JP4446750B2 - CO2 sensor and CO2 detection method - Google Patents

CO2 sensor and CO2 detection method Download PDF

Info

Publication number
JP4446750B2
JP4446750B2 JP2004006239A JP2004006239A JP4446750B2 JP 4446750 B2 JP4446750 B2 JP 4446750B2 JP 2004006239 A JP2004006239 A JP 2004006239A JP 2004006239 A JP2004006239 A JP 2004006239A JP 4446750 B2 JP4446750 B2 JP 4446750B2
Authority
JP
Japan
Prior art keywords
counter electrode
film
electrode
alkali metal
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004006239A
Other languages
Japanese (ja)
Other versions
JP2005201698A (en
Inventor
昇 山添
憲剛 島ノ江
剛 酒井
祐治 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2004006239A priority Critical patent/JP4446750B2/en
Publication of JP2005201698A publication Critical patent/JP2005201698A/en
Application granted granted Critical
Publication of JP4446750B2 publication Critical patent/JP4446750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

この発明は、COの検出に関する。 The present invention relates to CO 2 detection.

特許文献1,2や非特許文献1は、LiCoOやNaCoO等を対極に用いたCOセンサを開示している。これらの化合物はアルカリ金属含有量に関して不定比で、雰囲気との間で酸素の交換をせずに、LiイオンやNaイオンをアルカリ金属イオン導電体と交換できる。さらにこれらの化合物はある程度の電子伝導性も備えている。このため周囲の酸素分圧に依存しない電極として用い得る。発明者らはその後、これらの対極はCOの影響を強く受け、また同様に周囲の水蒸気の影響を受けることを見出し、さらに対極の露出表面をガラスシールすると、COや水蒸気の影響を受けず、かつ室温放置による起電力の変化が小さいガスセンサが得られることを見出し、この発明に到った。
特開平11−190718号公報 特開平11−108886号公報 Investigation of Solid Sodium Reference Electrodes forSolid-State Electrochemical Gas Sensors, Applied Physics A57,31-35, 1993, Schettler, et al. (固体電気化学ガスセンサ用の固体ナトリウム参照極の探求)
Patent Documents 1 and 2 and Non-Patent Document 1 disclose a CO 2 sensor using LiCoO 2 , NaCoO 2, or the like as a counter electrode. These compounds are non-stoichiometric with respect to the alkali metal content, and can exchange Li + ions and Na + ions with alkali metal ion conductors without exchanging oxygen with the atmosphere. Furthermore, these compounds also have a certain degree of electronic conductivity. For this reason, it can be used as an electrode independent of the surrounding oxygen partial pressure. The inventors have subsequently found that these counter electrodes are strongly influenced by CO 2 , and are similarly affected by surrounding water vapor. Further, if the exposed surface of the counter electrode is glass-sealed, it is affected by CO 2 and water vapor. In addition, the present inventors have found that a gas sensor having a small change in electromotive force due to being left at room temperature can be obtained.
JP-A-11-190718 JP-A-11-108886 Investigation of Solid Sodium Reference Electrodes for Solid-State Electrochemical Gas Sensors, Applied Physics A57,31-35, 1993, Schettler, et al. (Investigation of Solid Sodium Reference Electrode for Solid Electrochemical Gas Sensor)

この発明の課題は、アルカリ金属と遷移金属と酸素とを含み、アルカリ金属含量が不定比な不定比化合物を対極に用いた際の、対極へのCOや水蒸気の影響を小さくし、さらに非加熱放置による起電力の変動を抑制することにある。 An object of the present invention is to reduce the influence of CO 2 and water vapor on the counter electrode when a non-stoichiometric compound containing an alkali metal, a transition metal, and oxygen and having an alkali metal content of non-stoichiometry is used as the counter electrode. The purpose is to suppress variations in electromotive force caused by heating.

この発明のCOセンサは、アルカリ金属イオン導電体に、アルカリ金属と遷移金属と酸素とを含み、かつアルカリ金属含量が不定比の不定比化合物を用いた対極と、炭酸塩含有の検知極とを接続し、加熱下にCOを前記検知極/対極間の起電力から検出するセンサにおいて、対極の露出部をガラスで気密にシールすることにより周囲雰囲気から遮断し、かつ対極がNa CoO 2−y 膜、(xは0.5〜1程度で、yは0.5〜0程度)、からなることを特徴とする。 The CO 2 sensor according to the present invention includes a counter electrode using a non-stoichiometric compound containing an alkali metal, a transition metal, and oxygen in an alkali metal ion conductor and having an alkali metal content of non-stoichiometry, a carbonate-containing detection electrode, In the sensor that detects CO 2 from the electromotive force between the sensing electrode and the counter electrode under heating, the exposed portion of the counter electrode is hermetically sealed with glass , and the counter electrode is Na x CoO. 2-y film (x is about 0.5-1 and y is about 0.5-0) .

また好ましくは、アルカリ金属イオン導電体が基板上に成膜されており、検知極膜と対極膜とが共に該アルカリ金属イオン導電体膜上に成膜されて、対極膜の露出表面がガラス膜で気密にシールされている。このようにすると、センサの製造でアルカリ金属イオン導電体のチップやペレットを基板に取り付ける必要が無く、また対極をガラス膜でシールして用いることができる。   Preferably, the alkali metal ion conductor is formed on the substrate, the detection electrode film and the counter electrode film are both formed on the alkali metal ion conductor film, and the exposed surface of the counter electrode film is a glass film. It is hermetically sealed. In this way, it is not necessary to attach a chip or pellet of an alkali metal ion conductor to the substrate in the manufacture of the sensor, and the counter electrode can be sealed with a glass film.


またこの発明のCO検出方法は、アルカリ金属イオン導電体に、アルカリ金属と遷移金属と酸素とを含み、かつアルカリ金属含量が不定比の不定比化合物を用いた対極と、炭酸塩含有の検知極とを接続して、加熱下に検知極/対極間の起電力からCOを検出する方法において、対極がNa CoO 2−y 膜、(xは0.5〜1程度で、yは0.5〜0程度)、であり、対極の露出部をガラスでシールすることにより、対極へのCO及び水蒸気の影響を遮断すると共に、非加熱放置による検知極/対極間の起電力の変化を抑制することを特徴とする。
特に好ましくは、アルカリ金属イオン導電体が基板上に成膜されており、検知極膜と対極膜とが共に該アルカリ金属イオン導電体膜上に成膜されて、対極膜の露出表面がガラス膜で気密にシールされている。

Further, the CO 2 detection method of the present invention includes a counter electrode using a non-stoichiometric compound containing an alkali metal, a transition metal, and oxygen in an alkali metal ion conductor and having an alkali metal content of non-stoichiometry, and detection of carbonate content. In the method of detecting CO 2 from the electromotive force between the detection electrode / counter electrode under heating by connecting the electrodes , the counter electrode is a Na x CoO 2-y film (x is about 0.5 to 1, y is 0.5 to By sealing the exposed portion of the counter electrode with glass, the influence of CO 2 and water vapor on the counter electrode is blocked, and the change in the electromotive force between the detection electrode and the counter electrode due to non-heating is suppressed. It is characterized by that.
Particularly preferably, the alkali metal ion conductor is formed on the substrate, and both the detection electrode film and the counter electrode film are formed on the alkali metal ion conductor film, and the exposed surface of the counter electrode film is a glass film. It is airtightly sealed.

ガラスシールしないNaCoO等の対極では、COにより対極の電位が変動し(図7,図8)、また特にデータは示さないものの、周囲の湿度により対極は影響を受ける。さらに室温放置後に再起動すると、COセンサは起電力が一般に変化する。これに対してガラスで周囲雰囲気から気密にシールしたNaCoO等の対極では、COの影響を受けず(図9,図10)、湿度の影響も小さく(図12)、非加熱放置から再起動した際の起電力の変化が小さく、かつ再加熱後短時間で安定した起電力が得られる(図13の実線)。 In the counter electrode such as NaCoO 2 that is not glass-sealed, the potential of the counter electrode varies due to CO 2 (FIGS. 7 and 8), and the data is not particularly shown, but the counter electrode is affected by the ambient humidity. When restarting after standing at room temperature, the electromotive force of the CO 2 sensor generally changes. On the other hand, the counter electrode such as NaCoO 2 hermetically sealed with glass from the ambient atmosphere is not affected by CO 2 (FIGS. 9 and 10) and has little influence on humidity (FIG. 12). The change in electromotive force at the time of starting is small, and a stable electromotive force can be obtained in a short time after reheating (solid line in FIG. 13).

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図13に、COセンサ1を例に実施例とその特性を示す。図1,図2に実施例のセンサ1の構造を示すと、2はNASICON膜で、アルカリ金属イオン導電体の例であり、リチウムイオン導電体などでもよい。4は検知極で、ここではAu膜に炭酸塩膜6を重ねたものである。実施例では炭酸塩として、炭酸リチウムと炭酸バリウムのモル比で1:2の混合物を用いたが、炭酸塩の種類は任意である。8は対極のNaCoO2−y膜で、膜厚は例えば1〜30μm程度で金膜10に接続すると共に、その露出表面をガラスシール膜12でシールして雰囲気から遮断する。16はヒータ膜である。 1 to 13 show examples and characteristics of the CO 2 sensor 1 as an example. 1 and 2 show the structure of the sensor 1 of the embodiment. Reference numeral 2 denotes a NASICON film, which is an example of an alkali metal ion conductor, and may be a lithium ion conductor or the like. Reference numeral 4 denotes a detection electrode, in which a carbonate film 6 is superimposed on an Au film. In the examples, a mixture having a molar ratio of lithium carbonate and barium carbonate of 1: 2 was used as the carbonate, but the type of carbonate is arbitrary. Reference numeral 8 denotes a counter electrode Na x CoO 2-y film having a film thickness of, for example, about 1 to 30 μm and connected to the gold film 10, and its exposed surface is sealed with a glass seal film 12 to be cut off from the atmosphere. Reference numeral 16 denotes a heater film.

NaCoO2−y膜8はNaイオンの含量が不定比で、酸素含量を表すパラメータyの異なるいくつかの相がある。例えばxは1〜0.5程度で、実施例ではxがほぼ1の化合物と0.6の化合物とを用い、yの値はx=1でほぼ0,x=0.6でほぼ0.4である。NaCoO2−yの類似化合物として、LiCoOやLiNiO,LiMnなどがある。 The Na x CoO 2-y film 8 has several phases having different parameters y representing the oxygen content, with the Na ion content being indefinite. For example, x is about 1 to 0.5, and in the examples, a compound having x of approximately 1 and a compound of 0.6 are used, and the value of y is approximately 0 when x = 1, and approximately 0.5 when x = 0.6. 4. Examples of similar compounds of Na x CoO 2-y include LiCoO 2 , LiNiO 3 and LiMn 2 O 4 .

図3,図4に変形例のセンサを示すと、アルミナ基板14上にNaCoO2−y膜8の対極を設け、この上部にNASICONチップ20を乗せて、NaCoO2−y膜8の露出部をガラスシール膜12で気密にシールする。またNASICONチップ20の上部には、検知極4と炭酸塩膜6とを設ける。 3 and 4 show a sensor of a modified example. A counter electrode of a Na x CoO 2-y film 8 is provided on an alumina substrate 14, and a NASICON chip 20 is placed on the counter electrode, and the Na x CoO 2-y film 8 is provided. The exposed portion is hermetically sealed with a glass seal film 12. In addition, the detection electrode 4 and the carbonate film 6 are provided on the NASICON chip 20.

図5に、実施例のCOセンサ1の製造工程を示す。NASICON(NaZrSiPO12)のペーストを用意し、例えばスクリーン印刷により基板上に印刷して1200℃で焼成し、膜厚30μm程度のNASICON膜とする。この膜上に金ペーストを印刷し、例えば750℃程度で焼成し、炭酸塩を塗布して750℃程度で金の検知極に融着させる。 Figure 5 shows the CO 2 sensor 1 of the manufacturing step of Example. A paste of NASICON (Na 3 Zr 2 Si 2 PO 12 ) is prepared, printed on a substrate by, for example, screen printing, and baked at 1200 ° C. to obtain a NASICON film having a thickness of about 30 μm. A gold paste is printed on the film, fired at, for example, about 750 ° C., carbonate is applied, and is fused to the gold detection electrode at about 750 ° C.

CoとNaの粉末を、乾燥した窒素雰囲気下で化学量論比になるように混合し粉砕した。この混合物を窒素ガスを流通させながら最高温度850℃で焼成し、NaCoOを合成した。これ以外にNaの含有量を変化させてNa0.6CoO1.6を合成した。NaCoO等をスクリーン印刷し、例えば800℃で焼成し対極膜8を成膜した。次いでガラスペースト(SiO:NaO:B:Alがモル比で44:20:31:5)を10μm厚程度にスクリーン印刷し、600℃で焼成して、NaCoO2−y膜8の露出部を気密にシールした。ガラスシール膜12は対極のNaCoO2−y膜8を周囲雰囲気から気密にシールできれば良く、材質や膜厚などは任意である。この後、基板を適宜にスクライブし、リード線を取り付けると、センサ1が完成する。 Co 3 O 4 and Na 2 O 2 powders were mixed and ground to a stoichiometric ratio in a dry nitrogen atmosphere. This mixture was baked at a maximum temperature of 850 ° C. while flowing nitrogen gas to synthesize NaCoO 2 . In addition to this, Na 0.6 CoO 1.6 was synthesized by changing the content of Na 2 O 2 . NaCoO 2 or the like was screen-printed and fired at, for example, 800 ° C. to form the counter electrode film 8. Next, a glass paste (SiO 2 : Na 2 O: B 2 O 3 : Al 2 O 3 in a molar ratio of 44: 20: 31: 5) was screen-printed to a thickness of about 10 μm, fired at 600 ° C., and Na x The exposed portion of the CoO 2-y film 8 was hermetically sealed. The glass seal film 12 only needs to be able to hermetically seal the counter electrode Na x CoO 2-y film 8 from the surrounding atmosphere, and the material, film thickness, and the like are arbitrary. Thereafter, the sensor 1 is completed when the substrate is appropriately scribed and lead wires are attached.

NaCoO2−y膜の特性を評価するため、図6の評価用センサ30を調整した。32はNASICONチップで、34は金検知極、36は炭酸塩膜、38はNaCoO2−y膜で、露出部をガラス膜40で被覆して気密にシールし、44は金の参照極である。なお炭酸塩膜36の組成は、炭酸リチウムと炭酸バリウムのモル比で1:2の混合物である。NASICONチップ32をガラス管46に無機接着剤44で取り付け、金検知極34とNaCoO2−y膜38(対極)並びに金参照極42に金線をリードとして取り付け、参照極42に対する検知極34や対極38の起電力を測定した。またガラス管46の周囲に図示しないヒータを設けて450℃程度に加熱し、ガラス管46の内側にCO濃度が一定の乾燥雰囲気を流通させ、外側の雰囲気のCO濃度と相対湿度とを変化させて測定した。 In order to evaluate the characteristics of the Na x CoO 2-y film, the evaluation sensor 30 in FIG. 6 was adjusted. 32 is a NASICON chip, 34 is a gold detection electrode, 36 is a carbonate film, 38 is a Na x CoO 2-y film, and the exposed part is covered with a glass film 40 to be hermetically sealed, and 44 is a gold reference electrode It is. The composition of the carbonate film 36 is a mixture of 1: 2 in terms of a molar ratio between lithium carbonate and barium carbonate. The NASICON chip 32 is attached to the glass tube 46 with an inorganic adhesive 44, and a gold wire is attached as a lead to the gold detection electrode 34, the Na x CoO 2-y film 38 (counter electrode) and the gold reference electrode 42. The electromotive force of 34 and the counter electrode 38 was measured. Further, a heater (not shown) is provided around the glass tube 46 and heated to about 450 ° C., a dry atmosphere having a constant CO 2 concentration is circulated inside the glass tube 46, and the CO 2 concentration and relative humidity of the outer atmosphere are set. It was measured by changing.

図7,図8に、対極をガラスシールしなかった際の、参照極に対する対極と検知極の電位を示す。センサ温度はいずれも450℃で、雰囲気の湿度は図7では乾燥、図8では相対湿度50%である。対極/参照極間の起電力はCO濃度により変化し、乾燥状態と相対湿度50%の間で対極の電位に差があることから、対極に水蒸気依存性があるものと考えられる。 7 and 8 show the potentials of the counter electrode and the detection electrode with respect to the reference electrode when the counter electrode is not glass-sealed. Both sensor temperatures are 450 ° C., and the humidity of the atmosphere is dry in FIG. 7 and 50% relative humidity in FIG. The electromotive force between the counter electrode and the reference electrode varies depending on the CO 2 concentration, and there is a difference in the potential of the counter electrode between the dry state and the relative humidity of 50%. Therefore, it is considered that the counter electrode is dependent on water vapor.

図9,図10に対極の露出表面をガラスシールした際の特性を示す。センサ温度はいずれも450℃で、雰囲気の湿度は図9では乾燥、図10では相対湿度50%である。図の上側の直線はCO濃度を変化させた際の参照極に対する対極の電位を示し、対極電位はCO濃度にかかわらず一定である。図9,図10で湿度により対極電位が変化しているように見えるが、これは異なるセンサを用いて測定したためで、同じセンサであれば湿度を変えても対極/参照極間の起電力はほぼ一定であった。 9 and 10 show the characteristics when the exposed surface of the counter electrode is sealed with glass. The sensor temperatures are all 450 ° C., and the humidity of the atmosphere is dry in FIG. 9 and 50% relative humidity in FIG. The upper straight line in the figure shows the potential of the counter electrode with respect to the reference electrode when the CO 2 concentration is changed, and the counter electrode potential is constant regardless of the CO 2 concentration. 9 and 10, it seems that the counter electrode potential changes depending on the humidity. This is because the measurement was performed using different sensors. If the sensor is the same, the electromotive force between the counter electrode and the reference electrode is different even if the humidity is changed. It was almost constant.

図11は、周囲雰囲気を乾燥雰囲気として、センサ温度を350℃〜450℃で変化させた際の、検知極/対極間の起電力を示す。360℃〜450℃で2電子反応に相当する起電力が得られ、ネルンストの式に従ってCO濃度を求め得ることが分かる。図12は、相対湿度を20〜80%で変化させた際の検知極/対極間の起電力を示し、起電力の湿度依存性は僅かである。 FIG. 11 shows the electromotive force between the sensing electrode and the counter electrode when the sensor temperature is changed between 350 ° C. and 450 ° C. with the surrounding atmosphere as a dry atmosphere. It can be seen that an electromotive force corresponding to a two-electron reaction is obtained at 360 ° C. to 450 ° C., and the CO 2 concentration can be obtained according to the Nernst equation. FIG. 12 shows the electromotive force between the sensing electrode and the counter electrode when the relative humidity is changed from 20 to 80%, and the humidity dependency of the electromotive force is slight.

図13は、評価用のセンサに加熱(図の白のエリア)と室温放置(図のグレーのエリア)とを経験させた際の、CO400ppm中での検知極/対極(ガラスシール済み)間の起電力を示す。また図の破線は対極に単味の金膜を用いた際の特性を示す。金の対極では室温放置により起電力が変化し、しかも再起動後に起電力が定常値に達するまでの時間が長い。これに対してガラスシールしたNaCoO2−y膜を対極とした場合、10日以上経過すると再加熱後の起電力はほぼ一定であり、しかも再加熱後に短時間で起電力が安定する。 FIG. 13 shows a sensing electrode / counter electrode (glass sealed) in 400 ppm CO 2 when the sensor for evaluation is subjected to heating (white area in the figure) and standing at room temperature (gray area in the figure). The electromotive force between is shown. Moreover, the broken line of a figure shows the characteristic at the time of using a simple gold film for a counter electrode. At the gold counter electrode, the electromotive force changes due to standing at room temperature, and it takes a long time for the electromotive force to reach a steady value after restarting. On the other hand, when a glass-sealed Na x CoO 2-y film is used as the counter electrode, the electromotive force after reheating is almost constant after 10 days or more, and the electromotive force is stabilized in a short time after reheating.

図9〜図13には3極のセンサの特性を示したが、2極のセンサとして検知極と対極間の起電力を測定しても同様の結果が得られた。実施例では対極材料として、NaCoOを用いたが、これに代えて、Na0.6CoO1.6などを用いてもほぼ同等の特性が得られた。いずれの場合も対極の露出表面をガラスで気密にシールすることにより、対極のCO依存性や湿度依存性を除き、非加熱放置による起電力の変動を抑制し、再加熱時にの起電力が安定するまでの時間を短縮できた。
9 to 13 show the characteristics of a three-pole sensor, but similar results were obtained even when the electromotive force between the detection electrode and the counter electrode was measured as a two-pole sensor. In the examples, NaCoO 2 was used as the counter electrode material, but almost the same characteristics were obtained even when Na 0.6 CoO 1.6 or the like was used instead. In either case, the exposed surface of the counter electrode is hermetically sealed with glass, so that fluctuations in the electromotive force due to non-heating are suppressed, excluding the CO 2 dependency and humidity dependency of the counter electrode, and the electromotive force during reheating is reduced. The time to stabilize was shortened.

実施例のCOセンサの要部側面図Side view of essential part of CO 2 sensor of embodiment 図1のCOセンサの要部平面図FIG. 1 is a plan view of the main part of the CO 2 sensor of FIG. 変形例のCOセンサの要部断面図Cross-sectional view of the principal part of a modified CO 2 sensor 図3のCOセンサの要部平面図FIG. 3 is a plan view of the main part of the CO 2 sensor of FIG. 実施例のCOセンサの製造工程を示す工程図Process diagram showing the manufacturing process of the CO 2 sensor of Example 対極特性の評価に用いたCOセンサの要部断面図Cross section of the main part of the CO 2 sensor used for the evaluation of the counter electrode characteristics 対極をガラスでシールしなかった従来例での、検知極と対極の基準極に対する電位を示す特性図で、動作温度は450℃で、雰囲気は乾燥雰囲気This is a characteristic diagram showing the electric potential of the detection electrode and the counter electrode with respect to the reference electrode in the conventional example in which the counter electrode is not sealed with glass, the operating temperature is 450 ° C., and the atmosphere is a dry atmosphere. 雰囲気を相対湿度50%に変更し他は図7と同等とした際の特性図Characteristic diagram when the atmosphere is changed to 50% relative humidity and the others are the same as in FIG. 対極をガラスシールした際の450℃乾燥雰囲気での検知極と対極の電位を示す特性図Characteristic diagram showing the potential of the sensing electrode and the counter electrode in a 450 ° C dry atmosphere when the counter electrode is sealed with glass 雰囲気を相対湿度50%に変更した際の、検知極と対極の電位を示す特性図Characteristic diagram showing the potential of the detection electrode and the counter electrode when the atmosphere is changed to 50% relative humidity 対極をガラスシールした実施例での、360℃〜450℃での検知極/対極間の起電力を示す特性図The characteristic view which shows the electromotive force between the detection electrode / counter electrode in 360 to 450 degreeC in the Example which sealed the counter electrode by glass 実施例での対極電位の相対湿度依存性を示す特性図The characteristic figure which shows the relative humidity dependence of the counter electrode potential in an Example 実施例で、様々な相対湿度でCOセンサを室温放置した後に再起動した際の対極電位を示す特性図In an embodiment, the characteristic diagram showing a counter electrode potential when the CO 2 sensor has restarted after standing at room temperature at various relative humidity

符号の説明Explanation of symbols

1 COセンサ
2 NASICON膜
4 検知極
6 炭酸塩膜
8 NaCoO2−y膜(対極膜)
10 金膜
12 ガラスシール膜
14 アルミナ基板
16 ヒータ膜
20 NASICONチップ
30 評価用センサ
32 NASICONチップ
34 金検知極
36 炭酸塩膜
38 NaCoO2−y
40 ガラス膜
42 金参照極
44 無機接着剤
46 ガラス管
1 CO 2 sensor 2 NASICON film 4 Sensing electrode 6 Carbonate film 8 Na x CoO 2-y film (counter electrode film)
10 Gold film 12 Glass seal film 14 Alumina substrate 16 Heater film 20 NASICON chip 30 Evaluation sensor 32 NASICON chip 34 Gold detection electrode 36 Carbonate film 38 Na x CoO 2-y film 40 Glass film 42 Gold reference electrode 44 Inorganic adhesive 46 glass tube

Claims (3)

アルカリ金属イオン導電体に、アルカリ金属と遷移金属と酸素とを含み、かつアルカリ金属含量が不定比の不定比化合物を用いた対極と、炭酸塩含有の検知極とを接続し、加熱下にCOを前記検知極/対極間の起電力から検出するセンサにおいて、
前記対極の露出部をガラスで気密にシールすることにより周囲雰囲気から遮断し、かつ前記対極がNa CoO 2−y 膜、(xは0.5〜1程度で、yは0.5〜0程度)、からなることを特徴とする、COセンサ。
A counter electrode using a non-stoichiometric compound containing an alkali metal, a transition metal, and oxygen and having an alkali metal content is indefinite, and a carbonate-containing sensing electrode are connected to an alkali metal ion conductor, and CO 2 is heated under heating. In the sensor which detects 2 from the electromotive force between the detection electrode / counter electrode,
The exposed portion of the counter electrode is hermetically sealed with glass to cut off from the surrounding atmosphere , and the counter electrode is a Na x CoO 2-y film (x is about 0.5-1 and y is about 0.5-0). A CO 2 sensor characterized by comprising:
前記アルカリ金属イオン導電体が基板上に成膜されており、
前記検知極膜と対極膜とが共に該アルカリ金属イオン導電体膜上に成膜されて、対極膜の露出表面がガラス膜で気密にシールされていることを特徴とする、請求項1のCOセンサ。
The alkali metal ion conductor is deposited on a substrate;
2. The CO according to claim 1 , wherein both the detection electrode film and the counter electrode film are formed on the alkali metal ion conductor film, and the exposed surface of the counter electrode film is hermetically sealed with a glass film. 2 sensors.
アルカリ金属イオン導電体に、アルカリ金属と遷移金属と酸素とを含み、かつアルカリ金属含量が不定比の不定比化合物を用いた対極と、炭酸塩含有の検知極とを接続して、加熱下に検知極/対極間の起電力から前記COを検出する方法において、
前記対極がNa CoO 2−y 膜、(xは0.5〜1程度で、yは0.5〜0程度)、であり、
前記対極の露出部をガラスでシールすることにより、対極へのCO及び水蒸気の影響を遮断すると共に、非加熱放置による検知極/対極間の起電力の変化を抑制することを特徴とする、CO検出方法。
An alkali metal ion conductor is connected to a counter electrode using a non-stoichiometric compound containing an alkali metal, a transition metal and oxygen and having an alkali metal content that is non-stoichiometric, and a carbonate-containing sensing electrode. In the method of detecting the CO 2 from the electromotive force between the sensing electrode / counter electrode,
The counter electrode is a Na x CoO 2-y film (x is about 0.5-1 and y is about 0.5-0),
By sealing the exposed portion of the counter electrode with glass, the influence of CO 2 and water vapor on the counter electrode is blocked, and the change in the electromotive force between the detection electrode and the counter electrode due to non-heating is suppressed. CO 2 detection method.
JP2004006239A 2004-01-14 2004-01-14 CO2 sensor and CO2 detection method Expired - Fee Related JP4446750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006239A JP4446750B2 (en) 2004-01-14 2004-01-14 CO2 sensor and CO2 detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006239A JP4446750B2 (en) 2004-01-14 2004-01-14 CO2 sensor and CO2 detection method

Publications (2)

Publication Number Publication Date
JP2005201698A JP2005201698A (en) 2005-07-28
JP4446750B2 true JP4446750B2 (en) 2010-04-07

Family

ID=34820263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006239A Expired - Fee Related JP4446750B2 (en) 2004-01-14 2004-01-14 CO2 sensor and CO2 detection method

Country Status (1)

Country Link
JP (1) JP4446750B2 (en)

Also Published As

Publication number Publication date
JP2005201698A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP2708915B2 (en) Gas detection sensor
US20110226042A1 (en) Carbon dioxide measuring device
JP6530569B2 (en) Thermistor sintered body and thermistor element
JP4446750B2 (en) CO2 sensor and CO2 detection method
JP2006513403A (en) Hydrogen detection apparatus and method
JPH0467912B2 (en)
JP4936467B2 (en) CO2 sensor
JP4627671B2 (en) CO2 sensor
KR101232121B1 (en) Auxiliary electrode typed sensor and that reference electrode and manufacturing method thereof
JP2005520766A (en) Insulating material and gas sensor
KR101517591B1 (en) Device for measuring carbon dioxide
JP2678045B2 (en) Carbon dioxide sensor
JP4263117B2 (en) Carbon dioxide detector
JP2004170230A (en) Co2 sensor and its manufacturing method
JP2008267845A (en) Gas sensor
KR100938673B1 (en) The carbon dioxide electrochemical sensor and the measuring device equipped with same
JP2974090B2 (en) Carbon dioxide detection sensor
JP4179573B2 (en) Solid electrolyte carbon dioxide sensor element
JP2002357586A (en) Solid electrolyte molded material
JPH08220063A (en) Carbon dioxide gas sensor
JPH09292366A (en) Carbon dioxide gas sensor and manufacture thereof
EP1429139A1 (en) Gas sensor for SOx measurement
JPS6281560A (en) Hydrogen sensor for molten metal
JPH08220064A (en) Carbon dioxide gas sensor
JP4179488B2 (en) Solid electrolyte carbon dioxide sensor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160129

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees