JP4448933B2 - Organic waste treatment methods - Google Patents

Organic waste treatment methods Download PDF

Info

Publication number
JP4448933B2
JP4448933B2 JP2004361619A JP2004361619A JP4448933B2 JP 4448933 B2 JP4448933 B2 JP 4448933B2 JP 2004361619 A JP2004361619 A JP 2004361619A JP 2004361619 A JP2004361619 A JP 2004361619A JP 4448933 B2 JP4448933 B2 JP 4448933B2
Authority
JP
Japan
Prior art keywords
reactor
anaerobic
fluidized bed
carrier
organic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004361619A
Other languages
Japanese (ja)
Other versions
JP2006167548A (en
Inventor
茂樹 澤山
英男 楊
建一郎 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004361619A priority Critical patent/JP4448933B2/en
Publication of JP2006167548A publication Critical patent/JP2006167548A/en
Application granted granted Critical
Publication of JP4448933B2 publication Critical patent/JP4448933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Description

本発明は、家庭・レストラン・工場・下水処理場等から排出される有機性廃棄物や廃水を、直接、嫌気性消化槽を用い嫌気的に発酵させることにより、廃棄物中の有機物を迅速に分解・消化処理する有機性廃棄物の処理方法に関する。   The present invention enables organic waste and waste water discharged from households, restaurants, factories, sewage treatment plants, etc. to be anaerobically fermented directly using an anaerobic digestion tank, thereby quickly accelerating the organic matter in the waste. The present invention relates to a method for treating organic waste to be decomposed and digested.

生ごみ等有機性廃棄物の処理方法として、嫌気性消化が注目されるようになっている。しかし、従来の嫌気性消化法では、有機物分解速度、消化ガス生成速度は十分に高くないという問題点があり、そのため、ある程度大きな消化槽を用意する必要があった。分解速度が速くなれば、消化槽がよりコンパクトにでき、経済性・エネルギー収支等の改善が実現できる。   Anaerobic digestion is gaining attention as a method for treating organic waste such as garbage. However, the conventional anaerobic digestion method has a problem that the organic matter decomposition rate and the digestion gas generation rate are not sufficiently high, and therefore it is necessary to prepare a digester large to some extent. If the decomposition rate is increased, the digester can be made more compact, and the economic efficiency and energy balance can be improved.

これらの問題点を解消するために、活性汚泥方式で発生する汚泥の余剰部分を、高温嫌気性消化処理し、該処理液を固液分離膜に通して循環させ、該分離膜を通して水分を抜き取ることを特徴とする有機性汚泥の処理方法が提案されているが(特許文献1)、この方法は、従来の高温型嫌気性消化法であり、十分に消化効率が上がらないという問題があった。   In order to solve these problems, an excess portion of sludge generated by the activated sludge method is subjected to high-temperature anaerobic digestion, and the treatment liquid is circulated through a solid-liquid separation membrane, and water is extracted through the separation membrane. An organic sludge treatment method characterized by this is proposed (Patent Document 1), but this method is a conventional high-temperature anaerobic digestion method, and there is a problem that digestion efficiency does not sufficiently increase. .

また、消化汚泥を主体とする混合液を嫌気性消化リアクタから引き抜き循環・返送する過程で熱処理する方法が提案されているが(特許文献2)、この方法は、消化汚泥を高温で処理して物理化学的に消化汚泥の構造を破壊しようとしたものであり、嫌気性消化槽そのものの性能を向上させる方法ではなく、消化効率が十分に上がらないという問題が残る。   In addition, a method of heat-treating a mixed liquid mainly composed of digested sludge from the anaerobic digestion reactor in the process of drawing and circulating / returning it has been proposed (Patent Document 2). In this method, digested sludge is treated at a high temperature. It is intended to destroy the structure of digested sludge physicochemically, and is not a method for improving the performance of the anaerobic digester itself, but the problem that digestion efficiency does not sufficiently increase remains.

嫌気性消化槽内に微生物の住処となる担体を具備することにより、分解に関わる微生物を高濃度に槽内に維持し、分解・ガス化効率を図る固定化法が検討されている。
UASB法といわれる微生物が自己凝集したグラニュールを用い、消化槽内の微生物濃度を高める方法が検討・実用化されているが(特許文献3)、この方法は固形分をあまり分解できないので、もっぱら懸濁固形分の少ない有機性廃水の処理に利用されており、固形分を含有する有機性廃棄物や廃水の嫌気性処理には不向きである。
An immobilization method has been studied in which an anaerobic digestion tank is provided with a carrier serving as a place where microorganisms reside, so that microorganisms involved in decomposition can be maintained in the tank at a high concentration and decomposition and gasification efficiency can be improved.
A method of increasing the concentration of microorganisms in the digestion tank using a self-aggregated granule called UASB method has been studied and put into practical use (Patent Document 3). However, since this method cannot decompose solids so much, it is exclusively. It is used for the treatment of organic wastewater with a small amount of suspended solids, and is not suitable for anaerobic treatment of organic waste and wastewater containing solids.

多孔質セラミック顆粒担体を用いた固定化嫌気性消化法が報告されているが(特許文献4)、本法はセラミック顆粒に貫通孔を設け数珠状に固定化して使用するため、装置が複雑で施工が難しく、槽内の担体容積が少ないため分解効率がさほど上昇しないという問題は残る。   An immobilized anaerobic digestion method using a porous ceramic granule carrier has been reported (Patent Document 4). However, since this method uses a ceramic granule with a through hole and is fixed in a rosary shape, the apparatus is complicated. The problem remains that the construction is difficult and the decomposition efficiency does not increase so much because the volume of the carrier in the tank is small.

また、流動性の0.5〜6 mmの粒状有機ゲル微粒子を微生物固定化担体として用いる方法が報告されているが(特許文献5)、流動性の微粒子を製造することや消化槽内に維持することが難しく、経済性や操作性に問題がある。
また、カーボンフェルトは高い孔隙率と表面積を持つ、耐久性の優れた材料である。カーボンフェルトを固定床担体材料としたセルロースの嫌気性分解に関する研究の結果、優れた固定効果と高い分解率が得られている(Yang ら2004 非特許文献1)。カーボンフェルトを用い、新規かつ高効率な種々のリアクタデザインが考えられる。
In addition, although a method using fluid 0.5 to 6 mm granular organic gel fine particles as a microorganism-immobilized carrier has been reported (Patent Document 5), producing fluid fine particles or maintaining them in a digestion tank. However, there are problems with economy and operability.
Carbon felt is a highly durable material with high porosity and surface area. As a result of research on anaerobic degradation of cellulose using carbon felt as a fixed bed carrier material, an excellent fixing effect and a high decomposition rate have been obtained (Yang et al. 2004 Non-Patent Document 1). Various new and highly efficient reactor designs using carbon felt are conceivable.

特開平07−148500号公報JP 07-148500 A 特開平10−085784号公報Japanese Patent Laid-Open No. 10-085784 特開平11−319782号公報Japanese Patent Laid-Open No. 11-319782 特開平09−038686号公報JP 09-038686 A 特開2003−062594号公報JP 2003-062594 A YingnanYang, Kenichiro Tsukahara, Tatsuo Yagishita and Shigeki Sawayama: Performanceof a fixed-bed reactor packed with carbon felt during anaerobic digestion ofcellulose . Bioresource Technology, Volume 94, Issue 2, September 2004,Pages 197-201YingnanYang, Kenichiro Tsukahara, Tatsuo Yagishita and Shigeki Sawayama: Performanceof a fixed-bed reactor packed with carbon felt during anaerobic digestion ofcellulose .Bioresource Technology, Volume 94, Issue 2, September 2004, Pages 197-201

本発明の目的は、有機性廃棄物からなる被処理物を消化微生物固定化担体の存在下で、嫌気性処理する方法において、消化槽内に効率よく嫌気性微生物を維持し、有機性廃棄物を嫌気性消化により効率よく分解・ガス化し、メタンの生成効率を高めて消化速度を向上させる方法を提供することにある。
本発明者は、カーボンフェルトを担体材料としたリアクタデザインを研究し、本発明に到達した。
固定床リアクタと流動床リアクタの嫌気性消化特性を研究し、固定床と流動床のハイブリッド構造とする。カーボンフェルトを用いた固定床・流動床ハイブリッドリアクタを連続運転し、嫌気性消化特性を検討して、固定化した微生物を電子顕微鏡により観察し、その効果を確かめた。
An object of the present invention is to maintain anaerobic microorganisms efficiently in a digestion tank in a method for anaerobic treatment of an object to be treated consisting of organic waste in the presence of a carrier for immobilizing digestive microorganisms. An object is to provide a method of efficiently decomposing and gasifying methane by anaerobic digestion, increasing the production efficiency of methane and improving the digestion rate.
The present inventor studied the reactor design using carbon felt as a support material, and reached the present invention.
The anaerobic digestion characteristics of fixed bed reactor and fluidized bed reactor will be studied and a hybrid structure of fixed bed and fluidized bed will be developed. The fixed bed / fluidized bed hybrid reactor using carbon felt was operated continuously, the anaerobic digestion characteristics were examined, and the immobilized microorganisms were observed with an electron microscope to confirm the effect.

本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、以下の発明が提供される。
本発明は、有機性廃棄物を含む液状の被処理物を、嫌気性消化槽内において消化微生物の存在下で直接嫌気性処理する方法において、表面が炭素繊維で覆われた固定床担体と表面が炭素繊維で覆われた流動床担体を組み合わせた固定床・流動床ハイブリッドリアクタを嫌気性消化槽内において用いることを特徴とする有機性廃棄物の処理方法である。
また、本発明は、表面が炭素繊維で覆われた流動床担体を、嫌気性消化槽内の気相と液相両方に接触させ使用する。
さらに、本発明の有機性廃棄物の処理方法は、有機性廃棄物からなる被処理物を消化微生物固定化担体の存在下で、直接、嫌気性処理消化する方法において、(I)酸発酵性微生物及び/又はメタン発酵性微生物を含有する嫌気性消化汚泥の存在下、該被処理物を固定床担体と流動床担体と接触させ嫌気的に消化する工程、(II)該消化工程で得られた消化生成物を液相部と固相部とに分離する工程、(III)該分離工程で得られた固相部を回収する工程を含むことができる。
また、ここで本発明は、(I)の工程で発生したメタンを含有する気相部を燃料とすることができる。
さらに、ここで本発明は、(III)の回収工程で回収された固相部を有機性肥料とすることができる。
また、さらに、本発明は、有機性廃棄物を含む液状の被処理物を、嫌気性消化槽内において消化微生物の存在下で直接嫌気性処理する嫌気性消化装置であって、表面が炭素繊維で覆われた固定床担体と表面が炭素繊維で覆われた流動床担体を組み合わせた固定床・流動床ハイブリッドリアクタが嫌気性消化槽内に収容されていることを特徴とする嫌気性消化装置に関する。
さらに、ここで本発明は、固定床担体が成型樹脂の表面をカーボンフェルトで覆った構造とし、流動床担体が発泡成型樹脂をカーボンフェルトで覆った構造とすることができる。
As a result of intensive studies to solve the above problems, the present inventor has completed the present invention.
That is, according to the present invention, the following inventions are provided.
The present invention relates to a method for directly anaerobically treating a liquid object containing organic waste in the presence of digestive microorganisms in an anaerobic digestion tank, and a fixed bed carrier whose surface is covered with carbon fibers and the surface Is a method for treating organic waste, characterized in that a fixed bed / fluidized bed hybrid reactor in which a fluidized bed carrier covered with carbon fiber is combined is used in an anaerobic digester.
In the present invention, a fluidized bed carrier whose surface is covered with carbon fibers is used in contact with both the gas phase and the liquid phase in the anaerobic digester.
Furthermore, the organic waste treatment method of the present invention is a method for directly digesting an object to be treated consisting of organic waste in the presence of a digestive microorganism-immobilized carrier in an anaerobic treatment, wherein (I) acid fermentability A step of anaerobically digesting the treated material in contact with a fixed bed carrier and a fluidized bed carrier in the presence of anaerobic digested sludge containing microorganisms and / or methane-fermenting microorganisms; (II) obtained in the digestion step A step of separating the digested product into a liquid phase portion and a solid phase portion, and (III) a step of recovering the solid phase portion obtained in the separation step.
In the present invention, the gas phase part containing methane generated in the step (I) can be used as fuel.
Further, in the present invention, the solid phase portion recovered in the recovery step (III) can be an organic fertilizer.
Furthermore, the present invention is an anaerobic digester that directly anaerobically treats a liquid object containing organic waste in the presence of digestive microorganisms in an anaerobic digestion tank, the surface of which is a carbon fiber. An anaerobic digester characterized in that a fixed bed / fluidized bed hybrid reactor in which a fixed bed carrier covered with carbon and a fluidized bed carrier covered with carbon fiber is combined is housed in an anaerobic digester .
Further, in the present invention, the fixed bed carrier may have a structure in which the surface of the molding resin is covered with carbon felt, and the fluid bed carrier may have a structure in which the foam molding resin is covered with carbon felt.

本発明は、有機性廃棄物を含む液状の被処理物を、嫌気性消化槽内において消化微生物の存在下で直接嫌気性処理する方法において、表面が炭素繊維で覆われた固定床担体と表面が炭素繊維で覆われた流動床担体を組み合わせた固定床・流動床ハイブリッドリアクタを嫌気性消化槽内において用いることにより、効率よく有機性廃棄物を含む液状の被処理物を分解消化することが出来る。
分解消化に関わる微生物が効率よく固定床担体と流動床担体に固定化されているので、槽内の微生物濃度が高く、分解消化が効率よく進む。結果として、有機物の分解速度が速く、メタンガスがより迅速に発生する。例えば、有機物負荷率(OLR)6.34 g/l-reactor/d の場合、DOC除去率は88%、メタン生成速度は798 ml/l-reactor/d に達した。その後、固定床・流動床ハイブリッドリアクタの流動床を取り出し、固定床のみ発酵を続けたところ、前述と同じ有機物負荷率で、DOC除去率は62%、メタン生成速度は638ml/l-reactor/d まで減少した。担体表面積の減少以上にハイブリッドリアクタは固定床リアクタより優れた結果を示した。さらに、添加するプロピオン酸塩濃度10000 mg/lになっても阻害が見られなかった。
The present invention relates to a method for directly anaerobically treating a liquid object containing organic waste in the presence of digestive microorganisms in an anaerobic digestion tank, and a fixed bed carrier whose surface is covered with carbon fibers and the surface By using a fixed bed / fluidized bed hybrid reactor combined with a fluidized bed carrier covered with carbon fiber in an anaerobic digestion tank, it is possible to efficiently digest and digest liquid processed materials containing organic waste. I can do it.
Since the microorganisms involved in the digestion are efficiently immobilized on the fixed bed carrier and the fluidized bed carrier, the microorganism concentration in the tank is high and the digestion proceeds efficiently. As a result, the decomposition rate of organic matter is high and methane gas is generated more rapidly. For example, when the organic load factor (OLR) was 6.34 g / l-reactor / d, the DOC removal rate reached 88% and the methane production rate reached 798 ml / l-reactor / d. After that, the fluidized bed of the fixed bed / fluidized bed hybrid reactor was taken out and the fermentation was continued only in the fixed bed. As a result, the organic loading rate was the same as above, the DOC removal rate was 62%, and the methane production rate was 638 ml / l-reactor / d Decreased to. More than the reduction of the support surface area, the hybrid reactor showed better results than the fixed bed reactor. Furthermore, no inhibition was observed even when the concentration of propionate added was 10000 mg / l.

本発明の最大の特徴は、有機性廃棄物を含む液状の被処理物を、嫌気性消化槽内において消化微生物の存在下で直接嫌気性処理する方法において、表面が炭素繊維で覆われた固定床担体と表面が炭素繊維で覆われた流動床担体を組み合わせた固定床・流動床ハイブリッドリアクタを嫌気性消化槽内において用いることである。
ここで、固定床・流動床ハイブリッドリアクタとは、流動床担体が固定床担体と併用されて用いられる形態を云い、代表的には図1に示すように、液相中に固定床担体があり、流動床担体が気相と液相両方に接して用いられる形態を云う。
また、流動床担体を気相と液相両方に接して用いると、嫌気性消化槽内の気相と液相と両方に同時に接することで、有機物の分解に係わる多様な醗酵微生物を固定化維持できることが判明した。
固定床担体と流動床担体の固定化微生物叢が異なるので、嫌気性消化槽内の生物多様性が増し、分解消化・ガス化に関わる微生物が多様になり、消化が効率よく安定してすすむ。
The most important feature of the present invention is that the liquid material to be treated containing organic waste is directly anaerobically treated in the presence of digestive microorganisms in an anaerobic digestion tank. This is to use a fixed bed / fluidized bed hybrid reactor in which the bed carrier and the fluidized bed carrier whose surface is covered with carbon fiber are combined in the anaerobic digester.
Here, the fixed bed / fluidized bed hybrid reactor refers to a form in which a fluidized bed carrier is used in combination with a fixed bed carrier. Typically, as shown in FIG. 1, there is a fixed bed carrier in the liquid phase. In other words, the fluidized bed carrier is used in contact with both the gas phase and the liquid phase.
In addition, when the fluidized bed support is used in contact with both the gas phase and the liquid phase, the various fermentation microorganisms related to the decomposition of organic matter are immobilized and maintained by simultaneously contacting both the gas phase and the liquid phase in the anaerobic digester. It turns out that you can.
Since the immobilized microbial flora of the fixed bed carrier and the fluidized bed carrier are different, the biodiversity in the anaerobic digestion tank is increased, the microorganisms involved in decomposition digestion and gasification are diversified, and digestion is efficiently and stably promoted.

本発明でいう、嫌気性消化には、酸素のない嫌気的な条件で嫌気性微生物の働きにより、有機物からメタンと二酸化炭素を生成させる方法と、嫌気性消化処理とは、20〜70℃、好ましくは30〜60℃で行う嫌気性消化処理の両消化法が包含される。この嫌気性消化処理は、35〜37℃で行われる中温消化法でも、55℃で行われる高温消化法であってもよい。
また、本発明においては、固定化微生物を利用し、原料の水分含量を80%以上に調整して消化を行う湿式消化方法を採用することが好ましい。
In the present invention, anaerobic digestion is a method of generating methane and carbon dioxide from organic substances by the action of anaerobic microorganisms under anaerobic conditions without oxygen, and anaerobic digestion treatment is performed at 20 to 70 ° C., Preferably, both digestion methods of anaerobic digestion performed at 30 to 60 ° C are included. This anaerobic digestion treatment may be an intermediate temperature digestion method performed at 35 to 37 ° C or a high temperature digestion method performed at 55 ° C.
In the present invention, it is preferable to employ a wet digestion method in which digestion is performed using an immobilized microorganism and adjusting the water content of the raw material to 80% or more.

また、本明細書で言う固定床担体とは、固定化担体が嫌気性消化槽内に固定化されている方法を意味し、従来から知られている方法である。流動床担体とは、担体が嫌気性消化槽内に固定化されてなく、槽内の撹拌により移動できる方法を意味し、従来から知られている方法である。   Moreover, the fixed bed carrier said in this specification means the method by which the fixed support | carrier is fix | immobilized in the anaerobic digester, and is a conventionally known method. The fluidized bed carrier means a method in which the carrier is not fixed in the anaerobic digestion tank and can be moved by stirring in the tank, and is a conventionally known method.

また、本明細書で言う酸発酵性微生物とは、嫌気性消化において有機酸等を生成する微生物を意味し、Bacteroides sp.、Clostridium sp.、Bacillus sp.、Lactobacillus sp.等があげられる。メタン発酵性微生物とは、嫌気性消化においてメタンを生成する微生物を意味し、Methanobacterium sp., Methanothermobacter sp., Methanosarcina sp.、Methanosaeta sp.等があげられる。両者とも従来よく知られているものである。 In addition, the acid-fermenting microorganism referred to in the present specification means a microorganism that generates an organic acid or the like in anaerobic digestion, and examples thereof include Bacteroides sp., Clostridium sp., Bacillus sp., Lactobacillus sp. Methane-fermenting microorganisms mean microorganisms that produce methane in anaerobic digestion, such as Methanobacterium sp., Methanothermobacter sp., Methanosarcina sp., Methanosaeta sp. Both are well known in the art.

本発明の処理対象となる有機性廃棄物には、家庭・レストラン・食品工場等から排出される食品残滓や排水および発酵工場等で排出される発酵残滓や排水、下水処理場・食品工場・浄化槽等で廃水処理後排出される有機性汚泥一般、落ち葉や剪定枝なその植物性バイオマス、古紙類などを意味する。   The organic waste subject to treatment of the present invention includes food residues and wastewater discharged from households, restaurants, food factories, etc., and fermentation residues and wastewater discharged from fermentation plants, etc., sewage treatment plants, food factories, and septic tanks. It means organic sludge discharged after wastewater treatment, etc., plant biomass such as fallen leaves and pruned branches, and waste paper.

本発明の方法を実施するには、消化槽内で嫌気性消化汚泥と原料の有機性廃棄物を混合し、含水率75〜99.9%望ましくは85〜98%に調整し、必要に応じて破砕し、20℃以上望ましくは30〜60℃更に好ましくは35または55℃で湿式嫌気性消化処理させる。   To carry out the method of the present invention, anaerobic digested sludge and raw organic waste are mixed in a digestion tank, adjusted to a moisture content of 75-99.9%, preferably 85-98%, and crushed as necessary. And an anaerobic digestion treatment at 20 ° C. or higher, desirably 30 to 60 ° C., more preferably 35 or 55 ° C.

この場合、本発明においては、この消化槽内に、固定床担体と流動床担体を具備させる。流動床担体は、嫌気性消化槽内の気相と液相の両方に同時に接することが望ましい。
担体の材質としては、無機質材料、樹脂等の有機質材料等何でも良いがその表面が炭素繊維で覆われていることが必要である。本発明で言う炭素繊維の一例を挙げると、孔隙率92.2%、比表面積0.70g/cm3、比重0.11g/cm3 であるカーボンフェルトを用いることが出来る。
In this case, in the present invention, a fixed bed carrier and a fluidized bed carrier are provided in the digester. It is desirable that the fluidized bed carrier is in contact with both the gas phase and the liquid phase in the anaerobic digester at the same time.
The material of the carrier may be anything such as an inorganic material or an organic material such as a resin, but the surface must be covered with carbon fibers. As an example of the carbon fiber referred to in the present invention, a carbon felt having a porosity of 92.2%, a specific surface area of 0.70 g / cm 3 and a specific gravity of 0.11 g / cm 3 can be used.

担体の形状は、制約されず、補助資材等を用いて円筒状、平板状、球状、円盤状の形状にも成型することができる。   The shape of the carrier is not limited, and can be formed into a cylindrical shape, a flat plate shape, a spherical shape, or a disk shape using an auxiliary material or the like.

固定化に用いる嫌気性消化汚泥としては、酸発酵性微生物やメタン発酵性微生物を含有する下水汚泥の嫌気性消化に使用される通常の嫌気性消化汚泥や、既存の嫌気性消化汚泥を別途培養したものを使用することができる。   As anaerobic digested sludge used for immobilization, normal anaerobic digested sludge used for anaerobic digestion of sewage sludge containing acid-fermenting microorganisms and methane-fermenting microorganisms or existing anaerobic digested sludges are separately cultured. Can be used.

前記のようにして、有機性廃棄物を酸発酵性微生物やメタン発酵性微生物を固定化した固定床担体と流動床担体を用いて嫌気的に消化処理すると、有機物が分解されてガス化し、嫌気性消化残滓が得られる。その時発生する嫌気性消化残滓は、窒素やリンなどの肥料成分を多く含み、発酵が進んでいるので有機性肥料として利用することが可能である。
また、好気的なコンポスト法によって生産された有機性肥料中の塩分が問題となる場合があるが、本法では発酵残滓は固液分離後固相部が有機性肥料となり、塩分は液相部中に多く含まれるため、本法により得られる有機性肥料はコンポスト法による有機性肥料に比べ塩分濃度が低いという利点を有する。
As described above, when organic waste is anaerobically digested using a fixed bed carrier and a fluidized bed carrier in which acid-fermentable microorganisms or methane-fermentable microorganisms are immobilized, the organic matter is decomposed and gasified, and anaerobic. Sexual digestion residue is obtained. The anaerobic digestion residue generated at that time contains a large amount of fertilizer components such as nitrogen and phosphorus, and can be used as an organic fertilizer because fermentation is progressing.
In addition, the salt content in organic fertilizer produced by the aerobic compost method may be a problem. In this method, the fermentation residue is solid-liquid separated and the solid phase becomes organic fertilizer. Since it is contained in many parts, the organic fertilizer obtained by this method has the advantage that the salt concentration is lower than the organic fertilizer by the compost method.

また、消化時に発生するメタンは、ボイラー燃料、消化ガス発電、マイクロガスタービンや水素への改質後燃料電池の燃料として利用することが出来る。   Also, methane generated during digestion can be used as fuel for boiler fuel, digestion gas power generation, micro gas turbines and fuel cells after reforming to hydrogen.

次に、本発明について図面を参照しながら詳述する。
図1は本発明を実施する代表的な場合のフローシート図を示す。
図1において、1は廃棄物貯留タンク、2は原料廃棄物配管、3は嫌気性消化槽、4は固定床担体、5は流動床担体、6は撹拌装置、7は消化ガス配管、8は消化ガス貯留タンク、9は処理物配管、10は固液分離装置、11は処理固形物配管、12は処理固形物貯留タンク、13は処理液相配管、14は処理液相貯留タンクを各示す。
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a flow sheet diagram for a typical case of implementing the present invention.
In FIG. 1, 1 is a waste storage tank, 2 is a raw material waste pipe, 3 is an anaerobic digester, 4 is a fixed bed carrier, 5 is a fluidized bed carrier, 6 is a stirring device, 7 is a digestion gas pipe, Digestion gas storage tank, 9 is treated product piping, 10 is a solid-liquid separator, 11 is treated solid matter piping, 12 is treated solid matter storage tank, 13 is treated liquid phase piping, and 14 is treated liquid phase storage tank. .

図1に従って本発明を実施するには、有機性廃棄物貯留タンク1より有機性廃棄物配管2を通って、メタン発酵を生じさせる微生物を含有する嫌気性汚泥を投入してカーボンフェルト固定床と流動床担体に固定化した嫌気性消化槽3に、有機性廃棄物を供給する。
メタン発酵を生じさせる微生物を含有する嫌気性汚泥としては、前記したように、下水処理場の下水汚泥の嫌気性消化汚泥等を使用すればよい。この場合、この嫌気性消化槽3は、その内部に炭素繊維等から成る固定床担体と流動床担体を設置し、嫌気性微生物を固定化する。流動床担体5は、嫌気性消化槽3内の気相と液相の両方に同時に接することが望ましい。通常、微生物の固定化には、消化槽の立ち上げ時に槽内に嫌気性消化汚泥を投入後、原料を加えないで2〜3週間運転し、その後徐々に原料を加えていく方法を用いる。
In order to carry out the present invention according to FIG. 1, anaerobic sludge containing microorganisms that cause methane fermentation is introduced from an organic waste storage tank 1 through an organic waste pipe 2, and a carbon felt fixed bed and Organic waste is supplied to the anaerobic digester 3 immobilized on the fluidized bed carrier.
As described above, as the anaerobic sludge containing microorganisms that cause methane fermentation, anaerobic digested sludge or the like of sewage sludge in a sewage treatment plant may be used. In this case, the anaerobic digester 3 has a fixed bed carrier and a fluidized bed carrier made of carbon fiber or the like installed therein to immobilize anaerobic microorganisms. The fluidized bed carrier 5 is preferably in contact with both the gas phase and the liquid phase in the anaerobic digester 3 at the same time. Usually, for immobilizing microorganisms, a method is used in which anaerobic digested sludge is introduced into the tank at the start-up of the digestion tank, followed by operation for 2 to 3 weeks without adding the raw material, and then gradually adding the raw material.

この嫌気性消化槽3において、廃棄物は固定化微生物の分解作用を受けながら消化処理を受ける。この消化処理により、廃棄物中の有機物は従来の嫌気性消化に比べ、より迅速に安定的に分解消化されメタンを発生する。本発明の場合、固定床と流動床を組み合わせた固定化方式なので、それぞれの担体に効率よく多様なメタン発酵性微生物が固定化され、槽内の分解微生物濃度と多様性が高くなっているので、従来の消化法に比べ有機物分解速度及び消化ガス化速度の向上が達成される。   In the anaerobic digestion tank 3, the waste is subjected to digestion while receiving the action of decomposing the immobilized microorganisms. By this digestion treatment, organic matter in the waste is decomposed and digested more rapidly and stably than methane in comparison with conventional anaerobic digestion. In the case of the present invention, since the immobilization method is a combination of a fixed bed and a fluidized bed, various methane-fermenting microorganisms are efficiently immobilized on each carrier, and the concentration and diversity of decomposing microorganisms in the tank are high. Compared with the conventional digestion method, the organic matter decomposition rate and digestion gasification rate are improved.

本発明に係る嫌気性消化槽は、槽内の汚泥を撹拌し発酵反応を促進させるために、撹拌装置を具備させることが望ましい。また、槽内の汚泥を抜き再度投入することにより撹拌を実現してもよい。   The anaerobic digestion tank according to the present invention is desirably provided with a stirring device in order to stir sludge in the tank and promote the fermentation reaction. Moreover, you may implement | achieve stirring by removing the sludge in a tank and throwing in again.

また、嫌気性消化槽3内で発生したメタンを含む消化ガスは消化ガス配管7を通って消化ガス貯留タンク8に貯留される。この場合の消化ガスは、通常CH4:50〜100モル%、CO2:0〜50モル%、H2:0〜10モル%を含有する。 Further, the digestion gas containing methane generated in the anaerobic digestion tank 3 is stored in the digestion gas storage tank 8 through the digestion gas pipe 7. Digester gas in this case is usually CH 4: 50 to 100 mol%, CO 2: 0 to 50 mol%, H 2: containing 0-10 mol%.

一方、嫌気性消化槽3で得られた消化物は処理物配管9を通って固液分離装置10に導入される。固液分離装置10において、液相部(廃水)と固相部(処理物)とに分離され、固相部は処理固形物配管11を通って固相部貯留タンク12に貯留され、液相部は処理液相配管13を通って処理液相貯留タンク14に貯留される。   On the other hand, the digest obtained in the anaerobic digester 3 is introduced into the solid-liquid separator 10 through the treated product pipe 9. In the solid-liquid separation device 10, the liquid phase part (waste water) and the solid phase part (processed product) are separated, the solid phase part is stored in the solid phase part storage tank 12 through the process solid matter pipe 11, and the liquid phase The part is stored in the processing liquid phase storage tank 14 through the processing liquid phase piping 13.

前記固液分離装置10は、濾過器や遠心分離機、沈降槽等からなる。この固液分離装置により、消化物は液相部と固相部とに分離される。この固相部は窒素やリンなどの肥料成分を多く含み、発酵が進んでいるので有機性肥料として利用することができる。また、前記液相部(廃水)は、通常溶存有機物や溶存無機物の濃度の低いものであり、必要に応じ廃水処理後放流される。   The solid-liquid separator 10 includes a filter, a centrifuge, a sedimentation tank, and the like. The digest is separated into a liquid phase part and a solid phase part by this solid-liquid separation device. This solid phase portion contains a large amount of fertilizer components such as nitrogen and phosphorus, and can be used as an organic fertilizer because fermentation is progressing. The liquid phase part (waste water) is usually one having a low concentration of dissolved organic matter or dissolved inorganic matter, and is discharged after waste water treatment as necessary.

以下、本発明を実施例により更に詳細に説明する。
[実施例1の方法]
固定床・流動床ハイブリッドリアクタとして、内径10 cm、高さ15 cmのガラス容器を用いた。炭素繊維を固定床と流動床の担体材料として用いた。固定床部分は高さ6.4 cmの炭素繊維をガラス容器の内壁に沿って設置し、担体体積は200cm3である。流動床担体は、炭素繊維を巻いた5つの球状担体(一個の体積は4 cm3)を、リアクタ内に浮くように浮力を調節してリアクタ内に投入した。
リアクタを均一状態に保つためスターラで撹拌し、35℃の中温条件下、滞留時間5日で連続運転を行った。有機物負荷を0.11、 0.31と0.53 g/l-reactor/dと上げて、40日間発酵後、有機物負荷1.07 g/l-reactor/dを20日間、3.17 g/l-reactor/dを15日間、 それから6.34 g/l-reactor/dを13日間運転した。その後、リアクタから流動床部分を取り出し、嫌気性消化を続けた。有機物負荷は6.34 g/l-reactor/dを20日間、3.17 g/l-reactor/dを15日間、1.07 g/l-reactor/dを13日間固定床部分だけのリアクタを運転した。
リアクタから発生したガス生成量を測定し、メタン濃度はガスクロで測定した。流入液と流出液の溶存総有機炭素濃度を測定し、添加溶存有機物当たりメタン収率を検討した。固定化微生物について、電子顕微鏡を用いて観察した。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Method of Example 1]
As a fixed bed / fluidized bed hybrid reactor, a glass container having an inner diameter of 10 cm and a height of 15 cm was used. Carbon fiber was used as a carrier material for fixed bed and fluidized bed. The fixed floor portion is provided with carbon fibers having a height of 6.4 cm along the inner wall of the glass container, and the carrier volume is 200 cm 3 . As the fluidized bed carrier, five spherical carriers (one volume is 4 cm 3 ) wound with carbon fibers were introduced into the reactor while adjusting the buoyancy so as to float in the reactor.
The reactor was stirred with a stirrer in order to keep the reactor in a uniform state, and continuously operated at a medium temperature of 35 ° C. with a residence time of 5 days. Increase organic load to 0.11, 0.31 and 0.53 g / l-reactor / d, after fermentation for 40 days, organic load 1.07 g / l-reactor / d for 20 days, 3.17 g / l-reactor / d for 15 days, Then 6.34 g / l-reactor / d was operated for 13 days. Thereafter, the fluidized bed portion was removed from the reactor and the anaerobic digestion was continued. The organic substance load was operated with a fixed bed portion of 6.34 g / l-reactor / d for 20 days, 3.17 g / l-reactor / d for 15 days, and 1.07 g / l-reactor / d for 13 days.
The amount of gas produced from the reactor was measured, and the methane concentration was measured by gas chromatography. The dissolved total organic carbon concentration of the influent and effluent was measured, and the methane yield per added dissolved organic matter was examined. The immobilized microorganism was observed using an electron microscope.

[実施例1の実験結果およびその考察]
固定床・流動床ハイブリッドリアクタを連続運転実験より、スタートアップ後比較的短時間で安定した。有機物負荷(OLR)6.34 g/l-reactor/d の場合、DOC除去率は88%、メタン生成速度は798 ml/l-reactor/d に達した。その後、ハイブリッドリアクタの流動床を取り出し、固定床のみで醗酵を続けたところ、 前述と同じ有機物負荷で、DOC除去率は62%、メタン生成速度は638 ml/l-reactor/d まで減少した。流動床担体体積は全体の担体体積の9%である。担体体積あたりでは、ハイブリッドリアクタが固定床のみのリアクタより優れた結果であった。特に、高濃度のプロピオン酸(10000 mg/l)において、メタン生成が認められた。ハイブリッドリアクタは短いスタートアップと高い有機物除去率が得た。
電子顕微鏡による固定床・流動床ハイブリッドリアクタの観察において、流動床担体部分に固定された微生物はおもに球状や双球状のMethanosarcina様メタン菌、長桿のMethanobacterium様メタン菌、やや短め桿菌のMethanosaeta様メタン菌であった。一方、固定床担体部分は、主に球状、双球状のMethanosarcina様メタン生成菌が固定された。流動床カーボンフェルトに固定されたメタン生成菌の多様性が、メタン生成に重要な役割が果たしていることが考えられる。これらの実験結果から、嫌気性消化槽内に固定床と流動床ハイブリッドしたカーボンフェルトを具備すると、効率よく嫌気性微生物が固定化され、有機性廃棄物の分解速度やガス化速度が向上することがわかる。
[Experimental results of Example 1 and discussion thereof]
The fixed-bed / fluidized-bed hybrid reactor was stabilized in a relatively short time after start-up from the continuous operation experiment. With an organic load (OLR) of 6.34 g / l-reactor / d, the DOC removal rate reached 88% and the methane production rate reached 798 ml / l-reactor / d. After that, when the fluidized bed of the hybrid reactor was taken out and fermentation was continued using only the fixed bed, the DOC removal rate was reduced to 62% and the methane production rate decreased to 638 ml / l-reactor / d with the same organic loading as described above. The fluidized bed carrier volume is 9% of the total carrier volume. Per carrier volume, the hybrid reactor outperformed the fixed bed only reactor. In particular, methane formation was observed at a high concentration of propionic acid (10000 mg / l). The hybrid reactor has a short startup and high organic matter removal rate.
In the observation of a fixed bed / fluidized bed hybrid reactor using an electron microscope, the microorganisms immobilized on the fluidized bed support are mainly spherical and bispherical Methanosarcina- like methane bacteria, long-spotted Methanobacterium- like methane bacteria, and slightly shorter gonococcal Methanosaeta- like methane. It was a fungus. On the other hand, the fixed bed carrier part was mainly fixed with spherical and bispherical Methanosarcina- like methanogens. It is considered that the diversity of methanogens fixed on fluidized bed carbon felt plays an important role in methanogenesis. From these experimental results, anaerobic microorganisms are efficiently immobilized and the organic waste decomposition rate and gasification rate are improved if a carbon felt hybridized with a fixed bed and fluidized bed is provided in the anaerobic digester. I understand.

[固定床材料]
担体材料として使われたカーボンフェルトは、孔隙率92.2%、比表面積0.70 g/cm3、比重0.11g/cm3である。カーボンフェルト材料の構造は、電子顕微鏡を用いて観察した。固定化材料の電子顕微鏡写真を図2に示した。
[半連続運転操作]
カーボンフェルトの充填率20% v/vの固定床リアクタ及び流動床リアクタ (300 ml) を用意した。もう一つのリアクタは担体なしで運転し、それをコントロールとした。すべてのリアクタを、120 rpmで攪拌しながら、35℃のインキュベターに置いた。発生したバイオガスはシリンジで集めた。接種する種菌は、茨城県下水処理場からのメタン生成汚泥を15%v/v加え、35℃で一ヶ月間、5.0g TOC/l を含んだ合成培地を供給して馴養したものを用いた。リアクタは、保持時間(HRT)12日間とした半連続式で運転を42日間行った。リアクタ内の液量は、150 mlである。リアクタには、CHCOONa (5 g/l)、NH4Cl (200 mg/l)、KH2PO4(16 mg/l) と微量金属塩(200 mg/l) の入った培地を供給した。
[連続運転操作]
固定床・流動床ハイブリッド(AFFH)リアクタの構造を図3に示す。内径10 cm、高さ15 cmのガラス容器を用いた。前述したカーボンフェルトを固定床と流動床の担体材料として用いた。固定床部分は高さ6.4 cmのカーボンフェルトをガラス容器の周りに設置し、表面積は200 cm2であった。流動床部分はカーボンフェルトを巻いた五つのボール(一個の表面積は4 cm2で、合わせて表面積は20 cm2である)をリアクタに入れた。
[Fixed floor material]
The carbon felt used as a support material has a porosity of 92.2%, a specific surface area of 0.70 g / cm 3 and a specific gravity of 0.11 g / cm 3 . The structure of the carbon felt material was observed using an electron microscope. An electron micrograph of the immobilization material is shown in FIG.
[Semi-continuous operation]
A fixed bed reactor and a fluidized bed reactor (300 ml) having a carbon felt packing rate of 20% v / v were prepared. The other reactor was operated without a carrier and used as a control. All reactors were placed in a 35 ° C. incubator with stirring at 120 rpm. The generated biogas was collected with a syringe. The inoculum was 15% v / v of methanogenic sludge from Ibaraki Prefectural Sewage Treatment Plant, and supplied with a synthetic medium containing 5.0g TOC / l for one month at 35 ° C. . The reactor was operated for 42 days in a semi-continuous mode with a retention time (HRT) of 12 days. The liquid volume in the reactor is 150 ml. Reactor supplied with medium containing CH 3 COONa (5 g / l), NH 4 Cl (200 mg / l), KH 2 PO 4 (16 mg / l) and trace metal salt (200 mg / l) did.
[Continuous operation]
The structure of a fixed bed / fluidized bed hybrid (AFFH) reactor is shown in FIG. A glass container having an inner diameter of 10 cm and a height of 15 cm was used. The carbon felt described above was used as a carrier material for fixed beds and fluidized beds. The fixed floor part was a carbon felt with a height of 6.4 cm installed around the glass container, and the surface area was 200 cm 2 . In the fluidized bed portion, five balls wrapped with carbon felt (one surface area of 4 cm 2 and a total surface area of 20 cm 2 ) were placed in the reactor.

リアクタ内を均一状態に保つためスターラで撹拌し、35℃の中温条件下、HRT 5日で連続運転を行った。16% w/w の中温嫌気性消化汚泥及び84% w/wのCH3COONa(5 g/l), CH3CH(OH)COONa (2.5 g/l), CH3CH2COONa(2.5 g/l),酵母エキス(300 mg/l), NH4Cl (200 mg/l), KH2PO4 (16mg/l)と微量金属溶液をリアクタに加えた。微量金属塩溶液は、FeSO4・7H2O (1.11 g/l),MgSO4・7H2O (24.65 g/l), CaCl2・2H2O(2.94 g/l), NaCl (23.4 g/l),MnSO4・4H2O (111 mg/l), ZnSO4・7H2O(28.8 mg/l), Co(NO3)・6H2O (29.2 mg/l), CuSO4・5H2O(25.2 mg/l), Na2MoO4・2H2O (24.2 mg/l), H3BO3(31.0 mg/l)を含む。5 NのNaOHを添加し、この合成培地のpHを7.2に調整した。200 ml/l微量金属溶液を混合した醗酵液900 ml をリアクタに入れ、運転をスタートした。有機物負荷を0.11、0.31 、0.53 g/l-reactor/d と順に上げて、40日間発酵後、有機物負荷1.07 g/l-reactor/d で 20 日間、3.17g/l-reactor/d で15 日間、 それから6.34 g/l-reactor/d で13日間運転した。その後、リアクタから流動床部分を取り出し、嫌気性消化を続けた。有機物負荷は 6.34 g/l-reactor/d で20日間、3.17 g/l-reactor/dで15 日間、それから1.07 g/l-reactor/d で13日間運転し、残りの固定床部分だけのリアクタを141日まで運転した。 The reactor was stirred with a stirrer to maintain a uniform state, and continuously operated at a medium temperature of 35 ° C. for 5 days with HRT. 16% w / w mesophilic anaerobic digested sludge and 84% w / w CH 3 COONa (5 g / l), CH 3 CH (OH) COONa (2.5 g / l), CH 3 CH 2 COONa (2.5 g / l), yeast extract (300 mg / l), NH 4 Cl (200 mg / l), KH 2 PO 4 (16 mg / l) and trace metal solution were added to the reactor. Trace metal salt solutions are FeSO 4・ 7H 2 O (1.11 g / l), MgSO 4・ 7H 2 O (24.65 g / l), CaCl 2・ 2H 2 O (2.94 g / l), NaCl (23.4 g / l). l), MnSO 4 · 4H 2 O (111 mg / l), ZnSO 4 · 7H 2 O (28.8 mg / l), Co (NO3) 2 · 6H 2 O (29.2 mg / l), CuSO 4 · 5H 2 Contains O (25.2 mg / l), Na 2 MoO 4 · 2H 2 O (24.2 mg / l), and H 3 BO 3 (31.0 mg / l). 5 N NaOH was added to adjust the pH of the synthetic medium to 7.2. 900 ml of fermentation broth mixed with 200 ml / l trace metal solution was put into the reactor and the operation was started. Increase organic load in the order of 0.11, 0.31, 0.53 g / l-reactor / d, ferment for 40 days, then organic load 1.07 g / l-reactor / d for 20 days, 3.17 g / l-reactor / d for 15 days Then, it was operated at 6.34 g / l-reactor / d for 13 days. Thereafter, the fluidized bed portion was removed from the reactor and the anaerobic digestion was continued. The organic load is 20 days at 6.34 g / l-reactor / d, 15 days at 3.17 g / l-reactor / d, then 13 days at 1.07 g / l-reactor / d Drove to 141 days.

[化学分析」
週二回消化液をサンプリングした。このサンプルを10,000 rpm で10分間遠心して微生物を沈殿させ、この上澄みをDOCとして、TOC分析器で測定した。リアクタ内におけるバイオガス生産量とpHは毎日測定した。バイオガス濃度はガスクロマトグラフを用いて測定した。
[電子顕微鏡での観察]
担体材料に付着した細胞の形態を、走査型電子顕微鏡で観察した。実験終了後、担体を取り出し、まず固定化微生物をバッファー液 (pH 7.0) で洗浄した。サンプルを10%グルタルアルデヒド液に一晩浸け固定した。固定したサンプルは純水で脱塩し、-20℃で3時間凍結させた。更に凍結したサンプルを、凍結乾燥機で乾燥させた。これらのサンプルは、顕微鏡観察の前に金粉でコーティングした。
[結果及び考察]
半連続運転検討
図4は、固定床と流動床リアクタ及び担体なしリアクタに、それぞれ蓄積したメタンガス量の変化を示している。この結果、累積メタンガス量は、固定床、流動床、担体無しの順に減少した。図5は、それぞれ嫌気性消化槽における平均メタン収率の結果を示している。固定床リアクタは、約217 ml CH/g-DOCadded の最も高いメタン収率を示した。メタン収率も、固定床、流動床、担体無しの順に減少した。これらの結果より、固定式リアクタが流動式リアクタより優れた消化効率を持つことが明らかとなった。各リアクタのメタン濃度を図6に示した。担体ありのリアクタにおいて、同様なメタン濃度が見られたが、担体のないリアクタのメタン濃度は低かった。
DOC除去率の変化を、図7に示す。二つの担体ありのリアクタでは、98%の除去率が得られた。DOC除去が最も速いのは、固定床リアクタである。発酵開始から14日目で90%の除去率が得られた。それに比べ、同じ除去率を達成するには、流動床リアクタでは27 日間必要であった。担体のないリアクタでは、42日後の除去率は55% であった。これらの結果、固定床リアクタは流動床リアクタに比べ優れた嫌気性消化特性を示す事がわかる。
[Chemical analysis]
The digestive juice was sampled twice a week. The sample was centrifuged at 10,000 rpm for 10 minutes to precipitate microorganisms, and the supernatant was measured as DOC with a TOC analyzer. Biogas production and pH in the reactor were measured daily. The biogas concentration was measured using a gas chromatograph.
[Observation with electron microscope]
The morphology of the cells attached to the carrier material was observed with a scanning electron microscope. After the experiment was completed, the carrier was taken out, and the immobilized microorganism was first washed with a buffer solution (pH 7.0). The sample was fixed in a 10% glutaraldehyde solution soaked overnight. The fixed sample was desalted with pure water and frozen at −20 ° C. for 3 hours. Furthermore, the frozen sample was dried with a freeze dryer. These samples were coated with gold powder before microscopic observation.
[Results and discussion]
FIG. 4 shows changes in the amount of methane gas accumulated in a fixed bed, a fluidized bed reactor, and a reactor without a carrier. As a result, the cumulative amount of methane gas decreased in the order of fixed bed, fluidized bed, and no carrier. FIG. 5 shows the results of average methane yield in each anaerobic digester. The fixed bed reactor showed the highest methane yield of about 217 ml CH 4 / g-DOC added . The methane yield also decreased in the order of fixed bed, fluidized bed, and no support. From these results, it became clear that the fixed reactor has better digestion efficiency than the fluidized reactor. The methane concentration of each reactor is shown in FIG. A similar methane concentration was seen in the reactor with the carrier, but the methane concentration in the reactor without the carrier was low.
The change in the DOC removal rate is shown in FIG. In the reactor with two carriers, a removal rate of 98% was obtained. The fastest DOC removal is in the fixed bed reactor. A 90% removal rate was obtained 14 days after the start of fermentation. In comparison, a fluidized bed reactor required 27 days to achieve the same removal rate. In the reactor without support, the removal rate after 42 days was 55%. From these results, it can be seen that the fixed bed reactor exhibits superior anaerobic digestion characteristics compared to the fluidized bed reactor.

AFFHリアクタ連続運転の結果
スタートアップからバイオガス中のメタン濃度は徐々に上がり7日目には91.6%に達し、運転終了までほぼその濃度で保たれた(図8)。消化液においては比較的高いpHのため、リアクタ内に生成されたバイオガス中の二酸化炭素が消化液に溶け、メタン濃度が高くなったと考えられる。高孔隙率のカーボンフェルトを用い、大量の微生物が固定化されることによって、良好なスタートアップを達成した。
図8に示したように、40日から60日まで有機物負荷は1.07g/l-reactor/d で 20 日間運転した場合、平均メタン収率は340 ml/l-reactor/d、 61日から76日まで有機物負荷3.17g/l-reactor/d で15日間運転した場合、平均メタン収率は673 ml/l-reactor/d、77日から90日まで有機物負荷6.34g/l-reactor/d で 13 日間運転した場合、平均メタン収率は798 ml/l-reactor/dである。
90日間固定床・流動床ハイブリッド(AFFH)リアクタで運転後、AFFHリアクタから流動床部分を取り出し、固定床のみで嫌気性消化を続けた。有機物負荷が 6.34 g/l-reactor/d を20 日間、 3.17 g/l-reactor/dを15 日間、さらに1.07 g/l-reactor/d を141日まで運転を行った。図8に示したように、91日から111日まで、有機物負荷6.34g/l-reactor/d で 20 日間運転した場合の平均メタン収率は638 ml/l-reactor/d、 112日から127日まで有機物負荷3.17g/l-reactor/d で15日間運転した場合の平均メタン収率は537 ml/l-reactor/d、128日から141日まで、有機物負荷1.07g/l-reactor/d で 13 日間運転した場合の平均メタン収率は272 ml/l -reactor/dである。、2倍以上のHRTの間メタン生産量が一定に保たれれば安定状態と言える。本システムのメタン収率により、固定床・流動床ハイブリッド(AFFH)リアクタは安定かつ優れた嫌気性消化リアクタシステムであることが示唆された。
プロピオン酸濃度が1500mg/l 〜2220 mg/lになると、メタン生成菌に影響することが報告されている。プロピオン酸のメタン生成菌に対する毒性について、プロピオン酸濃度5000mg/lになるとメタン生産に制限が見られたと報告がある。それに対し、本システムにおけるメタン生成菌は高いプロピオン酸濃度に順応できた。プロピオン酸濃度が10000 mg/lに達してもメタン生成に影響が見られなかった。
As a result of continuous operation of AFFH reactor The methane concentration in biogas gradually increased from start-up and reached 91.6% on the 7th day, and was maintained at that concentration until the end of operation (Fig. 8). Since the digestive fluid has a relatively high pH, it is considered that the carbon dioxide in the biogas produced in the reactor was dissolved in the digestive fluid and the methane concentration increased. Good start-up was achieved by immobilizing a large amount of microorganisms using high porosity carbon felt.
As shown in Fig. 8, the average methane yield is 340 ml / l-reactor / d, from 61 to 76 when the organic load is 1.07 g / l-reactor / d for 20 days from 40 to 60 days. When operating for 15 days with an organic load of 3.17 g / l-reactor / d, the average methane yield is 673 ml / l-reactor / d, with an organic load of 6.34 g / l-reactor / d from 77 to 90 days. When operated for 13 days, the average methane yield is 798 ml / l-reactor / d.
After operating in a fixed bed / fluidized bed hybrid (AFFH) reactor for 90 days, the fluidized bed part was taken out from the AFFH reactor and the anaerobic digestion was continued only with the fixed bed. The organic load was 6.34 g / l-reactor / d for 20 days, 3.17 g / l-reactor / d for 15 days, and 1.07 g / l-reactor / d for 141 days. As shown in FIG. 8, the average methane yield when operating for 20 days at an organic load of 6.34 g / l-reactor / d from 91 to 111 days is 638 ml / l-reactor / d, from 112 to 127. The average methane yield when operating for 15 days with an organic load of 3.17 g / l-reactor / d is 537 ml / l-reactor / d, from 128 to 141 days, with an organic load of 1.07 g / l-reactor / d The average methane yield when operated for 13 days is 272 ml / l -reactor / d. If methane production is kept constant for more than double HRT, it can be said to be stable. The methane yield of this system suggests that the fixed bed / fluidized bed hybrid (AFFH) reactor is a stable and excellent anaerobic digestion reactor system.
It has been reported that propionic acid concentrations of 1500 mg / l to 2220 mg / l affect methanogens. Regarding the toxicity of propionic acid to methanogens, it has been reported that there was a limit in methane production when the propionic acid concentration reached 5000 mg / l. In contrast, the methanogens in this system were able to adapt to high propionic acid concentrations. Even when the propionic acid concentration reached 10000 mg / l, there was no effect on methanogenesis.

[AFFHリアクタのDOC除去率]
AFFHリアクタ運転時における有機物負荷の変化とDOC除去率の関係を図9に示した。スタートアップから22日目は、95.7%のDOC除去率を示した。有機物負荷が比較的高い場合、88.0〜99.7%のDOC除去率を示した。91日から同じ有機物負荷で固定床のみの場合、DOC除去率は62.0〜80.0%であった。図10は異なる有機物負荷におけるDOC除去率の変化を示している。有機物負荷の増加と共にDOC除去率が減少した。流動床を取り出した後(カーボンフェルトの面積は1/11減少)、同じ有機物負荷でDOC除去率は24%減少した。担体面積の減少よりDOC除去率の減少が大きかった。
有機物負荷6.34g/l-reactor/dの場合、AFFHリアクタは88%以上のDOC除去率が得られたことで、AFFHシステムは効率の高いリアクタシステムと言える。有機物負荷増加と共に、DOC除去率が多少減少したが、このシステムは比較的高い負荷で運転することが可能である。ハイブリッドにカーボンフェルトを使用し、多様な微生物を固定化できたことが、AFFHシステムの高効率化に貢献したと考えられる。
[ 顕微鏡による固定化微生物の観察]
リアクタの連続運転90日後、流動床担体を取り出して、顕微鏡観察を行った(図11)。これらの顕微鏡写真によると、付着した微生物は主に球状や双球状のMethanosarcina様メタン菌、長桿のMethanobacteriumメタン菌、やや短め桿菌のMethanosaeta様メタン菌で構成されていることがわかった。
連続運転終了の141日目に、固定床担体を取り出し、顕微鏡観察を行った(図12)。球状、双球状のMethanosarcina様メタン生成菌が、担体に固定されていたことが観察された。AFFHリアクタの流動床担体に付着した微生物は、固定床担体部分より多様性が高い事が明らかになった。流動床のカーボンフェルトに付着したメタン生成菌の多様性が、メタン生成に重要な役割を果たしていることが考えられる。
[DOC removal rate of AFFH reactor]
FIG. 9 shows the relationship between the change in organic load and the DOC removal rate during operation of the AFFH reactor. On the 22nd day after startup, the DOC removal rate was 95.7%. The DOC removal rate was 88.0-99.7% when the organic load was relatively high. From the 91st day, the DOC removal rate was 62.0 to 80.0% when only the fixed bed was loaded with the same organic load. FIG. 10 shows the change in DOC removal rate at different organic loadings. The DOC removal rate decreased with increasing organic loading. After removing the fluidized bed (carbon felt area decreased by 1/11), the DOC removal rate decreased by 24% with the same organic loading. The decrease in DOC removal rate was greater than the decrease in carrier area.
When the organic load is 6.34 g / l-reactor / d, the AFFH reactor has a DOC removal rate of 88% or more, so the AFFH system can be said to be a highly efficient reactor system. With increasing organic loading, the DOC removal rate decreased somewhat, but the system can operate at relatively high loads. The use of carbon felt in the hybrid and the immobilization of various microorganisms may have contributed to higher efficiency of the AFFH system.
[Observation of immobilized microorganisms with a microscope]
After 90 days of continuous operation of the reactor, the fluidized bed carrier was taken out and observed with a microscope (FIG. 11). According to these micrographs, it was found that the attached microorganisms were mainly composed of spherical and bispherical Methanosarcina- like methane bacteria, long-spotted Methanobacterium methane bacteria, and slightly shorter gonococcal Methanosaeta- like methane bacteria.
On the 141st day after the end of continuous operation, the fixed bed carrier was taken out and observed with a microscope (FIG. 12). It was observed that spherical and bispherical Methanosarcina- like methanogens were immobilized on the carrier. It was revealed that the microorganisms attached to the fluidized bed carrier of the AFFH reactor were more diverse than the fixed bed carrier part. It is considered that the diversity of methanogens attached to the carbon felt in the fluidized bed plays an important role in methanogenesis.

[まとめ]
半連続実験で検討の結果、流動床より固定床の方がメタン醗酵特性は優れていることが分かった。AFFHリアクタの連続運転実験より、このシステムは比較的高有機物負荷において満足できる結果が得られた。特に、高濃度のプロピオン酸(10000 mg/l)条件下でも、メタン生成が認められた。AFFHリアクタでは、短いスタートアップと高い有機物除去率が得られた。同じ運転条件において、固定床・流動床ハイブリッド(AFFH)リアクタは固定床のみのリアクタより担体面積減少以上に優れた結果が得られた。
電子顕微鏡による固定床・流動床ハイブリッドリアクタの観察において、流動床担体部分に固定された微生物は主に球状や双球状のMethanosarcina様メタン菌、長桿のMethanobacterium様メタン菌、やや短め桿菌のMethanosaeta様メタン菌であった。一方、固定床担体部分では、主に球状、双球状のMethanosarcina様メタン生成菌が固定された。流動床カーボンフェルトに固定化されたメタン生成菌の多様性が、メタン生成に重要な役割が果たしていることが考えられる。
[Summary]
As a result of the semi-continuous experiment, it was found that the fixed bed had better methane fermentation characteristics than the fluidized bed. From the continuous operation of the AFFH reactor, this system has shown satisfactory results at relatively high organic loads. In particular, methane formation was observed even under conditions of high concentration of propionic acid (10000 mg / l). The AFFH reactor has a short start-up and a high organic matter removal rate. Under the same operating conditions, the fixed bed / fluidized bed hybrid (AFFH) reactor achieved better results than the reduction of the carrier area than the fixed bed only reactor.
In the observation of the fixed bed / fluidized bed hybrid reactor using an electron microscope, the microorganisms immobilized on the fluidized bed support are mainly spherical or bispherical Methanosarcina- like methane bacteria, long-spotted Methanobacterium- like methane bacteria, and slightly shorter gonococcal Methanosaeta- like. It was a methane bacterium. On the other hand, in the fixed bed carrier part, mainly spherical and bispherical Methanosarcina- like methanogens were fixed. The diversity of methanogens immobilized on fluidized bed carbon felt may play an important role in methane production.

本発明の有機性廃棄物の処理方法は、固定床・流動床ハイブリッドリアクタを嫌気性消化槽内において用いることにより、効率よく有機性廃棄物を含む液状の被処理物を分解消化することが出来、分解消化に関わる微生物が効率よく固定床担体と流動床担体に固定化されているので、槽内の微生物濃度が高く、分解消化が効率よく進み、結果として、有機物の分解速度が速く、メタンガスがより迅速に発生させることができ、有機性廃棄物の処理のみならず、燃料供給装置としても広い用途が期待できる。
The organic waste treatment method of the present invention can efficiently decompose and digest a liquid material containing organic waste by using a fixed bed / fluidized bed hybrid reactor in an anaerobic digester. Since microorganisms involved in digestion are efficiently immobilized on the fixed bed carrier and fluidized bed carrier, the concentration of microorganisms in the tank is high, and digestion digestion proceeds efficiently. As a result, the decomposition rate of organic matter is high, and methane gas Can be generated more quickly, and can be expected to be used not only for the treatment of organic waste but also for a fuel supply device.

本発明に係る有機性廃物の嫌気性消化装置の説明図。Explanatory drawing of the anaerobic digester of the organic waste which concerns on this invention. 固定化材料の電子顕微鏡写真Electron micrograph of immobilization material 固定床・流動床ハイブリッド(AFFH)リアクタの概略図Schematic of fixed bed / fluidized bed hybrid (AFFH) reactor メタンガス量の変化図Change chart of methane gas amount 嫌気性消化槽における平均メタン収率の結果図Results chart of average methane yield in anaerobic digesters 各リアクタのメタン濃度図Methane concentration chart of each reactor DOC除去率の変化図Change of DOC removal rate AFFH リアクタ運転時におけるバイオガス中のメタン濃度及びメタン生成速度変化図Changes in methane concentration and methane production rate in biogas during AFFH reactor operation AFFHリアクタ運転時における有機物負荷の変化とDOC除去率の関係図Relationship between organic substance load change and DOC removal rate during AFFH reactor operation 有機物負荷におけるDOC除去率の変化図Changes in DOC removal rate under organic loading リアクタの連続運転90日後の流動床担体の表面の電子顕微鏡写真Electron micrograph of the surface of the fluidized bed support after 90 days of continuous operation of the reactor. 連続運転終了の141日目後の固定床担体の表面の電子顕微鏡写真Electron micrograph of the surface of the fixed bed carrier after 141 days of continuous operation

符号の説明Explanation of symbols

1.廃棄物貯留タンク
2.原料廃棄物配管
3.嫌気性消化槽
4.固定床担体
5.流動床担体
6.撹拌装置
7.消化ガス配管
8.消化ガス貯留タンク
9.処理物配管
10.固液分離装置
11.処理固形物配管、
12.処理固形物貯留タンク
13.処理液相配管
14.処理液相貯留タンク
1. Waste storage tank 2. 2. Raw material waste piping Anaerobic digester 4. Fixed bed carrier 5. Fluidized bed carrier6. 6. Stirring device Digestion gas piping8. 8. Digestion gas storage tank Process piping 10. Solid-liquid separator 11. Processing solid piping,
12 Processed solids storage tank 13. Treatment liquid phase piping 14. Treatment liquid storage tank

Claims (6)

有機性廃棄物を含む液状の被処理物を、嫌気性消化槽内において消化微生物の存在下で直接嫌気性処理する方法において、表面が炭素繊維で覆われた固定床担体と表面が炭素繊維で覆われ、嫌気性消化槽内の気相と液相両方に接する流動床担体を組み合わせた固定床・流動床ハイブリッドリアクタを嫌気性消化槽内において用いることを特徴とする有機性廃棄物の処理方法。 In a method for directly anaerobically treating a liquid material containing organic waste in the presence of digestive microorganisms in an anaerobic digestion tank, a fixed bed carrier whose surface is covered with carbon fiber and a surface made of carbon fiber. A method for treating organic waste, characterized in that a fixed bed / fluidized bed hybrid reactor combined with a fluidized bed carrier in contact with both gas phase and liquid phase in an anaerobic digester is used in the anaerobic digester. . 有機性廃棄物からなる被処理物を、嫌気性消化槽内に配置した消化微生物固定化担体の存在下で、直接、嫌気性処理消化する方法において、(I)酸発酵性微生物及び/又はメタン発酵性微生物を含有する嫌気性消化汚泥の存在下、該被処理物を固定床担体と、嫌気性消化槽内の気相と液相両方に接する流動床担体と接触させ嫌気的に消化する工程、(II)該消化工程で得られた消化生成物を液相部と固相部とに分離する工程、(III)該分離工程で得られた固相部を回収する工程、を含むことを特徴とする有機性廃棄物の処理方法。 In a method of directly anaerobically treating and digesting an object to be treated made of organic waste in the presence of a carrier for immobilizing a digestive microorganism placed in an anaerobic digestion tank , (I) acid-fermenting microorganisms and / or methane In the presence of anaerobic digested sludge containing fermentable microorganisms, the process object is contacted with a fixed bed carrier and a fluidized bed carrier in contact with both the gas phase and the liquid phase in the anaerobic digester to digest anaerobically (II) separating the digested product obtained in the digestion step into a liquid phase part and a solid phase part, and (III) recovering the solid phase part obtained in the separation step. A characteristic method for treating organic waste. (I)の工程で発生したメタンを含有する気相部を燃料とすることを特徴とする請求項に記載の有機性廃棄物の処理方法。 The method for treating organic waste according to claim 2 , wherein the gas phase portion containing methane generated in the step (I) is used as fuel. (III)の回収工程で回収された固相部を有機性肥料とすることを特徴とする請求項に記載の有機性廃棄物の処理方法。 The method for treating organic waste according to claim 2 , wherein the solid phase portion recovered in the recovery step (III) is an organic fertilizer. 有機性廃棄物を含む液状の被処理物を、嫌気性消化槽内において消化微生物の存在下で直接嫌気性処理する嫌気性消化装置であって、表面が炭素繊維で覆われた固定床担体と表面が炭素繊維で覆われ、嫌気性消化槽内の気相と液相両方に接する流動床担体を組み合わせた固定床・流動床ハイブリッドリアクタが嫌気性消化槽内に収容されていることを特徴とする嫌気性消化装置。 An anaerobic digester that directly anaerobically treats liquid waste containing organic waste in the presence of digestive microorganisms in an anaerobic digestion tank, and a fixed-bed carrier whose surface is covered with carbon fiber; A fixed bed / fluidized bed hybrid reactor that is combined with a fluidized bed carrier that is covered with carbon fiber and in contact with both the gas phase and the liquid phase in the anaerobic digester is housed in the anaerobic digester. Anaerobic digester to do. 固定床担体が成型樹脂の表面をカーボンフェルトで覆った構造であり、流動床担体が発泡成型樹脂をカーボンフェルトで覆った構造である請求項に記載した嫌気性消化装置。 The anaerobic digester according to claim 5 , wherein the fixed bed carrier has a structure in which the surface of the molding resin is covered with carbon felt, and the fluidized bed carrier has a structure in which the foam molding resin is covered with carbon felt.
JP2004361619A 2004-12-14 2004-12-14 Organic waste treatment methods Expired - Fee Related JP4448933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361619A JP4448933B2 (en) 2004-12-14 2004-12-14 Organic waste treatment methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361619A JP4448933B2 (en) 2004-12-14 2004-12-14 Organic waste treatment methods

Publications (2)

Publication Number Publication Date
JP2006167548A JP2006167548A (en) 2006-06-29
JP4448933B2 true JP4448933B2 (en) 2010-04-14

Family

ID=36668850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361619A Expired - Fee Related JP4448933B2 (en) 2004-12-14 2004-12-14 Organic waste treatment methods

Country Status (1)

Country Link
JP (1) JP4448933B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009190B2 (en) * 2012-03-28 2016-10-19 一般財団法人電力中央研究所 Cellulose organic matter decomposition treatment method
JP6460935B2 (en) * 2015-07-22 2019-01-30 株式会社日立製作所 Anaerobic fermentation treatment method for waste water, microbial carrier for anaerobic fermentation treatment, and anaerobic fermentation treatment apparatus

Also Published As

Publication number Publication date
JP2006167548A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
Zabranska et al. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens
Guo et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor
Ahmad et al. Bioenergy from anaerobic degradation of lipids in palm oil mill effluent
US7083956B2 (en) Method for hydrogen production from organic wastes using a two-phase bioreactor system
Chen et al. Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects
US20170101616A1 (en) Sonicated biological hydrogen reactor
Berg Developments in methanogenesis from industrial waste water
Ray et al. Biogas upgrading by hydrogenotrophic methanogens: an overview
Giwa et al. The resource recovery potential of blackwater and foodwaste: anaerobic co-digestion in serial semi-continuous stirred tank reactors
Córdoba et al. Improved performance of a hybrid design over an anaerobic filter for the treatment of dairy industry wastewater at laboratory scale
Vijayaraghavan et al. Performance of anaerobic contact filter in series for treating distillery spentwash
JP2006255538A (en) Method and apparatus for treatment of food waste
JP4448933B2 (en) Organic waste treatment methods
CA2760882A1 (en) Method and apparatus for anaerobically digesting organic material
Xu et al. A comparative study of anaerobic digestion of food waste in a single pass, a leachate recycle and coupled solid/liquid reactors
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
JP3873114B2 (en) Processing method of organic solid waste
JP3699999B2 (en) Treatment method of organic sludge
Hickey et al. Anaerobic processes
JP2005238200A (en) Method for treating organic waste
JP4600921B2 (en) Organic waste treatment method and apparatus
JP4423389B2 (en) Organic sludge treatment method, treatment apparatus and new strain
Ding et al. Responses of the methanogenic reactor to different effluent fractions of fermentative hydrogen production in a phase-separated anaerobic digestion system
Chen et al. Anaerobic fluidized bed pretreatment of hog wastewater
Hamid et al. The processing and treatment of other types of oil palm biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4448933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees