JP2005238200A - Method for treating organic waste - Google Patents

Method for treating organic waste Download PDF

Info

Publication number
JP2005238200A
JP2005238200A JP2004055462A JP2004055462A JP2005238200A JP 2005238200 A JP2005238200 A JP 2005238200A JP 2004055462 A JP2004055462 A JP 2004055462A JP 2004055462 A JP2004055462 A JP 2004055462A JP 2005238200 A JP2005238200 A JP 2005238200A
Authority
JP
Japan
Prior art keywords
organic waste
anaerobic
carrier
digestion
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004055462A
Other languages
Japanese (ja)
Inventor
Shigeki Sawayama
茂樹 澤山
Hideo Yo
英男 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004055462A priority Critical patent/JP2005238200A/en
Publication of JP2005238200A publication Critical patent/JP2005238200A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently immobilizing microorganisms and improve gasification efficiency in an anaerobic digestion process intended for an organic waste or wastewater. <P>SOLUTION: In the method for directly subjecting a material to be treated which is composed of the organic waste to an anaerobic treatment in the presence of a digestive oganism immobilizing carrier, the immobilizing carrier composed of foamed polyurethane is used as the carrier. Also, the obtained gaseous phase is collected and is used as a fuel and the obtained solid phase is recovered and is used as an organic fertilizer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、家庭・レストラン・工場・下水処理場等から排出される有機性廃棄物や廃水を、直接、嫌気性消化槽を用い嫌気的に発酵させることにより、廃棄物中の有機物を迅速に分解・消化処理する方法に関する。   The present invention enables organic waste and waste water discharged from households, restaurants, factories, sewage treatment plants, etc. to be anaerobically fermented directly using an anaerobic digestion tank, thereby quickly accelerating the organic matter in the waste. It relates to a method of decomposing and digesting.

生ごみ等有機性廃棄物の処理方法として、嫌気性消化が注目されるようになっている。しかし、従来の嫌気性消化法では、有機物分解速度、消化ガス生成速度は十分に高くないという問題点があり、そのため、ある程度大きな消化槽を用意する必要があった。分解速度が速くなれば、消化槽がよりコンパクトにでき、経済性・エネルギー収支等の改善が実現できる。   Anaerobic digestion is gaining attention as a method for treating organic waste such as garbage. However, the conventional anaerobic digestion method has a problem that the organic matter decomposition rate and the digestion gas generation rate are not sufficiently high, and therefore it is necessary to prepare a digester large to some extent. If the decomposition rate is increased, the digester can be made more compact, and the economic efficiency and energy balance can be improved.

これらの問題点を解消するために、活性汚泥方式で発生する汚泥の余剰部分を、高温嫌気性消化処理し、該処理液を固液分離膜に通して循環させ、該分離膜を通して水分を抜き取ることを特徴とする有機性汚泥の処理方法が提案されているが(特許文献1)、この方法は、従来の高温型嫌気性消化法であり、十分に消化効率が上がらないという問題があった。 In order to solve these problems, an excess portion of sludge generated by the activated sludge method is subjected to high-temperature anaerobic digestion, and the treatment liquid is circulated through a solid-liquid separation membrane, and water is extracted through the separation membrane. An organic sludge treatment method characterized by this is proposed (Patent Document 1), but this method is a conventional high-temperature anaerobic digestion method, and there is a problem that digestion efficiency does not sufficiently increase. .

また、消化汚泥を主体とする混合液を嫌気性消化リアクタから引き抜き循環・返送する過程で熱処理する方法が提案されているが(特許文献2)、この方法は、消化汚泥を高温で処理して物理化学的に消化汚泥の構造を破壊しようとしたものであり、嫌気性消化槽そのものの性能を向上させる方法ではなく、消化効率が十分に上がらないという問題が残る。 In addition, a method of heat-treating a mixed liquid mainly composed of digested sludge from the anaerobic digestion reactor in the process of drawing and circulating / returning it has been proposed (Patent Document 2). In this method, digested sludge is treated at a high temperature. It is intended to destroy the structure of digested sludge physicochemically, and is not a method for improving the performance of the anaerobic digester itself, but the problem that digestion efficiency does not sufficiently increase remains.

嫌気性消化槽内に微生物の住処となる担体を具備することにより、分解に関わる微生物を高濃度に槽内に維持し、分解・ガス化効率を図る固定化法が検討されている。
UASB法といわれる微生物が自己凝集したグラニュールを用い、消化槽内の微生物濃度を高める方法が検討・実用化されているが(特許文献3)、この方法は固形分をあまり分解できないので、もっぱら懸濁固形分の少ない有機性廃水の処理に利用されており、固形分を含有する有機性廃棄物や廃水の嫌気性処理には不向きである。
An immobilization method has been studied in which an anaerobic digestion tank is provided with a carrier serving as a place where microorganisms reside, so that microorganisms involved in decomposition can be maintained in the tank at a high concentration and decomposition and gasification efficiency can be improved.
A method called UASB method that uses self-aggregated granules of microorganisms to increase the concentration of microorganisms in the digestion tank has been studied and put into practical use (Patent Document 3). It is used for the treatment of organic wastewater with a small amount of suspended solids, and is not suitable for anaerobic treatment of organic waste and wastewater containing solids.

多孔質セラミック顆粒担体を用いた固定化嫌気性消化法が報告されているが(特許文献4)、本法はセラミック顆粒に貫通孔を設け数珠状に固定化して使用するため、装置が複雑で施工が難しく、槽内の担体容積が少ないため分解効率がさほど上昇しないという問題は残る。 An immobilized anaerobic digestion method using a porous ceramic granule carrier has been reported (Patent Document 4). However, since this method uses a ceramic granule with a through hole and is fixed in a rosary shape, the apparatus is complicated. The problem remains that the construction is difficult and the decomposition efficiency does not increase so much because the volume of the carrier in the tank is small.

また、流動性の0.5〜6 mmの粒状有機ゲル微粒子を微生物固定化担体として用いる方法が報告されているが(特許文献5)、流動性の微粒子を製造することや消化槽内に維持することが難しく、経済性や操作性に問題がある。   In addition, although a method using fluid 0.5 to 6 mm granular organic gel fine particles as a microorganism-immobilized carrier has been reported (Patent Document 5), producing fluid fine particles or maintaining them in a digestion tank. However, there are problems with economy and operability.

また、不織布に酸化剤で親水化処理し、微生物担体として利用する方法が報告されているが(特許文献6)、不織布では繊維を利用するため密度や空隙率を最適化することが困難で、微生物の担体としては不向きであるという問題がある。   Moreover, although the method of hydrophilizing a nonwoven fabric with an oxidizing agent and utilizing it as a microbial carrier has been reported (Patent Document 6), it is difficult to optimize the density and porosity because the nonwoven fabric uses fibers, There is a problem that it is not suitable as a carrier for microorganisms.

これらの欠点を解消するために、本発明者等は、先に、有機性廃水及び/又は有機性廃棄物を嫌気性消化処理し、得られる消化液を固液分離膜により分離する嫌気性消化処理方法であって、嫌気性消化処理を嫌気性消化微生物固定化担体の存在下で行う、有機性廃水及び/又は有機性廃棄物の嫌気性消化処理方法が提案した(特許文献7)。   In order to eliminate these drawbacks, the present inventors first performed anaerobic digestion treatment of organic wastewater and / or organic waste, and the resulting digested liquid is separated by a solid-liquid separation membrane. An anaerobic digestion treatment method for organic wastewater and / or organic waste, in which anaerobic digestion treatment is performed in the presence of an anaerobic digestive microorganism-immobilized carrier, has been proposed (Patent Document 7).

特開平07−148500号公報JP 07-148500 A 特開平10−085784号公報Japanese Patent Laid-Open No. 10-085784 特開平11−319782号公報Japanese Patent Laid-Open No. 11-319782 特開平09−038686号公報JP 09-038686 A 特開2003−062594号公報JP 2003-062594 A 特開2003−260446号公報JP 2003-260446 A 特願2002−339623号Japanese Patent Application No. 2002-339623

本発明は、前記特許文献7の方法を更に発展させたものであり、その目的は、有機性廃棄物からなる被処理物を消化微生物固定化担体の存在下で、固液分離膜を用いることなく直接、嫌気性処理する方法において、消化槽内に効率よく嫌気性微生物を維持し、有機性廃棄物を嫌気性消化により効率よく分解・ガス化し、メタンの生成効率を高めて消化速度を向上させる方法を提供することにある。   The present invention is a further development of the method of Patent Document 7, and its object is to use a solid-liquid separation membrane for an object to be treated consisting of organic waste in the presence of a digestive microorganism-immobilized carrier. Without anaerobic treatment, the anaerobic microorganisms are efficiently maintained in the digestion tank, the organic waste is efficiently decomposed and gasified by anaerobic digestion, and the digestion rate is improved by increasing the production efficiency of methane. It is to provide a method of making it happen.

本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、以下の発明が提供される。
(1) 有機性廃棄物からなる被処理物を消化微生物固定化担体の存在下で、直接、嫌気性処理する方法において、担体として発泡ポリウレタンからなる固定化担体を用いることを特徴とする有機性廃棄物の処理方法。
(2) 発泡ポリウレタンの細孔が、相互につながっていることを特徴とする上記(1)に記載の有機性廃棄物の処理方法。
(3) 発泡ポリウレタンの細孔数が、25 mm当たり20個以上であることを特徴とする上記(1)に記載の有機性廃棄物の処理方法。
(4) 固定化担体の設置様式が、固定床型であることを特徴とする上記(1)に記載の有機性廃棄物の処理方法。
(5) 有機性廃棄物からなる被処理物を消化微生物固定化担体の存在下で、直接、嫌気性処理消化する方法において、(I)酸発酵性微生物及び/又はメタン発酵性微生物を含有する嫌気性消化汚泥の存在下、発泡ポリウレタンを消化微生物の担体とし、該被処理物を発泡ポリウレタンと接触させ嫌気的に消化する工程、(II)該消化工程で得られた消化生成物を液相部と固相部とに分離する工程、(III)該分離工程で得られた固相部を回収する工程、を含むことを特徴とする有機性廃棄物の処理方法。
(6) (I)の工程で発生したメタンを含有する気相部を燃料とすることを特徴とする上記(5)記載の有機性廃棄物の処理方法。
(7)(III)の回収工程で回収された固相部を有機性肥料とすることを特徴とする上記(5)に記載の有機性廃棄物の処理方法。
(8) 直接型嫌気性消化槽を備えた嫌気性消化装置であって、該嫌気性消化装置の内部に発泡ポリウレタンからなる消化微生物固定化担体が収容されていることを特徴とする上記(1)乃至(7)何れかに記載の有機性廃棄物の処理方法に用いられる嫌気性消化装置。
As a result of intensive studies to solve the above problems, the present inventor has completed the present invention.
That is, according to the present invention, the following inventions are provided.
(1) An organic property characterized in that an immobilized carrier made of foamed polyurethane is used as a carrier in a method for directly anaerobically treating an object to be treated made of organic waste in the presence of a carrier for immobilizing digestive microorganisms. Waste disposal method.
(2) The method for treating organic waste as described in (1) above, wherein the pores of the polyurethane foam are connected to each other.
(3) The method for treating organic waste as described in (1) above, wherein the number of pores of the foamed polyurethane is 20 or more per 25 mm.
(4) The organic waste treatment method according to (1) above, wherein the immobilization support is installed in a fixed bed type.
(5) In a method for directly anaerobically treating and digesting an object to be treated consisting of organic waste in the presence of a digestive microorganism-immobilized carrier, (I) containing acid-fermentable microorganisms and / or methane-fermentable microorganisms In the presence of anaerobic digested sludge, a process in which foamed polyurethane is used as a carrier of digestive microorganisms, and the treatment object is brought into contact with foamed polyurethane to digest anaerobically; (II) the digestion product obtained in the digestion process is liquid phase A method for treating organic waste, comprising: a step of separating the solid phase portion into a solid phase portion; and (III) a step of recovering the solid phase portion obtained in the separation step.
(6) The method for treating organic waste as described in (5) above, wherein the gas phase containing methane generated in the step (I) is used as fuel.
(7) The method for treating organic waste as described in (5) above, wherein the solid phase part recovered in the recovery step (III) is used as an organic fertilizer.
(8) An anaerobic digester equipped with a direct type anaerobic digester, wherein a digestive microorganism-immobilized carrier made of foamed polyurethane is accommodated in the anaerobic digester (1) ) To (7) An anaerobic digester used in the organic waste processing method according to any one of the above.

本発明は前記のような構成であり、有機性廃棄物及び又は廃水は発泡ポリウレタン担体に固定化された嫌気性微生物の分解消化処理を受ける。分解消化に関わる微生物が効率よくポリウレタンに固定化されているので、槽内の微生物濃度が高く、分解消化が効率よく進む。結果として、有機物の分解速度が速く、メタンガスがより迅速に発生する。 The present invention is configured as described above, and the organic waste and / or waste water is subjected to a decomposition digestion treatment of anaerobic microorganisms immobilized on the foamed polyurethane carrier. Since microorganisms involved in decomposing digestion are efficiently immobilized on polyurethane, the concentration of microorganisms in the tank is high, and decomposing digestion proceeds efficiently. As a result, the decomposition rate of organic matter is high and methane gas is generated more rapidly.

本発明の最大の特徴は、従来の固液分離膜を用いることなく、通常の繊維状の消化性固定化担体の存在下で直接嫌気性消化処理方法の有する、特に消化槽運転開始時における嫌気性微生物の固定化速度が遅いため、慣らし運転に時間が掛かるといった問題点を克服するために、嫌気性消化槽内に収容する該担体として発泡ポリウレタン製の担体を選定した点にある。
このように固定化担体として、発泡ポリウレタン製のものを用いると、ポリウレタンの細孔数や密度が最適化されているため、分解消化・ガス化に関わる微生物が効率よくポリウレタンの細孔に入り高密度で固定化されるため、消化が効率よくすすむ。
The greatest feature of the present invention is that it has an anaerobic digestion method directly in the presence of a normal fibrous digestible immobilization carrier without using a conventional solid-liquid separation membrane, and particularly anaerobic at the start of digester operation. In order to overcome the problem that it takes a long time for the break-in operation due to the slow immobilization rate of the sex microorganisms, a support made of polyurethane foam is selected as the support accommodated in the anaerobic digester.
In this way, when the foamed polyurethane carrier is used as the immobilization carrier, the number and density of the pores of the polyurethane are optimized, so that microorganisms involved in decomposition digestion and gasification efficiently enter the pores of the polyurethane. Because it is fixed at a high density, digestion is efficient.

本発明でいう、嫌気性消化には、酸素のない嫌気的な条件で嫌気性微生物の働きにより、有機物からメタンと二酸化炭素を生成させる方法と、嫌気性消化処理とは、20〜70℃、好ましくは30〜60℃で行う嫌気性消化処理の両消化法が包含される。この嫌気性消化処理は、35〜37℃で行われる中温消化法でも、55℃で行われる高温消化法であってもよい。
また、本発明においては、固定化微生物を利用し、原料の水分含量を80%以上に調整して消化を行う湿式消化方法を採用することが好ましい。
In the present invention, anaerobic digestion is a method of generating methane and carbon dioxide from organic substances by the action of anaerobic microorganisms under anaerobic conditions without oxygen, and anaerobic digestion treatment is performed at 20 to 70 ° C., Preferably, both digestion methods of anaerobic digestion performed at 30 to 60 ° C are included. This anaerobic digestion treatment may be an intermediate temperature digestion method performed at 35 to 37 ° C or a high temperature digestion method performed at 55 ° C.
In the present invention, it is preferable to employ a wet digestion method in which digestion is performed using an immobilized microorganism and adjusting the water content of the raw material to 80% or more.

また、本明細書で言う酸発酵性微生物とは、嫌気性消化において有機酸等を生成する微生物を意味し、Bacteroides sp.、Clostridium sp.、Bacillussp.、Lactobacillus sp.等があげられる。メタン発酵性微生物とは、嫌気性消化においてメタンを生成する微生物を意味し、Methanobacteriumsp., Methanothermobacter sp., Methanosarcinasp.、Methanosaeta sp.等があげられる。両者とも従来よく知られているものである。 In addition, the acid-fermenting microorganism referred to in the present specification means a microorganism that produces an organic acid or the like in anaerobic digestion, and examples thereof include Bacteroides sp., Clostridium sp., Bacillus sp., Lactobacillus sp. Methane-fermenting microorganisms mean microorganisms that produce methane in anaerobic digestion, such as Methanobacterium sp., Methanothermobacter sp., Methanosarcina sp., Methanosaeta sp. Both are well known in the art.

本発明の処理対象となる有機性廃棄物には、家庭・レストラン・食品工場等から排出される食品残滓や排水および発酵工場等で排出される発酵残滓や排水、下水処理場・食品工場・浄化槽等で廃水処理後排出される有機性汚泥一般、落ち葉や剪定枝なその植物性バイオマス、古紙類などを意味する。   The organic waste subject to treatment of the present invention includes food residues and wastewater discharged from households, restaurants, food factories, etc., and fermentation residues and wastewater discharged from fermentation plants, etc., sewage treatment plants, food factories, and septic tanks. It means organic sludge discharged after wastewater treatment, etc., plant biomass such as fallen leaves and pruned branches, and waste paper.

本発明の方法を実施するには、消化槽内で嫌気性消化汚泥と原料の有機性廃棄物を混合し、含水率75〜99.9%望ましくは85〜98%に調整し、必要に応じて破砕し、20℃以上望ましくは30〜60℃更に好ましくは35または55℃で湿式嫌気性消化処理させる。   To carry out the method of the present invention, anaerobic digested sludge and raw organic waste are mixed in a digestion tank, adjusted to a moisture content of 75-99.9%, preferably 85-98%, and crushed as necessary. And an anaerobic digestion treatment at 20 ° C. or higher, desirably 30 to 60 ° C., more preferably 35 or 55 ° C.

この場合、本発明においては、この消化槽内に、発泡ポリウレタン固定化担体を具備させる。
本発明で言うポリウレタンとは、ウレタン結合を有するポリマーの総称で、ウレタン結合はイソシアネート基と、水酸基などの活性水素を有する化合物との付加反応により生成されたものを言い、本発明では、その発泡体を固定化担体として用いる。発泡ポリウレタンで、密度や細孔数を任意に調整することができる。
固定化担体の収容方法としては、固定床でも流動床でも、それらを組み合わせた方法でもよいが、固定化担体が嫌気性消化槽内で固定されて動かず、消化物が動く状態で消化が進む固定床が好ましく使用される。
In this case, in the present invention, a foamed polyurethane fixed carrier is provided in the digestion tank.
The polyurethane referred to in the present invention is a general term for a polymer having a urethane bond, and the urethane bond refers to a product formed by an addition reaction between an isocyanate group and a compound having an active hydrogen such as a hydroxyl group. The body is used as an immobilization carrier. With foamed polyurethane, the density and the number of pores can be arbitrarily adjusted.
As a method for containing the immobilization carrier, either a fixed bed, a fluidized bed, or a combination thereof may be used. However, the immobilization carrier is fixed in the anaerobic digestion tank and does not move, and digestion proceeds with the digest moving. A fixed bed is preferably used.

担体である発泡ポリウレタンの形状は、制約されず、補助資材等を用いて円筒状、平板状、球状、円盤状の形状にも成型することができる。発泡ポリウレタンの厚さは、5〜200 mm望ましくは10〜50 mm、ポリウレタンの密度は、5〜100 kg/m3望ましくは20〜40kg/m3、ポリウレタンは、その細孔が相互につながっているオープンセル構造であることが望ましい。また、その細孔数は、10個/25mm以上望ましくは20〜50個/25mmである。 The shape of the foamed polyurethane as the carrier is not limited, and can be molded into a cylindrical shape, a flat plate shape, a spherical shape, or a disk shape using an auxiliary material. The thickness of the polyurethane foam is 5 to 200 mm preferably 10 to 50 mm, the density of the polyurethane is 5 to 100 kg / m 3 preferably 20~40kg / m 3, the polyurethane is, the pores are interconnected It is desirable to have an open cell structure. Further, the number of pores is 10/25 mm or more, desirably 20-50 / 25 mm.

固定化に用いる嫌気性消化汚泥としては、酸発酵性微生物やメタン発酵性微生物を含有する下水汚泥の嫌気性消化に使用される通常の嫌気性消化汚泥や、既存の嫌気性消化汚泥を別途培養したものを使用することができる。   As anaerobic digested sludge used for immobilization, normal anaerobic digested sludge used for anaerobic digestion of sewage sludge containing acid-fermenting microorganisms and methane-fermenting microorganisms or existing anaerobic digested sludges are separately cultured. Can be used.

前記のようにして、有機性廃棄物を酸発酵性微生物やメタン発酵性微生物を固定化した発泡ポリウレタン担体を用いて嫌気的に消化処理すると、有機物が分解されてガス化し、嫌気性消化残滓が得られる。その時発生する嫌気性消化残滓は、窒素やリンなどの肥料成分を多く含み、発酵が進んでいるので有機性肥料として利用することが可能である。
また、好気的なコンポスト法によって生産された有機性肥料中の塩分が問題となる場合があるが、本法では発酵残滓は固液分離後固相部が有機性肥料となり、塩分は液相部中に多く含まれるため、本法により得られる有機性肥料はコンポスト法による有機性肥料に比べ塩分濃度が低いという利点を有する。
As described above, when organic waste is digested anaerobically using a foamed polyurethane carrier to which acid-fermenting microorganisms and methane-fermenting microorganisms are immobilized, the organic matter is decomposed and gasified, and anaerobic digestion residue is produced. can get. The anaerobic digestion residue generated at that time contains a large amount of fertilizer components such as nitrogen and phosphorus, and can be used as an organic fertilizer because fermentation is progressing.
In addition, the salt content in organic fertilizer produced by the aerobic compost method may be a problem. In this method, the fermentation residue is solid-liquid separated and the solid phase becomes organic fertilizer. Since it is contained in many parts, the organic fertilizer obtained by this method has the advantage that the salt concentration is lower than the organic fertilizer by the compost method.

また、消化時に発生するメタンは、ボイラー燃料、消化ガス発電、マイクロガスタービンや水素への改質後燃料電池の燃料として利用することが出来る。   Also, methane generated during digestion can be used as fuel for boiler fuel, digestion gas power generation, micro gas turbines and fuel cells after reforming to hydrogen.

次に、本発明について図面を参照しながら詳述する。
図1は本発明を実施する場合のフローシートを示す。
図1において、1は廃棄物貯留タンク、2は原料廃棄物配管、3は嫌気性消化槽、4は発泡ポリウレタン担体、5は撹拌装置、6は消化ガス配管、7は消化ガス貯留タンク、8は処理物配管、9は固液分離装置、10は処理固形物配管、11は処理固形物貯留タンク、12は処理液相配管、13は処理液相貯留タンクを各示す。
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a flow sheet for carrying out the present invention.
In FIG. 1, 1 is a waste storage tank, 2 is a raw material waste pipe, 3 is an anaerobic digestion tank, 4 is a foamed polyurethane carrier, 5 is a stirring device, 6 is a digestion gas pipe, 7 is a digestion gas storage tank, 8 Is a processing liquid pipe, 9 is a solid-liquid separator, 10 is a processing solid pipe, 11 is a processing solid storage tank, 12 is a processing liquid phase piping, and 13 is a processing liquid phase storage tank.

図1に従って本発明を実施するには、有機性廃棄物貯留タンク1より有機性廃棄物配管2を通って、メタン発酵を生じさせる微生物を含有する嫌気性汚泥を投入して発泡ポリウレタン担体に固定化した嫌気性消化槽3に、有機性廃棄物を供給する。
メタン発酵を生じさせる微生物を含有する嫌気性汚泥としては、前記したように、下水処理場の下水汚泥の嫌気性消化汚泥等を使用すればよい。この場合、この嫌気性消化槽3は、その内部に円筒状または平板状の発泡ポリウレタン担体4を具備し、嫌気性微生物を固定化する。通常、微生物の固定化には、消化槽の立ち上げ時に槽内に嫌気性消化汚泥を投入後、原料を加えないで2〜3週間運転し、その後徐々に原料を加えていく方法を用いる。
In order to implement the present invention according to FIG. 1, anaerobic sludge containing microorganisms causing methane fermentation is introduced from an organic waste storage tank 1 through an organic waste pipe 2 and fixed to a foamed polyurethane carrier. Organic waste is supplied to the converted anaerobic digester 3.
As described above, as the anaerobic sludge containing microorganisms that cause methane fermentation, anaerobic digested sludge or the like of sewage sludge in a sewage treatment plant may be used. In this case, the anaerobic digester 3 has a cylindrical or flat foamed polyurethane carrier 4 inside thereof, and immobilizes anaerobic microorganisms. Usually, for immobilizing microorganisms, a method is used in which anaerobic digested sludge is introduced into the tank at the start-up of the digestion tank, followed by operation for 2 to 3 weeks without adding the raw material, and then gradually adding the raw material.

この嫌気性消化槽3において、廃棄物は固定化微生物の分解作用を受けながら消化処理を受ける。この消化処理により、廃棄物中の有機物は従来の嫌気性消化に比べ、より迅速に安定的に分解消化されメタンを発生する。本発明の場合、密度や細孔数を最適化した発泡ポリウレタン担体に効率よくメタン発酵性微生物が固定化され、槽内の分解微生物濃度が高くなっているので、従来の消化法に比べ有機物分解速度及び消化ガス化速度の向上が達成される。特に、消化槽運転開始時における嫌気性微生物の固定化速度が速く、慣らし運転を短縮できる。   In the anaerobic digestion tank 3, the waste is subjected to digestion while receiving the action of decomposing the immobilized microorganisms. By this digestion treatment, organic matter in the waste is decomposed and digested more rapidly and stably than methane in comparison with conventional anaerobic digestion. In the case of the present invention, the methane-fermenting microorganisms are efficiently immobilized on the foamed polyurethane carrier with optimized density and number of pores, and the concentration of decomposing microorganisms in the tank is high. An increase in speed and digestion gasification rate is achieved. In particular, the rate of immobilization of anaerobic microorganisms at the start of digester operation is fast, and the break-in operation can be shortened.

本発明に係る嫌気性消化槽は、槽内の汚泥を撹拌し発酵反応を促進させるために、撹拌装置を具備させることが望ましい。また、槽内の汚泥を抜き再度投入することにより撹拌を実現してもよい。   The anaerobic digestion tank according to the present invention is desirably provided with a stirring device in order to stir sludge in the tank and promote the fermentation reaction. Moreover, you may implement | achieve stirring by removing the sludge in a tank and throwing in again.

また、嫌気性消化槽3内で発生したメタンを含む消化ガスは消化ガス配管6を通って消化ガス貯留タンク7に貯留される。この場合の消化ガスは、通常CH4:50〜100モル%、CO2:0〜50モル%、H2:0〜10モル%を含有する。 Further, the digestion gas containing methane generated in the anaerobic digestion tank 3 is stored in the digestion gas storage tank 7 through the digestion gas pipe 6. Digester gas in this case is usually CH 4: 50 to 100 mol%, CO 2: 0 to 50 mol%, H 2: containing 0-10 mol%.

一方、嫌気性消化槽3で得られた消化物は処理物配管8を通って固液分離装置9に導入される。固液分離装置9において、液相部(廃水)と固相部(処理物)とに分離され、固相部は処理固形物配管10を通って固相部貯留タンク11に貯留され、液相部は処理液相配管12を通って処理液相貯留タンク13に貯留される。   On the other hand, the digest obtained in the anaerobic digester 3 is introduced into the solid-liquid separator 9 through the treated product pipe 8. In the solid-liquid separation device 9, the liquid phase part (waste water) and the solid phase part (processed product) are separated, and the solid phase part is stored in the solid phase part storage tank 11 through the process solids pipe 10, and the liquid phase The part is stored in the processing liquid phase storage tank 13 through the processing liquid phase piping 12.

前記固液分離装置9は、濾過器や遠心分離機、沈降槽等からなる。この固液分離装置により、消化物は液相部と固相部とに分離される。この固相部は窒素やリンなどの肥料成分を多く含み、発酵が進んでいるので有機性肥料として利用することができる。また、前記液相部(廃水)は、通常溶存有機物や溶存無機物の濃度の低いものであり、必要に応じ廃水処理後放流される。   The solid-liquid separation device 9 includes a filter, a centrifuge, a sedimentation tank, and the like. The digest is separated into a liquid phase part and a solid phase part by this solid-liquid separation device. This solid phase portion contains a large amount of fertilizer components such as nitrogen and phosphorus, and can be used as an organic fertilizer because fermentation is progressing. The liquid phase part (waste water) is usually one having a low concentration of dissolved organic matter or dissolved inorganic matter, and is discharged after waste water treatment as necessary.

以下、本発明を実施例により更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
300 ml容量のリアクタに、消化汚泥と酢酸培地の混合物を150 ml加えた。発泡ポリウレタン(細孔数20個/25 mm)を消化液の20%(v/v、30 ml)リアクタ内に固定して固定床とし、密閉後内部のガスを窒素で置換してリアクタ内を嫌気性にした。ポリ瓶から発生したガス生成量をシリンジで測定し、メタン濃度はガスクロで測定した。35℃の振動培養器(120 rpm)に週一回酢酸培地を供給する半連続式で、42日間培養した。流入液と流出液の溶存総有機炭素濃度を測定し、添加溶存有機物当たりメタン収率を検討した。
Example 1
To a 300 ml reactor, 150 ml of a mixture of digested sludge and acetic acid medium was added. Polyurethane foam (number of pores 20/25 mm) is fixed in a 20% (v / v, 30 ml) digestive fluid reactor to form a fixed bed. After sealing, the gas inside is replaced with nitrogen and the reactor is filled with nitrogen. Made anaerobic. The amount of gas produced from the plastic bottle was measured with a syringe, and the methane concentration was measured with gas chromatography. The cells were cultured for 42 days in a semi-continuous system in which an acetic acid medium was supplied once a week to a 35 ° C. vibration incubator (120 rpm). The dissolved total organic carbon concentration of the influent and effluent was measured, and the methane yield per added dissolved organic matter was examined.

参考例1
細孔数13個/25 mmの発泡ポリウレタンを固定床とし、実施例1に同様な実験を行い、各データを測定した。
Reference example 1
A foamed polyurethane having 13 pores / 25 mm was used as a fixed bed, and the same experiment as in Example 1 was performed to measure each data.

参考例2
細孔数20個/25 mmの発泡ポリウレタンを流動床とし、実施例1に同様な実験を行い、各データを測定した。
Reference example 2
A foamed polyurethane having 20 pores / 25 mm was used as a fluidized bed, and the same experiment as in Example 1 was performed to measure each data.

[実施例1と参考例1の実験結果およびその考察]
細孔数13個/25 mmの発泡ポリウレタンを固定床とした比較例1では、培養42日後の累積メタンガス生成量は413mlであったのに対し、細孔数20個/25 mmで固定床法の実施例1の累積メタンガス生成量は、1073 mlであった。また、参考例1では208ml/g-添加溶存総有機炭素のメタン収率あったのに対し、実施例1では590 ml/g-添加溶存総有機炭素のメタン収率であった。細孔数20 個/25mmの発泡ポリウレタンを固定床としたリアクタではより多くのメタン菌が固定化され、細孔数13 個/25mmの発泡ポリウレタンリアクタより消化ガス生成量が向上したと考えられる。
[Experimental Results and Discussion of Example 1 and Reference Example 1]
In Comparative Example 1 in which polyurethane foam with 13 pores / 25 mm was used as a fixed bed, the cumulative amount of methane gas produced after 42 days of culture was 413 ml, whereas the fixed bed method with 20 pores / 25 mm was used. The amount of accumulated methane gas produced in Example 1 was 1073 ml. Further, in Reference Example 1, there was a methane yield of 208 ml / g-added dissolved total organic carbon, while in Example 1, the methane yield of 590 ml / g-added dissolved total organic carbon. It is considered that more methane bacteria were immobilized in the reactor using fixed polyurethane foam with a pore number of 20/25 mm, and digestion gas production was improved compared to a foamed polyurethane reactor with a pore number of 13/25 mm.

[実施例1と参考例2の実験結果およびその考察]
細孔数20個/25mmの、発泡ポリウレタンを流動床とした参考例2では、培養42日後の累積メタンガス生成量は631 mlであったのに対し、実施例1の累積メタンガス生成量は1073
mlであった。また同様の実験条件で、参考例2では307 ml/g-添加溶存総有機炭素のメタン収率に対し、実施例1では590 ml/g-添加溶存総有機炭素のメタン収率であった。流動床に比べ固定床を具備したリアクタがより安定で、より多くの消化ガスが生成したと考えられる。
[Experimental results and discussion of Example 1 and Reference Example 2]
In Reference Example 2 in which foamed polyurethane is a fluidized bed having a pore number of 20/25 mm, the cumulative amount of methane gas produced after 42 days of culture was 631 ml, whereas the cumulative amount of methane gas produced in Example 1 was 1073.
ml. Further, under the same experimental conditions, the methane yield of 307 ml / g-added dissolved total organic carbon in Reference Example 2 was 590 ml / g-added dissolved total organic carbon in Example 1, and the methane yield of Reference Example 2 was 590 ml / g-added dissolved total organic carbon. It is believed that the reactor with the fixed bed was more stable than the fluidized bed, and more digestion gas was produced.

これらの実験結果から、嫌気性消化槽内に細孔数20個/25mmで固定床型発泡ポリウレタン担体を具備すると、効率よく嫌気性微生物が固定化され、有機性廃棄物の分解速度やガス化速度が向上することがわかる。 From these experimental results, anaerobic microorganisms are efficiently immobilized and organic waste decomposition rate and gasification when equipped with a fixed-bed foamed polyurethane carrier with 20 pores / 25mm in an anaerobic digester. It can be seen that the speed is improved.

本発明に係る有機性廃物の嫌気性消化装置の説明図である。It is explanatory drawing of the anaerobic digester of the organic waste which concerns on this invention.

符号の説明Explanation of symbols

1.廃棄物貯留タンク
2.原料廃棄物配管
3.嫌気性消化槽
4.発泡ポリウレタン担体
5.撹拌装置
6.消化ガス配管
7.消化ガス貯留タンク
8.処理物配管
9.固液分離装置
10.処理固形物配管、
11.処理固形物貯留タンク
12.処理液相配管
13.処理液相貯留タンク
1. Waste storage tank 2. 2. Raw material waste piping Anaerobic digester 4. 4. Foamed polyurethane carrier 5. Stirrer 6. Digestion gas piping Digestion gas storage tank8. Process pipe 9. Solid-liquid separator 10. Processing solid piping,
11. Processed solids storage tank 12. Treatment liquid phase piping 13. Treatment liquid storage tank

Claims (8)

有機性廃棄物からなる被処理物を消化微生物固定化担体の存在下で直接、嫌気性処理する方法において、該担体として発泡ポリウレタンからなる固定化担体を用いることを特徴とする有機性廃棄物の処理方法。 In a method for anaerobically treating an object to be treated consisting of organic waste directly in the presence of a digestive microorganism-immobilized carrier, an immobilized carrier made of polyurethane foam is used as the carrier. Processing method. 発泡ポリウレタンの細孔が、相互につながっていることを特徴とする請求項1に記載の有機性廃棄物の処理方法。 The method for treating organic waste according to claim 1, wherein the pores of the polyurethane foam are connected to each other. 発泡ポリウレタンの細孔数が、25 mm当たり20個以上であることを特徴とする請求項1に記載の有機性廃棄物の処理方法。 The method for treating organic waste according to claim 1, wherein the number of pores of the foamed polyurethane is 20 or more per 25 mm. 固定化担体の設置様式が、固定床型であることを特徴とする請求項1に記載の有機性廃棄物の処理方法。 2. The method for treating organic waste according to claim 1, wherein the fixed carrier is installed in a fixed bed type. 有機性廃棄物からなる被処理物を消化微生物固定化担体の存在下で、直接、嫌気性処理消化する方法において、(I)酸発酵性微生物及び/又はメタン発酵性微生物を含有する嫌気性消化汚泥の存在下、発泡ポリウレタンを消化微生物の担体とし、該被処理物を発泡ポリウレタンと接触させ嫌気的に消化する工程、(II)該消化工程で得られた消化生成物を液相部と固相部とに分離する工程、(III)該分離工程で得られた固相部を回収する工程、を含むことを特徴とする有機性廃棄物の処理方法。 (I) Anaerobic digestion containing acid-fermentable microorganisms and / or methane-fermentable microorganisms in a method of directly anaerobically treating and digesting an object to be treated consisting of organic waste in the presence of a digestive microorganism-immobilized carrier. In the presence of sludge, a process in which foamed polyurethane is used as a carrier for digestive microorganisms and the treatment object is brought into contact with foamed polyurethane to digest anaerobically; (II) the digested product obtained in the digestion process is mixed with the liquid phase part and solid phase A method for treating organic waste, comprising: a step of separating into a phase part; and (III) a step of recovering the solid phase part obtained in the separation step. (I)の工程で発生したメタンを含有する気相部を燃料とすることを特徴とする請求項5に記載の有機性廃棄物の処理方法。 6. The method for treating organic waste according to claim 5, wherein the gas phase portion containing methane generated in the step (I) is used as fuel. (III)の回収工程で回収された固相部を有機性肥料とすることを特徴とする請求項5に記載の有機性廃棄物の処理方法。 6. The method for treating organic waste according to claim 5, wherein the solid phase portion recovered in the recovery step (III) is an organic fertilizer. 直接型嫌気性消化槽を備えた嫌気性消化装置であって、該嫌気性消化装置の内部に発泡ポリウレタンからなる消化微生物固定化担体が収容されていることを特徴とする請求項1乃至請求項7何れかに記載の有機性廃棄物の処理方法に用いられる嫌気性消化装置。
An anaerobic digester equipped with a direct type anaerobic digester, wherein a digestive microorganism-immobilized carrier made of foamed polyurethane is accommodated in the anaerobic digester. 7. An anaerobic digester used in the organic waste processing method according to any one of 7 above.
JP2004055462A 2004-02-27 2004-02-27 Method for treating organic waste Pending JP2005238200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055462A JP2005238200A (en) 2004-02-27 2004-02-27 Method for treating organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055462A JP2005238200A (en) 2004-02-27 2004-02-27 Method for treating organic waste

Publications (1)

Publication Number Publication Date
JP2005238200A true JP2005238200A (en) 2005-09-08

Family

ID=35020495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055462A Pending JP2005238200A (en) 2004-02-27 2004-02-27 Method for treating organic waste

Country Status (1)

Country Link
JP (1) JP2005238200A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203150A (en) * 2006-01-31 2007-08-16 Kajima Corp Anaerobic decomposition method and apparatus for organic matter-containing liquid
ES2923050A1 (en) * 2021-03-12 2022-09-22 Lomba Juan Francisco Ruiz SYSTEM AND METHOD OF TREATMENT OF ORGANIC MATTER (Machine-translation by Google Translate, not legally binding)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203150A (en) * 2006-01-31 2007-08-16 Kajima Corp Anaerobic decomposition method and apparatus for organic matter-containing liquid
ES2923050A1 (en) * 2021-03-12 2022-09-22 Lomba Juan Francisco Ruiz SYSTEM AND METHOD OF TREATMENT OF ORGANIC MATTER (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
Zabranska et al. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens
US20170101616A1 (en) Sonicated biological hydrogen reactor
US7083956B2 (en) Method for hydrogen production from organic wastes using a two-phase bioreactor system
Guo et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor
KR100949314B1 (en) Apparatus for algae production using effluents produced from anaerobic digestion of organic wastes
KR101152210B1 (en) Organic Waste Disposal System with Improved Methane Yield and Method
Wang et al. A hybrid two-phase system for anaerobic digestion of food waste
JP4864339B2 (en) Organic waste processing apparatus and processing method
Vijayaraghavan et al. Performance of anaerobic contact filter in series for treating distillery spentwash
JP2006255538A (en) Method and apparatus for treatment of food waste
CA2760882A1 (en) Method and apparatus for anaerobically digesting organic material
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
Xu et al. A comparative study of anaerobic digestion of food waste in a single pass, a leachate recycle and coupled solid/liquid reactors
JP2005238200A (en) Method for treating organic waste
JP2003053309A (en) Method of treating organic solid waste
JP4448933B2 (en) Organic waste treatment methods
JP3699999B2 (en) Treatment method of organic sludge
JP2005103375A (en) Methane fermentation treatment method and apparatus
JP4423389B2 (en) Organic sludge treatment method, treatment apparatus and new strain
JP2004167461A (en) Method and apparatus for anaerobic digestion process
JP2001149983A (en) Bio gas generator
JP4600921B2 (en) Organic waste treatment method and apparatus
JP2003340412A (en) Method for anaerobic digestive treatment of organic waste and apparatus therefor
JP2006150216A (en) Method for treating organic waste
Rahma et al. Biohydrogen production by modified anaerobic fluidized bed reactor (AFBR) using mixed bacterial cultures in thermophilic condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129