JP4448941B2 - Method for producing gasoline alternative fuel, kerosene alternative fuel and diesel oil alternative fuel using animal and vegetable oils and fats as raw materials - Google Patents

Method for producing gasoline alternative fuel, kerosene alternative fuel and diesel oil alternative fuel using animal and vegetable oils and fats as raw materials Download PDF

Info

Publication number
JP4448941B2
JP4448941B2 JP2005336080A JP2005336080A JP4448941B2 JP 4448941 B2 JP4448941 B2 JP 4448941B2 JP 2005336080 A JP2005336080 A JP 2005336080A JP 2005336080 A JP2005336080 A JP 2005336080A JP 4448941 B2 JP4448941 B2 JP 4448941B2
Authority
JP
Japan
Prior art keywords
alternative fuel
kerosene
fuel
gasoline
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005336080A
Other languages
Japanese (ja)
Other versions
JP2007138077A (en
Inventor
渡 飯嶋
憲 谷脇
有一 小林
憲弘 竹倉
仁 加藤
光則 山下
眞介 田辺
智隆 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2005336080A priority Critical patent/JP4448941B2/en
Publication of JP2007138077A publication Critical patent/JP2007138077A/en
Application granted granted Critical
Publication of JP4448941B2 publication Critical patent/JP4448941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はガソリン代替燃料、灯油代替燃料及び軽油代替燃料の製造方法に関する。   The present invention relates to a method for producing gasoline alternative fuel, kerosene alternative fuel, and light oil alternative fuel.

現在の生活を変えることなく、京都議定書の二酸化炭素排出量の目標値を達成するためにはバイオマス燃料のさらなる高度利用が必要である。   In order to achieve the target value of carbon dioxide emissions under the Kyoto Protocol without changing the current life, further advanced use of biomass fuel is necessary.

そのような状況の中で農林水産業等で多く利用されている軽油の代替燃料としては、バイオマス由来のバイオディーゼル燃料が提唱されている。バイオディーゼル燃料は、動植物油脂を低級アルコール(メタノール、エタノール等)でエステル交換して得られる脂肪酸アルキルエステルを主成分とし、欧米では普及している。しかしながらバイオディーゼル燃料は粘度が高いという問題がある。   Under such circumstances, biomass-derived biodiesel fuel has been proposed as an alternative fuel for light oil that is widely used in agriculture, forestry and fisheries. Biodiesel fuel has a fatty acid alkyl ester obtained by transesterifying animal and vegetable oils and fats with lower alcohols (methanol, ethanol, etc.) as a main component, and is widely used in Europe and the United States. However, biodiesel fuel has a problem of high viscosity.

そこでバイオディーゼル燃料の物性を改善するための技術として、油脂等を触媒を用いて分解し、低分子成分を得る熱分解法、接触分解法などの技術が提唱されている。しかしながら、触媒が必要であること、分解生成物以外に残渣としてタール等の液体燃料としては利用が困難な副産物が生成されること等が問題となっている。   Thus, as a technique for improving the physical properties of biodiesel fuel, techniques such as a thermal decomposition method and a catalytic decomposition method for decomposing oils and fats using a catalyst to obtain low molecular components have been proposed. However, there are problems that a catalyst is required and that by-products that are difficult to use as a liquid fuel such as tar are generated as a residue in addition to the decomposition products.

本発明者らは優れた性状を有する新たなバイオディーゼル燃料の製造法としてSTING(simultaneous reaction of transresterification and cracking)法の開発を行っている(特許文献1参照)。STING法は、超臨界メタノール中でトリグリセリドを反応させることにより、脂肪酸メチルエステルの生成とともに燃料成分の低分子化を同時に行う方法である。本発明者らはこれまでに、STING法によりバイオディーゼル燃料の流動点等の物性改善が可能であることを明らかにしてきた。   The present inventors have developed a STING (simultaneous reaction of transcription and cracking) method as a method for producing a new biodiesel fuel having excellent properties (see Patent Document 1). The STING method is a method in which triglyceride is reacted in supercritical methanol to simultaneously produce a fatty acid methyl ester and lower the molecular weight of a fuel component. The present inventors have clarified that physical properties such as the pour point of biodiesel fuel can be improved by the STING method.

以上の通りバイオマス由来の軽油代替燃料の開発はこれまでにも行われているが、民間で多く利用されているガソリンのバイオマス由来の代替燃料は未だ提唱されていない。バイオディーゼル燃料は燃料としての性状は重油相当であり、揮発油としての利用は不可能であるという問題がある。また、上述のSTING法は軽油代替燃料の製造法であり、特許文献1記載の条件ではガソリン代替燃料は製造できない。また、STING法では原料として水を用いることはできないという問題がある。   As described above, biomass-derived light oil alternative fuels have been developed so far, but no alternative fuel derived from gasoline, which is widely used in the private sector, has been proposed yet. Biodiesel fuel has the problem that its properties as fuel are equivalent to heavy oil and cannot be used as volatile oil. Further, the above STING method is a method for producing a light oil alternative fuel. Under the conditions described in Patent Document 1, a gasoline alternative fuel cannot be produced. Further, there is a problem that water cannot be used as a raw material in the STING method.

ガソリンの一部をバイオマス由来の代替燃料に置き換えるために、ガソリンにバイオエタノールを添加する試みが行われている。しかしバイオエタノールのガソリン中への添加量は3%程度と少なく、その効果も添加量相応である。また、アルコールは腐食性が高く熱量が低いため、ガソリン代替燃料として100%利用することは困難であり、日本国内ではガソリンに対して3%程度添加する添加物としての利用が限界である。また、エタノール発酵時の残渣の処理について有効な利用方法が確立されていないこと、エタノールを100%近くまで濃縮するには多くのエネルギーが必要であることなどから経済的にも問題を残している。   Attempts have been made to add bioethanol to gasoline in order to replace part of the gasoline with alternative fuel derived from biomass. However, the amount of bioethanol added to gasoline is as low as 3%, and the effect is commensurate with the amount added. Moreover, since alcohol is highly corrosive and has a low calorific value, it is difficult to use 100% as an alternative fuel for gasoline, and in Japan, its use as an additive to add about 3% to gasoline is limited. In addition, there is an economic problem because there is no effective method for treating residues during ethanol fermentation, and a lot of energy is required to concentrate ethanol to nearly 100%. .

以上の通り、100%バイオマス由来のガソリン代替燃料の開発が望まれている。
特開2005−60591号公報
As described above, development of a 100% biomass-derived gasoline alternative fuel is desired.
JP 2005-60591 A

本発明は動植物油脂からガソリン代替燃料または灯油代替燃料を製造することを目的とする。本発明はまた、動植物油脂からガソリン代替燃料または灯油代替燃料と軽油代替燃料とを同時に製造することを目的とする。   An object of the present invention is to produce gasoline alternative fuel or kerosene alternative fuel from animal and vegetable fats and oils. Another object of the present invention is to produce gasoline alternative fuel or kerosene alternative fuel and light oil alternative fuel from animal and vegetable fats and oils at the same time.

本発明は以下の発明を包含する。
(1)動植物油脂またはその廃食油と、水、低級アルコール、または水および低級アルコールの混合物とを混合し、得られた混合物を高温高圧条件下で処理することにより、ガソリン代替燃料または灯油代替燃料として使用できる成分を生成させることを特徴とする、ガソリン代替燃料または灯油代替燃料を製造する方法。
(2)動植物油脂またはその廃食油と、水、低級アルコール、または水および低級アルコールの混合物とを混合し、得られた混合物を高温高圧条件下で処理することにより、ガソリン代替燃料または灯油代替燃料として使用できる成分と、軽油代替燃料として使用できる成分とを生成させることを特徴とする、ガソリン代替燃料または灯油代替燃料と軽油代替燃料とを製造する方法。
(3)前記混合物を5Mpa〜100MPaの圧力条件下で処理することを特徴とする(1)または(2)記載の方法。
(4)前記混合物を300℃〜800℃の温度条件下で処理することを特徴とする(1)〜(3)のいずれか記載の方法。
(5)前記混合物を高温高圧条件下で3〜60分間処理することを特徴とする(1)〜(4)のいずれか記載の方法。
(6)(1)または(2)記載の方法により製造されたガソリン代替燃料。
(7)(1)または(2)記載の方法により製造された灯油代替燃料。
(8)(2)記載の方法により製造された軽油代替燃料。
(9)動植物油脂またはその廃食油と、水、低級アルコール、または水および低級アルコールの混合物とを出発原料として、ガソリン代替燃料または灯油代替燃料と軽油代替燃料とを製造するための装置であって、出発原料の混合物を高温高圧条件下で処理するための反応装置と、処理物を気体成分と液体成分とに分離する気液分離器と、分離された液体成分を、未反応の水、低級アルコール、または水および低級アルコールの混合物と、ガソリン代替燃料または灯油代替燃料として使用できる成分と、軽油代替燃料として使用できる成分とに分離する分離装置と、を備えることを特徴とする前記装置。
The present invention includes the following inventions.
(1) Gasoline substitute fuel or kerosene substitute fuel by mixing animal and vegetable fats and oils or waste cooking oil thereof with water, lower alcohol, or a mixture of water and lower alcohol, and treating the resulting mixture under high temperature and high pressure conditions A method for producing a gasoline alternative fuel or a kerosene alternative fuel, characterized in that a component that can be used as a fuel is produced.
(2) By mixing animal and vegetable fats and oils or waste cooking oil thereof with water, lower alcohol, or a mixture of water and lower alcohol, and treating the resulting mixture under high temperature and high pressure conditions, gasoline alternative fuel or kerosene alternative fuel A method for producing a gasoline alternative fuel or a kerosene alternative fuel and a light oil alternative fuel, characterized by producing a component that can be used as a fuel oil and a component that can be used as a light oil alternative fuel.
(3) The method according to (1) or (2), wherein the mixture is treated under a pressure condition of 5 Mpa to 100 MPa.
(4) The method according to any one of (1) to (3), wherein the mixture is treated under a temperature condition of 300 ° C to 800 ° C.
(5) The method according to any one of (1) to (4), wherein the mixture is treated under high temperature and high pressure conditions for 3 to 60 minutes.
(6) Gasoline substitute fuel produced by the method according to (1) or (2).
(7) A kerosene alternative fuel produced by the method according to (1) or (2).
(8) A light oil alternative fuel produced by the method described in (2).
(9) An apparatus for producing gasoline alternative fuel or kerosene alternative fuel and light oil alternative fuel using, as starting materials, animal and vegetable fats and oils or waste edible oil thereof and water, lower alcohol, or a mixture of water and lower alcohol. A reaction apparatus for treating a mixture of starting materials under high temperature and high pressure conditions, a gas-liquid separator for separating the treated product into a gas component and a liquid component, and separating the separated liquid component into unreacted water, The apparatus comprising: a separation device that separates alcohol or a mixture of water and lower alcohol, a component that can be used as a gasoline alternative fuel or a kerosene alternative fuel, and a component that can be used as a light oil alternative fuel.

本発明において「ガソリン代替燃料または灯油代替燃料として使用できる成分」としては、具体的には、沸点200℃以下の成分が挙げられる。   In the present invention, “components that can be used as gasoline substitute fuel or kerosene substitute fuel” specifically include components having a boiling point of 200 ° C. or less.

本発明において「軽油代替燃料として使用できる成分」としては、具体的には、沸点200℃超の成分(沸点200℃の成分は含まない)が挙げられる。   Specific examples of the “component that can be used as a light oil substitute fuel” in the present invention include components having a boiling point of more than 200 ° C. (components having a boiling point of 200 ° C. are not included).

本発明により、動植物油脂からガソリン代替燃料または灯油代替燃料を製造することが可能となる。本発明により、動植物油脂からガソリン代替燃料または灯油代替燃料と、軽油代替燃料とを同時に製造することが可能となる。   According to the present invention, it is possible to produce gasoline alternative fuel or kerosene alternative fuel from animal and vegetable fats and oils. According to the present invention, it is possible to simultaneously produce gasoline alternative fuel or kerosene alternative fuel and light oil alternative fuel from animal and vegetable fats and oils.

本発明によるガソリン代替燃料の製造方法は、動植物油脂またはその廃食油(以下「原料A」という場合がある)と、水、低級アルコール、または水および低級アルコールの混合物(以下「原料B」という場合がある)とを混合し、得られた混合物を高温高圧条件下で処理することにより、ガソリン代替燃料または灯油代替燃料として使用できる成分を生成させることを特徴とする。上記工程において、軽油代替燃料として使用できる成分も同時に発生する。すなわち本発明によれば、原料A及び原料Bの混合物からガソリン代替燃料または灯油代替燃料と、軽油代替燃料とを同時に製造することができる。   The method for producing a gasoline alternative fuel according to the present invention includes animal and vegetable fats or waste edible oil (hereinafter sometimes referred to as “raw material A”) and water, lower alcohol, or a mixture of water and lower alcohol (hereinafter referred to as “raw material B”). And the resulting mixture is processed under high temperature and high pressure conditions to produce components that can be used as gasoline substitute fuel or kerosene substitute fuel. In the above process, components that can be used as a light oil substitute fuel are also generated. That is, according to the present invention, a gasoline alternative fuel or kerosene alternative fuel and a light oil alternative fuel can be simultaneously produced from a mixture of the raw material A and the raw material B.

原料Aについて。本発明に使用できる植物油脂としては、例えばナタネ油、キャノーラ油、コーン油、大豆油、ヒマワリ油、または紅花油が挙げられるがこれらに限定されない。本発明に使用できる動物油脂としては、豚脂(ラード)または牛脂が挙げられるがこれらに限定されない。廃食油とは、家庭、レストラン、ファーストフード店、弁当製造工場等において調理に用いた後に劣化のために廃棄されることとなった動植物油脂を意味する。本発明に使用できる動植物油脂の廃食油としては、例えば天ぷら、トンカツ、フライドチキン等の調理に用いた揚げ油の廃棄品が挙げられるがこれらに限定されない。   About raw material A. Examples of vegetable oils and fats that can be used in the present invention include, but are not limited to, rapeseed oil, canola oil, corn oil, soybean oil, sunflower oil, or safflower oil. Animal fats and oils that can be used in the present invention include but are not limited to pork fat (lard) or beef tallow. Waste cooking oil means animal and vegetable oils and fats that have been discarded due to deterioration after being used for cooking at home, restaurants, fast food stores, bento manufacturing factories, and the like. Examples of the waste edible oil of animal and vegetable oils and fats that can be used in the present invention include, but are not limited to, waste products of fried oil used for cooking such as tempura, tonkatsu, and fried chicken.

原料Bについて。本発明において低級アルコールとは、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、イソブタノール等の炭素数1〜4のアルコールを意味する。複数種の低級アルコールが混合されたものも用いることができる。なかでもメタノールが好ましい。原料Bとしては水、低級アルコール、または水および低級アルコールの混合物を使用できる。水および低級アルコールの混合物の混合率は特に限定されない。原料Bとしては水、または水および低級アルコールの混合物が好ましい。   About raw material B. In the present invention, the lower alcohol means an alcohol having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, and isobutanol. What mixed multiple types of lower alcohol can also be used. Of these, methanol is preferable. As the raw material B, water, lower alcohol, or a mixture of water and lower alcohol can be used. The mixing ratio of the mixture of water and lower alcohol is not particularly limited. The raw material B is preferably water or a mixture of water and a lower alcohol.

原料Aと原料Bの混合比率は特に限定されないが、原料Aの炭化等に起因した製造装置の閉塞を防止できる比率であることが好ましい。より具体的には、原料Aと原料Bの混合比率は原料A:原料B=4:1〜1:4(v/v)程度の範囲が好ましい。   Although the mixing ratio of the raw material A and the raw material B is not specifically limited, It is preferable that it is a ratio which can prevent the obstruction | occlusion of the manufacturing apparatus resulting from the carbonization etc. of the raw material A. More specifically, the mixing ratio of the raw material A and the raw material B is preferably in the range of the raw material A: the raw material B = 4: 1 to 1: 4 (v / v).

次に、原料Aと原料Bの混合物を高温高圧下で処理する条件について説明する。圧力条件は、原料Bが亜臨界または超臨界状態となり、原料Aを十分に混和できる圧力であれば特に限定されないが、好ましくは5MPa〜100MPa、より好ましくは20MPa〜50MPaである。温度条件は原料Aが分解され低分子化される条件であれば特に限定されないが、好ましくは300℃〜800℃、より好ましくは450℃〜600℃、更に好ましくは450℃〜550℃、最も好ましくは500℃〜550℃(ただし500℃は含まない)である。処理時間は反応が十分進行しうる時間であれば特に限定されないが、好ましくは3分〜60分、より好ましくは3分〜30分、更に好ましくは4分〜16分である。   Next, conditions for treating the mixture of the raw material A and the raw material B under high temperature and high pressure will be described. The pressure condition is not particularly limited as long as the raw material B is in a subcritical or supercritical state and can sufficiently mix the raw material A, but is preferably 5 MPa to 100 MPa, more preferably 20 MPa to 50 MPa. The temperature condition is not particularly limited as long as the raw material A is decomposed and reduced in molecular weight, but is preferably 300 ° C to 800 ° C, more preferably 450 ° C to 600 ° C, still more preferably 450 ° C to 550 ° C, and most preferably. Is 500 ° C. to 550 ° C. (however, 500 ° C. is not included). The treatment time is not particularly limited as long as the reaction can proceed sufficiently, but is preferably 3 minutes to 60 minutes, more preferably 3 minutes to 30 minutes, and further preferably 4 minutes to 16 minutes.

本発明では、3つの処理条件(温度、圧力、時間)を例えば上記範囲内から選択して適宜組合せることにより、反応混合物中の原料Aを分解して低分子化してガソリンまたは灯油代替燃料の成分を得ることができる。処理温度が高いほど、処理圧力が高いほど、処理時間が長いほど、原料Aの分解は進む傾向があるため、処理温度が顕著に高い場合、処理圧力が顕著に高い場合、あるいは処理時間が顕著に長い場合には、残りの条件は上記範囲内で比較的自由に選択することができる。例えば、処理温度が500℃を超える場合には、処理圧力および処理時間は上記の範囲で任意に選択することができる(ただし、処理圧力は高いほど、処理時間は長いほど原料Aの分解は更に進む傾向がある)。処理圧力が40MPa(好ましくは50MPa、より好ましくは60MPa)を超える場合、処理温度および処理時間は上記の範囲で任意に選択することができる(ただし、処理温度は高いほど、処理時間は長いほど原料Aの分解は更に進む傾向がある)。処理時間が12分を超える場合、処理温度および処理圧力は上記の範囲で任意に選択することができる(ただし、処理温度および処理圧力は高いほど原料Aの分解は更に進む傾向がある)。なお上記の通り、処理温度が高いほど、処理圧力が高いほど、処理時間が長いほど、原料Aの分解は進む傾向があるが、同時に脂肪酸の重合なども進み易くなるため、所望の生成物を効率的に得るには各条件は前段落に示す上限の範囲内であることが好ましい。   In the present invention, the raw material A in the reaction mixture is decomposed and reduced in molecular weight by appropriately selecting and combining the three processing conditions (temperature, pressure, time) from the above range, for example, for gasoline or kerosene alternative fuel. Ingredients can be obtained. The higher the processing temperature, the higher the processing pressure, the longer the processing time, the more the raw material A decomposes. Therefore, when the processing temperature is significantly higher, the processing pressure is significantly higher, or the processing time is remarkable. In the case of a long time, the remaining conditions can be selected relatively freely within the above range. For example, when the processing temperature exceeds 500 ° C., the processing pressure and the processing time can be arbitrarily selected within the above range (however, the higher the processing pressure, the longer the processing time, the further decomposition of the raw material A). Tend to go forward). When the processing pressure exceeds 40 MPa (preferably 50 MPa, more preferably 60 MPa), the processing temperature and processing time can be arbitrarily selected within the above ranges (however, the higher the processing temperature, the longer the processing time, the raw material The decomposition of A tends to proceed further). When the treatment time exceeds 12 minutes, the treatment temperature and the treatment pressure can be arbitrarily selected within the above ranges (however, the higher the treatment temperature and the treatment pressure, the more the decomposition of the raw material A tends to proceed). As described above, the higher the processing temperature, the higher the processing pressure, and the longer the processing time, the more likely the decomposition of the raw material A tends to proceed, but at the same time, the polymerization of fatty acids and the like easily proceed. In order to obtain efficiently, each condition is preferably within the upper limit range shown in the preceding paragraph.

上記高温高圧処理を経た処理物は気体成分と液体成分とからなる。気体成分にはメタン等が含まれる。この気体成分は好ましくは気体燃料として利用できる。   The processed material that has undergone the high-temperature and high-pressure treatment is composed of a gas component and a liquid component. Gas components include methane and the like. This gaseous component can preferably be used as gaseous fuel.

液体成分は、未反応の原料B(以下「生成物a」という場合がある)、ガソリン代替燃料または灯油代替燃料として使用できる成分(以下「生成物b」という場合がある)、および、軽油代替燃料として使用できる成分(以下「生成物c」という場合がある)を含む。生成物a〜cは通常の方法(分留、比重選、膜分離、各種クロマトグラフィなど)で分離することができる。   The liquid component includes unreacted raw material B (hereinafter sometimes referred to as “product a”), a component that can be used as a gasoline substitute fuel or kerosene substitute fuel (hereinafter also referred to as “product b”), and a light oil substitute. It contains components that can be used as fuel (hereinafter sometimes referred to as “product c”). The products a to c can be separated by a usual method (fractional distillation, specific gravity selection, membrane separation, various chromatography, etc.).

生成物aは再び原料Bとして利用できる。
生成物bの成分は主として分子量80〜160の炭化水素、すなわち直鎖アルカン、アルキル側鎖アルカン、シクロアルカン等である。より具体的には、シクロアルカン類(メチルシクロヘキサン、メチルシクロプロパン、ブチルシクロペンタンなど)、アルカン類(ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカンなど)、脂肪酸メチルエステル類(ペンタン酸メチルエステル、ヘプタン酸メチルエステルなど)、ベンゼン類(ベンゼン、トルエンなど)などである。これらには現在利用されているガソリンとほぼ同じ成分も含まれる。また、反応混合物から生成物bへの反応が促進される条件下(温度510℃以上、圧力は任意、時間4分以上、特に灯油に相当する成分の収率を向上させたい場合は温度510〜550℃、圧力40MPa以上、時間5〜10分)では、生成物bとしてガソリンに相当する成分と、灯油に相当とする成分が含まれることがある。この場合は、任意の方法でガソリンに相当する成分と、灯油に相当する成分とを分離することが可能である。分離方法の一例を挙げれば、生成物bを40℃、250hPaで減圧蒸留することにより、蒸留物としてガソリン相当画分を、残留物として灯油相当画分を得ることができる。生成物bは、バイオエタノールと異なり、ガソリン又は灯油とほぼ同様に利用できる。また、任意の割合(例えば10%(v/v)程度)でガソリン、灯油、軽油、重油等に添加できる添加剤としても利用できる。
Product a can be used again as raw material B.
The component of the product b is mainly a hydrocarbon having a molecular weight of 80 to 160, that is, a linear alkane, an alkyl side chain alkane, a cycloalkane and the like. More specifically, cycloalkanes (such as methylcyclohexane, methylcyclopropane, butylcyclopentane), alkanes (such as hexane, heptane, octane, nonane, decane, undecane), fatty acid methyl esters (pentanoic acid methyl ester, Heptanoic acid methyl ester) and benzenes (benzene, toluene, etc.). These include almost the same components as gasoline currently used. In addition, under conditions where the reaction from the reaction mixture to the product b is promoted (temperature: 510 ° C. or higher, pressure is arbitrary, time is 4 minutes or longer, particularly when the yield of components corresponding to kerosene is to be improved, the temperature is from 510 (550 ° C., pressure 40 MPa or more, time 5 to 10 minutes), the product b may include a component corresponding to gasoline and a component corresponding to kerosene. In this case, the component corresponding to gasoline and the component corresponding to kerosene can be separated by any method. For example, the product b is distilled under reduced pressure at 40 ° C. and 250 hPa to obtain a gasoline-equivalent fraction as a distillate and a kerosene-equivalent fraction as a residue. The product b can be used almost the same as gasoline or kerosene, unlike bioethanol. Moreover, it can utilize also as an additive which can be added to gasoline, kerosene, light oil, heavy oil, etc. in arbitrary ratios (for example, about 10% (v / v)).

生成物cとして、重油あるいは軽油に相当する成分が得られる。生成物bの収率が低い生成条件下では脂肪酸メチルエステルを中心とした軽油に近い燃料が得られ、生成物bの収率を増加させる条件下では脂肪酸等の重合などによる生成物を多く含んだより重油に近い性状の燃料が得られる。これらはディーゼルエンジン、ボイラー、バーナーなどの燃料として利用可能である。   A component corresponding to heavy oil or light oil is obtained as the product c. Under production conditions where the yield of product b is low, a fuel close to light oil centered on fatty acid methyl ester can be obtained, and under conditions where the yield of product b is increased, a lot of products such as fatty acid polymerization are contained. On the other hand, fuel with properties close to heavy oil can be obtained. These can be used as fuel for diesel engines, boilers, and burners.

本発明はまた上記方法を実施するための反応装置に関する。図1には、本発明の装置の最も好ましいと考えられる形態を示す。すなわち、原料Aと原料Bを混合し、混合物を任意の条件で反応装置にて処理する。反応後の処理物は気体成分と液体成分とからなり、両者は気液分離器により分離される。得られた気体成分でガスタービンまたはガスディーゼル発電機等を稼動し電力を得、反応装置に供給する。また、得られた液体成分は分離装置により生成物a、b、cに分離される。生成物aは原料Bとして再利用できる。生成物bは、ガソリン代替燃料及び灯油代替燃料として利用することができる。生成物cは軽油代替燃料として利用することができる。生成物bおよびcはまた、重油、軽油、灯油、ガソリン、ジェット燃料等への添加剤として利用することができる。生成物cの一部は、反応装置を稼動するためのディーゼル発電機またはボイラーの燃料として用いることができる。それによって、外部からの電力供給を必要とせずに電力を反応装置に供給して反応装置を稼動することができる。   The invention also relates to a reactor for carrying out the above process. FIG. 1 shows the most preferred form of the apparatus of the present invention. That is, the raw material A and the raw material B are mixed, and the mixture is processed in a reactor under arbitrary conditions. The processed product after the reaction consists of a gas component and a liquid component, and both are separated by a gas-liquid separator. A gas turbine or a gas diesel generator or the like is operated with the obtained gas component to obtain electric power, which is supplied to the reactor. Further, the obtained liquid component is separated into products a, b, and c by a separation device. Product a can be reused as raw material B. The product b can be used as a gasoline alternative fuel and a kerosene alternative fuel. The product c can be used as a light oil alternative fuel. Products b and c can also be utilized as additives to heavy oil, light oil, kerosene, gasoline, jet fuel, and the like. Part of the product c can be used as fuel for a diesel generator or boiler for operating the reactor. As a result, the reaction apparatus can be operated by supplying electric power to the reaction apparatus without requiring an external power supply.

本発明により、動植物油脂から、田植え機、管理機、畦畔管理作業などに用いられるガソリン代替燃料の製造が可能となる。   According to the present invention, it is possible to produce a gasoline alternative fuel to be used for planting machines, management machines, shore management work and the like from animal and vegetable fats and oils.

本発明により製造されるガソリン代替燃料または軽油代替燃料は、食品加工工場、廃棄物処理場等、廃油脂が発生する個所において各事業所内の車両および発電機等に利用する軽油代替燃料、ガソリン代替燃料あるいはガソリン用添加剤としての利用が可能であり、二酸化炭素排出量抑制が期待できる。   Gasoline alternative fuel or light oil alternative fuel produced by the present invention is a gas oil alternative fuel, gasoline alternative used in vehicles and generators in each office in places where waste oil and fats are generated, such as food processing factories and waste treatment plants. It can be used as an additive for fuel or gasoline and can be expected to suppress carbon dioxide emissions.

以下に実施例を参照して本発明を具体的に説明するが、本発明はこれらの範囲には限定されない。   The present invention will be specifically described below with reference to examples, but the present invention is not limited to these ranges.

原料Aとしてキャノーラ油、大豆油、コーン油等とそれらの廃食油の混合物を用いた。原料Bとしてメタノールを用いた。原料Aと原料Bの混合比を2:1(v/v)とした。得られた混合物を圧力20MPa、反応管出口温度522℃、時間5分で処理した。処理後、ロータリーエバポレーターにて減圧蒸留を行ない、生成物cと生成物aおよびbの混合物とに分離した。分離の際、温度は50℃、圧力は100hPa以下とした。その後、生成物aおよびbの混合物を数時間静置し、上層を生成物b、下層を生成物aとした。さらに生成物bを40℃、250hPaで減圧蒸留し、蒸留物である生成物b’(ガソリン相当)と残留物である生成物b’’(灯油相当と推測)を得た。この時、生成物b’、b’’ともに凝固点は−20℃以下であった。生成物b’をGC/MSを用いて定性分析を行った結果、推測された成分の代表的なものの一部を表1に、生成物b’’の成分と推測された代表的なものの一部を表2に示す。分析にはAgilentTechnology製ガスクロマトグラフィ6890Nと日本電子データム製質量分析計GC−mate IIを用い、カラムにはAgilent製HP−5TA(15m x 0.32m x 0.1μm)を用いた。キャリアガスにヘリウム(流量1.5ml/min)、オーブン温度は測定開始時に50℃で1分間保持し、その後250℃までは10℃/min、365℃までは15℃/minで昇温し365℃で8分間保持するよう設定した。また、注入口温度220℃、スプリット比400:1、注入量1μlとし、試料の希釈は行わなかった。   As the raw material A, a mixture of canola oil, soybean oil, corn oil and the like and waste cooking oils thereof was used. Methanol was used as the raw material B. The mixing ratio of the raw material A and the raw material B was 2: 1 (v / v). The obtained mixture was treated at a pressure of 20 MPa, a reaction tube outlet temperature of 522 ° C., and a time of 5 minutes. After the treatment, vacuum distillation was performed on a rotary evaporator to separate into product c and a mixture of products a and b. During the separation, the temperature was 50 ° C. and the pressure was 100 hPa or less. Thereafter, the mixture of the products a and b was allowed to stand for several hours, and the upper layer was the product b and the lower layer was the product a. Further, the product b was distilled under reduced pressure at 40 ° C. and 250 hPa to obtain a product b ′ (equivalent to gasoline) as a distillate and a product b ″ (estimated as equivalent to kerosene) as a residue. At this time, the freezing points of the products b ′ and b ″ were −20 ° C. or lower. As a result of qualitative analysis of the product b ′ using GC / MS, some of the typical components estimated are shown in Table 1, and one of the typical components estimated as the component of the product b ″ is shown in Table 1. The parts are shown in Table 2. Agilent Technologies gas chromatography 6890N and JEOL Datum mass spectrometer GC-mate II were used for analysis, and Agilent HP-5TA (15 m × 0.32 m × 0.1 μm) was used for the column. The carrier gas is helium (flow rate 1.5 ml / min), the oven temperature is maintained at 50 ° C. for 1 minute at the start of measurement, and then the temperature is increased to 10 ° C./min up to 250 ° C. and 15 ° C./min up to 365 ° C. 365 It was set to hold at 8 ° C for 8 minutes. The inlet temperature was 220 ° C., the split ratio was 400: 1, the injection volume was 1 μl, and the sample was not diluted.

Figure 0004448941
Figure 0004448941
Figure 0004448941
Figure 0004448941

Figure 0004448941
Figure 0004448941

また、生成物b’の性状をガソリンの品質要求規格に従い測定したところ、表3のようになった。一部を除いてガソリンの要求品質規格を満たしていた。   Further, the properties of the product b 'were measured in accordance with gasoline quality requirement standards, and as shown in Table 3. Except for some, it met the required quality standards for gasoline.

Figure 0004448941
Figure 0004448941

この生成物b’をさらに30℃、150hPaで減圧蒸留し、得られた蒸留物の蒸留性状および実在ガムを測定したところ、表4のようにそれぞれ低下させることができ、よりガソリン規格に合致するものとなった。これらの結果から、この時点で規格外の項目についても添加剤等の使用、あるいはガソリンとの混合によって規格を満たすことが可能であると考えられた。   This product b ′ was further distilled under reduced pressure at 30 ° C. and 150 hPa, and the distillation properties and the actual gum of the obtained distillate were measured. As a result, they could be reduced as shown in Table 4, and more conform to gasoline standards. It became a thing. From these results, it was considered that it was possible to satisfy the standard by using an additive or the like or mixing with gasoline for items outside the standard at this point.

また、生成物b’をホンダ製歩行型耕耘機に100%で供試したところ、始動、走行および耕耘作業に問題は生じなかった。   Further, when the product b 'was tested at 100% on a Honda walking type tiller, no problems occurred in starting, running, and tilling work.

Figure 0004448941
Figure 0004448941

原料Aとしてキャノーラ油、大豆油、コーン油等とそれらの廃食油の混合物を用いた。原料Bとしてメタノールを用いた。原料Aと原料Bの混合比を2:1(v/v)とした。得られた混合物を圧力20MPa、反応管出口温度400〜540℃、時間5分で処理した。処理後、ロータリーエバポレーターにて減圧蒸留を行ない、生成物cと生成物aおよびbの混合物に分離した。分離の際、温度は40℃、圧力の下限を100hPaとした。その後、生成物aおよびbの混合物を遠心分離機で3000rpm、15分、0℃で処理し、上層を生成物b、下層を生成物aとした。
各反応温度条件における生成物bの原料Aの重量に対する生成率を図2に示す。
As the raw material A, a mixture of canola oil, soybean oil, corn oil and the like and waste cooking oils thereof was used. Methanol was used as the raw material B. The mixing ratio of the raw material A and the raw material B was 2: 1 (v / v). The resulting mixture was treated at a pressure of 20 MPa, a reaction tube outlet temperature of 400 to 540 ° C., and a time of 5 minutes. After the treatment, vacuum distillation was performed on a rotary evaporator to separate into a mixture of product c and products a and b. During the separation, the temperature was 40 ° C., and the lower limit of the pressure was 100 hPa. Thereafter, the mixture of products a and b was treated with a centrifuge at 3000 rpm for 15 minutes at 0 ° C., and the upper layer was product b and the lower layer was product a.
The production rate of the product b with respect to the weight of the raw material A under each reaction temperature condition is shown in FIG.

原料Aとしてキャノーラ油、大豆油、コーン油等とそれらの廃食油の混合物を用いた。原料Bとして水を用いた。原料Aに対して原料Bを容積比で50%の割合で混入した(原料Aと原料Bの混合比を2:1(v/v)とした)。得られた混合物を、圧力20MPa、反応管出口温度514℃、時間5分で処理した。   As the raw material A, a mixture of canola oil, soybean oil, corn oil and the like and waste cooking oils thereof was used. Water was used as the raw material B. The raw material B was mixed in a volume ratio of 50% with respect to the raw material A (the mixing ratio of the raw material A and the raw material B was 2: 1 (v / v)). The obtained mixture was treated at a pressure of 20 MPa, a reaction tube outlet temperature of 514 ° C., and a time of 5 minutes.

処理終了後、原料A+原料Bの総重量に対して約90重量%の液体成分が回収された。得られた液体成分のうち、約20重量%が生成物aに相当する水、約4重量%が生成物bに相当するガソリン代替成分、約75重量%が生成物cに相当する軽油代替成分であった。   After the treatment, about 90% by weight of the liquid component was recovered with respect to the total weight of the raw material A + the raw material B. Of the obtained liquid component, about 20% by weight of water corresponding to product a, about 4% by weight of gasoline substitute component corresponding to product b, and about 75% by weight of light oil substitute component corresponding to product c Met.

原料Aとしてそば屋から排出された廃食油(キャノーラ油および大豆油が中心と推測される)を用いた。原料Bとして水を用いた。原料Aと原料Bの混合比を1:1(v/v)とした。得られた混合物を、圧力30MPa、反応管出口温度532℃、時間5分で処理した。   Waste edible oil discharged from buckwheat noodles (presumed to be canola oil and soybean oil) was used as raw material A. Water was used as the raw material B. The mixing ratio of the raw material A and the raw material B was 1: 1 (v / v). The obtained mixture was treated at a pressure of 30 MPa, a reaction tube outlet temperature of 532 ° C., and a time of 5 minutes.

処理終了後、原料A+原料Bの総重量に対して約90重量%の液体成分が回収された。得られた液体成分のうち、約40重量%が生成物aに相当する水、約7重量%が生成物b’に相当するガソリン代替成分、約3重量%が生成物b’’に相当する灯油代替成分、約40重量%が生成物cに相当する軽油代替成分であった。   After the treatment, about 90% by weight of the liquid component was recovered with respect to the total weight of the raw material A + the raw material B. About 40% by weight of the obtained liquid component corresponds to water corresponding to the product a, about 7% by weight corresponds to the gasoline substitute component corresponding to the product b ′, and about 3% by weight corresponds to the product b ″. About 40% by weight of the kerosene substitute component was a light oil substitute component corresponding to the product c.

本発明の最も好ましいと考えられる利用形態を示す図である。It is a figure which shows the utilization form considered most preferable of this invention. 反応温度と、生成物b(揮発性成分)の生成量の関係を示す図である。It is a figure which shows the relationship between reaction temperature and the production amount of the product b (volatile component).

Claims (6)

動植物油脂またはその廃食油と、水、低級アルコール、または水および低級アルコールの混合物とを4:1〜1:4(v/v)の混合比率で混合し、得られた混合物を、510〜600℃かつ20〜50MPaの温度圧力条件下で4〜16分間処理することにより、ガソリン代替燃料または灯油代替燃料として使用できる成分を生成させることを特徴とする、ガソリン代替燃料または灯油代替燃料を製造する方法。 Animal and vegetable fats and oils or waste cooking oil thereof and water, lower alcohol, or a mixture of water and lower alcohol are mixed at a mixing ratio of 4: 1 to 1: 4 (v / v), and the resulting mixture is mixed with 510 to 600. A gasoline alternative fuel or a kerosene alternative fuel is produced by producing a component that can be used as a gasoline alternative fuel or a kerosene alternative fuel by treating for 4 to 16 minutes at a temperature and pressure condition of 20 ° C and 20 ° C. Method. 動植物油脂またはその廃食油と、水、低級アルコール、または水および低級アルコールの混合物とを4:1〜1:4(v/v)の混合比率で混合し、得られた混合物を、510〜600℃かつ20〜50MPaの温度圧力条件下で4〜16分間処理することにより、ガソリン代替燃料または灯油代替燃料として使用できる成分と、軽油代替燃料として使用できる成分とを生成させることを特徴とする、ガソリン代替燃料または灯油代替燃料と軽油代替燃料とを製造する方法。 Animal and vegetable fats and oils or waste cooking oil thereof and water, lower alcohol, or a mixture of water and lower alcohol are mixed at a mixing ratio of 4: 1 to 1: 4 (v / v), and the resulting mixture is mixed with 510 to 600. A component that can be used as a gasoline alternative fuel or a kerosene alternative fuel and a component that can be used as a light oil alternative fuel are produced by treating for 4 to 16 minutes at a temperature and pressure condition of 20 ° C and 20 ° C. A method for producing gasoline alternative fuel or kerosene alternative fuel and light oil alternative fuel. 動植物油脂またはその廃食油と、水、低級アルコール、または水および低級アルコールの混合物との混合比率が2:1〜1:1(v/v)である、請求項1または2記載の方法。The method according to claim 1 or 2, wherein the mixing ratio of the animal or vegetable oil or fat or its waste edible oil and water, a lower alcohol, or a mixture of water and a lower alcohol is 2: 1 to 1: 1 (v / v). 請求項1または2記載の方法により製造されたガソリン代替燃料。   A gasoline alternative fuel produced by the method according to claim 1 or 2. 請求項1または2記載の方法により製造された灯油代替燃料。   A kerosene alternative fuel produced by the method according to claim 1 or 2. 請求項2記載の方法により製造された軽油代替燃料。   A light oil alternative fuel produced by the method according to claim 2.
JP2005336080A 2005-11-21 2005-11-21 Method for producing gasoline alternative fuel, kerosene alternative fuel and diesel oil alternative fuel using animal and vegetable oils and fats as raw materials Active JP4448941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336080A JP4448941B2 (en) 2005-11-21 2005-11-21 Method for producing gasoline alternative fuel, kerosene alternative fuel and diesel oil alternative fuel using animal and vegetable oils and fats as raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336080A JP4448941B2 (en) 2005-11-21 2005-11-21 Method for producing gasoline alternative fuel, kerosene alternative fuel and diesel oil alternative fuel using animal and vegetable oils and fats as raw materials

Publications (2)

Publication Number Publication Date
JP2007138077A JP2007138077A (en) 2007-06-07
JP4448941B2 true JP4448941B2 (en) 2010-04-14

Family

ID=38201349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336080A Active JP4448941B2 (en) 2005-11-21 2005-11-21 Method for producing gasoline alternative fuel, kerosene alternative fuel and diesel oil alternative fuel using animal and vegetable oils and fats as raw materials

Country Status (1)

Country Link
JP (1) JP4448941B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077923B1 (en) 2010-04-20 2011-10-31 한밭대학교 산학협력단 Production apparatus of mixed bio-oil of animal fat solved by refined crude oil as a solvent
KR101670936B1 (en) 2014-08-18 2016-10-31 (주) 한국지에스엠 Method for manufacturing bio fuel using animal and vegetable fats of high acid value
CN106566584B (en) * 2016-10-27 2018-07-31 邢宗田 A kind of compound additive for methanol gasoline and the preparation method and application thereof

Also Published As

Publication number Publication date
JP2007138077A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
Gosselink et al. Reaction pathways for the deoxygenation of vegetable oils and related model compounds
Sivakumar et al. Bio-diesel production by alkali catalyzed transesterification of dairy waste scum
Ma et al. Biodiesel production: a review
JP4122433B2 (en) Catalyst-free production method of biodiesel fuel that does not produce by-products
JP2010511750A (en) Process for conversion of biomass to fuel
KR20120032018A (en) A process for the production of bio-naphtha from complex mixtures of natural occurring fats & oils
Seifi et al. Bound cleavage at carboxyl group-glycerol backbone position in thermal cracking of the triglycerides in sunflower oil
KR20150110631A (en) Process for the production of bio-naphtha from complex mixtures of natural occurring fats & oils
KR20100075841A (en) Energy efficient process to produce biologically based fuels
JP4448941B2 (en) Method for producing gasoline alternative fuel, kerosene alternative fuel and diesel oil alternative fuel using animal and vegetable oils and fats as raw materials
CA2742793C (en) Methods of producing jet fuel from natural oil feedstocks through oxygen-cleaved reactions
JP5234456B2 (en) Method for catalytic cracking of fats and oils
Kharia et al. A study on various sources and technologies for production of biodiesel and its efficiency
Abrar et al. An overview of current trends and future scope for vegetable oil–based sustainable alternative fuels for compression ignition engines
Contreras-Andrade et al. Transesterification reaction of waste cooking oil and chicken fat by homogeneous catalysis
KR102273722B1 (en) Pyrolysis reactions in the presence of an alkene
Krishnakumar et al. Physico-chemical properties of the biodiesel extracted from rubber seed oil using solid metal oxide catalysts
Shin et al. Effects of ultrasonification and mechanical stirring methods for the production of biodiesel from rapeseed oil
CN101553449B (en) Hydrogenation process
Puspawiningtiyas et al. The effect of Ca/Mg/Zn mixing ratio on the research octane number of bio-gasoline during basic soap pyrolysis
WO2009085324A1 (en) Method for production of short chain carboxylic acids and esters from biomass and product of same
US11643616B2 (en) Renewable base oil production engaging metathesis
Na et al. Biodiesel production from waste cooking grease: optimization and comparative productivity assessment
Baladincz et al. Expanding feedstock supplies of the second generation bio-fuels of diesel-engines
Truong Development of bio-jet fuel production using palm kernel oil and ethanol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Ref document number: 4448941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250