selected by the switching means;
Temperature detecting means for detecting the temperature of each of the storage batteries;
First determination means for determining that the storage battery to be measured is abnormal when the measurement result of the voltage measurement means is out of a predetermined range ;
When the measurement result of the internal resistance measurement means is out of a predetermined range, a second determination means for determining that the storage battery to be measured has expired ;
When the determination result of the first determination unit is normal and the determination result of the second determination unit is not out of service life, the temperature detected by the temperature detection unit is determined based on a predetermined life-temperature characteristic of the storage battery. The degree of wear per unit period of the battery life in the battery is obtained, and the product of the obtained degree of wear and the detection timing interval of the temperature detection means is successively subtracted from the expected life period at a preset reference temperature. By means of calculating the remaining life of the storage battery ,
A storage battery monitoring device comprising:
前記内部抵抗測定手段は、蓄電池を一定電流Isで一定時間Tsだけ放電させ、その放電時の蓄電池の電圧降下分を検出し、その電圧降下分を前記一定電流Isで除算することにより、蓄電池の内部抵抗を測定する、ことを特徴とする請求項1ないし請求項4のいずれかに記載の蓄電池監視装置。   The internal resistance measuring means discharges the storage battery at a constant current Is for a predetermined time Ts, detects the voltage drop of the storage battery at the time of discharge, and divides the voltage drop by the constant current Is, thereby 5. The storage battery monitoring device according to claim 1, wherein an internal resistance is measured. 前記一定電流Isは、蓄電池の定格容量Cに基づく0.01CA以上である、
前記一定時間Tsは、msec以上である、
ことを特徴とする請求項5に記載の蓄電池監視装置。
The constant current Is is 0.01 CA or more based on the rated capacity C of the storage battery.
The fixed time Ts is 1 msec or more,
The storage battery monitoring apparatus according to claim 5.
JP2004265587A 2004-09-13 2004-09-13 Battery monitoring device Expired - Fee Related JP4452146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265587A JP4452146B2 (en) 2004-09-13 2004-09-13 Battery monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265587A JP4452146B2 (en) 2004-09-13 2004-09-13 Battery monitoring device

Publications (2)

Publication Number Publication Date
JP2006080032A JP2006080032A (en) 2006-03-23
JP4452146B2 true JP4452146B2 (en) 2010-04-21

Family

ID=36159295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265587A Expired - Fee Related JP4452146B2 (en) 2004-09-13 2004-09-13 Battery monitoring device

Country Status (1)

Country Link
JP (1) JP4452146B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105759B2 (en) * 2006-03-31 2012-12-26 株式会社Nttファシリティーズ Battery management device
KR101529046B1 (en) * 2013-10-04 2015-06-15 주식회사 큐아이티 Method and Apparatus for on-line monitoring the life of batteries included in a battery bank
JP7404714B2 (en) * 2019-06-20 2023-12-26 株式会社Gsユアサ Judgment method, judgment device, maintenance support system and computer program
JP2024029593A (en) * 2022-08-22 2024-03-06 株式会社日立製作所 Battery management device, battery management method

Also Published As

Publication number Publication date
JP2006080032A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
CA2707552C (en) Battery system and management method
JP5816906B2 (en) Battery status monitoring system
US9007087B2 (en) System and method for automated failure detection of hold-up power storage devices
CA2634309C (en) Battery system and management method
US9774205B2 (en) System and method for monitoring a battery in an uninterruptible power supply
US7567060B1 (en) System and method for advanced power management
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
JP5089619B2 (en) Secondary battery deterioration diagnosis device
JP5263819B2 (en) Battery monitoring system
WO2007016191A2 (en) Battery chargers and methods for extended battery life
JP2007311255A (en) Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program
JP2007026733A (en) Control method of battery pack
JP2009064682A (en) Battery deterioration judging device, and lithium ion battery pack equipped with the same
JP5332062B2 (en) Uninterruptible power supply system and battery charging method
WO2001094962A1 (en) Device for judging life of auxiliary battery
KR20130077181A (en) Equipped with a spare battery for the maintenance of ups systems
JP4452146B2 (en) Battery monitoring device
JP2002343444A (en) Status-monitoring system for lead-acid battery
WO2017026175A1 (en) Power storage system and method for managing same
JP4011303B2 (en) Lead storage battery condition monitoring method
JP5976597B2 (en) Control device and power demand suppression system
JP4392176B2 (en) Battery pack capacity test apparatus and battery pack capacity test method
JP5138160B2 (en) Storage battery deterioration determination device and storage battery deterioration determination system
JP2017195717A (en) Control system
JP3792874B2 (en) Lead-acid battery life determination device, life prediction device, life determination method, and life prediction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees