JP4448636B2 - Supply air cooling device for internal combustion engine - Google Patents

Supply air cooling device for internal combustion engine Download PDF

Info

Publication number
JP4448636B2
JP4448636B2 JP2001302648A JP2001302648A JP4448636B2 JP 4448636 B2 JP4448636 B2 JP 4448636B2 JP 2001302648 A JP2001302648 A JP 2001302648A JP 2001302648 A JP2001302648 A JP 2001302648A JP 4448636 B2 JP4448636 B2 JP 4448636B2
Authority
JP
Japan
Prior art keywords
air supply
housing
air
cooling
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001302648A
Other languages
Japanese (ja)
Other versions
JP2003106228A (en
Inventor
壽彦 伊藤
正博 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2001302648A priority Critical patent/JP4448636B2/en
Publication of JP2003106228A publication Critical patent/JP2003106228A/en
Application granted granted Critical
Publication of JP4448636B2 publication Critical patent/JP4448636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0475Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給気マニホールドに冷却水を通す複数の平行な冷却水通水管と冷却水通水管に貫通される多数のフィンからなる冷却コアを備えた内燃機関の給気冷却装置に関するものである。
【0002】
【従来の技術】
図3は、従来の内燃機関の給気冷却器200の一部縦断正面図である。図3に示すように従来の給気冷却器200は、紙面と直角方向に並列に配置された多数のフィン92(図3では1枚のみを表示)を複数の冷却水通水管93で貫通させた冷却コア部を備えている。この給気冷却器200は、上流側には高温の空気流90を通すエアダクト91がボルト88で接続されており、下流側には給気マニホールド94がボルト89で接続されている。さらに給気マニホールド94はシリンダヘッド95内の吸気ポートと連通するように接続されている。
【0003】
図4は、図3とは別の従来の給気冷却器300(コルゲートタイプ)の縦断正面図である。給気冷却器300も給気冷却器200と同様に、上流側にはエアダクト96がボルト86で接続されており、下流側には給気マニホールド97がボルト87で接続されて冷却された空気がシリンダヘッド98内の給気通路に流入するようになっている。
【0004】
図3の給気冷却器200では冷却水として主に海水が使用され、また、図4の給気冷却器300では清水(水道水等)が使用され、両者の間には冷却水が海水か清水かの違いによる構造上の相違点はあるものの、基本的にエアダクト(91,96)と給気マニホールド(94,97)の間に挟持されるような形で設置されている。
【0005】
そのため、部品点数が多くなり、接続箇所にはボルト(86〜89)を設けるためのフランジ部やボルト孔,ねじ穴等を多数設ける必要があり、組立の工数もかかり、コストダウンの図りにくい構造となっている。
【0006】
【発明が解決しようとする課題】
そこで本発明では、部品点数が少なく、組立が容易な給気冷却装置を提供することを課題としている。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、
空気の流れ方向と平行に配置された多数のフィンを複数の冷却水通水管が貫通するように構成された冷却コア部を給気マニホールドのハウジングの中に内蔵し、
前記複数の冷却水通水管の両端部は、それぞれ、厚肉円板状の支持部材又は有底で円筒状の支持部材の平坦部に対して水密を保ちながら貫通するように構成され、前記2つの支持部材の曲面状の外壁と給気マニホールドのハウジングの間にそれぞれ水密保持部材を設け、前記支持部材のうちの少なくとも一方が前記ハウジングに対して摺動可能であり、
前記給気マニホールドのハウジング全体を補強するとともに前記冷却コア部を流れる空気を整流する補強整流部を、前記給気マニホールド内に配設してなることを特徴としている。
【0008】
【発明の実施の形態】
図1は請求項1〜3の発明を実施した給気冷却装置100の一部縦断正面略図である。また、図2は図1のII−II断面図である。給気冷却装置100は、エアダクト部1,冷却コア部2及び給気マニホールド部3から構成されている。エアダクト部1と給気マニホールド部3は共通のハウジング12により一体成形されている。
【0009】
図1に示すようにエアダクト部1は、内部に整流部13,14を備えており、図示しない過給機から供給される高温の圧縮空気流20を整流し、圧縮空気流20を下流側へほぼ一様に分配させている。また、整流部13,14は、エアダクト部1の補強機能を有しており、給気冷却装置100の強度を向上させる役割を果たしている。但し、エアダクト部1の強度が十分に確保されており、かつ、空気流が下流側へほぼ一様に分配される場合には、これら整流部13,14を要しないのは言うまでもない。
【0010】
エアダクト部1と給気マニホールド部3の間のハウジング12には同芯に対向する2つの孔6,7が設けてある。この孔6,7の間に冷却コア部2が挿入配置されている。
【0011】
冷却コア部2は、多数の平行に配置されたフィン8を複数の冷却水通水管9で貫通させて主要部が構成されており、冷却水通水管9の両端は有底で筒状の支持部材10,11に気密を保ち貫通させてある。支持部材10,11の代わりに、厚肉状の円板を使用することもできる。
【0012】
支持部材10と孔6の間にはOリング24,25(気密保持部材)が設けてある。孔6には給水側蓋4が水密を保ち固着されており、支持部材10はハウジング12に対して移動不能に孔6(ハウジング12)に固定されている。
【0013】
また、孔7には排水側蓋5が水密を保ち固着されている。排水側蓋5とハウジング12の間にはOリング19が設けてあり、Oリング19の内周部分に支持部材11の円筒側壁が密着してハウジング12内と冷却水通路の間の水密及び気密が保たれている。また、排水側蓋5には段22が形成されており、支持部材11は冷却水通水管9が熱膨張した際に段22と支持部材11の間に形成された隙間21の間で摺動移動が可能となっている。
【0014】
図1は、6気筒の内燃機関に適用した場合を示している。給気マニホールド部3は、6つの枝管部23a〜23fが形成されており、各枝管部23a〜23fは図2に示すようにそれぞれシリンダヘッド17に設けた吸気ポート18a〜18f(図2にはそのうちの吸気ポート18cのみを表示)と連通している。
【0015】
また、給気マニホールド部3には下流側整流部15,26が設けてある。下流側整流部15,26は、冷却コア部2で冷却された低温の空気流を整流し、枝管部23a〜23fから吸気ポート18a〜18fへ円滑に流れるようにすることができる。また整流部15,26は、給気マニホールド部3の補強部として機能し、給気冷却装置100の強度を向上させる役割を果たしている。但し、給気マニホールド部3の強度が十分に確保されており、かつ空気流が下流側へ円滑に流れる場合には、これら整流部15,26を要しないのは言うまでもない。
【0016】
以上のように構成された給気冷却装置100では、図示しない過給機から高温の圧縮空気流20が供給され、圧縮空気流20は上流側整流部13,14により三手に分岐して進行し、エアダクト部1の長手方向(図1で見て左右方向)に一様に分散され、冷却コア部2へと流入する。
【0017】
圧縮空気は冷却コア部2で冷却され、低温の空気流が給気マニホールド部3の枝管部23a〜23f及びシリンダヘッド17の吸気ポート18a〜18fを介して各気筒の燃焼室内に供給される。
【0018】
冷却水通水管9及びフィン8は、低温の冷却水と高温の圧縮空気流の間の熱交換が良好に行われるように、熱伝導率の高い金属(例えば銅)で形成されている。冷却水通水管9は、給水側蓋4から供給される冷却水をハウジング12内に混入させないように排水側蓋7まで導く。フィン8は薄い略円板形であり、例えば厚さ0.2mmのフィン8が1mm間隔で配置されて多数の冷却水通水管9に貫通されている。
【0019】
図1の給気冷却装置100では、支持部材11のみが移動可能な構成になっているが、支持部材10も支持部材11と同様に構成して移動可能にしても差し支えない。ただし、その際には、支持部材10の移動範囲は孔6と給水側蓋4の内周面(孔6と同径の部分)に限定されるようにする。図1の空気冷却器では、冷却水は一方の給水側蓋6から入り、冷却水通水管9を経て他方の排水側蓋5へと流れるが、一方の側蓋に給排水口を設け、他方の側蓋で折り返す(Uターン)方式を採用することもできる。
【0020】
給気冷却装置100を鋳物で一体成形すると、図1,図2に示すように、ハウジング12にリブ16を一体に設け、冷却コア部2を内蔵する部分のハウジング12を容易に補強することができる。
【0021】
比較的低出力の内燃機関においては、圧縮空気流20の温度が比較的低温となり、冷却水通水管9が昇温して膨張する度合が小さくなるので、支持部材10,11の両方を摺動移動不能にハウジング12に拘束(固着)するようにしてもよい。また、気筒数の少ない内燃機関においても、冷却コア部の全長が短く膨張量が小さいので、支持部材10,11の両方を摺動移動不能にハウジング12に拘束(固着)するようにしてもよい。
【0022】
【発明の効果】
請求項1の発明では、給気マニホールド部3を形成するハウジング12に冷却コア部2を内蔵させるようにしたので、従来のような給気冷却器200(図3)と給気マニホールド94とを接続するために必要な部材が不要であり、部品点数の削減と組立の容易化を図ることができる。
【0023】
請求項2の発明では、冷却水通水管9の両端に設けた支持部材10、11のうちの少なくとも一方がハウジング12に対して摺動可能にしたので、冷却水通水管9が昇温して膨張しても、支持部材10,11の少なくともどちらか一方をハウジング12に対して摺動させることにより冷却コア部2及びハウジング12にかかる負担を軽減して破損を回避することができ、安全性を確保することができる。
【0024】
請求項3の発明において、エアダクト部1(給気マニホールド)内に整流部13,14を設けると、過給機から供給される高温の圧縮空気流20を整流し、圧縮空気流20を下流側へほぼ一様に分配させることができる。また、給気マニホールド3内に下流側整流部15,26を設けると、冷却された空気流は円滑に枝管部23a〜23fからシリンダヘッド17の吸気ポート18a〜18f内へ流入させることができる。さらに、整流部13,14は一体成形された給気冷却装置100のエアダクト部1の補強部材として機能させることができ、下流側整流部15,26は、一体成形された給気冷却装置100の給気マニホールド部3の補強部材として機能させることができる。
【図面の簡単な説明】
【図1】 請求項1〜3の発明による給気冷却装置の一部縦断正面略図である。
【図2】 図1のII−II断面図である。
【図3】 従来の内燃機関の給気冷却器の一部縦断正面図である。
【図4】 図3とは別の従来の給気冷却器(コルゲートタイプ)の一部縦断正面図である。
【符号の説明】
1 エアダクト部
2 冷却コア部
3 給気マニホールド部
4 給水側蓋
5 排水側蓋
6,7 孔
8 フィン
9 冷却水通水管
10,11 支持部材
12 ハウジング
13,14 上流側整流部
15,26 下流側整流部
16 リブ
17 シリンダヘッド
18 吸気ポート
19,24,25 Oリング
20 圧縮空気流
21 隙間
22 段
23 枝管部
100 給気冷却装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air supply and cooling device for an internal combustion engine having a plurality of parallel cooling water passage pipes for passing cooling water through an air supply manifold and a cooling core made up of a plurality of fins penetrating the cooling water passage pipes. .
[0002]
[Prior art]
FIG. 3 is a partially longitudinal front view of a conventional air supply cooler 200 for an internal combustion engine. As shown in FIG. 3, the conventional air supply cooler 200 has a plurality of cooling water flow pipes 93 penetrating a large number of fins 92 (only one is shown in FIG. 3) arranged in parallel in the direction perpendicular to the paper surface. A cooling core part is provided. In the air supply cooler 200, an air duct 91 for passing a high-temperature air flow 90 is connected to the upstream side by bolts 88, and an air supply manifold 94 is connected to the downstream side by bolts 89. Further, the air supply manifold 94 is connected to communicate with an intake port in the cylinder head 95.
[0003]
FIG. 4 is a longitudinal front view of a conventional air supply cooler 300 (corrugated type) different from FIG. Similarly to the supply air cooler 200, the air supply cooler 300 is connected to the air duct 96 on the upstream side by bolts 86, and the air supply manifold 97 is connected to the downstream side by bolts 87 to cool the cooled air. It flows into an air supply passage in the cylinder head 98.
[0004]
In the supply air cooler 200 in FIG. 3, seawater is mainly used as cooling water, and in the supply air cooler 300 in FIG. 4, fresh water (tap water or the like) is used. Although there is a difference in structure depending on whether it is fresh water, it is basically installed so as to be sandwiched between the air duct (91, 96) and the air supply manifold (94, 97).
[0005]
For this reason, the number of parts is increased, and it is necessary to provide a large number of flanges, bolt holes, screw holes, and the like for providing bolts (86 to 89) at connection points. It has become.
[0006]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an air supply and cooling device that has a small number of parts and can be easily assembled.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1,
A cooling core portion configured such that a plurality of cooling water flow pipes pass through a large number of fins arranged in parallel with the air flow direction is incorporated in the housing of the air supply manifold ,
Both end portions of the plurality of cooling water through the water pipe, respectively, are configured to penetrate while maintaining watertight with respect to the flat portion of the thick disk-like support member or bottom by a cylindrical support member, the two A watertight holding member is provided between the curved outer wall of one support member and the housing of the air supply manifold, and at least one of the support members is slidable with respect to the housing ;
A reinforcing rectifying unit that reinforces the entire housing of the air supply manifold and rectifies the air flowing through the cooling core portion is provided in the air supply manifold.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a partially longitudinal schematic front view of an air supply and cooling device 100 embodying the inventions of claims 1 to 3. 2 is a cross-sectional view taken along the line II-II in FIG. The air supply and cooling device 100 includes an air duct portion 1, a cooling core portion 2, and an air supply manifold portion 3. The air duct portion 1 and the air supply manifold portion 3 are integrally formed by a common housing 12.
[0009]
As shown in FIG. 1, the air duct unit 1 includes rectifying units 13 and 14 inside, rectifies a high-temperature compressed air flow 20 supplied from a supercharger (not shown), and moves the compressed air flow 20 downstream. Almost uniformly distributed. Further, the rectifying units 13 and 14 have a function of reinforcing the air duct unit 1 and play a role of improving the strength of the air supply and cooling device 100. However, it is needless to say that the rectifying sections 13 and 14 are not required when the strength of the air duct section 1 is sufficiently secured and the air flow is distributed substantially uniformly downstream.
[0010]
The housing 12 between the air duct portion 1 and the air supply manifold portion 3 is provided with two holes 6 and 7 facing concentrically. The cooling core portion 2 is inserted between the holes 6 and 7.
[0011]
The cooling core portion 2 has a main portion formed by passing a plurality of fins 8 arranged in parallel through a plurality of cooling water flow pipes 9, and both ends of the cooling water flow pipes 9 are bottomed and cylindrically supported. The members 10 and 11 are kept airtight and penetrated. Instead of the support members 10 and 11, a thick disk can be used.
[0012]
O-rings 24 and 25 (airtight holding members) are provided between the support member 10 and the hole 6. The water supply side lid 4 is fixed to the hole 6 while maintaining watertightness, and the support member 10 is fixed to the hole 6 (housing 12) so as not to move with respect to the housing 12.
[0013]
Further, the drainage side lid 5 is fixed to the hole 7 while keeping watertight. An O-ring 19 is provided between the drainage-side lid 5 and the housing 12, and the cylindrical side wall of the support member 11 is in close contact with the inner peripheral portion of the O-ring 19 so that watertightness and airtightness between the housing 12 and the cooling water passage are provided. Is maintained. Further, a step 22 is formed on the drainage side lid 5, and the support member 11 slides between a gap 21 formed between the step 22 and the support member 11 when the cooling water flow pipe 9 is thermally expanded. It is possible to move.
[0014]
FIG. 1 shows a case where the present invention is applied to a 6-cylinder internal combustion engine. The supply manifold section 3 is formed with six branch pipe sections 23a to 23f, and the branch pipe sections 23a to 23f are respectively provided with intake ports 18a to 18f (FIG. 2) provided in the cylinder head 17, as shown in FIG. (Only the intake port 18c is shown).
[0015]
The air supply manifold section 3 is provided with downstream rectification sections 15 and 26. The downstream side rectification units 15 and 26 can rectify the low-temperature air flow cooled by the cooling core unit 2 and smoothly flow from the branch pipe portions 23a to 23f to the intake ports 18a to 18f. The rectifying units 15 and 26 function as reinforcing portions of the air supply manifold unit 3 and play a role of improving the strength of the air supply cooling device 100. However, it is needless to say that the rectifying sections 15 and 26 are not required when the strength of the air supply manifold section 3 is sufficiently secured and the airflow smoothly flows downstream.
[0016]
In the supply air cooling apparatus 100 configured as described above, a high-temperature compressed air flow 20 is supplied from a supercharger (not shown), and the compressed air flow 20 is branched into three hands by the upstream rectification units 13 and 14 and proceeds. Then, the air is uniformly dispersed in the longitudinal direction of the air duct portion 1 (left and right direction as viewed in FIG. 1) and flows into the cooling core portion 2.
[0017]
The compressed air is cooled by the cooling core portion 2, and a low-temperature air flow is supplied into the combustion chamber of each cylinder via the branch pipe portions 23 a to 23 f of the air supply manifold portion 3 and the intake ports 18 a to 18 f of the cylinder head 17. .
[0018]
The cooling water flow pipes 9 and the fins 8 are formed of a metal having a high thermal conductivity (for example, copper) so that heat exchange between the low-temperature cooling water and the high-temperature compressed air flow can be performed satisfactorily. The cooling water flow pipe 9 guides the cooling water supplied from the water supply side lid 4 to the drain side lid 7 so as not to be mixed into the housing 12. The fins 8 are thin and substantially disk-shaped. For example, fins 8 having a thickness of 0.2 mm are arranged at intervals of 1 mm and penetrated through a large number of cooling water flow pipes 9.
[0019]
1, only the support member 11 is movable. However, the support member 10 may be configured and moved in the same manner as the support member 11. In this case, however, the movement range of the support member 10 is limited to the hole 6 and the inner peripheral surface of the water supply side lid 4 (portion having the same diameter as the hole 6). In the air cooler of FIG. 1, the cooling water enters from one water supply side lid 6 and flows to the other drainage side lid 5 through the cooling water flow pipe 9, but one side lid is provided with a water supply / drainage port, It is also possible to adopt a method of folding back (U-turn) with a side cover.
[0020]
When the air supply and cooling device 100 is integrally formed of a casting, as shown in FIGS. 1 and 2, the ribs 16 are integrally provided in the housing 12, and the housing 12 in the portion containing the cooling core portion 2 can be easily reinforced. it can.
[0021]
In an internal combustion engine with a relatively low output, the temperature of the compressed air flow 20 is relatively low, and the degree of expansion of the cooling water water pipe 9 is reduced, so that both the support members 10 and 11 are slid. You may make it restrain (fix) to the housing 12 so that it cannot move. Further, even in an internal combustion engine having a small number of cylinders, since the entire length of the cooling core portion is short and the expansion amount is small, both the support members 10 and 11 may be restrained (fixed) to the housing 12 so that they cannot slide. .
[0022]
【The invention's effect】
According to the first aspect of the present invention, since the cooling core portion 2 is built in the housing 12 forming the air supply manifold portion 3, the conventional air supply cooler 200 (FIG. 3) and the air supply manifold 94 are provided. Members required for connection are unnecessary, and the number of parts can be reduced and assembly can be facilitated.
[0023]
In the invention of claim 2, since at least one of the support members 10, 11 provided at both ends of the cooling water water pipe 9 is slidable with respect to the housing 12, the cooling water water pipe 9 is heated. Even if it expands, by sliding at least one of the support members 10 and 11 with respect to the housing 12, it is possible to reduce the burden on the cooling core portion 2 and the housing 12 and to avoid breakage. Can be secured.
[0024]
In the invention of claim 3, when the rectifying sections 13 and 14 are provided in the air duct section 1 (supply manifold), the hot compressed air flow 20 supplied from the supercharger is rectified, and the compressed air stream 20 is placed downstream. Can be distributed almost uniformly. Further, if the downstream side rectification units 15 and 26 are provided in the air supply manifold 3, the cooled air flow can smoothly flow into the intake ports 18a to 18f of the cylinder head 17 from the branch pipe portions 23a to 23f. . Furthermore, the rectifying units 13 and 14 can function as a reinforcing member of the air duct unit 1 of the integrally formed air supply cooling device 100, and the downstream rectifying units 15 and 26 are configured as the integrally formed air supply cooling device 100. It can function as a reinforcing member for the air supply manifold section 3.
[Brief description of the drawings]
FIG. 1 is a schematic front view of a part of a charge / air-cooling device according to the first to third aspects of the present invention.
2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a partially longitudinal front view of a conventional air supply cooler of an internal combustion engine.
4 is a partially longitudinal front view of a conventional air supply cooler (corrugated type) different from FIG. 3; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air duct part 2 Cooling core part 3 Air supply manifold part 4 Water supply side cover 5 Drainage side cover 6, 7 Hole 8 Fin 9 Cooling water flow pipe 10, 11 Support member 12 Housing 13, 14 Upstream rectification part 15, 26 Downstream side Rectification part 16 Rib 17 Cylinder head 18 Intake port 19, 24, 25 O-ring 20 Compressed air flow 21 Gap 22 Step 23 Branch pipe part 100 Air supply cooling device

Claims (3)

空気の流れ方向と平行に配置された多数のフィンを複数の冷却水通水管が貫通するように構成された冷却コア部を給気マニホールドのハウジングの中に内蔵し、
前記複数の冷却水通水管の両端部は、それぞれ、厚肉円板状の支持部材又は有底で円筒状の支持部材の平坦部に対して水密を保ちながら貫通するように構成され、前記2つの支持部材の曲面状の外壁と給気マニホールドのハウジングの間にそれぞれ水密保持部材を設け、前記支持部材のうちの少なくとも一方が前記ハウジングに対して摺動可能であり、
前記給気マニホールドのハウジング全体を補強するとともに前記冷却コア部を流れる空気を整流する補強整流部を、前記給気マニホールド内に配設してなることを特徴とする内燃機関の給気冷却装置。
A cooling core portion configured such that a plurality of cooling water flow pipes pass through a large number of fins arranged in parallel with the air flow direction is incorporated in the housing of the air supply manifold ,
Both end portions of the plurality of cooling water through the water pipe, respectively, are configured to penetrate while maintaining watertight with respect to the flat portion of the thick disk-like support member or bottom by a cylindrical support member, the two A watertight holding member is provided between the curved outer wall of one support member and the housing of the air supply manifold, and at least one of the support members is slidable with respect to the housing ;
An air supply and cooling device for an internal combustion engine , wherein a reinforcing rectification unit that reinforces the entire housing of the air supply manifold and rectifies air flowing through the cooling core portion is disposed in the air supply manifold .
前記給気マニホールドのハウジングには、同芯に対向した孔が配設されており、
前記冷却コア部は、前記孔の間に配置されていることを特徴とする、請求項1に記載の内燃機関の給気冷却装置。
A hole facing the concentric core is provided in the housing of the air supply manifold,
The supply air cooling device for an internal combustion engine according to claim 1, wherein the cooling core portion is disposed between the holes .
前記摺動可能な支持部材は、水密を保ちながら前記孔に固着された蓋に形成された段と支持部材との間に形成された隙間によって摺動することを特徴とする、請求項1または請求項2に記載の内燃機関の給気冷却装置。 The slidable support member is slid by a gap formed between a step formed on a lid fixed to the hole and the support member while maintaining watertightness. An air supply and cooling device for an internal combustion engine according to claim 2.
JP2001302648A 2001-09-28 2001-09-28 Supply air cooling device for internal combustion engine Expired - Fee Related JP4448636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302648A JP4448636B2 (en) 2001-09-28 2001-09-28 Supply air cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302648A JP4448636B2 (en) 2001-09-28 2001-09-28 Supply air cooling device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003106228A JP2003106228A (en) 2003-04-09
JP4448636B2 true JP4448636B2 (en) 2010-04-14

Family

ID=19122853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302648A Expired - Fee Related JP4448636B2 (en) 2001-09-28 2001-09-28 Supply air cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4448636B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2908833B1 (en) * 2006-11-20 2011-06-17 Valeo Sys Controle Moteur Sas GAS ADMISSION DEVICE
DE102010040661A1 (en) * 2010-09-13 2012-03-15 Behr Gmbh & Co. Kg Intake manifold housing with an integrated heat exchanger block
JP5440806B2 (en) * 2011-04-05 2014-03-12 株式会社デンソー Intake device
DE102015005047A1 (en) 2015-04-21 2016-10-27 Neander Motors Ag Suction unit with integrated charge air cooler
EP3306048A1 (en) * 2016-10-05 2018-04-11 MANN+HUMMEL GmbH Air duct arrangement and cooler
WO2020254847A1 (en) * 2019-06-21 2020-12-24 日産自動車株式会社 Heat exchange device

Also Published As

Publication number Publication date
JP2003106228A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
EP2766687B1 (en) Stacked plate exhaust gas recovery device
JP6144240B2 (en) Gas intake device
US20140338875A1 (en) 2-pass heat exchanger including thermal expansion joints
JP2002242767A (en) Egr gas cooling system for internal combustion engine
JP4580366B2 (en) Intercooler for internal combustion engine
JPS6257825B2 (en)
JP4448636B2 (en) Supply air cooling device for internal combustion engine
ITRM980339A1 (en) HEAT EXCHANGER FOR INTERNAL COMBUSTION ENGINE WITH WATER COOLING
JPH10281015A (en) Egr gas cooler
DK2900951T3 (en) Adaptation of a diesel engine for ship use
JP2001207908A (en) Internal combustion engine
SE502710C2 (en) Device at an internal combustion engine suction pipe
WO2014155435A1 (en) Egr device
JP2004204720A (en) Blow-by gas circulation device
JPH0893470A (en) Exhaust heat insulator of internal combustion engine
JP2010065670A (en) Intake air cooling system
JPH10281014A (en) Egr gas cooling device
JP4274746B2 (en) Internal combustion engine with multiple air coolers
JP2003148149A (en) Air cooler
JP3545144B2 (en) Supply air cooler mounting structure for internal combustion engine
CN214366449U (en) Air cooler
CN216642295U (en) Engine cylinder cover cooling water jacket and engine
CN109372627B (en) Engine and intercooler thereof
JPS585052Y2 (en) Fresh water expansion tank in marine internal combustion engine
WO2009094637A2 (en) Air-cooled heat exchanger and blower assembly and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150129

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees