JP4449315B2 - Polycapramide resin composition having excellent dispersibility of titanium dioxide, fiber, and production method thereof - Google Patents

Polycapramide resin composition having excellent dispersibility of titanium dioxide, fiber, and production method thereof Download PDF

Info

Publication number
JP4449315B2
JP4449315B2 JP2003073354A JP2003073354A JP4449315B2 JP 4449315 B2 JP4449315 B2 JP 4449315B2 JP 2003073354 A JP2003073354 A JP 2003073354A JP 2003073354 A JP2003073354 A JP 2003073354A JP 4449315 B2 JP4449315 B2 JP 4449315B2
Authority
JP
Japan
Prior art keywords
polycapramide
resin composition
weight
parts
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003073354A
Other languages
Japanese (ja)
Other versions
JP2004277632A (en
Inventor
大介 松見
浩房 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003073354A priority Critical patent/JP4449315B2/en
Publication of JP2004277632A publication Critical patent/JP2004277632A/en
Application granted granted Critical
Publication of JP4449315B2 publication Critical patent/JP4449315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化チタンの分散が良好な高強度繊維用ポリカプラミド樹脂組成物、およびその製造方法に関する。さらには、溶融紡糸時のろ過圧力上昇や糸切れ回数等の製糸操業性を改善することが可能な、前記高強度繊維用ポリカプラミド樹脂組成物を用いてなる繊維、およびその製造方法に関する。
【0002】
【従来の技術】
ポリアミドはポリエステルとともに衣料用、産業用等の繊維用途あるいは樹脂成形用途として幅広く利用されている。ポリアミドのうち特にポリカプラミドは品質面、コスト面で有利であり汎用ポリアミドとして生産量の大きなウエイトを占めている。またポリカプラミドを衣料用繊維などとして使用する場合、艶消し剤として二酸化チタンを添加することが広く行われている。
【0003】
しかしながらポリマ中の二酸化チタンの分散性が悪いと、紡糸時等における糸切れや紡糸機内でのろ過圧力上昇などの重大なトラブルを引き起こす問題があり、これらを解決するために、例えば特許文献1に開示されたように、分級操作により二酸化チタンの粒径を限定する方法が提案されている。
【0004】
一方、ポリカプラミド繊維の強度を上げるために、特許文献2で開示されたように、ポリマ中のアミノ末端基量よりカルボキシル末端基量を過剰になるようジカルボン酸を微量共重合させる方法が提案されている。しかし衣料用途ではアミノ末端基を酸性染料の染色座として一般的に利用しており、上記方法では染色性が悪化する問題があり、これを補うために例えば特許文献3では重縮合反応に関与せず染色座として機能するアミノ基を有する特殊なジアミンを共重合させる方法が開示されている。
【0005】
この方法では染色性の改善された高強度ポリカプラミド繊維を得ることが可能であるが、つや消し剤として二酸化チタンを添加した場合に、共重合成分を使用しない場合と異なり分級操作等を行った場合でも二酸化チタンが共重合ポリカプラミド樹脂中で二次凝集を起こし、結果として紡糸時のろ過圧力上昇や糸切れが増大して操業性に悪影響を及ぼしたり、繊維強度が改善されない等の問題があった。
【0006】
【特許文献1】
特開平10−265664号公報(〔0013〕〜〔0016〕段落)
【特許文献2】
米国特許第3386967号公報(第1欄65行目〜第2欄2行目、第2欄50行目〜59行目)
【特許文献3】
特開2001−200056号公報(〔0009〕〜〔0011〕段落)
【0007】
【発明が解決しようとする課題】
そこで本発明では上記技術をさらに改良し、二酸化チタンの分散が良好な高強度繊維用ポリカプラミド樹脂組成物、およびそれを用いてなる繊維、ならびにその製造方法を得ることを課題とする。
【0008】
【課題を解決するための手段】
本発明者らは高強度繊維の原料となるジカルボン酸単位とジアミン単位をポリカプラミドと共重合させる系において二酸化チタンの分散を向上させるために鋭意検討をした結果、上記課題を解決できる方法を見いだした。
【0009】
すなわち本発明は、主としてカプラミド単位からなり、主鎖中にジアルキルテレフタル酸から得られるジカルボン酸単位と、1級アミンと3級アミンを同一分子内に有するジアミンから得られるジアミン単位とを含む共重合ポリカプラミドを含有してなるポリカプラミド樹脂組成物であって、前記共重合ポリカプラミド100重量部に対して二酸化チタンを2重量部以上5重量部以下含み、かつ5μm以上の二酸化チタン粗大粒子数がポリカプラミド樹脂組成物1gあたり400個以下であることを特徴とするポリカプラミド樹脂組成物およびそれからなる繊維である。また、主としてカプラミド単位からなり、主鎖中にジアルキルテレフタル酸から得られるジカルボン酸単位と、1級アミンと3級アミンを同一分子内に有するジアミンから得られるジアミン単位とを含む共重合ポリカプラミドを含有してなるポリカプラミド樹脂組成物であって、前記共重合ポリカプラミド100重量部に対して、二酸化チタンを0.01重量部以上2重量部未満含み、かつ5μm以上の二酸化チタン粗大粒子数がポリカプラミド樹脂組成物1gあたり200個以下であることを特徴とするポリカプラミド樹脂組成物およびそれからなる繊維である。
【0010】
さらにはそのポリカプラミド樹脂組成物およびその繊維を製造する工程において、ポリカプラミド樹脂組成物の重合前または途中のいずれかの段階で、原料あるいは反応系にジアルキルテレフタル酸を加えることを特徴とするポリカプラミド樹脂組成物あるいは繊維の製造方法である。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。本発明では主としてカプラミド単位からなり、主鎖中にジアルキルテレフタル酸から得られるジカルボン酸単位と、1級アミンと3級アミンを同一分子内に有するジアミンから得られるジアミン単位とを含む共重合ポリカプラミドであることが必須である。ここで言う主としてとは、カプラミド単位として90モル%以上であることを言い、さらに好ましくは95モル%以上であることが好ましい。本発明で規定する主鎖中に含むジアルキルテレフタル酸から得られるジカルボン酸単位とは、ポリアミド66で代表されるジアミンとジカルボン酸の重縮合により得られるポリアミド、いわゆるAB型ポリアミドを形成可能であるモノマーのうちジカルボン酸由来の構造を指し、ジアルキルテレフタル酸としては、ジメチルフタル酸、ジエチルテレフタル酸、ジプロピルテレフタル酸、ジブチルテレフタル酸、ジペンチルテレフタル酸酸、ジヘキシルテレフタル酸のようなジアルキルテレフタル酸、ジフェニルテレフタル酸のようなジアリールテレフタル酸が例示されるが、この中でも特にジメチルフタル酸、ジエチルテレフタル酸が好適に用いられる。
【0012】
本発明で規定する主鎖中に含むジアミン単位とは、前記AB型ポリアミドを形成可能であるモノマーのうちジアミン由来の構造を有するモノマー単位を指し、ジアミンとしては重合度調節と染色性を両立させる観点から1級アミンと3級アミンを同一分子内に有するジアミンを用いる。このようなジアミンとしては3−ジエチルアミノプロピルアミン、3−ジメチルアミノプロピルアミン、3−ジブチルアミノプロピルアミン、2−ジエチルアミノエチルアミン、2−ジメチルアミノエチルアミンなどのN,N’−ジアルキルアミノアルキルアミン等が挙げられる。カプロラクタム単位に対するアルキルテレフタル酸から得られるジカルボン酸単位および1級アミンと3級アミンを同一分子内に有するジアミンから得られるジアミン単位の割合は、それぞれ0.01〜1mol%であることが好ましく、0.01〜0.5mol%であることがさらに好ましい。この範囲より多い場合はポリカプラミドとしての特性が失われ、少ない場合は得られる繊維の強度が改善されない。
【0013】
本発明で用いる二酸化チタンの種類に特に制限はなく、また二酸化チタンの分級、ろ過、粉砕などの操作を行うことに何ら問題はないが、共重合ポリカプラミド100重量部に対する添加量は0.01〜5重量部とすることが必要である。この範囲より添加率が少ない場合、つや消し効果がほとんど発現されず、この範囲より添加率が多い場合、粗大粒子の抑制が困難となる。二酸化チタンは必要とされるつや消し効果により添加率を調整することが広く行われており、共重合ポリカプラミド100重量部に対する添加量が2重量部以上5重量部以下の場合は主としてマスターチップとして他品種チップに少量混合使用され、0.01重量部以上2重量部未満の場合は主としてチップブレンドなどを行わず直接紡糸に使用されるか、ベースチップとして他品種チップに大量混合使用される。本発明では前者の場合5μm以上の粗大粒子数がポリカプラミド樹脂組成物1gあたり400個以下、後者の場合200個以下であることが必須である。この範囲より粗大粒子数が多い場合、紡糸時の濾圧上昇が大きく、糸切れが起こるなど製糸操業性悪化の原因となる。粗大粒子数の測定は、ポリカプラミド樹脂組成物5mgを再溶融して厚さ10μm程度の薄片状となし、光学顕微鏡で5μm以上の大きさの二酸化チタン粒子を数える操作を10回繰り返すことにより行った。
【0014】
上記のポリカプラミド樹脂組成物を製造する方法としては、ポリカプラミド樹脂の重合前または途中の段階で原料あるいは反応系にジカルボン酸成分としてジカルボン酸エステルを加えることが挙げられる。重合プロセスに制限はなく、連続式および回分式のいずれの方法でもよい。用いるジカルボン酸エステルのエステル部位の構造に特に制限はないが、ジカルボン酸の両末端がエステル化されている必要がある。さらに、必要に応じ本発明の目的を阻害しない範囲内で、公知の分散剤、粘度安定剤、耐光剤、耐熱剤、制電剤、分散剤、重合触媒などが添加されてもよい。
【0015】
本発明のポリカプラミド樹脂組成物を用いてなる繊維に特に制限は無く、モノフィラメント、マルチフィラメントおよびステープルのいずれの形態でもかまわない。このような繊維は通常のポリカプラミド繊維の溶融紡糸方法を利用して得ることができ、本発明のポリカプラミド樹脂組成物は重合後の溶融状態で供給しても、一旦ペレタイズした状態で紡糸機のメルターに供給しても差し支えないが、重合平衡によりポリカプラミド樹脂組成物中に残存する低重合物等を除去するため、好適には後者が選択される。
【0016】
【実施例】
以下実施例により本発明をさらに詳細に説明する。なお、実施例中の物性は以下のように測定した。
【0017】
[原料調整時の二酸化チタン分散度]
重合原料をよく混合した後、100mlのメスシリンダーに50ml入れ、45℃に保ち4時間静置した。静置後、液面から20mmまでをスポイトで分取し、重量法により分取した調整液中の二酸化チタン含有率を測定し、下記計算式により分散度(%)を算出した。
分散度(%)=(静置後の二酸化チタン含有率)/(調整時の二酸化チタン含有率)×100。
【0018】
[ペレット中の凝集二酸化チタン数]
得られたペレットのサンプル5mgを再溶融して厚さ10μmの薄片状となし、光学顕微鏡(ニコン社製FX−21、倍率100倍)で5μm以上の大きさの二酸化チタン粒子を数える操作を10回繰り返した。
【0019】
[ろ過圧力上昇速度]
得られたペレットを270℃で溶融し、5μmフィルターで1.3g/cm2・minの速度で2時間ろ過した。このときの単位時間あたりのろ過圧力の上昇速度をろ過圧力上昇速度とした。
【0020】
(実施例1)
ε−カプロラクタム水溶液(15%含水)25kg、ジメチルテレフタル酸73.0g(カプロラクタム単位100molに対して0.2mol)、3−ジエチルアミノプロピルアミン24.3g(カプロラクタム単位100molに対して0.1mol)および二酸化チタン(富士チタン社製TA−500、粒径0.4μm)70g(ポリカプラミド樹脂組成物100重量部に対して0.33重量部)をステンレス製バケツで1時間攪拌した。得られた重合原料の二酸化チタン分散度を表1に示した。この重合原料を80リットルのステンレス製オートクレーブに投入し、缶内の酸素を窒素により置換後密閉し、缶内の温度が255℃になるまで内圧が1.5MPaを越えないよう保持し、攪拌しながら加熱昇温を行い重合反応を進めた。内温255℃到達後、60分間で缶内圧を徐々に大気圧まで放圧し、その後窒素を90分間流通(5リットル/分)しながら引き続き重合を完結した。重合完結後、缶内の液相重合ポリマーをストランド状に押し出し、冷却、ペレタイズ化した。得られたペレットを低分子量成分を除去するために95℃の熱水により16時間処理し、さらに120℃の減圧乾燥機を用いて14時間乾燥した。得られたポリカプラミド樹脂組成物の濾圧上昇速度およびペレット中の凝集に酸化チタン数を表1に示した。得られたポリカプラミド樹脂組成物を溶融紡糸し、44デシテックス13フィラメントの繊維を得た。得られた繊維の強度および伸度、さらに紡糸時の糸切れ回数を表1に示した。
【0021】
(比較例1)
原料としてε−カプロラクタム水溶液(15%含水)25kg、テレフタル酸62.4g(カプロラクタム単位100molに対して0.2mol)、3−ジエチルアミノプロピルアミン20g(カプロラクタム単位100molに対して0.1mol)および二酸化チタン70g(ポリカプラミド樹脂組成物100重量部に対して0.33重量部)を投入し、以下実施例1と同様の操作を行い、結果を表2に示した。
【0022】
(比較例2)
原料としてε−カプロラクタム水溶液(15%含水)25kg、二酸化チタン70g(ポリカプラミド樹脂組成物100重量部に対して0.33重量部)を投入し、以下実施例1と同様の操作を行い、結果を表2に示した。
【0023】
(実施例2)
原料としてε−カプロラクタム水溶液25kg、ジメチルテレフタル酸73.0g(カプロラクタム単位100molに対して0.2mol)、3−ジエチルアミノプロピルアミン24.3g(カプロラクタム単位100molに対して0.1mol)および二酸化チタン1kg(ポリカプラミド樹脂組成物100重量部に対して4.7重量部)を投入し、以下実施例1と同様の操作を行い、結果を表1に示した。
【0024】
(比較例3)
原料としてε−カプロラクタム水溶液25kg、テレフタル酸62.4g(カプロラクタム単位100molに対して0.2mol)、3−ジエチルアミノプロピルアミン24.3g(カプロラクタム単位100molに対して0.1mol)および二酸化チタン1kg(ポリカプラミド樹脂組成物100重量部に対して4.7重量部)を投入し、以下実施例1と同様の操作を行い、結果を表2に示した。
【0025】
(比較例4)
原料としてε−カプロラクタム水溶液(15%含水)25kg、二酸化チタン1kg(ポリアミド樹脂組成物100重量部に対して4.7重量部)を投入し、以下実施例1と同様の操作を行い、結果を表2に示した。
【0026】
(実施例3)
原料としてε−カプロラクタム水溶液25kg、ジメチルテレフタル酸73.0g(カプロラクタム単位100molに対して0.2mol)、3−ジエチルアミノプロピルアミン24.3g(カプロラクタム単位100molに対して0.1mol)および二酸化チタン4.2g(ポリカプラミド樹脂組成物100重量部に対して0.02重量部)を投入し、以下実施例1と同様の操作を行い、結果を表1に示した。
【0027】
(比較例5)
原料としてε−カプロラクタム水溶液25kg、テレフタル酸62.4g(カプロラクタム単位100molに対して0.2mol)、3−ジエチルアミノプロピルアミン24.3g(カプロラクタム単位100molに対して0.1mol)および二酸化チタン4.2g(ポリカプラミド樹脂組成物100重量部に対して0.02重量部)を投入し、以下実施例1と同様の操作を行い、結果を表2に示した。
【0028】
(比較例6)
原料としてε−カプロラクタム水溶液(15%含水)25kg、二酸化チタン4.2g(ポリアミド樹脂組成物100重量部に対して0.02重量部)を投入し、以下実施例1と同様の操作を行い、結果を表2に示した。
【0029】
【表1】

Figure 0004449315
【0030】
【表2】
Figure 0004449315
【0031】
実施例1〜3では、ジカルボン酸成分としてジメチルテレフタル酸を添加した。二酸化チタン分散性が良好なポリマと、糸切れ回数が少なく糸強度が改善された繊維が得られた。比較例1、3および5では、ジカルボン酸成分としてテレフタル酸を用いた結果、実施例に比べてポリマ中の二酸化チタン分散性が劣り、糸切れ回数が多かった。比較例2、4および6は共重合成分を添加しなかった結果、実施例に比べて糸強度が劣る結果であった。
【0032】
【発明の効果】
本発明によれば、二酸化チタン粗大粒子が少なく分散性に優れたポリカプラミド樹脂組成物を得ることができ、溶融紡糸時のろ過圧力上昇や糸切れ回数といった製糸操業性を改善し、かつ強度の高い繊維を提供することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polycapramide resin composition for high-strength fibers with good dispersion of titanium dioxide, and a method for producing the same. Furthermore, the present invention relates to a fiber using the above-mentioned polycapramide resin composition for high-strength fibers, which can improve the spinning maneuverability such as an increase in filtration pressure during melt spinning and the number of yarn breaks, and a method for producing the same.
[0002]
[Prior art]
Polyamide is widely used together with polyester for textile use such as clothing and industrial use or resin molding. Among polyamides, polycapramide is particularly advantageous in terms of quality and cost, and occupies a large weight as a general-purpose polyamide. Further, when polycapramide is used as a fiber for clothing, etc., titanium dioxide is widely added as a matting agent.
[0003]
However, when the dispersibility of titanium dioxide in the polymer is poor, there is a problem that causes serious troubles such as yarn breakage during spinning and an increase in filtration pressure in the spinning machine. As disclosed, a method for limiting the particle size of titanium dioxide by classification operation has been proposed.
[0004]
On the other hand, in order to increase the strength of the polycapramide fiber, as disclosed in Patent Document 2, there has been proposed a method in which a small amount of a dicarboxylic acid is copolymerized so that the amount of carboxyl terminal groups is larger than the amount of amino terminal groups in the polymer. Yes. However, the amino end group is generally used as a dyeing site for acid dyes in apparel applications, and the above method has a problem in that the dyeability deteriorates. To compensate for this, for example, Patent Document 3 relates to the polycondensation reaction. A method of copolymerizing a special diamine having an amino group that functions as a dyeing site is disclosed.
[0005]
In this method, it is possible to obtain a high-strength polycapramide fiber with improved dyeability, but when titanium dioxide is added as a matting agent, even when classification operation is performed unlike the case of not using a copolymer component. Titanium dioxide causes secondary agglomeration in the copolymerized polycapramide resin, resulting in problems such as an increase in filtration pressure and yarn breakage during spinning, adversely affecting operability, and fiber strength not being improved.
[0006]
[Patent Document 1]
JP-A-10-265664 (paragraphs [0013] to [0016])
[Patent Document 2]
U.S. Pat. No. 3,386,967 (first column 65th line to second column second line, second column 50th line to 59th line)
[Patent Document 3]
JP 2001-200056 (paragraphs [0009] to [0011])
[0007]
[Problems to be solved by the invention]
In view of this, the present invention aims to further improve the above-described technique, and to obtain a polycapramide resin composition for high-strength fibers with good dispersion of titanium dioxide, fibers using the same, and a method for producing the same.
[0008]
[Means for Solving the Problems]
As a result of diligent studies to improve the dispersion of titanium dioxide in a system in which dicarboxylic acid units and diamine units, which are raw materials for high-strength fibers, are copolymerized with polycapramide, the present inventors have found a method that can solve the above problems. .
[0009]
That is, the present invention is a copolymer comprising a dicarboxylic acid unit mainly composed of a capramide unit and obtained from dialkylterephthalic acid in the main chain, and a diamine unit obtained from a diamine having a primary amine and a tertiary amine in the same molecule. A polycapramide resin composition comprising polycapramide, comprising 2 parts by weight or more and 5 parts by weight or less of titanium dioxide with respect to 100 parts by weight of the copolymerized polycoupler, and having a number of coarse particles of titanium dioxide of 5 μm or more. It is a polycapramide resin composition characterized by being 400 or less per gram of the product, and a fiber comprising the same. Also comprising a copolymer polycapramide mainly consisting of a capramide unit, comprising a dicarboxylic acid unit obtained from dialkyl terephthalic acid in the main chain and a diamine unit obtained from a diamine having a primary amine and a tertiary amine in the same molecule. A polycapramide resin composition comprising: 0.01 parts by weight or more and less than 2 parts by weight of titanium dioxide with respect to 100 parts by weight of the copolymerized polycapramide, and the number of coarse titanium dioxide particles of 5 μm or more. It is a polycapramide resin composition characterized by being 200 or less per gram of the product, and a fiber comprising the same.
[0010]
Furthermore, in the process of producing the polycapramide resin composition and the fiber, a polycapramide resin composition is characterized in that dialkyl terephthalic acid is added to the raw material or reaction system at any stage before or during the polymerization of the polycapramide resin composition. It is a manufacturing method of a thing or a fiber.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. In the present invention, a copolymer polycapramide mainly composed of a capramide unit, comprising a dicarboxylic acid unit obtained from dialkyl terephthalic acid in the main chain and a diamine unit obtained from a diamine having a primary amine and a tertiary amine in the same molecule. It is essential. The term “mainly” as used herein means 90 mol% or more, more preferably 95 mol% or more as a capramide unit. The dicarboxylic acid unit obtained from the dialkyl terephthalic acid contained in the main chain defined in the present invention is a monomer capable of forming a polyamide obtained by polycondensation of a diamine represented by polyamide 66 and a dicarboxylic acid, so-called AB type polyamide. Among these , dialkyl terephthalic acid includes dialkyl terephthalic acid such as dimethyl phthalic acid, diethyl terephthalic acid, dipropyl terephthalic acid, dibutyl terephthalic acid, dipentyl terephthalic acid, dihexyl terephthalic acid, and diphenyl terephthalic acid. Examples thereof include diaryl terephthalic acid such as acid, among which dimethyl phthalic acid and diethyl terephthalic acid are particularly preferably used.
[0012]
Diamine unit containing an in the main chain in defined in the present invention refers to a monomer unit having a structure derived from a diamine of the monomer is capable of forming the AB-type polyamide, juggle heavy Godo regulatory and dyeability diamine From the viewpoint , a diamine having a primary amine and a tertiary amine in the same molecule is used. Examples of such diamines include N, N′-dialkylaminoalkylamines such as 3-diethylaminopropylamine, 3-dimethylaminopropylamine, 3-dibutylaminopropylamine, 2-diethylaminoethylamine, and 2-dimethylaminoethylamine. It is done. The ratio of the dicarboxylic acid unit obtained from the alkyl terephthalic acid and the diamine unit obtained from the diamine having a primary amine and a tertiary amine in the same molecule to the caprolactam unit is preferably 0.01 to 1 mol%, respectively. More preferably, the content is 0.01 to 0.5 mol%. When it is more than this range, the properties as a polycapramide are lost, and when it is less, the strength of the resulting fiber is not improved.
[0013]
There is no particular limitation on the type of titanium dioxide used in the present invention, and there is no problem in performing operations such as classification, filtration, and pulverization of titanium dioxide, but the addition amount relative to 100 parts by weight of the copolymer polycapramide is 0.01 to It is necessary to be 5 parts by weight. When the addition rate is less than this range, the matting effect is hardly exhibited, and when the addition rate is higher than this range, it is difficult to suppress coarse particles. Titanium dioxide is widely used to adjust the addition rate according to the required matting effect. When the addition amount is 2 to 5 parts by weight based on 100 parts by weight of the copolymerized polycapramide, other varieties are mainly used as master chips. A small amount is mixed and used for the chip, and if it is 0.01 part by weight or more and less than 2 parts by weight, it is mainly used for spinning without performing chip blending or the like, or used as a base chip in a large amount mixed with other types of chips. In the present invention, it is essential that the number of coarse particles of 5 μm or more is 400 or less per 1 g of the polycapramide resin composition in the former case, and 200 or less in the latter case. When the number of coarse particles is larger than this range, the increase in the filtration pressure during spinning is large, which causes a deterioration in yarn operability such as yarn breakage. The measurement of the number of coarse particles was performed by remelting 5 mg of the polycapramide resin composition into a flake shape having a thickness of about 10 μm and repeating the operation of counting titanium dioxide particles having a size of 5 μm or more with an optical microscope 10 times. .
[0014]
As a method for producing the above polycapramide resin composition, a dicarboxylic acid ester may be added as a dicarboxylic acid component to a raw material or a reaction system before or during polymerization of the polycapramide resin. There is no restriction | limiting in a polymerization process, Any of a continuous type and a batch type may be sufficient. Although there is no restriction | limiting in particular in the structure of the ester site | part of the dicarboxylic acid ester to be used, The both terminal of dicarboxylic acid needs to be esterified. Furthermore, known dispersants, viscosity stabilizers, light-proofing agents, heat-resistant agents, antistatic agents, dispersants, polymerization catalysts, and the like may be added as long as they do not impair the purpose of the present invention.
[0015]
There is no restriction | limiting in particular in the fiber which uses the poly coupler amide resin composition of this invention, and any form of a monofilament, a multifilament, and a staple may be sufficient. Such a fiber can be obtained by using an ordinary polycapramide fiber melt spinning method, and the polycapramide resin composition of the present invention can be supplied in a melted state after polymerization, but once pelletized, it can be melted in a spinning machine. However, the latter is preferably selected in order to remove the low polymer remaining in the polycapramide resin composition by polymerization equilibrium.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, the physical property in an Example was measured as follows.
[0017]
[Titanium dioxide dispersion during raw material adjustment]
After thoroughly mixing the polymerization raw materials, 50 ml was placed in a 100 ml graduated cylinder, kept at 45 ° C. and allowed to stand for 4 hours. After standing, the portion from the liquid surface to 20 mm was separated with a dropper, the titanium dioxide content in the adjustment liquid separated by the gravimetric method was measured, and the dispersity (%) was calculated by the following formula.
Dispersity (%) = (titanium dioxide content after standing) / (titanium dioxide content during adjustment) × 100.
[0018]
[Number of aggregated titanium dioxide in pellets]
An operation of counting 5 μm or more of titanium dioxide particles with an optical microscope (Nikon Corporation FX-21, magnification 100 ×) was performed by remelting 5 mg of the obtained pellet sample to form a thin piece having a thickness of 10 μm. Repeated times.
[0019]
[Filtration pressure increase rate]
The obtained pellets were melted at 270 ° C. and filtered with a 5 μm filter at a rate of 1.3 g / cm 2 · min for 2 hours. The rate of increase in filtration pressure per unit time at this time was defined as the rate of increase in filtration pressure.
[0020]
Example 1
25 kg of ε-caprolactam aqueous solution (containing 15% water), 73.0 g of dimethylterephthalic acid (0.2 mol with respect to 100 mol of caprolactam units), 24.3 g of 3-diethylaminopropylamine (0.1 mol with respect to 100 mol of caprolactam units) and dioxide 70 g of titanium (TA-500 manufactured by Fuji Titanium Co., Ltd., particle size 0.4 μm) (0.33 parts by weight with respect to 100 parts by weight of the polycapramide resin composition) was stirred with a stainless steel bucket for 1 hour. Table 1 shows the titanium dioxide dispersion of the obtained polymerization raw material. This polymerization raw material is put into an 80-liter stainless steel autoclave, and the oxygen in the can is replaced with nitrogen and sealed, and the internal pressure is kept so as not to exceed 1.5 MPa until the temperature in the can reaches 255 ° C. and stirred. While heating, the polymerization reaction was advanced. After reaching the internal temperature of 255 ° C., the internal pressure of the can was gradually released to atmospheric pressure in 60 minutes, and then the polymerization was completed while nitrogen was passed for 90 minutes (5 liters / minute). After completion of the polymerization, the liquid phase polymerization polymer in the can was extruded into a strand shape, cooled and pelletized. The obtained pellets were treated with hot water at 95 ° C. for 16 hours to remove low molecular weight components, and further dried for 14 hours using a 120 ° C. vacuum dryer. Table 1 shows the number of titanium oxides in terms of the rate of increase in the filtration pressure and the aggregation in the pellets of the resulting polycapramide resin composition. The obtained polycapramide resin composition was melt-spun to obtain 44 dtex 13 filament fibers. Table 1 shows the strength and elongation of the obtained fiber and the number of yarn breakage during spinning.
[0021]
(Comparative Example 1)
As raw materials, 25 kg of ε-caprolactam aqueous solution (containing 15% water), 62.4 g of terephthalic acid (0.2 mol with respect to 100 mol of caprolactam units), 20 g of 3-diethylaminopropylamine (0.1 mol with respect to 100 mol of caprolactam units) and titanium dioxide 70 g (0.33 parts by weight with respect to 100 parts by weight of the polycapramide resin composition) was added, and the same operation as in Example 1 was performed. The results are shown in Table 2.
[0022]
(Comparative Example 2)
As raw materials, 25 kg of ε-caprolactam aqueous solution (containing 15% water) and 70 g of titanium dioxide (0.33 parts by weight with respect to 100 parts by weight of the polycapramide resin composition) were added, and the same operation as in Example 1 was performed. It is shown in Table 2.
[0023]
(Example 2)
As raw materials, 25 kg of ε-caprolactam aqueous solution, 73.0 g of dimethylterephthalic acid (0.2 mol with respect to 100 mol of caprolactam units), 24.3 g of 3-diethylaminopropylamine (0.1 mol with respect to 100 mol of caprolactam units) and 1 kg of titanium dioxide ( 4.7 parts by weight with respect to 100 parts by weight of the polycapramide resin composition), and the same operation as in Example 1 was performed. The results are shown in Table 1.
[0024]
(Comparative Example 3)
As raw materials, 25 kg of ε-caprolactam aqueous solution, 62.4 g of terephthalic acid (0.2 mol with respect to 100 mol of caprolactam units), 24.3 g of 3-diethylaminopropylamine (0.1 mol with respect to 100 mol of caprolactam units), and 1 kg of titanium dioxide (polycoupleramide) 4.7 parts by weight with respect to 100 parts by weight of the resin composition), and the same operation as in Example 1 was performed. The results are shown in Table 2.
[0025]
(Comparative Example 4)
As raw materials, 25 kg of ε-caprolactam aqueous solution (containing 15% water) and 1 kg of titanium dioxide (4.7 parts by weight with respect to 100 parts by weight of the polyamide resin composition) were added, and the same operation as in Example 1 was performed. It is shown in Table 2.
[0026]
Example 3
As raw materials, 25 kg of ε-caprolactam aqueous solution, 73.0 g of dimethyl terephthalic acid (0.2 mol with respect to 100 mol of caprolactam units), 24.3 g of 3-diethylaminopropylamine (0.1 mol with respect to 100 mol of caprolactam units) and titanium dioxide 2 g (0.02 parts by weight with respect to 100 parts by weight of the polycapramide resin composition) was added, and the same operation as in Example 1 was performed. The results are shown in Table 1.
[0027]
(Comparative Example 5)
As raw materials, 25 kg of ε-caprolactam aqueous solution, 62.4 g of terephthalic acid (0.2 mol with respect to 100 mol of caprolactam units), 24.3 g of 3-diethylaminopropylamine (0.1 mol with respect to 100 mol of caprolactam units), and 4.2 g of titanium dioxide (0.02 parts by weight with respect to 100 parts by weight of the polycapramide resin composition) was added, and the same operation as in Example 1 was performed. The results are shown in Table 2.
[0028]
(Comparative Example 6)
As raw materials, 25 kg of an ε-caprolactam aqueous solution (containing 15% water) and 4.2 g of titanium dioxide (0.02 parts by weight with respect to 100 parts by weight of the polyamide resin composition) were added, and the same operation as in Example 1 was performed below. The results are shown in Table 2.
[0029]
[Table 1]
Figure 0004449315
[0030]
[Table 2]
Figure 0004449315
[0031]
In Examples 1 to 3, dimethylterephthalic acid was added as a dicarboxylic acid component. A polymer having good dispersibility of titanium dioxide and a fiber with improved yarn strength with fewer yarn breaks were obtained. In Comparative Examples 1, 3, and 5, as a result of using terephthalic acid as the dicarboxylic acid component, the dispersibility of titanium dioxide in the polymer was inferior to that of the Examples, and the number of yarn breaks was large. In Comparative Examples 2, 4 and 6, as a result of not adding the copolymer component, the yarn strength was inferior to that of the Example.
[0032]
【The invention's effect】
According to the present invention, it is possible to obtain a polycapramide resin composition having few titanium dioxide coarse particles and excellent dispersibility, improving the spinning performance such as an increase in filtration pressure during melt spinning and the number of yarn breaks, and high strength. It is possible to provide fibers.

Claims (6)

主としてカプラミド単位からなり、主鎖中にジアルキルテレフタル酸から得られるジカルボン酸単位と、1級アミンと3級アミンを同一分子内に有するジアミンから得られるジアミン単位とを含む共重合ポリカプラミドを含有してなるポリカプラミド樹脂組成物であって、前記共重合ポリカプラミド100重量部に対して二酸化チタンを2重量部以上5重量部以下含み、かつ5μm以上の二酸化チタン粗大粒子数がポリカプラミド樹脂組成物1gあたり400個以下であることを特徴とするポリカプラミド樹脂組成物。Containing a copolymer polycapramide mainly composed of a capramide unit, comprising a dicarboxylic acid unit obtained from dialkylterephthalic acid in the main chain and a diamine unit obtained from a diamine having a primary amine and a tertiary amine in the same molecule. A polycapramide resin composition comprising 400 parts by weight of titanium dioxide in an amount of 400 parts by weight per 100 g of polycapramide resin composition, comprising 2 parts by weight or more and 5 parts by weight or less of titanium dioxide with respect to 100 parts by weight of the copolymerized polycapramide. A polycapramide resin composition characterized by the following: 主としてカプラミド単位からなり、主鎖中にジアルキルテレフタル酸から得られるジカルボン酸単位と、1級アミンと3級アミンを同一分子内に有するジアミンから得られるジアミン単位とを含む共重合ポリカプラミドを含有してなるポリカプラミド樹脂組成物であって、前記共重合ポリカプラミド100重量部に対して、二酸化チタンを0.01重量部以上2重量部未満含み、かつ5μm以上の二酸化チタン粗大粒子数がポリカプラミド樹脂組成物1gあたり200個以下であることを特徴とするポリカプラミド樹脂組成物。Containing a copolymer polycapramide mainly composed of a capramide unit, comprising a dicarboxylic acid unit obtained from dialkylterephthalic acid in the main chain and a diamine unit obtained from a diamine having a primary amine and a tertiary amine in the same molecule. 1 g of the polycapramide resin composition, comprising 0.01 parts by weight or more and less than 2 parts by weight of titanium dioxide and having a coarse titanium dioxide particle number of 5 μm or more with respect to 100 parts by weight of the copolymerized polycapramide. 200 or less per capillar polyresin resin composition. カプロラクタム単位100molに対して、ジカルボン酸単位0.01〜0.5mol、かつジアミン単位0.01〜0.5molであることを特徴とする、請求項1または2記載のポリカプラミド樹脂組成物。  The polycapramide resin composition according to claim 1 or 2, wherein the dicarboxylic acid unit is 0.01 to 0.5 mol and the diamine unit is 0.01 to 0.5 mol with respect to 100 mol of the caprolactam unit. 請求項1〜のいずれかに記載のポリカプラミド樹脂組成物を用いてなる繊維。A fiber comprising the polycapramide resin composition according to any one of claims 1 to 3 . ポリカプラミド樹脂組成物の重合前または途中のいずれかの段階で、原料あるいは反応系にジアルキルテレフタル酸を加えることを特徴とする請求項1〜のいずれかに記載のポリカプラミド樹脂組成物の製造方法。The method for producing a polycapramide resin composition according to any one of claims 1 to 4 , wherein dialkyl terephthalic acid is added to the raw material or the reaction system before or during the polymerization of the polycapramide resin composition. ポリカプラミド樹脂組成物の重合前または途中のいずれかの段階で、原料あるいは反応系にジアルキルテレフタル酸を加えることを特徴とする請求項1〜のいずれかに記載のポリカプラミド樹脂組成物を用いてなる繊維の製造方法。The polycapramide resin composition according to any one of claims 1 to 4 , wherein a dialkyl terephthalic acid is added to the raw material or the reaction system before or during the polymerization of the polycapramide resin composition. A method for producing fibers.
JP2003073354A 2003-03-18 2003-03-18 Polycapramide resin composition having excellent dispersibility of titanium dioxide, fiber, and production method thereof Expired - Fee Related JP4449315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073354A JP4449315B2 (en) 2003-03-18 2003-03-18 Polycapramide resin composition having excellent dispersibility of titanium dioxide, fiber, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073354A JP4449315B2 (en) 2003-03-18 2003-03-18 Polycapramide resin composition having excellent dispersibility of titanium dioxide, fiber, and production method thereof

Publications (2)

Publication Number Publication Date
JP2004277632A JP2004277632A (en) 2004-10-07
JP4449315B2 true JP4449315B2 (en) 2010-04-14

Family

ID=33289269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073354A Expired - Fee Related JP4449315B2 (en) 2003-03-18 2003-03-18 Polycapramide resin composition having excellent dispersibility of titanium dioxide, fiber, and production method thereof

Country Status (1)

Country Link
JP (1) JP4449315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880386B (en) * 2010-07-09 2012-03-21 北京三联虹普新合纤技术服务股份有限公司 Recovery method of hexanolactam in polyamide-6 continuous polymerization production process
WO2017146018A1 (en) * 2016-02-23 2017-08-31 宇部興産株式会社 Polyamide elastomer composition, and fiber and molded article comprising same

Also Published As

Publication number Publication date
JP2004277632A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
Paredes et al. Synthesis and characterization of a family of biodegradable poly (ester amide) s derived from glycine
TWI580830B (en) Polyether polyamide fiber
CA2097620C (en) Terpolyamides and multipolyamides containing amide units of 2-methylpentamethylenediamine and products prepared therefrom
KR20140084315A (en) Solventless process for the preparation of amine functional polyetherimide resins with improved melt flow
JP2016223037A (en) Monofilament
US20050104030A1 (en) Polytrimethylene terephthalate composition particles and process for producing same
EP3985150A1 (en) Filament and fishing line
JP5920103B2 (en) Polyether polyamide fiber
JP4449315B2 (en) Polycapramide resin composition having excellent dispersibility of titanium dioxide, fiber, and production method thereof
JP4992610B2 (en) fiber
TWI222476B (en) Process for manufacturing yarns, fibres and filaments
JP3281177B2 (en) Yellowing-resistant deep-dyeing polyhexamethylene adipamide fiber and method for producing the same
JP2007217832A (en) Polyester fiber for industrial material
CN100378139C (en) Process for producing polyamide 6 for spinning purposes
TWI282824B (en) Alkaline easily soluble copolyester
JPH042814A (en) Polyamide multifilament yarn having high shrinkage and production thereof
TWI738137B (en) Moisture absorption polyamide fiber having lower melting temperature and manufacture process thereof
JP2011001663A (en) Conjugated fiber
TWI845812B (en) Polyamide-based masterbatch formulation
WO2014056429A1 (en) Hygroscopic polyester fiber and manufacturing method thereof
JPS61243827A (en) Production of nylon 66 polymer for high-speed spinning
JP2006083255A (en) Nylon 66 resin composition containing titanium oxide and method for producing the same
CN112662174B (en) Composition comprising a polyester amide and a polyamide, method for the preparation thereof and fibers made therefrom
TW454052B (en) Process for the manufacture of spandex and the spandex made thereby
JP2008163227A (en) Polyamide composition, polyamide fiber and manufacturing methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees