JP4449283B2 - PWM inverter control method - Google Patents

PWM inverter control method Download PDF

Info

Publication number
JP4449283B2
JP4449283B2 JP2002265451A JP2002265451A JP4449283B2 JP 4449283 B2 JP4449283 B2 JP 4449283B2 JP 2002265451 A JP2002265451 A JP 2002265451A JP 2002265451 A JP2002265451 A JP 2002265451A JP 4449283 B2 JP4449283 B2 JP 4449283B2
Authority
JP
Japan
Prior art keywords
arm
pwm inverter
pwm
current
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002265451A
Other languages
Japanese (ja)
Other versions
JP2004104933A (en
Inventor
新一 石井
政樹 平形
行夫 加藤
新一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002265451A priority Critical patent/JP4449283B2/en
Publication of JP2004104933A publication Critical patent/JP2004104933A/en
Application granted granted Critical
Publication of JP4449283B2 publication Critical patent/JP4449283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、各アームをブリッジ接続してなる電力変換回路を用いたPWMインバータの制御方法に関し、特に、前記各アームそれぞれのアーム電流により電力変換回路を構成する半導体素子を保護するための制御方法に関する。
【0002】
【従来の技術】
従来、この種のインバータでは電力変換回路を構成する半導体素子への駆動信号を用いて、各アーム電流の検出値を合成し、この合成値に基づいた制御方法を行っている。(例えば、特許文献1参照。)
しかしながら、近年のインバータの高性能化,低価格化に伴い、PWM制御により直流電圧を所望の周波数,電圧の交流電圧に変換するPWMインバータが主流になり、このPWMインバータの場合に上記特許文献1によるインバータの制御方法を用いることの問題点について、図6に示す従来のインバータの回路構成と、図7に示すその動作波形図を参照しつつ、以下に説明する。
【0003】
すなわち、図6において、1はPWMインバータ(その回路構成の主要部を示す)、5はPWMインバータ1から給電される負荷としての交流電動機である。
【0004】
このPWMインバータ1は直流電圧がEdの整流電源などの直流電源11と、図示の如くIGBTとダイオードの逆並列回路からなる上,下アームをU相アーム,V相アーム,W相アームとし、これらをブリッジ接続してなる電力変換回路12と、前記U相アーム,V相アーム,W相アームそれぞれのアーム電流を検出するためのシャント抵抗rU ,rV ,rW と、これらのシャント抵抗の両端電圧それぞれを検出するアーム電流検出部13と、電力変換回路12を構成するそれぞれの前記IGBTに対して、前記直流電圧Edから電圧指令に基づく振幅および周波数の交流電圧を電力変換回路12から出力するためにPWM制御されたオン・オフ駆動信号を供給するPWM信号発生器14と、前記PWM制御を行う際のキャリア信号Fcを生成するキャリア発振器15と、アーム電流検出部13が検出した前記U相アーム,V相アーム,W相アームそれぞれのアーム電流のうち、少なくとも何れか1相のアーム電流が予め設定した過電流保護レベルを超えたときに、例えば、PWM信号発生器14の動作を停止させることにより電力変換回路12を形成するIGBTやダイオードなどの半導体素子の過電流破壊を防止する保護手段16とから構成されている。
【0005】
図6に示したPWMインバータ1において、電力変換回路12を構成するIGBTやダイオードなどの半導体素子が過電流に起因する素子破壊を防止するためには、例えば各相の出力電流を検出して過電流保護を行う制御方法もあるが、この制御方法では前記出力電流を検出するための電流検出回路は電力変換回路12に対して絶縁する必要があり、この電流検出回路は大型,高価であり、従って、小型,安価にするために、電力変換回路12とは非絶縁で形成できるシャント抵抗rU ,rV ,rW およびアーム電流検出部13が用いられている。
【0006】
【特許文献1】
特開平3−243173号公報(第2−3頁、第1図)
【0007】
【発明が解決しようとする課題】
図6に示したPWMインバータ1で交流電動機5としての誘導電動機(以下、誘導電動機5とも称する)を可変速駆動するときについて、以下に説明する。
【0008】
誘導電動機5を可変速駆動する場合で、この誘導電動機5が駆動状態から制動状態まで変化するときには、PWMインバータ1から見た誘導電動機5の力率角は一般に30°〜150°程度の範囲となる。
【0009】
図7は、PWM信号発生器14におけるU相の相電圧の電圧指令eU *に対するPWM制御結果PWMu* と、前述の力率角が30°のときの誘導電動機5の一次電流i30および150°のときの前記一次電流i150 と、シャント抵抗rU およびアーム電流検出部13でのそれぞれの検出波形との関係を示す。この波形図から明らかなように、前記i30およびi150 の電流検出値の波形は前記PWMu* の波形に依存し、従って、U相の相電圧の電圧指令eU *の正の半サイクル期間の方が負の半サイクル期間より電流検出可能期間、すなわち電流の流れている期間が少なくなる。その結果、シャント抵抗rU ,rV ,rW およびアーム電流検出部13により電力変換回路12を構成するIGBTやダイオードなどの半導体素子が過電流に起因する素子破壊を前述の保護手段16により防止することが困難になる恐れがあった。
【0010】
上記問題点に対する対策として、キャリア発振器15が出力するキャリア信号Fcの周波数、すなわち、キャリア周波数をより高くする制御方法があるが、この制御方法では、電力変換回路12を形成するIGBTやダイオードのスイッチング回数が増大し、その結果、前記IGBTやダイオードのスイッチング損失が増大することにより、PWMインバータ1の出力電力定格値の低下を招き、従って、PWMインバータ1全体が大型になり、価格上昇をもたらすという新たな問題点が発生する。
【0011】
この発明の目的は、上述のそれぞれの問題点を解決し、各アームそれぞれのアーム電流により電力変換回路を構成する半導体素子が過電流破壊するのを防止するためのPWMインバータの制御方法を提供することにある。
【0012】
【課題を解決するための手段】
この第1の発明は、各アームをブリッジ接続してなる電力変換回路を用い、直流電圧をPWM制御により所望の振幅および周波数の交流電圧に変換するPWMインバータにおいて、
前記各アームに流れるアーム電流を検出し、この検出した各アーム電流のうち、少なくともいずれか1つのアーム電流の瞬時値が予め設定したレベルを超えたときに、所定の設定期間、前記PWM制御の際のキャリア周波数を、前記アーム電流のリプル分が予め定めた値に減少する周波数に高めることを特徴とするPWMインバータの制御方法を行う。
【0013】
さらに第2の発明は前記第1の発明のPWMインバータの制御方法において、前記変更したキャリア周波数で前記PWMインバータが動作中に、前記の検出したアーム電流のうち、少なくともいずれか1つのアーム電流の瞬時値が前記レベルを再度超えたときには、前記変更したキャリア周波数を新たに前記所定の設定期間継続させることを特徴とする。
【0014】
この発明によれば、前記アーム電流が予め設定したレベルを超えたときに、前記PWM制御の際のキャリア周波数を所定の予め定めた期間変更することにより、電力変換回路を構成する半導体素子の過電流保護をより確実に行うことができる。
【0015】
【発明の実施の形態】
図1は、この発明の第1の実施例を示す回路構成図であり、図6に示した従来例回路と同一機能を有するものには同一符号を付している。
【0016】
すなわち、図1に示したPWMインバータ2(その回路構成の主要部を示す)には直流電源11、電力変換回路12、シャント抵抗rU ,rV ,rW 、アーム電流検出部13、PWM信号発生器14、保護手段16の他に、レベル設定器21と、レベル検出部22と、切替スイッチ23と、キャリア発振器15と同一機能の第1キャリア発振器15aと、第2キャリア発振器24とを備えている。
【0017】
PWMインバータ2により誘導電動機5を可変速駆動する場合、PWMインバータ2の出力電流、すなわち、誘導電動機5の一次電流は該電動機の負荷率および電気的定数とPWMインバータ2の基本波出力電圧とに基づく基本波電流と、前記電気的定数とPWMインバータ2でのPWM制御における変調率、言い換えれば、キャリア周波数とに基づく高周波電流との合成値に基づいている。
【0018】
上述の高周波電流は前記出力電流のリプル分であり、このリプル分Δiは誘導電動機5の一次巻線抵抗値R1 ,二次巻線抵抗値R2 ,漏れインダクタンスLσに基づく高周波時定数と、PWMインバータ2におけるPWM制御の際のキャリア周波数fC と、直流電源11の直流電圧Edとに基づく値である。
【0019】
以下に、図2に示す誘導電動機のT−1形等価回路を参照しつつ、前記リプル分Δiの導出式について説明する
ここで、前記リプル分Δiの算定条件として、前記高周波電流は一次抵抗値,漏れインダクタンス,二次抵抗の経路に流れ、このとき図2に示す高周波電源の振幅は0から前記直流電圧Ed間をステップ状に変化するものとし、その期間はキャリア周波数fC の1/2とすると、前記リプル分Δiは下記式(1)で表される。
【0020】
【数1】
従って、PWMインバータ2の出力電流のうち、図2に示す基本波電源による基本波電流は誘導電動機5の負荷率により変動し、この基本波電流に重畳する高周波電流、すなわち、リプル分ΔiはPWMインバータ2におけるPWM制御の際のキャリア周波数fC に基づく値となる。このとき、上記式(1)から明らかなように、前記キャリア周波数fC を高くするとリプル分Δiの値がより小さくなる。また、シャント抵抗rU ,rV ,rW およびアーム電流検出部13により検出される電力変換回路12のU相アーム,V相アーム,W相アームそれぞれのアーム電流にも前記基本波電流とリプル分との重畳値としての振幅が現れる。
【0021】
図3は、図1に示したPWMインバータ2の動作を説明する波形図であり、この波形は図7に示した波形の部分拡大図である。
【0022】
すなわち図3においては、三角波状の細実線のキャリア信号Fc1 は第1キャリア発振器15aの出力波形、三角波状の太実線のキャリア信号Fc2 は第2キャリア発振器24の出力波形をそれぞれ示し、キャリア信号Fc1 のキャリア周波数fC1とキャリア信号Fc2 のキャリア周波数fC2の間にはfC1<fC2なる関係を持たせる、例えば、前記fC1を2KHz程度、fC2を4KHz程度に設定し、さらに、PWM信号発生器14におけるU相の相電圧の電圧指令eU *に対する前記キャリア信号Fc1 ,Fc2 それぞれでのPWM制御結果PWMu* と、誘導電動機5の力率角が30°のときの該電動機の一次電流i30と、シャント抵抗rU およびアーム電流検出部13におけるキャリア信号Fc1 ,Fc2 でのそれぞれの検出波形との関係も示す。この図から明らかなように、前記キャリア信号Fc2 のときのシャント抵抗rU およびアーム電流検出部13での検出波形では、U相の相電圧の電圧指令(eU *)の正の半サイクル期間における図示の区間tにおいて、電流の検出が可能となるのはパルス状に電流が発生しているときであるが、このパルス状電流の発生個数が前記キャリア信号Fc1 のときの3個から5個に増えるようになり、検出可能期間をより多くすることができる。
【0023】
従って、このPWMインバータ2では、シャント抵抗rU ,rV ,rW およびアーム電流検出部13により検出される電力変換回路12を形成するU相アーム,V相アーム,W相アームのうち、少なくとも何れか1相のアーム電流の瞬時値がレベル設定器21で設定されたレベル、例えば、前記アームを形成する半導体素子の定格電流値の150%程度の値を超えた時に、レベル検出部22から前記電圧指令eU *の1〜2サイクル程度の期間、切替信号を切替スイッチ23へ出力し、この切替信号により切替スイッチ23では第1キャリア発振器15a側の経路を開路し、さらに、第2キャリア発振器24側の経路を閉路することにより、前記PWM制御の際のキャリア周波数をより高くしている。
【0024】
その結果として、U相アーム,V相アーム,W相アームそれぞれのアーム電流の検出可能期間をより多くし、このときには前述の式(1)に基づくプル分Δiもより減少するので、保護手段16を介した電力変換回路12を構成する半導体素子の過電流保護をより確実に行うことができる。なお、第2キャリア発振器24のキャリア信号Fc2 で動作する期間は、前述の如く、基本波電圧の1〜2サイクル程度に設定することにより、この間の電力変換回路12を形成するIGBTやダイオードなどの半導体素子のスイッチング損失の増大は微小である。
【0025】
図4は、この発明の第2の実施例を示す回路構成図であり、図1に示した第1の実施例回路と同一機能を有するものには同一符号を付している。
【0026】
すなわち、図4に示したPWMインバータ3(その回路構成の主要部を示す)では第2キャリア発振器24に代えて第3キャリア発振器31を備えている。
【0027】
この第3キャリア発振器31が出力するキャリア信号Fc3 のキャリア周波数fC3は、前述の式(1)に基づくリプル分Δiの値が所定の値に減少させる周波数を電動機定数(一次抵抗R1 ,二次抵抗R2 ,漏れインダクタンスLσ等)から予め求めておき、この求めたキャリア周波数(例えば、4KHz〜5KHz程度)を設定することにより、前記リプル分Δiを所定の値に減少させつつ、U相アーム,V相アーム,W相アームそれぞれのアーム電流の検出可能期間をより多くするので、保護手段16を介した電力変換回路12を構成する半導体素子の過電流保護をより確実に行うことができる。なお、第3キャリア発振器31のキャリア信号Fc3 で動作する期間は、PWMインバータ2と同様にその基本波電圧の1〜2サイクル程度に設定することにより、この間の電力変換回路12を形成するIGBTやダイオードなどの半導体素子のスイッチング損失の増大は微小である。
【0028】
図5は、この発明の第3の実施例を示す回路構成図であり、図4に示した第2の実施例回路と同一機能を有するものには同一符号を付している。
【0029】
すなわち、図5に示したPWMインバータ4(その回路構成の主要部を示す)ではレベル検出部22に代えてレベル検出部22aを備え、さらに、切替制御回路41が追加されている。
【0030】
このレベル検出部22aでは電力変換回路12を形成するU相アーム,V相アーム,W相アームのうち、少なくとも何れか1相のアーム電流の瞬時値がレベル設定器21で設定されたレベル、例えば、前記アームを形成する半導体素子の定格電流値の150%程度の値を超えた時に、レベル検出部22aからトリガ信号を出力し、このトリガ信号を受信した切替制御回路41では前記電圧指令eU *の1〜2サイクル程度の期間、切替信号を切替スイッチ23へ出力するようにしている。ここで切替制御回路41では前回のトリガ信号による切替信号を出力中に、新たなトリガ信号を受信した時には、この新たなトリガ信号から前述の1〜2サイクル程度の期間、前記切替信号を継続するようにしている。
【0031】
その結果、このPWMインバータ4では保護手段16を介した電力変換回路12を構成する半導体素子の過電流保護をより確実に行うことができる。
【0032】
【発明の効果】
この発明によれば、PWMインバータの電力変換回路を形成する各アームのうちのいずれかのアーム電流が予め設定したレベルを超えたときに、このPWMインバータにおけるPWM制御の際のキャリア周波数を所定の期間より高いキャリア周波数に変更することにより、前記電力変換回路を構成する半導体素子の過電流保護をより確実に行うことができる。
【図面の簡単な説明】
【図1】 この発明の第1の実施例を示すPWMインバータの回路構成図
【図2】 図1の動作を説明するための誘導電動機の等価回路図
【図3】 図1の動作を説明する波形図
【図4】 この発明の第2の実施例を示すPWMインバータの回路構成図
【図5】 この発明の第3の実施例を示すPWMインバータの回路構成図
【図6】 従来例を示すPWMインバータの回路構成図
【図7】 図6の動作を説明する波形図
【符号の説明】
1〜4…PWMインバータ、5…交流電動機、11…直流電源、12…電力変換回路、rU ,rV ,rW …シャント抵抗、13…アーム電流検出部、14…PWM信号発生器、15…キャリア発振器、15a…第1キャリア発振器、16…保護手段、21…レベル設定器、22,22a…レベル検出部、23…切替スイッチ、24…第2キャリア発振器、31…第3キャリア発振器、41…切替制御回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method of a PWM inverter using a power conversion circuit in which each arm is bridge-connected, and in particular, a control method for protecting a semiconductor element constituting a power conversion circuit by an arm current of each arm. About.
[0002]
[Prior art]
Conventionally, in this type of inverter, the detection value of each arm current is synthesized using a drive signal to a semiconductor element constituting the power conversion circuit, and a control method based on this synthesized value is performed. (For example, refer to Patent Document 1.)
However, with the recent high performance and low price of inverters, PWM inverters that convert a DC voltage into an AC voltage with a desired frequency and voltage by PWM control have become mainstream. The problem of using the inverter control method according to the above will be described below with reference to the circuit configuration of the conventional inverter shown in FIG. 6 and its operation waveform diagram shown in FIG.
[0003]
That is, in FIG. 6, 1 is a PWM inverter (showing the main part of its circuit configuration), and 5 is an AC motor as a load fed from the PWM inverter 1.
[0004]
This PWM inverter 1 is composed of a DC power supply 11 such as a rectifying power supply whose DC voltage is Ed, and an anti-parallel circuit of an IGBT and a diode as shown in the figure, and the lower arm is a U-phase arm, a V-phase arm and a W-phase arm. , A shunt resistor r U , r V , r W for detecting the arm current of each of the U-phase arm, V-phase arm, and W-phase arm, and these shunt resistors An AC voltage having an amplitude and a frequency based on a voltage command is output from the DC voltage Ed from the power conversion circuit 12 to each of the IGBTs constituting the power conversion circuit 12 and the arm current detection unit 13 that detects both end voltages. A PWM signal generator 14 for supplying a PWM-controlled on / off drive signal and a carrier signal Fc for performing the PWM control. An overcurrent protection level in which at least one of the U-phase arm, V-phase arm, and W-phase arm current detected by the carrier oscillator 15 and the arm current detector 13 is set in advance. For example, the protection means 16 is configured to prevent overcurrent destruction of semiconductor elements such as IGBTs and diodes that form the power conversion circuit 12 by stopping the operation of the PWM signal generator 14 when the value exceeds the threshold. .
[0005]
In the PWM inverter 1 shown in FIG. 6, in order to prevent element destruction caused by an overcurrent in a semiconductor element such as an IGBT or a diode constituting the power conversion circuit 12, for example, an output current of each phase is detected and an overcurrent is detected. Although there is a control method for performing current protection, in this control method, the current detection circuit for detecting the output current needs to be insulated from the power conversion circuit 12, and this current detection circuit is large and expensive. Therefore, in order to reduce the size and cost, shunt resistors r U , r V , r W that can be formed without being insulated from the power conversion circuit 12 and the arm current detector 13 are used.
[0006]
[Patent Document 1]
JP-A-3-243173 (page 2-3, FIG. 1)
[0007]
[Problems to be solved by the invention]
A case where the PWM inverter 1 shown in FIG. 6 drives the induction motor (hereinafter also referred to as the induction motor 5) as the AC motor 5 at a variable speed will be described below.
[0008]
When the induction motor 5 is driven at a variable speed and the induction motor 5 changes from a driving state to a braking state, the power factor angle of the induction motor 5 viewed from the PWM inverter 1 is generally in a range of about 30 ° to 150 °. Become.
[0009]
FIG. 7 shows the PWM control result PWMu * for the voltage command e U * of the U-phase phase voltage in the PWM signal generator 14 and the primary currents i 30 and 150 of the induction motor 5 when the power factor angle is 30 °. The relationship between the primary current i 150 at the time of ° and the detected waveforms at the shunt resistor r U and the arm current detector 13 is shown. As is apparent from this waveform diagram, the waveforms of the current detection values of i 30 and i 150 depend on the waveform of the PWMu * , and therefore the positive half cycle period of the voltage command e U * of the U-phase phase voltage. In this case, the period in which current can be detected, that is, the period in which current flows, is smaller than the negative half cycle period. As a result, the above-described protection means 16 prevents the semiconductor elements such as IGBTs and diodes constituting the power conversion circuit 12 from being shunted by the shunt resistors r U , r V , r W and the arm current detection unit 13 by the protection means 16 described above. There was a risk that it would be difficult to do.
[0010]
As a countermeasure against the above problem, there is a control method for increasing the frequency of the carrier signal Fc output from the carrier oscillator 15, that is, the carrier frequency. In this control method, switching of IGBTs and diodes forming the power conversion circuit 12 is performed. As a result, the switching loss of the IGBT and the diode increases, resulting in a decrease in the rated output power value of the PWM inverter 1, and thus the entire PWM inverter 1 becomes large and increases in price. New problems arise.
[0011]
An object of the present invention is to provide a PWM inverter control method for solving the above-described problems and preventing the semiconductor elements constituting the power conversion circuit from being overcurrent destroyed by the arm current of each arm. There is.
[0012]
[Means for Solving the Problems]
This first invention uses a power conversion circuit formed by bridge-connecting each arm, and in a PWM inverter that converts a DC voltage into an AC voltage having a desired amplitude and frequency by PWM control.
The arm current flowing through each arm is detected, and when the instantaneous value of at least one of the detected arm currents exceeds a preset level, the PWM control is performed for a predetermined setting period . The PWM inverter control method is characterized in that the carrier frequency at the time is increased to a frequency at which the ripple amount of the arm current decreases to a predetermined value.
[0013]
Further, a second invention is the method for controlling a PWM inverter according to the first invention, wherein at least one of the detected arm currents is detected while the PWM inverter is operating at the changed carrier frequency . When the instantaneous value exceeds the level again, the changed carrier frequency is newly continued for the predetermined setting period .
[0014]
According to the present invention, when the arm current exceeds a preset level, the carrier frequency at the time of the PWM control is changed for a predetermined period, so that the excess of the semiconductor elements constituting the power conversion circuit can be achieved. Current protection can be performed more reliably.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. Components having the same functions as those of the conventional circuit shown in FIG. 6 are denoted by the same reference numerals.
[0016]
That is, the PWM inverter 2 shown in FIG. 1 (indicating the main part of its circuit configuration) includes a DC power source 11, a power conversion circuit 12, shunt resistors r U , r V , r W , an arm current detection unit 13, and a PWM signal. In addition to the generator 14 and the protection means 16, a level setter 21, a level detector 22, a changeover switch 23, a first carrier oscillator 15 a having the same function as the carrier oscillator 15, and a second carrier oscillator 24 are provided. ing.
[0017]
When the induction motor 5 is driven at a variable speed by the PWM inverter 2, the output current of the PWM inverter 2, that is, the primary current of the induction motor 5 is changed to the load factor and electric constant of the motor and the fundamental wave output voltage of the PWM inverter 2. This is based on the combined value of the fundamental wave current based on the above and the high frequency current based on the electrical constant and the modulation rate in the PWM control by the PWM inverter 2, in other words, the carrier frequency.
[0018]
The above-described high-frequency current is a ripple of the output current, and this ripple Δi is a high-frequency time constant based on the primary winding resistance value R 1 , secondary winding resistance value R 2 , and leakage inductance Lσ of the induction motor 5, This value is based on the carrier frequency f C during PWM control in the PWM inverter 2 and the DC voltage Ed of the DC power supply 11.
[0019]
Hereinafter, a derivation formula for the ripple component Δi will be described with reference to the T-1 equivalent circuit of the induction motor shown in FIG. 2. Here, as a calculation condition for the ripple component Δi, the high-frequency current is a primary resistance value. , Leakage inductance, and secondary resistance, the amplitude of the high-frequency power source shown in FIG. 2 changes stepwise from 0 to the DC voltage Ed, and the period is ½ of the carrier frequency f C Then, the ripple amount Δi is expressed by the following formula (1).
[0020]
[Expression 1]
Therefore, among the output current of the PWM inverter 2, the fundamental wave current from the fundamental wave power source shown in FIG. 2 varies depending on the load factor of the induction motor 5, and the high frequency current superimposed on this fundamental wave current, that is, the ripple Δi is PWM. This value is based on the carrier frequency f C during PWM control in the inverter 2. At this time, as is clear from the above equation (1), when the carrier frequency f C is increased, the value of the ripple Δi becomes smaller. Further, the fundamental wave current and the ripple are also applied to the arm currents of the U-phase arm, V-phase arm, and W-phase arm of the power conversion circuit 12 detected by the shunt resistors r U , r V , r W and the arm current detector 13. An amplitude appears as a superposition value with the minute.
[0021]
FIG. 3 is a waveform diagram for explaining the operation of the PWM inverter 2 shown in FIG. 1, and this waveform is a partially enlarged view of the waveform shown in FIG.
[0022]
That is, in FIG. 3, a triangular wave-like thin solid line carrier signal Fc 1 shows an output waveform of the first carrier oscillator 15a, and a triangular wave-like thick solid line carrier signal Fc 2 shows an output waveform of the second carrier oscillator 24. It is to have a relation of f C1 <f C2 between the carrier frequency f C1 and the carrier signal Fc 2 of the carrier frequency f C2 of the signal Fc 1, for example, setting the f C1 of about 2 KHz, the f C2 to about 4KHz Furthermore, the PWM control result PWMu * in each of the carrier signals Fc 1 and Fc 2 with respect to the voltage command e U * of the U-phase phase voltage in the PWM signal generator 14 and the power factor angle of the induction motor 5 are 30 °. the relationship between the primary current i 30 of the electric motor, and each of the detected waveform of the carrier signal Fc 1, Fc 2 in the shunt resistor r U and the arm current detecting unit 13 when It is. As is clear from this figure, the positive half cycle of the voltage command (e U * ) of the U-phase phase voltage is detected in the detection waveform at the shunt resistor r U and the arm current detector 13 at the time of the carrier signal Fc 2. In the illustrated interval t in the period, the current can be detected when the current is generated in the form of a pulse. The number of occurrences of the pulsed current is from 3 when the carrier signal Fc 1 is generated. As a result, the number of detectable periods can be increased.
[0023]
Therefore, in this PWM inverter 2, at least of the U-phase arm, V-phase arm, and W-phase arm that form the power conversion circuit 12 detected by the shunt resistors r U , r V , r W and the arm current detection unit 13. When the instantaneous value of any one-phase arm current exceeds the level set by the level setter 21, for example, about 150% of the rated current value of the semiconductor element forming the arm, the level detector 22 During the period of about one to two cycles of the voltage command e U * , a changeover signal is output to the changeover switch 23, and the changeover switch 23 opens the path on the first carrier oscillator 15a side by this changeover signal. By closing the path on the oscillator 24 side, the carrier frequency in the PWM control is made higher.
[0024]
As a result, the arm current detectable period of each of the U-phase arm, the V-phase arm, and the W-phase arm is further increased. At this time, the pull amount Δi based on the above-described equation (1) is further reduced. Thus, overcurrent protection of the semiconductor elements constituting the power conversion circuit 12 can be performed more reliably. It should be noted that the period of operation of the carrier signal Fc 2 of the second carrier oscillator 24 is set to about 1 to 2 cycles of the fundamental wave voltage as described above, so that the IGBT, diode, etc. that form the power conversion circuit 12 during this period The increase in switching loss of the semiconductor element is very small.
[0025]
FIG. 4 is a circuit diagram showing a second embodiment of the present invention. Components having the same functions as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals.
[0026]
That is, the PWM inverter 3 shown in FIG. 4 (showing the main part of its circuit configuration) includes a third carrier oscillator 31 instead of the second carrier oscillator 24.
[0027]
The carrier frequency f C3 of the carrier signal Fc 3 output from the third carrier oscillator 31 is set to a motor constant (primary resistance R 1 , primary resistance R 1 , frequency at which the value of the ripple Δi based on the above equation (1) is reduced to a predetermined value. Secondary resistance R 2 , leakage inductance Lσ, etc.) in advance, and setting the obtained carrier frequency (for example, about 4 KHz to 5 KHz), while reducing the ripple Δi to a predetermined value, U Since the arm current detectable period of each of the phase arm, the V-phase arm, and the W-phase arm is increased, it is possible to more reliably perform the overcurrent protection of the semiconductor element constituting the power conversion circuit 12 via the protection means 16. it can. It should be noted that the period during which the third carrier oscillator 31 operates with the carrier signal Fc 3 is set to about one to two cycles of the fundamental voltage as in the PWM inverter 2, thereby forming the power conversion circuit 12 during this period. The increase in switching loss of a semiconductor device such as a diode is small.
[0028]
FIG. 5 is a circuit diagram showing a third embodiment of the present invention. Components having the same functions as those of the second embodiment shown in FIG. 4 are denoted by the same reference numerals.
[0029]
That is, the PWM inverter 4 (showing the main part of its circuit configuration) shown in FIG. 5 includes a level detection unit 22a instead of the level detection unit 22, and further includes a switching control circuit 41.
[0030]
In this level detection unit 22a, the instantaneous value of at least one of the U-phase arm, V-phase arm, and W-phase arm forming the power conversion circuit 12 is set at the level set by the level setting unit 21, for example, When the value of about 150% of the rated current value of the semiconductor element forming the arm is exceeded, a trigger signal is output from the level detector 22a, and the switching control circuit 41 that receives this trigger signal receives the voltage command e U. The changeover signal is output to the changeover switch 23 for a period of about 1 to 2 cycles of * . Here, when the switching control circuit 41 receives a new trigger signal while outputting a switching signal based on the previous trigger signal, the switching signal is continued for a period of about one to two cycles from the new trigger signal. I am doing so.
[0031]
As a result, the PWM inverter 4 can more reliably perform overcurrent protection of the semiconductor elements constituting the power conversion circuit 12 via the protection means 16.
[0032]
【The invention's effect】
According to the present invention, when the arm current of any one of the arms forming the power conversion circuit of the PWM inverter exceeds a preset level, the carrier frequency for PWM control in the PWM inverter is set to a predetermined value. By changing to a carrier frequency higher than the period, overcurrent protection of the semiconductor elements constituting the power conversion circuit can be more reliably performed.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a PWM inverter showing a first embodiment of the present invention. FIG. 2 is an equivalent circuit diagram of an induction motor for explaining the operation of FIG. 1. FIG. FIG. 4 is a circuit configuration diagram of a PWM inverter showing a second embodiment of the present invention. FIG. 5 is a circuit configuration diagram of a PWM inverter showing a third embodiment of the present invention. Circuit diagram of PWM inverter [FIG. 7] Waveform diagram for explaining the operation of FIG.
1 to 4 ... PWM inverter, 5 ... AC electric motor, 11 ... DC power supply, 12 ... power conversion circuit, r U, r V, r W ... shunt resistor, 13 ... arm current detecting unit, 14 ... PWM signal generator, 15 DESCRIPTION OF SYMBOLS ... Carrier oscillator, 15a ... 1st carrier oscillator, 16 ... Protection means, 21 ... Level setter, 22, 22a ... Level detection part, 23 ... Changeover switch, 24 ... 2nd carrier oscillator, 31 ... 3rd carrier oscillator, 41 ... switching control circuit.

Claims (2)

各アームをブリッジ接続してなる電力変換回路を用い、直流電圧をPWM制御により所望の振幅および周波数の交流電圧に変換するPWMインバータにおいて、
前記各アームに流れるアーム電流を検出し、この検出した各アーム電流のうち、少なくともいずれか1つのアーム電流の瞬時値が予め設定したレベルを超えたときに、所定の設定期間、前記PWM制御の際のキャリア周波数を、前記アーム電流のリプル分が予め定めた値に減少する周波数に高めることを特徴とするPWMインバータの制御方法。
In a PWM inverter that converts a DC voltage into an AC voltage having a desired amplitude and frequency by PWM control, using a power conversion circuit in which each arm is bridge-connected,
The arm current flowing through each arm is detected, and when the instantaneous value of at least one of the detected arm currents exceeds a preset level, the PWM control is performed for a predetermined setting period . The PWM inverter control method is characterized in that the carrier frequency at the time is increased to a frequency at which the ripple amount of the arm current decreases to a predetermined value.
請求項1に記載のPWMインバータの制御方法において、
前記高くしたキャリア周波数で前記PWMインバータが動作中に、前記の検出した各アーム電流のうち、少なくともいずれか1つのアーム電流の瞬時値が前記レベルを再度超えたときには、前記高くしたキャリア周波数を新たに前記所定の設定期間継続させることを特徴とするPWMインバータの制御方法。
In the control method of the PWM inverter according to claim 1,
When the PWM inverter is operating at the increased carrier frequency, when the instantaneous value of at least one of the detected arm currents exceeds the level again, the increased carrier frequency is newly set. The PWM inverter control method is characterized by continuing the predetermined setting period .
JP2002265451A 2002-09-11 2002-09-11 PWM inverter control method Expired - Lifetime JP4449283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265451A JP4449283B2 (en) 2002-09-11 2002-09-11 PWM inverter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265451A JP4449283B2 (en) 2002-09-11 2002-09-11 PWM inverter control method

Publications (2)

Publication Number Publication Date
JP2004104933A JP2004104933A (en) 2004-04-02
JP4449283B2 true JP4449283B2 (en) 2010-04-14

Family

ID=32264591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265451A Expired - Lifetime JP4449283B2 (en) 2002-09-11 2002-09-11 PWM inverter control method

Country Status (1)

Country Link
JP (1) JP4449283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552851A (en) * 2015-12-28 2016-05-04 阳光电源股份有限公司 PWM pulse blocking method and device for three-level inverter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043025A (en) * 2006-08-04 2008-02-21 Yaskawa Electric Corp Inverter device and starting method therefor
DE112019003114T5 (en) * 2018-06-21 2021-03-11 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE RELIABILITY EVALUATION DEVICE AND METHOD FOR EVALUATING THE RELIABILITY OF SEMICONDUCTOR DEVICES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552851A (en) * 2015-12-28 2016-05-04 阳光电源股份有限公司 PWM pulse blocking method and device for three-level inverter
CN105552851B (en) * 2015-12-28 2018-10-02 阳光电源股份有限公司 A kind of three-level inverter pwm pulse envelope wave method and device

Also Published As

Publication number Publication date
JP2004104933A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP5429205B2 (en) Method and apparatus for protecting PWM rectifier circuit
US8217602B2 (en) Motor driving apparatus and control method thereof
JP5026553B2 (en) Motor drive device having function of dynamically switching conversion operation mode of AC / DC converter
JPH05176544A (en) Converter
JP5070799B2 (en) Inverter control device for motor drive and equipment equipped with the same
US8283880B2 (en) Motor drive device with function of switching to power regenerative operation mode
JP5500136B2 (en) Semiconductor power converter
KR102086519B1 (en) Power transforming apparatus, compressor including the same and method for controlling the same
JP2002199744A (en) Inverter-protecting method and device thereof
TW202110073A (en) Motor driving circuit and method thereof
JP5476788B2 (en) Inverter device
JP2008154431A (en) Motor controller
JP3697988B2 (en) Power supply device and electric motor or compressor drive system using the same
JP4449283B2 (en) PWM inverter control method
JP2009022060A (en) Controller of ac electric motor
JP3864793B2 (en) PWM cycloconverter and PWM cycloconverter protection method
JP2004180390A (en) Direct ac/ac power conversion apparatus
JPH11206130A (en) Power unit
KR100317356B1 (en) Drive control device of boost converter for power factor control
JP3788346B2 (en) Voltage type PWM inverter control device
JP2004180466A (en) Inverter device
KR101946369B1 (en) Power transforming apparatus and air conditioner including the same
JP4780305B2 (en) Inverter device
JP2006141110A (en) Motor controller
CN111164881A (en) Control circuit of electric tool

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Ref document number: 4449283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term