JP4448483B2 - Particle size gauge - Google Patents

Particle size gauge Download PDF

Info

Publication number
JP4448483B2
JP4448483B2 JP2005302334A JP2005302334A JP4448483B2 JP 4448483 B2 JP4448483 B2 JP 4448483B2 JP 2005302334 A JP2005302334 A JP 2005302334A JP 2005302334 A JP2005302334 A JP 2005302334A JP 4448483 B2 JP4448483 B2 JP 4448483B2
Authority
JP
Japan
Prior art keywords
groove
black
flat upper
sample
concave groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005302334A
Other languages
Japanese (ja)
Other versions
JP2007113916A (en
Inventor
司 原
友之 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAI-ICHI SOKUHAN WORKS CO.
Original Assignee
DAI-ICHI SOKUHAN WORKS CO.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAI-ICHI SOKUHAN WORKS CO. filed Critical DAI-ICHI SOKUHAN WORKS CO.
Priority to JP2005302334A priority Critical patent/JP4448483B2/en
Publication of JP2007113916A publication Critical patent/JP2007113916A/en
Application granted granted Critical
Publication of JP4448483B2 publication Critical patent/JP4448483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、測定基体の平坦上面に形成した凹溝に試料を配設してスクレーパによってこの試料を凹溝内に展延した際の試料の粒または線模様の有無若しくは位置を視認若しくは測定することでこの試料の粒度を測定する粒度ゲージに関するものである。   In the present invention, a sample is disposed in a concave groove formed on a flat upper surface of a measurement substrate, and the presence or position or the position or position of a sample grain or line pattern when the sample is spread into the concave groove by a scraper is measured or measured. This relates to a particle size gauge for measuring the particle size of this sample.

粒度ゲージは、例えば塗料や顔料などの小さな粒が散在する試料の粒度を測定する測定装置として従来から一般に使用されている。   The particle size gauge is generally used conventionally as a measuring device for measuring the particle size of a sample in which small particles such as paint and pigment are scattered.

この粒度ゲージは、例えばJISK5600「砥粒一般試験法」に記載されているように、測定基体の平坦上面に凹溝を形成し、この凹溝は、底面がこの凹溝の長さ方向に傾斜した傾斜面に形成してこの凹溝の溝深さがこの凹溝の長さ方向一端から他端に向けて徐々に変化する(例えば、一端の溝深さが0で他端の溝深さが略100μmなど)形状の凹溝とし、この凹溝の溝が深い方の一端側に測定したい試料を盛り、この試料を展延するべく前記凹溝に略直交にまたがるように測定基体の平坦上面に辺縁を押し当てた刃板状のスクレーパを、凹溝の長さ方向にそって凹溝の溝が浅い方の他端側へと所定速度で(例えば、一端から他端まで1〜2秒間かけて)移動させてこの凹溝内に試料を展延すると、この試料の粒度に応じた前記凹溝の所定の溝深さ位置に粒や線模様が表されることから、凹溝内に展延したこの試料の痕跡(粒若しくは線模様の有無若しくは位置)を視認することでこの試料の粒度を測定し得る測定装置である。   As described in, for example, JISK5600 “General Test Method for Abrasive Grains”, this particle size gauge forms a groove on the flat top surface of the measurement substrate, and the bottom surface of the groove is inclined in the length direction of the groove. The groove depth of the groove is gradually changed from one end to the other end in the length direction of the groove (for example, the groove depth at one end is 0 and the groove depth at the other end is formed). The measurement base is flat so that the sample to be measured is placed on one end of the deeper groove, and the sample extends over the groove to extend the sample. A scraper in the form of a blade plate with the edge pressed against the upper surface is moved along the length direction of the concave groove toward the other end of the shallow groove at a predetermined speed (for example, from 1 to the other end When the sample is spread in the groove by moving it (over 2 seconds), the position of the groove corresponding to the particle size of the sample Since the grain and line pattern are displayed at the groove depth position, the particle size of this sample is measured by visually observing the traces of this sample (the presence or absence or position of the grain or line pattern) in the groove. Measuring device to obtain.

ところで、この種の粒度ゲージは一般に、測定基体が例えば硬質特殊合金や焼入れした鋼などの硬度の高い金属製部材によって構成され、また、その平坦上面や凹溝内の底面は表面仕上げ作業によって非常に平滑な表面に設定されている。即ち、平坦上面に辺縁を押し当てたスクレーパを良好に滑動させられるように平坦上面は平滑な表面に設定され、このスクレーパで展延される試料が凹溝の底面を良好に展延できるようにこの底面は平滑な表面に設定されている。   By the way, in this type of particle size gauge, the measurement base is generally composed of a hard metal member such as a hard special alloy or hardened steel, and the flat upper surface and the bottom surface in the groove are very It has a smooth surface. That is, the flat upper surface is set to be a smooth surface so that the scraper with the edge pressed against the flat upper surface can be satisfactorily slid, and the sample spread by this scraper can be well spread on the bottom surface of the groove. The bottom surface is set to be a smooth surface.

従って、測定作業の際、凹溝内に展延した試料の粒または線模様の有無若しくは位置を視認する作業時において、この凹溝の底面が光を反射してちらつくためにこの試料の粒または線模様が非常に視認しにくく、よって、この測定作業において危惧される作業効率の低下を生ずるだけでなく、この試料の粒または線模様を視認する作業にもたつくと、それだけ粒若しくは線模様が変化してしまい(崩れてしまい)、測定誤差の原因となるという問題を有している。   Therefore, during the measurement work, when the grain of the sample or the presence or position of the line pattern extending in the groove is visually confirmed, the bottom surface of the groove reflects the light and flickers. The line pattern is very difficult to see. Therefore, not only does the work efficiency decrease which is a concern in this measurement work, but also the work of visually checking the grain or line pattern of this sample, the grain or line pattern changes accordingly. It has a problem that it causes a measurement error.

特に、微小な粒子で構成されるファンデーションや乳液などの化粧品の製造開発においてこの粒度ゲージは重要な測定装置の一つであるが、化粧品のように薄い肌色や白に近い薄色の粒が散在する試料の測定時においては、粒や線模様の視認が尚更困難であり、従ってこの凹溝の底面のちらつきや光の高反射による見にくさ(測定しにくさ)は重要な問題である。   In particular, this particle size gauge is one of the important measuring devices in the manufacture and development of cosmetics such as foundations and emulsions composed of fine particles, but light skin color or light-colored particles close to white are scattered like cosmetics. At the time of measuring a sample to be measured, it is still more difficult to visually recognize the grain and line pattern. Therefore, flickering of the bottom surface of the groove and high visibility of light (difficult to measure) are important problems.

この凹溝の底面のちらつきや光の高反射を抑止する対策として、例えば、この凹溝の底面を、基体の平坦上面に比してやや表面粗さを荒く設定し、これによりこの凹溝の底面を平坦上面に比して光反射率を低く金属光沢を少なく設定してちらつきや光の高反射を抑止する方法があるが、凹溝の底面の表面粗さを粗く設定すると、それ自体が測定誤差の原因となってしまい測定精度に問題が生ずるため、結局、この凹溝の底面の表面粗さを粗く設定する方法では良好に底面のちらつきや光の高反射を抑止できない。   As a measure for suppressing flickering of the bottom surface of the groove and high reflection of light, for example, the bottom surface of the groove is set to be slightly rougher than the flat top surface of the substrate, thereby making the bottom surface of the groove There is a method to suppress flickering and high reflection of light by setting the light reflectance low and metallic luster less than the flat top surface, but if the surface roughness of the bottom surface of the groove is set rough, it will measure itself. Since this causes an error and causes a problem in measurement accuracy, eventually, the method of setting the surface roughness of the bottom surface of the concave groove cannot satisfactorily suppress flickering of the bottom surface and high light reflection.

JIS K5600 「砥粒一般試験方法」JIS K5600 "Abrasive Grain General Test Method"

本発明は、上記問題を鑑みて完成したもので、凹溝の底面の表面粗さを粗く設定したりせずに単に凹溝の底面を測定器体の平坦上面に比して光反射率の低い例えば黒色や黒色に近い暗色に設定したことで、測定作業の際、凹溝の底面のちらつきや光の高反射による見えにくさ(測定しにくさ)を確実に抑止でき、それだけ凹溝内に展延した試料の粒または線模様の有無若しくは位置を視認する作業を容易とし、これによりこの試料の粒または線模様の視認作業にもたつくことでこの試料の粒または線模様が変化して(崩れて)正確な測定値が得られない、といった問題も確実に抑止できるうえに、凹溝の底面の表面粗さを粗く設定する必要はないのでこの底面の表面粗さを粗くすることによって危惧される測定精度の問題も一切生じ得ず、従って、測定作業を簡易とし、しかも正確な測定値が得られる極めて実用性に秀れた画期的な粒度ゲージを提供することを課題とする。   The present invention has been completed in view of the above problems, and the light reflectivity is simply compared with the flat top surface of the measuring instrument body without setting the surface roughness of the bottom surface of the groove to be rough. By setting it to a low color such as black or a dark color close to black, it is possible to reliably suppress the difficulty of viewing (difficulty of measurement) due to flickering of the bottom surface of the groove and high reflection of light during measurement work. This makes it easy to visually recognize the presence or position or position of the grain or line pattern of the sample, and this allows the grain or line pattern of this sample to change ( It is possible to reliably prevent problems such as failure to obtain accurate measurement values, and it is not necessary to set the surface roughness of the bottom surface of the groove to be rough. The problem of measurement accuracy Te, the measuring operation is simplified, yet it is an object to provide an accurate breakthrough size gauge measurements were soo very practical obtained.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

測定基体1の平坦上面1aに凹溝2を形成し、この凹溝2は、底面2aがこの凹溝2の長さ方向に傾斜した傾斜面に形成してこの凹溝2の溝深さがこの凹溝2の長さ方向一端から他端に向かって徐々に変化する底面2aが傾斜した凹溝2とした構成として、この凹溝2に試料aを配設し、この試料aを展延するべく凹溝2にまたがるように測定基体1の平坦上面1aに辺縁を押し当てたスクレーパ3をこの凹溝2の長さ方向に動かした際、この凹溝2内で展延した試料aの粒または線模様の有無若しくは位置を視認若しくは測定することでこの試料aの粒度を測定する粒度ゲージにおいて、金属製の前記測定基体1の凹溝2の金属製の底面2aに、酸化処理若しくはクロムメッキなどの皮膜形成手段により、黒色若しくは黒色に近い暗色で、且つ、平滑な皮膜4若しくは表面層4を形成することで、この凹溝2の底面2aを前記黒色若しくは黒色に近い暗色とし、且つ前記黒色若しくは黒に近い暗色の皮膜4若しくは表面層4を前記測定基体1の平坦上面1a及び凹溝2の底面2aに形成した後、少なくとも前記凹溝2の底面2aを残して他の平坦上面1aから前記皮膜4若しくは表面層4を除去することで、この平坦上面1aを露出若しくは表面仕上げ加工により平滑平面に形成して、前記測定基体1の凹溝2の底面2aを黒色若しくは黒色に近い暗色として前記平坦上面1aよりも光反射率の低い暗色に設定したことを特徴とする粒度ゲージに係るものである。 A groove 2 is formed on the flat upper surface 1a of the measurement substrate 1, and the groove 2 is formed on an inclined surface whose bottom surface 2a is inclined in the length direction of the groove 2. The groove depth of the groove 2 is as follows. As a configuration in which the bottom surface 2a that gradually changes from one end to the other end in the length direction of the concave groove 2 is a concave groove 2, a sample a is disposed in the concave groove 2, and the sample a is spread. When the scraper 3 whose edge is pressed against the flat upper surface 1a of the measurement substrate 1 is moved in the length direction of the concave groove 2 so as to straddle the concave groove 2, the sample a expanded in the concave groove 2 is used. In a particle size gauge that measures the particle size of the sample a by visually checking or measuring the presence or absence or position of the grains or line patterns, the metal bottom surface 2a of the concave groove 2 of the metal measurement base 1 is subjected to oxidation treatment or By film forming means such as chrome plating, black or dark color close to black, In addition, by forming the smooth film 4 or the surface layer 4, the bottom surface 2 a of the groove 2 is made black or a dark color close to black, and the black or black-colored film 4 or surface layer 4 is changed to the black or black. After forming the flat top surface 1a of the measurement substrate 1 and the bottom surface 2a of the groove 2, the coating 4 or the surface layer 4 is removed from the other flat top surface 1a while leaving at least the bottom surface 2a of the groove 2. The flat top surface 1a is formed into a smooth flat surface by exposure or surface finishing, and the bottom surface 2a of the groove 2 of the measurement substrate 1 is set to black or a dark color close to black so as to have a dark color having a lower light reflectance than the flat top surface 1a. This relates to a particle size gauge characterized by the above.

また、金属製の前記測定基体1の平坦上面1aは、予めラッピングなどの表面研磨手段によって表面仕上げ加工を行った平滑平面として前記測定基体1に前記黒色若しくは黒色に近い暗色の皮膜4を形成した後、これを除去することで前記平滑平面を露出させるか、または前記測定基体1に前記黒色若しくは黒色に近い暗色の皮膜4若しくは表面層4を形成した後、ラッピングなどの表面研磨手段によって表面仕上げ加工を行って平滑平面とすることで、この平坦上面1aを平滑平面に設定したことを特徴とする請求項記載の粒度ゲージに係るものである。 In addition, the flat upper surface 1a of the measurement base 1 made of metal is formed with the black or dark black film 4 on the measurement base 1 as a smooth plane that has been surface-finished by surface polishing means such as lapping in advance. Thereafter, the smooth flat surface is exposed by removing this, or the black or nearly dark film 4 or surface layer 4 is formed on the measurement substrate 1 and then surface-finished by a surface polishing means such as lapping. performing processing by a smoothing plane, but according to particle size gauge of claim 1, wherein the set of the flat upper surface 1a to the smooth plane.

本発明は上述のように構成したから、凹溝の底面が測定基体の平坦上面に比して光反射率の低い例えば黒色や黒色に近い暗色に設定されているぶんだけ、この凹溝内に展延した試料の粒または線模様を視認する際に、この底面がちらついたり光を高反射することを抑止でき、この試料の粒または線模様が視認しにくくなることを確実に抑止でき、それだけ良好に試料の粒や線模様を視認し、測定値を求めることができる。   Since the present invention is configured as described above, the bottom surface of the groove has a lower light reflectance than the flat top surface of the measurement substrate, for example, black or a dark color close to black. When visually recognizing the grain or line pattern of the spread sample, this bottom surface can be prevented from flickering or highly reflecting light, and it can be reliably prevented that the grain or line pattern of this sample is difficult to see. The measurement value can be obtained by visually recognizing the grain or line pattern of the sample.

また、凹溝の底面を光反射率の低い暗色に設定することでこの底面の光反射率を低く設定している為、この凹溝の底面を従来例のように表面粗さを粗く設定することで光反射率の低い設定とする必要はなく、当然、この凹溝の底面の表面粗さを粗く設定することで危惧される測定精度の低下の問題も生じ得ないし、平坦上面は従来通りの平坦で平滑な表面に設定しているから、この平坦上面に辺縁を押し当てたスクレーパにより従来通りの操作感覚で移動操作できる。即ち、スクレーパを平坦上面に滑り動かす際の滑り具合が従来通りとなる為、スクレーパを従来通りの操作感覚で移動できる。 In addition, since the light reflectance of the bottom surface is set low by setting the bottom surface of the groove to a dark color with low light reflectance, the surface roughness of the bottom surface of the groove is set to be rough as in the conventional example. Therefore, it is not necessary to set the light reflectivity to be low, and naturally, the problem of a decrease in measurement accuracy, which is a concern, can be caused by setting the surface roughness of the bottom surface of the groove to be rough . Since the surface is set to be flat and smooth, the moving operation can be performed with a conventional operation feeling by a scraper with the edge pressed against the flat upper surface. That is, since the sliding condition when the scraper is slid to the flat upper surface is the same as the conventional one, the scraper can be moved with a conventional operation feeling.

従って、本発明は、凹溝の底面のちらつきや光の高反射を抑止して効率良く良好に凹溝に展延した試料の粒または線模様の視認作業を進展でき、ひいては、底面がちらつきや光の高反射による視認しにくさによって読み違えや、視認作業のもたつきにより試料の粒または線模様が変化する(崩れる)といった測定誤差の原因も良好に排除することができ、更に、底面の表面粗さを粗く設定することで危惧される測定精度の劣化の問題も生じえず、極めて効率的に、しかも精度良く良好に測定作業を進展できる極めて画期的で作業性及び実用性に秀れた粒度ゲージとなる。   Therefore, the present invention can advance the work of visually confirming the grain or line pattern of the sample that has been efficiently and satisfactorily suppressed by suppressing flickering of the bottom surface of the groove and high reflection of light. Measurement errors such as misreading due to difficulty in visual recognition due to high reflection of light, and changes in the grain or line pattern of the sample due to sluggish visual inspection work can be eliminated well. Setting the roughness coarsely does not cause the problem of degradation of measurement accuracy that is a concern, and it is extremely innovative and excellent in workability and practicality that can advance measurement work efficiently and accurately. It becomes a particle size gauge.

しかも、本発明においては、これまでは、凹溝の底面を、光反射率を低く設定するためには凹溝の底面の表面粗さを粗く設定していたため、それ自体が測定誤差の原因となってしまうという問題を有していたところを、本発明においては、凹溝の底面に光反射率の低い暗色の皮膜若しくは表面層を形成することでこの凹溝の底面の光反射率を低く設定したから、凹溝内に展延した試料の粒または線模様を視認する際の底面のちらつきや光の高反射による視認しにくさ(測定しにくさ)を確実に阻止でき良好に測定作業を進展できることは勿論、凹溝の底面の表面粗さを粗く設定したことにより危惧される測定精度の問題も生じ得ず、一層確実に、効率的に且つ精度良い測定が行える実用性に秀れた粒度ゲージとなる。 Moreover, in the present invention , until now, the bottom surface of the groove has been set to have a rough surface roughness in order to set the light reflectivity low, which itself causes measurement errors. In the present invention, the light reflectance of the bottom surface of the groove is reduced by forming a dark film or surface layer having a low light reflectance on the bottom surface of the groove. Because it has been set, it is possible to reliably prevent the difficulty of visual recognition (difficulty of measurement) due to flickering of the bottom surface and high reflection of light when visually recognizing the grain or line pattern of the sample extending in the groove. As a matter of course, the surface roughness of the bottom surface of the concave groove is set to be rough, so that there is no problem of measurement accuracy which is a concern, and the practicality of making more reliable, efficient and accurate measurement is excellent. It becomes a particle size gauge.

更に本発明においては、上記の秀れた作用効果を確実に発揮し得るだけでなく生産性にも秀れ、それだけ量産化が容易にしてコスト面においても秀れた一層実用性に秀れた粒度ゲージとなる。 Furthermore, in the present invention , not only the above-mentioned excellent operational effects can be surely exhibited, but also the productivity is excellent, and the mass production is facilitated and the cost is excellent and the practicality is further improved. It becomes a particle size gauge.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

測定基体1の平坦上面1aに形成した凹溝2に試料aを配設する。   A sample a is disposed in the groove 2 formed in the flat upper surface 1a of the measurement substrate 1.

この凹溝2は、底面2aがこの凹溝2の長さ方向に傾斜した傾斜面に形成してこの凹溝2の溝深さがこの凹溝2の長さ方向一端から他端に向けて徐々に変化する底面2aが傾斜した凹溝2としている。   The concave groove 2 has a bottom surface 2a formed on an inclined surface inclined in the length direction of the concave groove 2, and the groove depth of the concave groove 2 is directed from one end to the other end in the length direction of the concave groove 2. The gradually changing bottom surface 2a is an inclined groove 2.

この凹溝2にまたがるように測定基体1の平坦上面1aに辺縁を押し当てたスクレーパ3をこの凹溝2の長さ方向に動かし、前記試料aをこの凹溝2に展延すると、この試料aの粒度に応じて、凹溝2の所定溝深さの位置に、粒または線模様が表され、この粒または線模様の有無若しくは位置を視認若しくは測定することにより、この試料aの粒度を測定する。   When the scraper 3 whose edge is pressed against the flat upper surface 1a of the measurement substrate 1 so as to straddle the groove 2 is moved in the length direction of the groove 2 and the sample a is spread in the groove 2, Depending on the particle size of the sample a, a grain or a line pattern is represented at a position of a predetermined groove depth of the concave groove 2, and the particle size of the sample a is determined by visually checking or measuring the presence or position of the grain or line pattern. Measure.

ここで、前記凹溝2の底面2aは、黒色若しくは黒色に近い暗色として前記平坦上面1aよりも光反射率の低い暗色に設定しているため、それだけ凹溝2の底面2aが光を反射しにくく、よって、この凹溝2内に展延した前記試料aの粒または線模様を視認したり測定したりする作業(以下、視認作業)時に凹溝2の底面2aが光を反射してちらついたりして視認しにくくなってしまうことを抑止できる。   Here, since the bottom surface 2a of the concave groove 2 is set to a dark color having a light reflectance lower than that of the flat upper surface 1a as black or a dark color close to black, the bottom surface 2a of the concave groove 2 reflects light accordingly. Therefore, the bottom surface 2a of the groove 2 reflects light and flickers when the particle a or the line pattern of the sample a extending in the groove 2 is visually confirmed or measured (hereinafter, visually recognized). Can be prevented from becoming difficult to see.

従って、これまでは、測定時において凹溝2内に展延した前記試料aの粒または線模様の視認作業の際に、この凹溝2の底面2aのちらつきや光の高反射により視認しにくく、しかもこの視認作業にもたつく間に試料aの粒または線模様が変化して(崩れて)しまい測定誤差の原因となるなどの問題を有したところを、本発明においては、凹溝2の底面2aが光反射率の低い例えば黒色などの暗色としている為に、それだけ光の反射によるちらつきや光の高反射による視認しにくさを確実に抑止できるからこのような問題が生ずる心配がない。   Therefore, until now, it is difficult to visually recognize the bottom surface 2a of the groove 2 due to flickering or high reflection of light when the particle or line pattern of the sample a extending in the groove 2 is measured during measurement. In addition, in the present invention, the bottom surface of the groove 2 has the problem that the grain or line pattern of the sample a changes (disintegrates) and causes measurement errors during the visual check. Since the light 2a has a dark color such as black having a low light reflectance, flickering due to light reflection and difficulty in visual recognition due to high light reflection can be reliably suppressed.

即ち、凹溝2の底面2aが光反射率の低い暗色のために、それだけ確実に底面2aのちらつきや光の高反射による見えにくさが抑止されてそれだけはっきりと正確に試料aの粒または線模様が視認できるから、効率良く、しかも読み違いなく正確に視認作業を進展できる。   That is, since the bottom surface 2a of the groove 2 is a dark color with low light reflectivity, the bottom surface 2a flickers and the invisibleness due to high reflection of light is reliably suppressed, and the particles or lines of the sample a are clearly and accurately limited. Since the pattern can be visually recognized, the visual work can be progressed efficiently and accurately without misreading.

また、従来例のように、凹溝2の底面2aの表面粗さを粗く設定することで光反射率を低く設定するのではなく、この底面2aを光反射率の低い暗色に設定した構成のため、従来のように凹溝2の底面2aの光反射率を低く設定するために凹溝2の底面2aの表面粗さを粗く設定する必要はない。   In addition, as in the conventional example, the light reflectance is not set low by setting the surface roughness of the bottom surface 2a of the concave groove 2 but the bottom surface 2a is set to a dark color with low light reflectance. Therefore, it is not necessary to set the surface roughness of the bottom surface 2a of the groove 2 to be rough in order to set the light reflectivity of the bottom surface 2a of the groove 2 low as in the prior art.

即ち、例えば、この凹溝2の底面2aに、前記黒色若しくは黒色に近い暗色の皮膜4若しくは表面層4を形成することで、この凹溝2の底面2aを前記黒色若しくは黒色に近い暗色として前記平坦上面1aよりも光反射率の低い暗色に設定すれば良い。   That is, for example, by forming the black or black-colored film 4 or surface layer 4 on the bottom surface 2a of the concave groove 2, the bottom surface 2a of the concave groove 2 is set to the dark color close to black or black. What is necessary is just to set to the dark color whose light reflectance is lower than the flat upper surface 1a.

この際、例えば、金属製の前記測定基体1の凹溝2の金属製の底面2aに、酸化処理若しくはクロムメッキなどの既存の皮膜形成手段により、黒色若しくは黒色に近い暗色な皮膜4若しくは表面層4を簡単に形成できるうえに、この皮膜4若しくは表面層4自体が光反射率の低い暗色であるため、この皮膜4若しくは表面層4を平滑な表面に仕上ても良好に光反射を抑止できる。   At this time, for example, black or a black-colored film 4 or a surface layer close to black is formed on the metal bottom surface 2a of the groove 2 of the metal measurement base 1 by an existing film forming means such as oxidation treatment or chrome plating. 4 can be easily formed, and since the film 4 or the surface layer 4 itself has a dark color with low light reflectance, the light reflection can be suppressed well even if the film 4 or the surface layer 4 is finished to a smooth surface. .

従って、これまでのように凹溝2の底面2aの光反射率を低くするためにこの底面2aの表面粗さを粗く設定する必要がないため、底面2aの表面粗さを粗く設定することによって危惧される測定精度の劣化の問題も生ずることなく、良好にしかも確実にこの底面2aのちらつきを抑止できる。   Therefore, since it is not necessary to set the surface roughness of the bottom surface 2a to be low in order to reduce the light reflectance of the bottom surface 2a of the groove 2 as before, by setting the surface roughness of the bottom surface 2a to be rough, The flickering of the bottom surface 2a can be suppressed satisfactorily and surely without causing a problem of feared deterioration of measurement accuracy.

また、この凹溝2の底面2aだけを、前記平坦上面1aよりも光反射率の低い暗色に設定している、即ち、平坦上面1aは何ら光反射率の低い暗色に設定されている必要はないので、この平坦上面1aは従来通りの平坦でスクレーパ3を良好に滑動できる平滑な表面の平坦上面1aとし、この平坦上面1aに辺縁を押し当てたスクレーパ3を従来通りの操作感覚で移動(この平坦上面1a上を滑動)させることができ、測定作業の熟練者が従来通りの操作感覚でそれだけ正確に測定を行える。   Further, only the bottom surface 2a of the groove 2 is set to a dark color having a light reflectance lower than that of the flat upper surface 1a, that is, the flat upper surface 1a needs to be set to a dark color having a low light reflectance. Therefore, the flat upper surface 1a is a flat surface 1a which is flat as usual and can smoothly slide the scraper 3, and the scraper 3 whose edges are pressed against the flat upper surface 1a is moved with a conventional operation feeling. (Sliding on the flat upper surface 1a) can be performed, and a person skilled in the measurement work can accurately perform the measurement with a conventional operation feeling.

また、前記測定基体1の平坦上面1a及び凹溝2の底面2aに前記黒色若しくは黒に近い暗色の皮膜4若しくは表面層4を形成した後、少なくとも前記凹溝2の底面2aを残して他の平坦上面1aから前記皮膜4若しくは表面層4を除去することで、この凹溝2の底面2aを前記黒色若しくは黒色に近い暗色として前記平坦上面1aよりも光反射率の低い暗色に設定した構成としたから、例えば、平坦上面1aをマスキングしてこの平坦上面1aには皮膜4若しくは表面層4を形成することなく前記凹溝2の底面2aに皮膜4若しくは表面層4を形成する場合、この凹溝2の底面2aだけに正確にきれいにムラのない皮膜4若しくは表面層4を形成するのは困難性を有するが、本発明のように、先ず平坦上面1aにも凹溝2の底面2aにも(例えば測定基体1の上面略全面に)皮膜4若しくは表面層4を形成する場合には、平滑でムラのない皮膜4若しくは表面層4を簡単に形成できるし、その後、凹溝2の底面2aを除く不要な箇所から前記皮膜4若しくは表面層4を除去すれば、例えば平坦上面1aには皮膜4若しくは表面層4が一切形成されておらず凹溝2の底面2aには正確にきれいにムラのない皮膜4若しくは表面層4が形成され本発明の秀れた作用効果を確実に発揮し得る構成を簡易に実現でき、生産が容易にして量産性に秀れることとなる。 Further, after the pre-Symbol form measuring body 1 of the dark film 4 or the surface layer 4 closer to the black or black on the bottom surface 2a of the flat upper surface 1a and the groove 2, other leaving at least bottom surface 2a of the groove 2 flat from top surface 1 a removing the film 4 or the surface layer 4, set in a dark low light reflectivity than the flat upper surface 1a of the bottom surface 2a of the groove 2 as a dark closer to the black or black because was the construction, for example, in the flat upper surface 1a by masking a flat upper surface 1a when forming the film 4 or the surface layer 4 on the bottom surface 2a of the groove 2 without forming the film 4 or the surface layer 4 Although it is difficult to form the coating 4 or the surface layer 4 accurately and cleanly only on the bottom surface 2a of the concave groove 2, it is difficult to form the bottom surface of the concave groove 2 on the flat upper surface 1a as in the present invention. 2a ( For example, when the coating 4 or the surface layer 4 is formed over substantially the entire top surface of the measurement substrate 1, the coating 4 or the surface layer 4 that is smooth and uniform can be easily formed, and then the bottom surface 2a of the groove 2 is formed. If the coating 4 or the surface layer 4 is removed from unnecessary portions to be removed, for example, the coating 4 or the surface layer 4 is not formed at all on the flat upper surface 1a, and the bottom surface 2a of the groove 2 is accurately and evenly uneven. A structure in which the coating 4 or the surface layer 4 is formed and can surely exhibit the excellent effects of the present invention can be easily realized, and the production is facilitated and the mass productivity is excellent.

また、例えば、金属製の前記測定基体1の平坦上面1aは、予めラッピングなどの表面研磨手段によって表面仕上げ加工を行った平滑平面として前記測定基体1に前記黒色若しくは黒色に近い暗色の皮膜4を形成した後、これを除去することで前記平滑平面を露出させるか、または前記測定基体1に前記黒色若しくは黒色に近い暗色の皮膜4若しくは表面層4を形成した後、ラッピングなどの表面研磨手段によって表面仕上げ加工を行って平滑平面とすることで、この平坦上面1aを平滑平面に設定した場合には、この従来と同様な平滑平面である平坦上面1aに辺縁を押し当てたスクレーパ3を移動させる際に、このスクレーパ3と平坦上面1aとの摩擦が従来のものと同等であるから、必然的に、従来通りの操作感覚でこのスクレーパ3を移動操作(この平坦上面1a上を滑動)でき、例えば、測定作業の熟練者が従来通りの操作感覚により正確な測定を行えることとなる。   Further, for example, the flat upper surface 1a of the measurement base 1 made of metal is provided with the black or near dark black film 4 on the measurement base 1 as a smooth plane that has been surface-finished by surface polishing means such as lapping in advance. After the formation, the smooth flat surface is exposed by removing this, or the black or nearly dark color film 4 or surface layer 4 is formed on the measurement substrate 1 and then surface polishing means such as lapping. When the flat upper surface 1a is set to a smooth plane by performing a surface finishing process, the scraper 3 whose edge is pressed against the flat upper surface 1a, which is the same smooth plane as the conventional one, is moved. Since the friction between the scraper 3 and the flat upper surface 1a is equal to that of the conventional one, the scraper 3 is inevitably operated with a conventional operation feeling. Movement can operate (slide on the flat upper surface 1a), for example, those of skill in the measuring operation is to make accurate measurements by the operation feeling of the conventional.

また、特に前記測定基体1に前記黒色若しくは黒色に近い暗色の皮膜4若しくは表面層4を形成した後、ラッピングなどの表面研磨手段によって表面仕上げ加工を行う場合には、この平坦上面1aから前記皮膜4若しくは表面層4を除去する研磨作業と、この平坦上面1aの表面仕上げ作業との双方の作業を同時に行え、それだけ一層量産性に秀れることとなる。   Further, in particular, when the surface of the measurement substrate 1 is formed with the black or the dark-colored film 4 or the surface layer 4 close to black and then surface-finished by surface polishing means such as lapping, the film is formed from the flat upper surface 1a. 4 or the polishing operation for removing the surface layer 4 and the surface finishing operation of the flat upper surface 1a can be performed at the same time, so that the mass productivity can be further improved.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、測定基体1の平坦上面1aに凹溝2を形成し、この凹溝2は、底面2aがこの凹溝2の長さ方向に傾斜した傾斜面に形成してこの凹溝2の溝深さがこの凹溝2の長さ方向一端から他端に向かって徐々に変化する底面2aが傾斜した凹溝2とした構成として、この凹溝2に試料aを配設し、この試料aを展延するべく凹溝2にまたがるように測定基体1の平坦上面1aに辺縁を押し当てたスクレーパ3をこの凹溝2の長さ方向に動かした際、この凹溝2内で展延した試料aの粒または線模様の有無若しくは位置を視認若しくは測定することでこの試料aの粒度を測定する粒度ゲージにおいて、前記測定基体1の凹溝2の底面2aを黒色若しくは黒色に近い暗色として前記平坦上面1aよりも光反射率の低い暗色に設定したものである。   In this embodiment, a concave groove 2 is formed on the flat upper surface 1 a of the measurement substrate 1, and the concave groove 2 is formed on an inclined surface whose bottom surface 2 a is inclined in the length direction of the concave groove 2. The sample a is arranged in the groove 2 as a configuration in which the bottom surface 2a in which the groove depth of the groove 2 gradually changes from one end to the other end of the groove 2 is inclined. When the scraper 3 whose edge is pressed against the flat upper surface 1a of the measurement substrate 1 is moved in the length direction of the groove 2 so as to extend over the groove 2 to spread the sample a, In a particle size gauge that measures the particle size of the sample a by visually observing or measuring the presence or position of the grain or line pattern of the spread sample a, the bottom surface 2a of the groove 2 of the measurement substrate 1 is black or close to black The dark color is set to a dark color having a light reflectance lower than that of the flat upper surface 1a. .

測定基体1は、焼入れをした鋼製の部材で構成しており、図1に図示したように、具体的には、図1に図示したように、長方形のブロック状に形成している。尚、この測定基体1は、焼入れした鋼製の部材のほかにも、例えば硬化特殊合金製の部材などのこの種の粒度ゲージに使用される一般的な部材であれば良い。   The measurement substrate 1 is made of a hardened steel member, and is specifically formed in a rectangular block shape as shown in FIG. 1, as shown in FIG. The measurement substrate 1 may be a general member used for this type of particle size gauge such as a member made of hardened special alloy, in addition to a hardened steel member.

この測定基体1の平坦上面1aは、後述の表面研磨手段(本実施例においては、既存のラッピング装置)により、この平坦上面1aに縁辺を押し当てた前記スクレーパ3を良好に滑動させられるように、平坦で平滑な表面に設定している。   The flat upper surface 1a of the measurement substrate 1 is satisfactorily slidable by the surface polishing means (existing lapping device in the present embodiment) described later so that the scraper 3 whose edge is pressed against the flat upper surface 1a can be satisfactorily slid. Set to a flat and smooth surface.

また、この測定基体1の平坦上面1aの長さ方向一端側乃至他端に向けて並設状態に二つの前記凹溝2を形成している。   In addition, the two concave grooves 2 are formed in a parallel arrangement from one end side to the other end in the length direction of the flat upper surface 1a of the measurement substrate 1.

図1及び図2に図示したように、この二つの凹溝2はいずれも測定基体1の平坦上面1aの長さ方向一端側(図2中、左側)から他端(図2中、右端)に向けて底面2aが下り傾斜した形状としている。   As shown in FIGS. 1 and 2, the two concave grooves 2 both have one end in the length direction (left side in FIG. 2) to the other end (right end in FIG. 2) of the flat upper surface 1 a of the measurement substrate 1. The bottom surface 2a is inclined downward toward the bottom.

この各凹溝2の底面2aの傾斜度合いは、この種の一般的な粒度ゲージと同様、例えば、その凹溝2の溝深さの浅い側の一端を深さ0とし、溝深さの深い側の他端を深さ15μm〜100μmとして均一に傾斜付けられており、本実施例においては、各凹溝2の深さの浅い側の一端を深さが0とし、溝深さの深い側の他端を深さ50μmとなるようにこの各凹溝2の底面2aの傾斜度合いを設定している。尚、測定基体1の平坦上面1aの前記二つの凹溝2間には、この二つの凹溝2の溝深さに対応する位置に夫々目盛りを設けている。 The degree of inclination of the bottom surface 2a of each concave groove 2 is the same as that of this kind of general particle size gauge, for example, one end on the shallow side of the groove depth of the concave groove 2 is set to depth 0, and the groove depth is deep. The other end on the side is uniformly inclined with a depth of 15 μm to 100 μm. In this embodiment, one end on the shallow side of the groove depth of each concave groove 2 is set to 0, and the groove depth is deep. The degree of inclination of the bottom surface 2a of each groove 2 is set so that the other end of the groove has a depth of 50 μm. A scale is provided between the two concave grooves 2 on the flat upper surface 1a of the measurement substrate 1 at positions corresponding to the groove depths of the two concave grooves 2.

また、この各凹溝2の底面2aには、黒色若しくは黒色に近い暗色(本実施例においては、黒色)の皮膜4若しくは表面層4を形成している。具体的には、金属製の前記測定基体1の凹溝2の金属製の底面2aに、酸化処理若しくはクロムメッキなどの皮膜形成手段により、黒色若しくは黒色に近い暗色で、且つ、平滑な皮膜4若しくは表面層4を形成することで、この凹溝2の底面2aを前記黒色若しくは黒色に近い暗色として前記平坦上面1aよりも光反射率の低い暗色に設定している。   Further, on the bottom surface 2a of each concave groove 2, a film 4 or a surface layer 4 of black or a dark color close to black (black in this embodiment) or a surface layer 4 is formed. Specifically, a smooth coating 4 having a black color or a dark color close to black is formed on the metal bottom surface 2a of the groove 2 of the measurement base 1 made of metal by a coating forming means such as oxidation treatment or chrome plating. Alternatively, by forming the surface layer 4, the bottom surface 2a of the concave groove 2 is set to a dark color having a light reflectance lower than that of the flat upper surface 1a as the black or dark color close to black.

更に具体的には、本実施例では、既存の黒色酸化処理によってこの凹溝2の底面2aに黒色の表面層4を形成した構成である。尚、本実施例に限らず、例えば、既存の黒色クロムメッキ処理(レーデント)により前記凹溝2の底面2aに黒色の皮膜4を形成した構成としても良いし、他にも、例えば黒色ペンキなどを塗布して前記表面層4として黒色の塗料層を形成した構成など、本実施例と同様の作用効果を発揮する構成とすれば良い。   More specifically, in this embodiment, the black surface layer 4 is formed on the bottom surface 2a of the groove 2 by an existing black oxidation process. For example, the black film 4 may be formed on the bottom surface 2a of the concave groove 2 by an existing black chrome plating process (radient), and other examples include, for example, black paint. It is sufficient to adopt a configuration that exhibits the same operational effects as in this embodiment, such as a configuration in which a black paint layer is formed as the surface layer 4.

従って、この凹溝2の前記表面層4が形成された底面2aは、単に焼入れをした鋼の表面を平滑に表面研磨したものに比して、金属特有の光沢も少なく光反射率が良好に低められた構成となる。また、この底面2aである前記表面層4は、試料aを良好に展延できるように平滑に表面処理するが、測定に支障(試料aが円滑に展延できなかったり)がない程度に僅かに表面を荒らしても良く、その場合には更に光反射率を低く設定できる。   Therefore, the bottom surface 2a of the concave groove 2 on which the surface layer 4 is formed has less gloss specific to metals and better light reflectance than a surface obtained by smooth surface polishing of a simply hardened steel surface. The configuration is lowered. Further, the surface layer 4 which is the bottom surface 2a is subjected to a smooth surface treatment so that the sample a can be spread satisfactorily. However, the surface layer 4 is slightly so as not to hinder measurement (the sample a cannot be spread smoothly). In this case, the light reflectance can be set lower.

また、本実施例においては、図4に図示したように、前記測定基体1の平坦上面1a及び凹溝2の底面2aに前記黒色の表面層4(黒色酸化処理による。)を形成している。   In this embodiment, as shown in FIG. 4, the black surface layer 4 (by black oxidation treatment) is formed on the flat upper surface 1 a of the measurement substrate 1 and the bottom surface 2 a of the groove 2. .

具体的には、測定基体1の上面全面に一旦、黒色酸化処理によって黒色の表面層4を形成し、その後、ラッピング装置による研磨(ラップ仕上げ)により測定基体1の平滑上面1aに形成した表面層4のみを除去して構成している。   Specifically, the black surface layer 4 is once formed on the entire upper surface of the measurement substrate 1 by black oxidation, and then the surface layer formed on the smooth upper surface 1a of the measurement substrate 1 by polishing (lapping) using a lapping apparatus. Only 4 is removed.

従って、例えば、凹溝2の底面2aだけを正確に狙って黒色酸化処理などの皮膜形成手段により黒色の皮膜4若しくは表面層4を形成すると、例えば、凹溝2の底面2a以外の部位にマスキングしたうえで皮膜形成手段により凹溝2の底面2aだけに慎重に前記黒色酸化処理を施すなどの厄介な作業を要するうえに、マスキングした余分な部位にも結局表面層4が形成されてしまったり、狙った箇所(凹溝2の底面2a)だけにきれいにムラなく表面層4を形成することが困難であったりすることから、非常に作業効率が悪く生産性が悪いが、この点、本実施例のように一旦測定基体1の上面全面に黒色酸化処理を施せば、簡易にしてキレイでムラ無く良好な表面層4を凹溝2の底面2aに形成できるものである。   Therefore, for example, when the black film 4 or the surface layer 4 is formed by a film forming means such as black oxidation treatment aiming only at the bottom surface 2a of the concave groove 2, for example, masking is performed on portions other than the bottom surface 2a of the concave groove 2 for example. In addition, a troublesome operation such as carefully performing the black oxidation treatment only on the bottom surface 2a of the concave groove 2 by the film forming means is required, and the surface layer 4 is eventually formed also in the masked extra portion. Since it is difficult to form the surface layer 4 cleanly and uniformly only at the target location (the bottom surface 2a of the groove 2), the work efficiency is very poor and the productivity is poor. As shown in the example, once the entire upper surface of the measurement substrate 1 is subjected to the black oxidation treatment, the surface layer 4 can be easily formed on the bottom surface 2a of the groove 2 with a clean and uniform surface.

また、前記測定基体1の上面全面に前記黒色の表面層4を形成した後、表面研磨手段(本実施例においては、ラッピング装置)によって表面仕上げ加工を行って平滑平面としている。   Further, after the black surface layer 4 is formed on the entire upper surface of the measurement substrate 1, surface finishing is performed by a surface polishing means (in this embodiment, a lapping device) to obtain a smooth flat surface.

従って、本実施例は、測定基体1の平坦上面1aに形成した表面層4を除去する作業と、この平坦上面1aを平滑に表面仕上げする作業とを、同時に行うため、極めて効率的に生産できる。尚、金属製の前記測定基体1の平坦上面1aは、予めラッピングなどの表面研磨手段によって表面仕上げ加工を行った平滑平面として前記測定基体1に前記黒色若しくは黒色に近い暗色の皮膜4を形成した後、これを除去することで前記平滑平面を露出させることでこの平坦上面1aを平滑平面としても良い。   Therefore, in this embodiment, since the operation of removing the surface layer 4 formed on the flat upper surface 1a of the measurement substrate 1 and the operation of smoothing the surface of the flat upper surface 1a are performed simultaneously, the production can be performed very efficiently. . Note that the flat upper surface 1a of the measurement base 1 made of metal is formed with the black or dark black film 4 on the measurement base 1 as a smooth plane that has been surface-finished by surface polishing means such as lapping in advance. Thereafter, the flat upper surface 1a may be made a smooth plane by removing the flat surface to expose the smooth plane.

スクレーパ3は、焼入れをした鋼製の部材で構成され、図3に図示したように、上端及び他端の辺縁が刃縁である刃板状に形成したものである。   The scraper 3 is made of a hardened steel member, and is formed in a blade plate shape with edges at the upper end and the other end as blade edges, as shown in FIG.

このスクレーパ3は、この種の粒度ゲージのスクレーパ3と同様に、このスクレーパ3の刃縁が正確に直線状に形成されており、その刃先は半径250μmの丸みを帯びた形状である。   Like the scraper 3 of this kind of particle size gauge, the scraper 3 is formed such that the edge of the scraper 3 is formed in a straight line, and the cutting edge has a rounded shape with a radius of 250 μm.

以上のように構成した本実施例の測定方法を説明する。   The measurement method of the present embodiment configured as described above will be described.

図3に図示したように、先ず、測定したい試料aを測定基体1に形成した各凹溝2の溝深さが深い側の端部に盛る(この試料aの盛り量は、各凹溝2を丁度満たす量よりやや多い量を盛る。)。   As shown in FIG. 3, first, the sample a to be measured is piled up at the end of each groove 2 formed on the measurement base 1 on the deeper side (the height of the sample a is determined according to each groove 2 A little more than the amount that just satisfies.)

次いで、この凹溝2に略直交にまたがるようにして測定基体1の平坦上面1aにスクレーパ3の辺縁(刃縁)を押し当てて、図3に図示したように凹溝2の長さ方向に沿ってこの凹溝2の溝深さの浅い側に向けて所定の速さ(例えば、この凹溝2の一端から他端間を1〜2秒かけて一定の速さ)でこのスクレーパ3を滑動し、このスクレーパ3によって前記凹溝2内に前記試料aを展延する。   Next, the edge (blade edge) of the scraper 3 is pressed against the flat upper surface 1a of the measurement substrate 1 so as to cross the groove 2 substantially orthogonally, and the length direction of the groove 2 as shown in FIG. The scraper 3 at a predetermined speed (for example, a constant speed from one end to the other end of the concave groove 2 over one to two seconds) toward the shallow side of the concave groove 2 along The sample a is spread in the concave groove 2 by the scraper 3.

次いで、試料aの粒度に応じて、図5に図示したように、凹溝2の所定の溝深さ位置の底面2aに表される前記試料aの粒を視認し、その有無や位置を視認することによって前記試料aの粒度を得る。   Next, according to the particle size of the sample a, as shown in FIG. 5, the particles of the sample a represented on the bottom surface 2 a at a predetermined groove depth position of the concave groove 2 are visually recognized, and the presence or absence and position thereof are visually confirmed. By doing so, the particle size of the sample a is obtained.

尚、例えば、凹溝2内に展延した試料aが粒でなく線模様を表し、この線模様の有無や数,位置を視認することで測定するものもあるが、これらはいずれも従来の粒度ゲージを用いた慣例通りの測定方法と同様であるため、具体的詳述は省略する。   In addition, for example, the sample a extended in the concave groove 2 represents a line pattern instead of a grain, and there are some which are measured by visually confirming the presence / absence, number and position of the line pattern. Since it is the same as the conventional measuring method using a particle size gauge, detailed description is abbreviate | omitted.

本実施例は、上述のように構成したから、測定時に、前記凹溝2内に展延した試料aの粒の有無や位置を視認する際に、この凹溝2の底面2aが、平坦上面1aに比して光反射率の低い黒色に設定されている(底面2aに黒色の表面層4が形成されている)から、従来においては、図6に図示したように、凹溝2の底面2aがちらついたり光を高反射して試料aの粒が非常に視認しにくく、これが測定作業効率を妨げるだけでなく、測定値の読み違いや、視認作業の遅れにより試料aの粒の位置が変化したりして正確な測定値が得られず測定誤差の原因となっていたところを、本実施例においては、凹溝2の底面2aのちらつきや光の高反射による視認しにくさを確実に抑止でき、よって、効率良く良好に凹溝2に展延した試料aの粒または線模様の視認作業を進展でき、ひいては、底面2aのちらつきや光の高反射による視認しにくさによって読み違えや、視認作業のもたつきにより試料aの粒または線模様が変化する(崩れる)といった測定誤差の原因も良好に排除することができることとなる。   Since the present embodiment is configured as described above, the bottom surface 2a of the groove 2 is a flat top surface when the presence or absence or position of the grains of the sample a expanded in the groove 2 is visually confirmed during measurement. Since the light reflectance is set to be lower than that of 1a (the black surface layer 4 is formed on the bottom surface 2a), conventionally, as shown in FIG. 2a flickers or highly reflects light, making it difficult to visually recognize the particles of sample a. This not only hinders the efficiency of measurement work, but also causes the position of the particles of sample a to be misread due to misreading of measured values or delays in visual work. In the present embodiment, it is difficult to visually recognize the flickering of the bottom surface 2a of the concave groove 2 or the high reflection of light. Therefore, the grains of the sample a that have spread in the concave groove 2 efficiently and well or Measurement errors such as the pattern visualizing work can be advanced, and as a result, reading errors due to the flickering of the bottom surface 2a and the difficulty of visual recognition due to high reflection of light, and the grain or line pattern of the sample a changes (disintegrates) due to the lightening of the visual work. The cause of this can be eliminated well.

また、従来例のように、凹溝2の底面2aの光反射率をさげるために表面粗さを粗く設定するのではなく、単に底面2aに黒色の表面層4を形成する構成で、底面2aの表面粗さを粗く設定する必要がないため、底面2aの表面粗さを粗く設定することで危惧される測定精度の劣化の問題も一切生じ得ず、よって、極めて効率的に、しかも精度良く良好に測定作業を進展でき、更に生産性に秀れ量産性にも秀れた極めて画期的で実用性に秀れた商品価値の高い粒度ゲージとなる。   Further, unlike the conventional example, the surface roughness is not set to be rough in order to reduce the light reflectivity of the bottom surface 2a of the concave groove 2, but the black surface layer 4 is simply formed on the bottom surface 2a, and the bottom surface 2a. Since it is not necessary to set the surface roughness of the surface to be rough, there is no problem of measurement accuracy degradation which is a concern by setting the surface roughness of the bottom surface 2a to be rough. Therefore, it is extremely efficient and excellent in accuracy. In addition, the measurement work can be further advanced, and it is an extremely innovative and practical utility particle size gauge with excellent productivity and mass productivity.

また、特に、従来では、化粧品のように試料aの粒が薄い肌色や白色などの薄色であった場合には極めて試料aの粒が視認しにくく測定が極めて厄介であったが、本実施例においては、図5に図示したように、試料aが薄色であった場合でも極めて良好にこの試料aの粒を視認でき、化粧品などの薄色の試料の粒度測定に極めて有効な、極めて実用性に秀れた粒度ゲージとなる。   In particular, in the past, when the particles of the sample a were light skin color or white color such as cosmetics, the particles of the sample a were very difficult to see and the measurement was extremely troublesome. In the example, as shown in FIG. 5, even when the sample a is light-colored, the particles of the sample a can be visually recognized very well, which is extremely effective for measuring the particle size of light-colored samples such as cosmetics. The particle size gauge has excellent practicality.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

本実施例に係る粒度ゲージの説明斜視図である。It is an explanation perspective view of the particle size gauge concerning this example. 本実施例に係る粒度ゲージの説明正面図である。It is a description front view of the particle size gauge which concerns on a present Example. 本実施例に係る粒度ゲージの使用状態説明図である。It is use condition explanatory drawing of the particle size gauge which concerns on a present Example. 本実施例に係る粒度ゲージの凹溝2の底面2aに皮膜4を形成する手順を示す図である。It is a figure which shows the procedure which forms the membrane | film | coat 4 in the bottom face 2a of the ditch | groove 2 of the particle size gauge which concerns on a present Example. 本実施例に係る粒度ゲージの測定手順を示す図である。It is a figure which shows the measurement procedure of the particle size gauge which concerns on a present Example. 従来例を示す図である。It is a figure which shows a prior art example.

1 測定基体
1a 平坦上面
2 凹溝
3 スクレーパ
4 皮膜表面層
a 試料
DESCRIPTION OF SYMBOLS 1 Measurement base | substrate 1a Flat upper surface 2 Groove | groove 3 Scraper 4 Film | membrane , surface layer a Sample

Claims (2)

測定基体の平坦上面に凹溝を形成し、この凹溝は、底面がこの凹溝の長さ方向に傾斜した傾斜面に形成してこの凹溝の溝深さがこの凹溝の長さ方向一端から他端に向かって徐々に変化する底面が傾斜した凹溝とした構成として、この凹溝に試料を配設し、この試料を展延するべく凹溝にまたがるように測定基体の平坦上面に辺縁を押し当てたスクレーパをこの凹溝の長さ方向に動かした際、この凹溝内で展延した試料の粒または線模様の有無若しくは位置を視認若しくは測定することでこの試料の粒度を測定する粒度ゲージにおいて、金属製の前記測定基体の凹溝の金属製の底面に、酸化処理若しくはクロムメッキなどの皮膜形成手段により、黒色若しくは黒色に近い暗色で、且つ、平滑な皮膜若しくは表面層を形成することで、この凹溝の底面を前記黒色若しくは黒色に近い暗色とし、且つ前記黒色若しくは黒に近い暗色の皮膜若しくは表面層を前記測定基体の平坦上面及び凹溝の底面に形成した後、少なくとも前記凹溝の底面を残して他の平坦上面から前記皮膜若しくは表面層を除去することで、この平坦上面を露出若しくは表面仕上げ加工により平滑平面に形成して、前記測定基体の凹溝の底面を黒色若しくは黒色に近い暗色として前記平坦上面よりも光反射率の低い暗色に設定したことを特徴とする粒度ゲージ。 A concave groove is formed on the flat upper surface of the measurement substrate. The concave groove is formed on an inclined surface whose bottom surface is inclined in the length direction of the concave groove, and the groove depth of the concave groove is the length direction of the concave groove. As a configuration with a concave groove whose bottom surface gradually changes from one end to the other, a sample is placed in the concave groove, and a flat upper surface of the measurement substrate is placed so as to straddle the concave groove so as to extend the sample. When moving the scraper with the edge pressed against the groove in the length direction of the groove, the particle size of the sample is visually confirmed or measured by checking the presence or position or the position of the grain or line pattern of the sample spread in the groove. In the particle size gauge for measuring the surface of the metal, the surface of the concave groove of the measurement base made of metal is black or a dark color close to black by a film forming means such as oxidation treatment or chrome plating, and a smooth film or surface. By forming a layer of this ditch The surface is made black or a dark color close to black, and the black or dark black film or surface layer is formed on the flat upper surface of the measurement substrate and the bottom surface of the groove, and at least the bottom surface of the groove is left. By removing the film or surface layer from the other flat upper surface, the flat upper surface is exposed or surface-finished to form a smooth flat surface, and the bottom surface of the groove of the measurement substrate is black or a dark color close to black. A particle size gauge characterized in that it is set to a dark color with a lower light reflectance than the flat upper surface. 金属製の前記測定基体の平坦上面は、予めラッピングなどの表面研磨手段によって表面仕上げ加工を行った平滑平面として前記測定基体に前記黒色若しくは黒色に近い暗色の皮膜を形成した後、これを除去することで前記平滑平面を露出させるか、または前記測定基体に前記黒色若しくは黒色に近い暗色の皮膜若しくは表面層を形成した後、ラッピングなどの表面研磨手段によって表面仕上げ加工を行って平滑平面とすることで、この平坦上面を平滑平面に設定したことを特徴とする請求項記載の粒度ゲージ。 The flat upper surface of the measurement base made of metal is removed after forming the black or dark black film on the measurement base as a smooth flat surface that has been surface-finished by surface polishing means such as lapping in advance. The smooth flat surface is exposed, or the black or near dark film or surface layer is formed on the measurement substrate, and then the surface is processed by a surface polishing means such as lapping to obtain a smooth flat surface. in particle size gauge of claim 1, wherein the set of the flat upper surface smooth plane.
JP2005302334A 2005-10-17 2005-10-17 Particle size gauge Active JP4448483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302334A JP4448483B2 (en) 2005-10-17 2005-10-17 Particle size gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302334A JP4448483B2 (en) 2005-10-17 2005-10-17 Particle size gauge

Publications (2)

Publication Number Publication Date
JP2007113916A JP2007113916A (en) 2007-05-10
JP4448483B2 true JP4448483B2 (en) 2010-04-07

Family

ID=38096258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302334A Active JP4448483B2 (en) 2005-10-17 2005-10-17 Particle size gauge

Country Status (1)

Country Link
JP (1) JP4448483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194050A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Method and apparatus for measuring particle size

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560981A (en) * 2017-09-29 2018-01-09 关华杏 Hegman grind gage
GB201720276D0 (en) 2017-12-05 2018-01-17 Parker Hunnifin Emea S A R L Detecting particles in a particle containing fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194050A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Method and apparatus for measuring particle size

Also Published As

Publication number Publication date
JP2007113916A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
Mainsah et al. Metrology and properties of engineering surfaces
JP4448483B2 (en) Particle size gauge
CN102927933B (en) Method of measuring surface roughness by using confocal laser scanning microscope
CN104061853A (en) Method for measuring sub-surface affected layer depth and morphology of optical material
JPS61221636A (en) Article for inspecting comparison utility of crack penetrating agent and manufacture thereof
Drbúl et al. Analysis of roughness profile on curved surfaces
US7036364B2 (en) Optical system and method for measuring continuously distributed strain
CN113770805A (en) Turning surface roughness prediction method based on cutter parameters and material parameters
US6311538B1 (en) Test piece for inspection penetrant performance assessment and comparison
JP2006308312A (en) Probe tip evaluation method for scan type probe microscope
JP6517132B2 (en) Wear resistance evaluation method
JP6430204B2 (en) Surface cleanliness determination device and surface cleanliness determination program
TW201104213A (en) Surface detection of shovel accessory and automatic quality detection apparatus
US6729175B2 (en) Test piece for inspection penetrant performance assessment and comparison
WO2006135295A1 (en) A method and a device for measurement of edges
Shen et al. Identification of an unusual pale green material on the surface of an ancient Chinese bronze vessel and application of laser cleaning to its removal
Berglund Characterisation of functional pressing die surfaces
JP4876388B2 (en) Surface shape measuring method and measuring system
RU50667U1 (en) DEVICE FOR DETERMINING THE MICROHARDNESS OF THE TOOL BLADE
US9194692B1 (en) Systems and methods for using white light interferometry to measure undercut of a bi-layer structure
RU2284499C1 (en) Method of determining rigidity of wedge-shaped tool
RU50668U1 (en) DEVICE FOR DETERMINING THE MICROHARDNESS OF THE TOOL BLADE
Huertos et al. Comparison of classic and robust Gauss filtering for the determination of waviness of non-isotropic surfaces
Draganovská et al. Trends in the diagnostic of metal surfaces micro-geometry
Leising Pitting corrosion measurement using 3D profilometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250