JP4446034B1 - Underwater maintenance equipment for ship propellers - Google Patents

Underwater maintenance equipment for ship propellers Download PDF

Info

Publication number
JP4446034B1
JP4446034B1 JP2009089728A JP2009089728A JP4446034B1 JP 4446034 B1 JP4446034 B1 JP 4446034B1 JP 2009089728 A JP2009089728 A JP 2009089728A JP 2009089728 A JP2009089728 A JP 2009089728A JP 4446034 B1 JP4446034 B1 JP 4446034B1
Authority
JP
Japan
Prior art keywords
roughness
propeller
polishing
underwater
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009089728A
Other languages
Japanese (ja)
Other versions
JP2010201609A (en
Inventor
高森悟
善克 奥
大典 福山
政行 田口
貴玄 中村
Original Assignee
高森 悟
政行 田口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高森 悟, 政行 田口 filed Critical 高森 悟
Priority to JP2009089728A priority Critical patent/JP4446034B1/en
Priority to PCT/JP2010/050948 priority patent/WO2010090096A1/en
Application granted granted Critical
Publication of JP4446034B1 publication Critical patent/JP4446034B1/en
Publication of JP2010201609A publication Critical patent/JP2010201609A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D13/00Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor
    • B24D13/02Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by their periphery
    • B24D13/10Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by their periphery comprising assemblies of brushes

Abstract

【課題】
就航中の船舶のプロペラをドックに入れて研摩するのではなく、係留している状態の船舶を、水中で海洋性付着物の着床を遅らせる効果がある粗度までプロペラを研摩する技術とプロペラの保守管理に必要なプロペラ表面の粗度を計測する技術が求められていた。
【解決手段】
水中でプロペラの表面の粗度を計測する水中粗度計と、研磨精度をRa1μm以下まで研磨できる水中プロペラ研磨機と、発生した剥離物を、水面にある剥離物貯留装置に回収できる剥離物回収装置を備える船舶プロペラの水中補修設備を発明した。
【選択図】図1
【Task】
Rather than putting the propeller of an in-service vessel into a dock and polishing it, the technology and propeller to polish the propeller to a roughness that will have the effect of delaying the landing of marine deposits in the water underwater. The technology to measure the roughness of the propeller surface required for maintenance management of the machine was required.
[Solution]
An underwater roughness meter that measures the roughness of the surface of the propeller in water, an underwater propeller polisher that can polish the polishing accuracy to Ra 1 μm or less, and a peeled material collection that can collect the generated peeled material in a peeled material storage device on the water surface Invented an underwater repair facility for ship propellers equipped with the device.
[Selection] Figure 1

Description

本発明は、船舶のプロペラを海洋性付着物の着床を遅らせることができる粗度まで水中でプロペラを研磨し、研磨時に発生する剥離物の回収を行い、プロペラの表面粗度を水中で計測することにより就航中の水中にあるプロペラの性能が確認でき、研摩と粗度測定を行う保守管理と水中保守設備に関する。 The present invention polishes the propeller in water to a roughness that can delay the landing of marine deposits on the ship's propeller, collects the exfoliation that occurs during polishing, and measures the surface roughness of the propeller in water It is possible to confirm the performance of the underwater propeller in service, and it relates to maintenance management and underwater maintenance equipment that performs polishing and roughness measurement.

通常船舶は巡航速度を維持して航海している、しかし日時の経過とともに、巡航速度を維持し続けると燃料消費量が増加する。 Usually, a ship is sailing with the cruise speed maintained, but with the passage of time, the fuel consumption increases if the cruise speed is maintained.

これは船舶の諸設備の劣化によるものもあるが、時間の経過とともに船体外板部及び推進器に海洋性付着物が付き、それにより船体外板部及びプロペラの抵抗が増加することによる要因が大きいためである。 This may be due to the deterioration of the ship's equipment, but with the passage of time, marine deposits are attached to the hull skin and propeller, which increases the resistance of the hull skin and propeller. Because it is big.

船舶は巡航速度を維持するために着床物による抵抗が増えると運行に支障が出ないように抵抗の増加分だけ燃料を多く消費して速度の維持を行っている。 In order to maintain the cruising speed, the ship maintains the speed by consuming as much fuel as the resistance increases so as not to hinder the operation when the resistance due to the landing object increases.

着床物による燃料消費量増加分の問題については、省エネルギー運航対策や船舶のCO2排出による地球温暖化問題が顕著化していないときはそれほど重要な問題とはなっていなかった。 The problem of increased fuel consumption due to landings was not so important when measures for energy saving operation and global warming due to CO2 emissions from ships were not prominent.

それでも船体及びプロペラが汚れすぎると、燃料消費量が増加するのとエンジン負荷がかかるので、水中でダイバーが清掃器具を使い船体外板部及びプロペラの清掃をして負荷の軽減を図る方法がとられている。 Still, if the hull and propeller are too dirty, the fuel consumption will increase and the engine load will be applied.Therefore, divers use a cleaning tool in the water to clean the hull skin and propeller to reduce the load. It has been.

船体外板部については、海洋性付着物が着きにくい塗料が開発され、ほとんど海洋性付着物の抵抗による影響を考慮する必要がなくなってきた。 As for the hull outer plate, paints that are difficult to adhere to marine deposits have been developed, and it is no longer necessary to consider the effect of marine deposits on resistance.

推進機部、特にプロペラ部については、プロペラ専用の海洋性付着物が付かない塗料及び塗装する技術がいまだ確立されていない。その為に海洋性付着物による影響を受け続けており、対策として水中でダイバーによるプロペラの清掃及び研磨が行われている。 As for the propulsion unit, particularly the propeller unit, a coating material and a coating technique that do not have a marine deposit dedicated to the propeller have not yet been established. Therefore, it continues to be affected by marine deposits, and as a countermeasure, propellers are cleaned and polished underwater by divers.

水中のプロペラ清掃及び研磨方法としてはスクレッパー及びタワシ類を使いダイバーが人力でプロペラの表面に付いた汚れを落とす方法が行われている。 As an underwater propeller cleaning and polishing method, a scraper and scrubbers are used to manually remove dirt attached to the surface of the propeller by a diver.

また、動力を使う清掃機及び研磨機で、ダイバーが水中でプロペラ清掃を行う方法も実施されている。 In addition, a method in which a diver performs propeller cleaning in water with a cleaning machine and a polishing machine that use power is also implemented.

従来、水中で行なうプロペラ清掃はプロペラ表面の汚れを落としエンジン負荷を少なくすることを目的としたプロペラ清掃であった。 Conventionally, propeller cleaning performed in water was propeller cleaning aimed at removing dirt on the propeller surface and reducing engine load.

今までの行われている清掃では、プロペラ表面の汚れを落とすだけなので、清掃直後はきれいで効率よく稼働するが、1〜2週間もするとプロペラ表面に海洋性付着物が着き始め、その付着物によりプロペラに抵抗が発生しプロペラ効率が落ち始めていた。 The cleaning that has been performed so far only cleans the surface of the propeller, so it works cleanly and efficiently immediately after cleaning, but after one to two weeks, marine deposits start to adhere to the propeller surface, and the deposits As a result, resistance was generated in the propeller and the propeller efficiency began to drop.

水中研磨機による清掃方法にエアーサンダーに研磨パッドを取り付けて研磨を行う方法がある。この方法で行うとエアーの吹き出しにより視界が妨げられ、視界の確保がしにくくなる。又均一に施工する必要があるのに一部分だけが当るエアーサンダーではプロペラ表面を削ってしまい施工精度が落ちる。更にエアーサンダー研磨機の研磨パッドの大きさは10cm程度でそれ以上大きくすると水の抵抗が大きくなり、回転速度とトルクが落ち研磨を行ってもよい精度の研磨が行えず、エアーサンダーによる研磨では粗度は良くなってもRa10μm程度である。 There is a method of performing polishing by attaching a polishing pad to an air sander as a cleaning method using an underwater polishing machine. If this method is used, the field of view is hindered by the blowing of air, making it difficult to secure the field of view. In addition, an air sander that needs to be applied evenly but only partly cuts the surface of the propeller, resulting in poor installation accuracy. Furthermore, if the size of the polishing pad of the air sander polishing machine is about 10 cm and larger, the resistance of water will increase, the rotational speed and torque will decrease, and polishing with precision that may be performed can not be performed. Even if the roughness is improved, it is about Ra 10 μm .

水中研磨機による清掃方法として水流式の研磨機にダイヤモンドディスクパッドを取り付けて行う方法がある。水流式の研磨機ではエアーサンダーと比較して視界は確保できるが研磨の粗度は良くできてもRa1μm程度である。 As a cleaning method using an underwater polishing machine, there is a method in which a diamond disk pad is attached to a water flow type polishing machine. The water flow type polishing machine can secure a field of view as compared with the air sander, but the roughness of the polishing can be improved but is about Ra 1 μm .

上記清掃方法では水中で研磨をしても、(通常船舶のプロペラ表面粗度は、新造時及び乾ドックでのプロペラ研磨終了後の状態でも、粗度Ra3μm〜Ra5μm程度といわれている)研摩できるプロペラの粗度はRa1μm位までが限度といわれている。しかし、プロペラの表面粗度はRa0μmに近づければ近づけるほど性能の良いプロペラになる。Ra1μm以下、特にRa0.5μm以下になると付着物の着床には数ヶ月以上時間がかかるようになりプロペラの汚れによる抵抗損失がほとんど出ないようになる。 In the above cleaning method, even if it is polished in water, it can be polished (normally, the surface roughness of the propeller surface is said to be about Ra 3 μm to Ra 5 μm in the state of new construction and after completion of propeller polishing in the dry dock) The roughness of the propeller is said to be limited to about Ra 1 μm . However, the closer the surface roughness of the propeller is to Ra0 μm , the better the propeller is. When Ra is 1 μm or less, especially Ra is 0.5 μm or less, it takes time for several months or more to deposit deposits, and resistance loss due to contamination of the propeller hardly occurs.

いままでは水中でRa1μm以下の粗度となるプロペラ研磨機との研磨技術がなく又プロペラ表面の粗度を水中で計測できる粗度計もなかった。 There was no polishing technique with a propeller polishing machine that would give a roughness of Ra 1 μm or less in water, and there was no roughness meter that could measure the roughness of the propeller surface in water.

現在水中でのプロペラ研磨は行われているが現在使用されている研磨機ではRa1μm以下に出来る研磨機がないため水中でRa1μm以下の研磨を行うことが出来ない。 But are currently in the propeller polishing of underwater done it can not be performed the following polishing Ra1μm in water because there is no polishing machine that can be in the following Ra1μm is a polishing machine that is currently being used.

水中研磨機の動力源として現在は油圧と水流とエアーモーターが使われているこれらの動力モーターは水中仕様でなく陸上で使用することを基本として作られており、この動力モーターを水中に持ち込んで使用すると想定外の条件変化により回転数が極端に落ちるだけでなく機械の性能も落ちる。 Currently, hydraulic power, water flow, and air motors are used as the power source of the underwater polishing machine. These power motors are made on the ground, not underwater specifications, and this power motor is brought into the water. If used, not only will the number of revolutions drop drastically due to unexpected changes in conditions, but the performance of the machine will also drop.

プロペラ研磨の粗度をRa1μm以下にするには、水中で強いトルクと、研磨パッドの外周を高速で回転させる性能の研磨機モーターが必要である。 In order to reduce the roughness of propeller polishing to Ra 1 μm or less, a polishing machine motor having a strong torque in water and a performance capable of rotating the outer periphery of the polishing pad at high speed is required.

しかしあまりに強いトルクや高速で研磨機が回転すると研磨機にダイバーが振り回されて危険である。 However, if the grinding machine rotates with too strong torque or high speed, the diver is swung around the grinding machine, which is dangerous.

水中研磨機は人が(現在の平均的日本人ダイバー)手に持って安全に操作でき、研磨粗度がRa1μm以下に研磨できる性能があること。施工面が垂直に近い壁状であるため研磨機が垂直面でも操作しやすいこと。又曲面であるプロペラ面の清掃が均一に出来ることが水中プロペラ研磨機の必要条件となる。 The underwater polishing machine must be safe to operate by hand (current average Japanese diver) and have a polishing roughness of Ra1μm or less. Because the construction surface is almost vertical, the polishing machine should be easy to operate even on vertical surfaces. Further, it is a necessary condition for the underwater propeller polishing machine that the propeller surface, which is a curved surface, can be uniformly cleaned.

水中研磨機に取り付ける研磨パッドの種類にダイヤモンドディスクの研磨パッドがある。このダイヤモンドディスクを使用して、研磨すると表面を粗く削りとるようになり、水中研磨中にプロペラから削り取られた削りくずが光に当たりキラキラと輝くのが確認できる。このダイヤモンドディスクで研磨した後の粗度の測定では、Ra1μm程度までの研磨が限度であった。Ra1μm程度の研磨だと数週間でプロペラに付着物が着き始める。又何度もこのダイヤモンドディスクを使用するとプロペラを削り続けるのでプロペラの曲面に変化が起きてくることが予測され、特に先端部付近であればプロペラの性能に大きな変化が起こることがあった。 One type of polishing pad attached to an underwater polishing machine is a diamond disk polishing pad. When this diamond disk is used for polishing, the surface is roughened, and the shavings removed from the propeller during underwater polishing can be confirmed to shine and shine. In the measurement of the roughness after polishing with this diamond disk, polishing up to about Ra 1 μm was the limit. If the polishing is about Ra 1 μm, deposits will begin to adhere to the propeller within a few weeks. Further, when this diamond disk is used many times, it is predicted that the propeller will continue to be sharpened, so that it is predicted that the curved surface of the propeller will change. Especially, the performance of the propeller may change greatly in the vicinity of the tip.

水中でプロペラ表面を研磨して粗度を確認する方法には、水面上にプロペラを出してプロペラ粗度の計測を行う方法と、水中に持ち込んだルパートゲージ(数種類の粗度見本板)とプロペラの表面をダイバーが触手及び目視で比較する方法がある。今までは水中で粗度計測を行いRa0.1μm単位での数値で表せる水中粗度計は開発されていない。 The method of polishing the surface of the propeller in water to check the roughness is to measure the propeller roughness by placing a propeller on the water surface, and the rupert gauge (several types of roughness sample plates) and the propeller that are brought into the water. There is a method in which a diver compares the surface of the surface with tentacles and visually. Until now, water roughness meter which can be expressed by the numerical value of at Ra0.1μm unit performs a roughness measurement in water has not been developed.

今までは、就航中の船舶の水中でのプロペラの粗度による保守管理方法と水中研磨技術は確立されていなかった。それ故に、粗度を厳密に図る必要性も求められなかったので目視による確認程度での粗度計測とプロペラ表面粗度管理でよかった。 Until now, the maintenance management method and underwater polishing technology by the roughness of the propeller underwater of the ship in service has not been established. Therefore, since it was not necessary to strictly measure the roughness, the roughness measurement and the propeller surface roughness management with visual confirmation were sufficient.

就航中のプロペラの粗度を上げて(平滑にすること)プロペラの性能管理を行うには水中で粗度の計測を行う必要がある。船舶のプロペラの粗度を水中で計測する方法はルパートゲージを使った方法だけであり、数値で粗度が確認できる水中粗度計及び粗度の計測方法は確立されていない。現在プロペラの粗度を数値で計測するには水面上にプロペラを出して計測するか、ドックに入れてドライ状態にして計測することだけである。だが就航中の船舶では粗度計測のためだけにこれらを行うのはどちらも不可能に近いことである。 In order to control the propeller performance by increasing the roughness of the propeller in service (smoothing), it is necessary to measure the roughness in water. The method of measuring the roughness of a ship's propeller in water is only a method using a rupert gauge, and an underwater roughness meter capable of confirming the roughness with numerical values and a method for measuring roughness have not been established. Currently, to measure the roughness of the propeller numerically, simply place the propeller on the water surface and measure it, or place it in a dock and dry it. However, it is almost impossible to do these only for roughness measurement on ships in service.

粗度計は大きく分けて2種類あり非接触式粗度計(光又は超音波などを対象粗度計測物表面に照射し反射波を解析して粗度を計測する方式)と接触式粗度計(触針部が対象粗度計測物表面に直接触れて凹凸を計測する方式)とがある。 There are roughly two types of roughness meters: non-contact type roughness meter (a method that measures the roughness by irradiating the surface of the target roughness measurement object with light or ultrasonic waves and analyzing the reflected wave) and contact roughness There is a meter (a method in which the stylus part directly touches the surface of the target roughness measurement object to measure unevenness).

非接触式粗度計を使う場合、設備が大掛かりなためと、精密すぎる機械のため、毎回計測場所となる現場の岸壁及び小型船舶に、一回の粗度測定のために非接触式粗度計を持ち込むことは保守管理と経費負担を考慮すると不可能に近く、毎回計測場所が移動する粗度測定にこの機械を使うのは難しい。 When using a non-contact type roughness meter, the equipment is too large and the machine is too precise. It is almost impossible to bring a meter in consideration of maintenance management and cost burden, and it is difficult to use this machine for roughness measurement where the measurement place moves every time.

接触式粗度計を使う場合は触針部が動作して計測する構造であるため耐圧箱に入れて水中に持ち込んでも、この触針部分を水中で耐圧箱を介して誤差なく計測する耐圧箱を製作することも非常に難しい。 When using a contact-type roughness meter, the stylus part operates and measures, so even if you put it in the pressure box and bring it into the water, the pressure gauge box can measure this stylus part underwater through the pressure box without error It is also very difficult to produce.

接触式粗度計と非接触式粗度計を価格面と使い易さで比較すると非接触式粗度計は非常に高価で数千万円程度するが接触式の粗度計は数十万円程度である。 Comparing the contact-type roughness meter and the non-contact-type roughness meter in terms of price and ease of use, the non-contact-type roughness meter is very expensive and costs around tens of millions of yen. It is about a yen.

接触式粗度計は10cm×20cm×10cm程度の大きさのものが普及しており簡単に携行出来るが非接触式粗度計は携行するには大きすぎるのと精密すぎるので戸外である岸壁及び船上での取り扱いが難しい欠点がある。 The contact-type roughness meter has a size of about 10 cm × 20 cm × 10 cm and can be carried easily, but the non-contact type roughness meter is too large and too precise to carry, There is a drawback that handling on board is difficult.

現在ドックで船舶のプロペラ研磨後の粗度計測には接触式粗度計は携行できるので多く使用されておりプロペラの粗度を測定するのに問題ない精度を持っている。 At present, the contact-type roughness meter can be carried to measure the roughness of the ship after propeller polishing at the dock, so it is widely used and has no problem in measuring the roughness of the propeller.

携帯式の接触式粗度計には、測定部と演算部がケーブルでつながれているものがあるがこの形式のものはケーブルが短くケーブルを長く伸ばすと性能が変わる欠点がありあまり長く伸ばすことができないものが多い。 Some portable contact-type roughness meters have a measuring part and a computing part connected by a cable, but this type has a disadvantage that the performance changes when the cable is short and the cable is extended long, and it can be extended too long. There are many things that cannot be done.

就航中の船舶のプロペラは水中下にあり1000トンクラスの船舶ではプロペラの最下部の位置は水面下5mぐらいである。携帯できる接触式粗度計の測定部だけを触針部の欠点を補って水中で使用できるように耐圧箱に入れてもケーブルが短いため操作及び表示部がある演算部を水面に出すことができないことがある。 The propeller of the ship in service is underwater, and the bottom position of the propeller is about 5 m below the surface of a 1000-ton class ship. Even if the measuring part of the portable contact-type roughness meter is placed in a pressure-resistant box so that it can be used underwater with the drawbacks of the stylus part, the calculation part with the operation and display part can be put out on the water surface because the cable is short There are things that cannot be done.

粗度計測は粗度計の測定部へのケーブルを長くして測定部だけを水中に持ち込んで陸上部から操作し電話で指示を受けて粗度計測をすることもできるが、それよりダイバーが測定数値を確認しながら粗度計測定部を操作して計測する方がより確実に早く計測することができる。 Roughness measurement can be done by lengthening the cable to the measuring part of the roughness meter, bringing only the measuring part into the water, operating from the land part and receiving instructions from the telephone, and measuring the roughness, It is possible to measure more reliably and faster by operating the roughness meter measuring unit while confirming the measured numerical value.

現在市販されている携帯式の接触式粗度計には、演算部にキャパシタンス(コンデンサー)を使っているものが多い。キャパシタンスを使っていない接触式粗度計では加圧されても問題ないのだが、キャパシタンスを使っている部分は加圧されると圧力の影響を受けて壊れてしまう。 Many portable contact-type roughness meters that are currently on the market use a capacitance in the calculation section. There is no problem even if the contact type roughness meter that does not use capacitance is pressurized, but if the portion using capacitance is pressurized, it will be damaged by the pressure.

水中で行うプロペラ清掃および研磨作業では剥離物の回収がほとんど行われていない。回収方法としてはダイバーが清掃時に発生した剥離物を袋などに受けて手で入れて回収している程度で、剥離物の殆どは水中に放出され海底に投棄蓄積されているのが現状である。又回収しようと思っても潮流や波の影響を受け回収がうまくできないことが多い。 In the propeller cleaning and polishing operations carried out in water, almost no collected matter is collected. As for the recovery method, the diver receives the exfoliation generated during cleaning in a bag and manually collects it, and most of the exfoliation is released into the water and dumped and accumulated on the sea floor. . Also, even if you want to recover, it is often impossible to recover due to the influence of tides and waves.

ドック出渠時のプロペラの粗度はRa3μm〜Ra5μmである。この粗度であればプロペラには1〜2週間目から付着物がつき始める。清掃作業でこの付着物及び研磨くずを水中に放出することは環境汚染となるので水中プロペラ研磨機は剥離物が回収できるシステムの研磨機でなければならない。 The roughness of the propeller when docking is Ra3 μm to Ra5 μm . With this roughness, the propeller begins to adhere to the propeller from the first to the second week. Release of these deposits and polishing debris into the water during a cleaning operation causes environmental pollution, so the underwater propeller polishing machine must be a polishing machine with a system that can recover the exfoliation.

特開2005−297090に開示されている水中研磨装置は、上を向いている研磨機のディスクを押し付けて研磨する装置である。発生する反力対策として反力を打ち消すために研磨ディスクと逆方向に羽を回転させてバランスを取り、吸出し装置を使い負圧を発生させて研磨面に吸着させる装置である。当発明は研磨面が垂直であるプロペラを研磨するので研磨ディスクの中に負圧が発生する構造若しくは研磨剤入り研磨ディスクが研磨時に中央にくぼみを発生させる構造でディスク内部に凹みを持たせ、水を研磨機外側に排水して負圧を発生させ、その負圧を利用して自ら吸着するようにした装置である。又研磨くずの回収においても研磨ディスクの回転によりディスクの外に飛ばされたものを別フードカバーにて回収部分を作成してカバーの外に出さずに回収する方法で、研磨くずの回収方法及び吸引方法に大きな違いがある。 An underwater polishing apparatus disclosed in JP-A-2005-297090 is an apparatus for polishing by pressing a disk of a polishing machine facing upward. In order to counteract the reaction force that occurs, the device rotates the wings in the opposite direction to the polishing disk to balance the reaction force, and uses a suction device to generate negative pressure that is adsorbed to the polishing surface. Since the present invention polishes a propeller whose polishing surface is vertical, a structure in which negative pressure is generated in the polishing disk or a structure in which a polishing disk containing an abrasive generates a dent in the center at the time of polishing has a dent inside the disk, It is an apparatus that drains water to the outside of the polishing machine to generate a negative pressure and uses the negative pressure to adsorb itself. Also in the recovery of polishing scraps, a method for recovering polishing scraps by creating a recovery portion with a separate hood cover that has been blown out of the disc by the rotation of the polishing disc and collecting it without taking it out of the cover. There is a big difference in the suction method.

特開2005−297090に開示されている水中研磨装置では研磨と吸引が同じ動力源で作動している。本発明では、ダイバーが水中研磨機を手に持って使用して施工するので、回収装置は研磨機の外側に設置される。回収動力も負圧を使う構造となっている点に大きな違いがある。又研磨対象物は船舶のプロペラで、水中で垂直となっており研磨屑も研磨パッドにより遠心力で研磨部より外側に吐き出されるのを利用して、吐き出された研磨屑をフードで覆った回収装置に回収する方法であり、研磨した研磨屑が閉鎖区域内にないので内部で拡散することがない。研磨屑によるに影響がでない点にも違いがある。 In the underwater polishing apparatus disclosed in Japanese Patent Laid-Open No. 2005-297090, polishing and suction are operated by the same power source. In the present invention, since the diver is constructed using the underwater polishing machine in hand, the recovery device is installed outside the polishing machine. There is a big difference in that the recovery power is structured to use negative pressure. The object to be polished is a marine propeller, which is vertical in the water, and the polishing debris is discharged out of the polishing part by centrifugal force by the polishing pad. This is a method of collecting in the apparatus, and the polished debris is not in the closed area, so that it does not diffuse inside. There is also a difference in that it is not affected by polishing debris.

特開昭58−94962に開示されている水中研磨装置では、機械による遠隔操作で回転式研磨機を操作し研磨する方式である。この研磨機の対象とする対象物及び研磨面は固定されており研磨機も研磨時は固定した状況で研磨するようになっている。本発明の研磨対象物は船舶のプロペラであり、研磨面のプロペラは海象気象に影響され常に船舶と同時に揺れ動いている。又施工するダイバーも揺れ動く環境で施工しなければいけない。静的水域で固定された施工面に遠隔操作により機械を使って研磨する場合と比べ施工環境に根本的な大きな違いがある。更に本発明の水中プロペラ研磨機は人が手に持って水中で操作する研磨なので施工方法にも大きな相違がある。 The underwater polishing apparatus disclosed in Japanese Patent Application Laid-Open No. 58-94962 is a method for polishing by operating a rotary polishing machine by remote operation by a machine. The object and the polishing surface which are the objects of this polishing machine are fixed, and the polishing machine is also polished in a fixed state during polishing. The object to be polished according to the present invention is a propeller of a ship, and the propeller on the polishing surface is affected by marine weather and always swings simultaneously with the ship. In addition, divers to be constructed must work in an environment that swings. There is a fundamental difference in the construction environment compared to the case where the machine is fixed to the construction surface fixed in the static water area by remote control. Furthermore, since the underwater propeller polishing machine of the present invention is a polishing that is carried in water by a human hand, there is a great difference in the construction method.

特開平5−069888 船舶用プロペラの補修方法ではプロペラの表面の補修を行い、プロペラを良い状態にする方法であるが、当発明はプロペラの表面を製造時以上に研磨してプロペラをよい状態にする方法なので補修ではなく性能を上げている点に大きな違いがある。 Japanese Patent Application Laid-Open No. 5-069888 is a method for repairing the surface of a propeller by repairing the propeller for a ship to make the propeller in good condition, but the present invention polishes the surface of the propeller more than at the time of manufacture to make the propeller in good condition There is a big difference in improving the performance rather than repairing.

特開平8−207890 船舶用プロペラ及びその製造方法ではプロペラに皮膜を形成させて海草や付着物が付かないように行う方法でプロペラの性能維持を行う方法であるが、当発明は水中でプロペラの表面を付着物が付かない粗度まで研磨して性能を上げる方法なので皮膜を付着させない点に大きな違いがある。 JP-A-8-207890 A marine propeller and its manufacturing method is a method for maintaining the performance of a propeller by forming a film on the propeller so that no seaweed or deposits are attached. There is a big difference in that the film is not adhered because it is a method of improving the performance by polishing the surface to a roughness that does not adhere to the surface.

特開平11−216671 手持ち式装置用の吸引装置では研磨ディスクの背面と外周をフードで多いエアーの負圧発生装置を接続して研磨くずを吸引できるようにしている。密度の低い気中での操作の場合この方法で吸い込みは可能であるが、当発明は水中で使用する研磨装置なのでこの方では密度が大きい水では研磨機で作られる負圧により研磨機が研磨面に吸い付くため、エアーの負厚手はみずと同時に研磨くずを吸い込むことができないため吸引装置の根本構造がまったく違う点に大きな違いである。 In a suction device for a hand-held device, the back surface and the outer periphery of the polishing disk are connected to a negative air pressure generator with a hood so that polishing waste can be sucked. In the case of operation in a low-density air, suction is possible by this method, but since the present invention is a polishing apparatus used in water, in this case, the polishing machine uses a polishing machine with a high density of water due to the negative pressure generated by the polishing machine. This means that the negative structure of the suction device is completely different because the negative thickness of the air cannot suck the polishing waste at the same time as the water.

実全昭58−160755 船舶用プロペラの研磨設備はプロペラを研磨する設備であるがプロペラ製造所もしくは造船所のドックで行える陸上での研磨設備である、当発明は水中でダイバーが研磨機を手で持って行う研磨設備であるので、使用できる条件が違う点に大きな違いがある。 In fact, the polishing equipment for marine propellers is equipment for grinding propellers, but it is a ground grinding equipment that can be used at the docks of propeller factories or shipyards. There is a big difference in the conditions that can be used.

特開2005−297090号公報JP 2005-297090 A 特開昭58−94962JP 58-94962 A 特開平5−069888Japanese Patent Laid-Open No. 5-069888 特開平8−207890JP-A-8-207890 特開平11−216671JP-A-11-216671 実全昭58−160755Jin-Sho 58-160755

陸上の造船設備でプロペラの研磨を行う推進器の保守管理方法でなく係船中の船舶の推進機を水中で研磨し、船舶をドックに入れることなく、水中でプロペラの表面粗度を限りなく性能の良いRa0μmに近いところで保つ保守管理と保守設備。 Polishing propellers in onshore shipbuilding facilities, not propeller maintenance and management methods, polishing propulsion units of moored vessels in water, and ensuring that the surface roughness of the propeller is as low as possible without putting the vessel in the dock Maintenance management and maintenance equipment that keeps in the vicinity of good Ra0μm .

本発明は運航にあまり支障をきたすことなく係留中に水上に浮いている状態で、水中で船舶のプロペラを、水中研磨機と水中粗度計測設備を用いた方法で管理できる保守設備の提供を目的とする。 The present invention provides a maintenance facility that can manage a ship's propeller underwater with a method using an underwater polishing machine and underwater roughness measuring equipment while floating on the water while mooring without much trouble in operation. Objective.

水中は平穏でなく水の動きにより船舶は常に揺れている。常にプロペラも動いており、施工するダイバーも揺れ動いている。研磨対象とするプロペラは曲面を持っており、相互に揺れ動く中で人が手に持てる適度な大きさで操作でき曲面を持ったプロペラを研磨できる水中プロペラ研磨機の提供を目的とする。 Underwater is not calm and the ship is constantly shaking due to the movement of water. Propellers are always moving, and divers who are constructing are also shaking. The propeller to be polished has a curved surface, and an object is to provide an underwater propeller polishing machine that can be operated with an appropriate size that can be held by a person while swinging with each other and can polish a curved propeller.

垂直及び天井状態である研磨面でも、水中プロペラ研磨機に負圧を発生させ、その負圧により水中プロペラ研磨機をプロペラに吸着させて操作性を良くする水中プロペラ研磨機の提供を目的とする。 An object is to provide an underwater propeller polisher that improves the operability by generating a negative pressure in the underwater propeller polisher even on the vertical and ceiling polished surfaces, and by adsorbing the underwater propeller polisher to the propeller by the negative pressure. .

水中にあるプロペラの粗度を、粗度測定補助箱を使って計測できる粗度計と粗度計測の数値が水上にいても確認できる水中粗度計測方法の提供を目的とする。 The purpose is to provide a roughness meter that can measure the roughness of a propeller in water using a roughness measurement auxiliary box and an underwater roughness measurement method that can be confirmed even when the roughness measurement value is on the water.

水中の祖度測定面に取り付ける粗度測定補助箱は、ダイバーが設置撤去及び取り扱いが簡単に行える構造でダイバーが目視により水中部から粗度測定補助箱内部が確認できる構造を有している水中粗度測定補助箱の提供を目的とする。 The roughness measurement auxiliary box attached to the surface for measuring the roughness of the water is a structure in which the diver can easily install, remove and handle, and the diver has a structure that allows the diver to visually check the inside of the roughness measurement auxiliary box from underwater. The purpose is to provide a roughness measurement auxiliary box.

粗度測定補助箱を使用する接触式粗度計もできるだけ小さな構造となるように演算部と測定部が分離された形状のものを使用し、耐圧箱で構成され演算部耐圧箱は大気圧に保たれた状態で外部より操作できる構造で測定部耐圧箱は加圧及び負圧でも外圧と均圧できる構造を持つ水中プロペラ粗度計測設備の提供を目的とする。 The contact-type roughness meter that uses the roughness measurement auxiliary box also has a shape in which the calculation unit and measurement unit are separated so that the structure is as small as possible. An object of the present invention is to provide an underwater propeller roughness measuring facility that has a structure that can be operated from the outside while being maintained, and that has a structure in which the measurement unit pressure box can equalize external pressure even under pressure and negative pressure.

水中研磨機に取り付けられる剥離物回収装置は、簡単な構造で着脱が容易で取り扱い易く水中プロペラ研磨機に剥離物回収装置を取り付けても安全に作業が行える剥離物回収機の提供を目的とする。 The exfoliation recovery device attached to the underwater polishing machine aims to provide a exfoliation recovery device that is easy to attach and detach, easy to handle, and can safely operate even if the exfoliation recovery device is attached to the underwater propeller polishing machine. .

水中プロペラ研磨によって発生する研磨くずの量は、製造時の研磨粗度の最大Ra5μmRa0.3μmまで研磨するとして計算すると、プロペラの表面剥離部の体積は約700mm3以下である(直径6m2軸の推進機のプロペラを研磨した場合の概算数値)付着物と研磨くずを回収できる剥離物回収装置の提供を目的とする。 The amount of polishing waste generated by underwater propeller polishing is calculated assuming that the maximum Ra5 μm of polishing roughness at the time of manufacture is polished to Ra 0.3 μm, and the volume of the surface peeling portion of the propeller is about 700 mm 3 or less (diameter of 6 m2 axis) It is an approximate value when propeller of a propulsion machine is polished. The object is to provide a delamination recovery device that can recover deposits and debris.

2回目以降ではプロペラの表面粗度がRa1μm以下となっているので研磨くずは最大でも体積が約50mm3以下(ダイヤ6m、2軸の推進機をRa0μmまで研磨した場合の概算数値で、実務では10mm3程度と想定される)程度と計算される。3回目以降はもっと少なくなり環境に影響を与えず、回収する行為の方が環境に与える影響が大きくなる。更に海洋性付着物の着床も極めて少なくなり回収装置を取り付けて回収するまでの量の剥離物はほとんど発生しなくなる、研磨機に着脱が容易で取り扱いやすい剥離物回収装置の提供を目的とする。 Since the surface roughness of the propeller is Ra1μm or less in the second and subsequent rounds, the polishing scrap has a volume of about 50mm3 or less at maximum ( diameter of approximately 6mm3 when grinding a diamond 6m, biaxial thruster to Ra0μm. Calculated). From the third time onward, it will be less and will not affect the environment, and the act of collecting will have a greater impact on the environment. Further, the object of the present invention is to provide an exfoliation recovery device that can be easily attached to and detached from the polishing machine and is easy to handle because the amount of marine deposits is extremely small and the amount of exfoliation until the recovery device is installed and recovered is almost eliminated. .

剥離物貯留装置内での剥離物の回収時間を短くするため、剥離物貯留装置内で沈降剤を使い急速沈降させて強制回収する方法及び剥離物貯留装置内にある微粉末を含んだ水をポンプで吸い上げ回収する微小剥離物回収装置を使い短時間に確実に剥離物を回収する設備の提供を目的とする。 In order to shorten the recovery time of the exfoliated material in the exfoliated material storage device, a method of precipitating quickly by using a settling agent in the exfoliated material storage device and water containing fine powder in the exfoliated material storage device. The purpose is to provide equipment that reliably collects the peeled material in a short time using a micro-separated material collecting device that sucks up and collects it with a pump.

プロペラ研磨時に発生する剥離物を水中プロペラ研磨機外部の海中に不法投棄することなく、剥離物貯留装置と微小剥離物回収装置を使い、ほとんどの剥離物を回収できる剥離物回収装置の提供を目的とする。 The purpose is to provide a delamination recovery device that can collect almost all delaminations using the exfoliation storage device and the fine exfoliation recovery device without illegally dumping the exfoliation generated during propeller polishing into the sea outside the underwater propeller polishing machine. And

本発明は上記の課題を鑑みてなされた船舶プロペラの水中研磨機及び水中粗度計を用いた水中保守設備である。 The present invention is an underwater maintenance facility using an underwater polishing machine and an underwater roughness meter for ship propellers, which have been made in view of the above problems.

本発明においては、船舶プロペラの保守管理がドックに入れることなく係留中に水中で行えるようになる。 In the present invention, maintenance management of the ship propeller can be performed underwater during mooring without entering the dock .

本設備の水中プロペラ研磨機は、曲面を持ったプロペラに吸着させるために、研磨ディスクは弾性体を含んだ素材で作られディスク部にクッション性と透水性をもち中央部にくぼみがある構造若しくは研磨剤入り研磨ディスクが回転時に中央にくぼみを発生させる構造で、研磨ディスクを高速回転させてくぼみ内の部分及びディスク周囲の水をディスク外部に排除することにより、研磨ディスク内部およびディスク周囲に負圧を発生させ、その負圧により水中プロペラ研磨機をプロペラに吸着させることにより研磨面が垂直であるプロペラでも、水中で人が手に持って簡単にプロペラ研磨機が操作できる研磨機である。 The underwater propeller polishing machine of this equipment has a structure in which the polishing disk is made of a material containing an elastic body and has a cushioning and water permeability in the disk part and a dent in the center part in order to adsorb it on a curved propeller. A structure in which a polishing disc containing an abrasive generates a dent in the center when rotated. By rotating the polishing disc at a high speed and removing the water in the dent and the periphery of the disc to the outside of the disc, the polishing disc is negatively affected inside and around the disc. Even if the propeller has a vertical polishing surface by generating a pressure and adsorbing the underwater propeller polishing machine to the propeller by the negative pressure, it is a polishing machine that can be easily operated by a human hand in water.

本設備においては、水中プロペラ研磨機の研摩精度の向上のために、水中プロペラ研磨機は、水中で水の抵抗を受けても、又研磨パッドがプロペラに押し付けられても、研磨に支障が出ない強いトルクを発生する8MPa〜50MPa内の圧力で1000rpm〜10000rpm内の高速で回転する性能を有し、プロペラの表面をRa1μmRa0.01μmの粗度にまで研磨できる研磨機である。 Oite this facility, in order to improve the polishing precision of the underwater propeller polishing machine, water propeller grinders, even when subjected to water resistance in the water, and also the polishing pad is pressed against the propeller, hinder polishing This is a polishing machine that has a performance of rotating at a high speed of 1000 rpm to 10,000 rpm at a pressure of 8 MPa to 50 MPa that generates a strong torque that does not generate a crack , and can polish the surface of the propeller to a roughness of Ra 1 μm to Ra 0.01 μm .

請求項2記載の発明においては、水中の粗度測定面粗度測定が水中でできるようになる。 In the invention according to the second aspect, the roughness measurement surface in water can be measured in water.

請求項2記載の発明においては、粗度計は演算部と測定部がわかれている構造の接触式粗度計を使い、加圧下で使用できない部品が使われている演算部と加圧下でも使用できる測定部を個々に分けて耐圧箱に入れ、圧力伝達防止コネクターと、耐圧ケーブルを介してお互いが独立した状態となることで圧力を他に伝えなくなり演算部が加圧されなくなる。更に、水中に持ち込まなければ使えない場合の演算部耐圧箱は水中で粗度計測の操作及び表示の確認ができる構造で、計測部耐圧箱は外部の圧力変化に対応できる構造の耐圧箱で、携帯式の接触式粗度計の計測部は、加圧下で暴露されても加圧による影響が出ない部品で構成されており、水中に設置された粗度測定補助箱の中の気中となっている中で取り出して粗度計測ができるようになる。 In the invention described in claim 2, the roughness meter uses a contact-type roughness meter having a structure in which a calculation unit and a measurement unit are separated, and is also used in a calculation unit and under pressure where parts that cannot be used under pressure are used. The measurement units that can be divided into individual pressure chambers are placed in a pressure-resistant box, and the pressure transmission prevention connector and the pressure-resistant cable are connected to each other so that pressure is not transmitted to others and the calculation unit is not pressurized. In addition, the calculation unit pressure box when it can not be used unless it is brought into water is a structure that can check the operation and display of roughness measurement in water, the measurement unit pressure box is a pressure box with a structure that can respond to external pressure changes, The measuring part of the portable contact-type roughness meter is made up of parts that are not affected by pressure even when exposed to pressure. It becomes possible to take out the roughness and measure the roughness.

請求項2記載の発明においては、粗度測定補助箱はプロペラ表面に簡単に設置することができる構造とすることによって、粗度測定時に必要となる空間が水中のプロペラ面で作れ、粗度計を水の中で使用するのではなく加圧されてはいるが水中の気中状態の中で使用できる。 In the invention described in claim 2, the roughness measuring auxiliary box has a structure that can be easily installed on the surface of the propeller, so that the space required for the roughness measurement can be created on the surface of the propeller in water, and the roughness meter Is not used in water, but can be used in aerial conditions in water although it is pressurized.

更に請求項2記載の発明においては、粗度測定補助箱を使うことにより、水中のプロペラ部の計測部に気中部が作れることにより、水中で使うことができない接触式の粗度計が加圧下ではあるが水中で使用できるようになる。 Further, in the invention described in claim 2, by using the roughness measuring auxiliary box, a contact-type roughness meter that cannot be used in water is applied under pressure by forming a midair in the measuring section of the underwater propeller section. However, it can be used underwater.

本設備の水中プロペラ研磨機は環境汚染を防ぎ保守整備時間を短縮できる剥離物回収装置が取り付けられ、剥離物を剥離物貯留装置で沈降させ回収し易くし、剥離物貯留装置内で沈降するのに時間がかかる微粉末剥離物を含んだ水はポンプで吸い上げ、フイルターで濾過し、水と剥離物に分離して微粉末の剥離物までも短時間で回収できるようになる The underwater propeller polishing machine of this equipment is equipped with a peeled material recovery device that can prevent environmental pollution and shorten maintenance and maintenance time. Water containing fine powder exfoliation that takes a long time is sucked up by a pump, filtered with a filter, separated into water and exfoliation, and even fine powder exfoliation can be collected in a short time

又、剥離物回収装置は取り付け具で簡単に研磨機に取り付けができ回転ディスクで周囲に飛ばされる剥離物を回収するため剥離物回収機に剥離物拡散防止ブラシと剥離物吸い込み板を備え、剥離物拡散防止ブラシは剥離物が剥離物回収装置外部に拡散するのを防ぎ負圧により剥離物回収機外部の水が吸い込める機能と水中プロペラ研磨機に簡単な工具で取り付けられ、剥離物を海中に放出することなく剥離物が回収不要の場合でも簡単に取り外せて効率よく保守作業が行えるようになる。 In addition, the exfoliation recovery device can be easily attached to the polishing machine with an attachment, and the exfoliation recovery machine is equipped with a exfoliation diffusion prevention brush and exfoliation suction plate to recover exfoliation that is blown around by a rotating disk. The anti-diffusion brush prevents the exfoliation material from diffusing to the outside of the exfoliation recovery device, and it can be attached to the underwater propeller polishing machine with a simple tool. Even when the peeled material does not need to be collected without being discharged, it can be easily removed and maintenance work can be performed efficiently.

請求項1記載の発明によると就航中の船舶をドックに入れることなくプロペラの保守整備及び管理することができるようになり、以下のような優れた効果を発揮する。これらはいずれも従来技術では不可能であったことである。 According to the first aspect of the present invention, it becomes possible to maintain and manage the propeller without putting the ship in service into the dock, and exhibits the following excellent effects. None of these were possible with the prior art.

本水中保守設備を使用すると、揺れ動く船舶のプロペラと揺れ動く水中でプロペラ研磨をするダイバーが水中プロペラ研磨機を手軽に操作できるようになる。水中プロペラ研磨機が特殊構造の研磨ディスクで回転により負圧発生をさせ自らプロペラに吸着することにより、水中プロペラ研磨機の操縦性が良くなり、水中プロペラ研磨機はプロペラの表面を滑るよう動くようになる。水中プロペラ研磨機をプロペラに押し当てて研磨するのではなく水中プロペラ研磨機自身が回転しながらプロペラに吸着して滑っているので、ダイバーは研磨機をプロペラ表面に当て任意の方向に移動するだけで安定した研磨作業が可能となる When this underwater maintenance facility is used , a diver that performs propeller polishing in a swinging water propeller and a swinging water propeller can easily operate the underwater propeller polishing machine. The underwater propeller polishing machine generates negative pressure by rotating with a specially structured polishing disk and adsorbs it to the propeller itself, which improves the maneuverability of the underwater propeller polishing machine, and the underwater propeller polishing machine moves to slide on the surface of the propeller become. Rather than pressing the underwater propeller polishing machine against the propeller to polish it, the underwater propeller polishing machine itself adsorbs and slides on the propeller while rotating, so the diver only moves the polishing machine against the propeller surface in any direction Makes stable polishing work possible

更に、水中研磨を行うプロペラは曲面を持っておりプロペラ軸近辺は特に曲面が大きい、研磨ディスクをプロペラに吸い付かせ、水中で安定した状態でプロペラ研磨を行うと、研磨仕上がりの粗度は平均でもRa0.5μm以下となる。プロペラ先端部から中央よりの曲面が少ない平面に近い部分のプロペラ効率のよい場所ではRa0.3μm以下の粗度となる研磨ができる。特にRa0.5μm以下の粗度までプロペラの表面を研磨するとプロペラの性能が上がりプロペラ表面が汚れてくるのに数ヶ月単位の時間がかかるようになる。 In addition, the propeller that performs underwater polishing has a curved surface and the curved surface is particularly large in the vicinity of the propeller axis.If the polishing disk is sucked onto the propeller and then propeller polished in a stable state in water, the roughness of the polished finish is average. But the Ra0.5μm below. Polishing with a roughness of Ra of 0.3 μm or less can be performed at a portion where the propeller efficiency is high in a portion close to a flat surface with few curved surfaces from the center of the propeller. In particular, when the surface of the propeller is polished to a roughness of Ra of 0.5 μm or less, the performance of the propeller is increased, and it takes several months for the propeller surface to become dirty.

本水中保守設備を使用すると、汚れを落とす清掃だけの場合とRa1μm以下まで研磨した場合を比較すると、着床物の着床状況に大きな違いが出るようになり、特にRa1μm以下に研磨した場合は数か月にわたりプロペラの性能を良い状態で維持できるようになる。水中プロペラ研磨はプロペラの性能を製造時より良くすることができる工法であり、特に休みなく回転している状態のプロペラでは数ヶ月以上にも亘り、付着物が着きにくくなり性能のよい状態がより長く維持されるようになる。更にそれにより燃料削減の効果も大きくなるプロペラ研磨機である。 When using this underwater maintenance facility, comparing the case of only cleaning to remove dirt and the case of polishing to Ra1μm or less, there will be a big difference in the landing situation of the deposit , especially when polishing to Ra1μm or less Propeller performance can be maintained in good condition for several months. Underwater propeller polishing is a method that can improve the performance of the propeller at the time of manufacture, especially with a propeller that is rotating without break, it is more difficult to adhere to the deposit for more than several months, and the performance is better It will be maintained for a long time. Furthermore, this is a propeller polishing machine that also increases the effect of fuel reduction.

本水中保守設備の粗度測定を行う設備では、粗度測定補助箱と耐圧箱を使うことにより水中で粗度を計測する粗度計が作れる、現在陸上で使用されている粗度計を耐圧箱に入れ水中で気中となる粗度測定箱の中で測定することができるので新たに水中での粗度計を開発することなく耐圧箱と粗度測定補助箱を作成することで水中粗度計測ができるようになる。 For equipment that measures the roughness of this submersible maintenance facility, a roughness meter that measures roughness in water can be created by using a roughness measurement auxiliary box and a pressure box. Since it can be measured in the roughness measurement box that is in the air in the box, it can be measured by creating a pressure box and a roughness measurement auxiliary box without developing a new underwater roughness meter. It becomes possible to measure the degree.

本水中保守設備を使用すると、水中で船舶のプロペラの粗度を数値で表せるようになる。プロペラの表面粗度が数値で確認できるとプロペラの状態が確認できプロペラの保守管理を行うことができる。プロペラの表面粗度はRa0μmに近ければ近いほど性能は良い、汚れを落とす清掃だけの場合とRa1μm以下まで研磨した場合とを比較すると、着床物の着床状況に大きな違いが出る。Ra1μm以下に水中でプロペラを研磨した場合は数か月にわたりプロペラの性能を良い状態で維持できるようになる。今まで水中でプロペラを研磨しても、粗度の測定をすることができなかった。又粗度が比較できるルパートゲージでもA〜Fの6通りしか基準がなく、それも触手及び映像による比較で判断されていた。請求項1の水中プロペラ研磨機によりRa1μm〜Ra0.01μm内の粗度までの研磨ができるようになり請求項2、請求項3の発明によりそれを確認することができるようになった。それによりプロペラ表面の粗度の数値を持ってプロペラの研磨終了時の粗度の確認だけでなくプロペラの保守管理を行うことが可能となった。 Using this underwater maintenance facility, the roughness of a ship's propeller can be expressed numerically in water. If the surface roughness of the propeller can be confirmed numerically, the state of the propeller can be confirmed and maintenance of the propeller can be performed. The closer the surface roughness of the propeller is to Ra 0 μm , the better the performance. When comparing only cleaning to remove dirt and polishing to Ra 1 μm or less, there is a great difference in the landing situation of the landing object. When propellers are polished in water to Ra 1 μm or less, the propeller performance can be maintained in good condition for several months. Until now, even if the propeller was polished in water, the roughness could not be measured. In addition, the Rupert gauge with which the roughness can be compared has only six standards of A to F, and these are also judged by comparison with tentacles and images. The underwater propeller polishing machine according to claim 1 can polish to a roughness within Ra 1 μm to Ra 0.01 μm , and can be confirmed by the inventions according to claims 2 and 3 . This makes it possible not only to check the roughness at the end of propeller polishing, but also to maintain and manage the propeller with the roughness value of the propeller surface.

本発明では、安価で使いやすい粗度計を作ることができる。粗度計には接触式粗度計と非接触式粗度計があり各粗度計にはそれぞれに利点と欠点がある。非接触式粗度計は高価で装置が大掛かりであり、価格面だけでなく持ち運びにも欠点となる問題が多々あるが接触式粗度計は小さいので可搬できる耐圧箱に入れるのに適している。 In the present invention, an inexpensive and easy-to-use roughness meter can be made. There are two types of roughness meters: contact roughness meters and non-contact roughness meters. Each roughness meter has its advantages and disadvantages. Non-contact type roughness meter is expensive and requires a large amount of equipment, and there are many problems that are disadvantageous not only in price but also in carrying, but the contact type roughness meter is small, so it is suitable for placing in a pressure-resistant box that can be carried. Yes.

接触式粗度計の演算部にキャパシタンスを使っているものがある。キャパシタンスは加圧下で使用できないので、演算部を耐圧箱に入れて大気圧状態にすると水中に持ち込んでも使用できるようになる。 Some of the arithmetic units of contact-type roughness meters use capacitance. Capacitance cannot be used under pressure, so it can be used even if it is brought into water by placing the computing unit in a pressure-resistant box and bringing it to atmospheric pressure.

接触式粗度計の測定部は触針部が動いて計測する構造である。可動部を計測に支障なく動けるように防水加工することは難しい。そのため粗度測定補助箱を使いその中測定を行う、粗度計触針部を開閉できる耐圧箱に入れることにより、水中に持ち込んで粗度測定補助箱まで運べることができ粗度測定が粗度測定補助箱の中でできるようになる。ケーブルが長く伸ばせない接触式粗度計でキャパシタンスを使っている場合の演算部と加圧下でも計測できる測定部を分けてそれぞれの欠点を補う耐圧箱に入れることで安価で携帯できる接触式粗度計が使用できるようになり、係留中の船舶のプロペラの粗度を水中で計測することが可能となる。 The measuring part of the contact-type roughness meter has a structure in which the stylus part moves and measures. It is difficult to waterproof the movable part so that it can move without any trouble. For this reason, the roughness measurement auxiliary box is used for measurement, and by placing it in a pressure-resistant box that can open and close the roughness meter stylus, it can be brought into the roughness measurement auxiliary box and brought into the roughness measurement box. It can be done in the measurement auxiliary box. Contact type roughness that can be carried at low cost by separating the calculation unit and the measurement unit that can measure even under pressure when the capacitance is used with a contact type roughness meter that does not extend the cable for a long time, and putting it in a pressure resistant box that compensates for each defect The gauge can be used, and the roughness of the propeller of the moored ship can be measured in water.

更には、水中粗度計の機能をよくするために、水中粗度計の演算部耐圧箱は大気圧に保たれ外部の水中より操作できる機能を持ち表示部も水中で読み取れる機能を持つ、測定部の耐圧箱は加圧時及び負圧時でも圧力調整弁と逆止弁の機能により外圧と均圧することができ、粗度測定補助箱の中の加圧下でも蓋が開閉することができる。 Furthermore, in order to improve the functions of the underwater roughness meter, the pressure box of the calculation unit of the underwater roughness meter is maintained at atmospheric pressure and has a function that can be operated from outside the water, and the display section also has a function that can be read underwater. The pressure box of the section can be equalized with the external pressure by the functions of the pressure adjusting valve and the check valve even during pressurization and negative pressure, and the lid can be opened and closed even under pressure in the roughness measurement auxiliary box.

剥離物回収機は水中プロペラ研磨機に取り付け取り外しが容易にできる構造となっている。剥離物がほとんどなく剥離物の回収が不要の場合には取り外すことができ研磨作業を簡素化できる、更に剥離物貯留装置で剥離物を沈降させるので、剥離物のほとんどは水と分離して剥離物貯留装置内下部に堆積し回収が容易である。 The exfoliation recovery machine can be easily attached to and removed from the underwater propeller polishing machine. When there is almost no exfoliated material and it is not necessary to collect the exfoliated material, it can be removed and the polishing process can be simplified. In addition, the exfoliated material storage device settles the exfoliated material, so most of the exfoliated material is separated from water It accumulates in the lower part of the material storage device and is easy to recover.

微小剥離物は自然沈降に時間がかかり研磨作業終了後でも沈降を待たなければいけない、作業終了後撤収するのに相当の時間がかかり船舶の運航に支障をきたすおそれがある、剥離物貯留装置内で沈降剤を使用して沈降を早め回収することもできるしそれでも回収に時間的余裕がない時は、微小剥離物回収装置で、剥離物貯留装置内にある沈降していない剥離物を、剥離物貯留装置内にある水と同時に回収して処理することにより、作業完了時間が短縮されるようになり、船舶の運航に与える影響を少なくすることができる。 The minute exfoliated material takes time to settle naturally and must wait for sedimentation even after the polishing operation is completed, and it takes a considerable amount of time to withdraw after completion of the operation, which may hinder the operation of the ship. It is possible to collect the sediment early by using a precipitating agent, and when there is still no time for the recovery, remove the non-sedimented debris in the exfoliated substance storage device with the fine exfoliated substance collecting device. By collecting and processing simultaneously with the water in the material storage device, the work completion time can be shortened and the influence on the operation of the ship can be reduced.

又、研磨機に剥離物拡散防止ブラシと剥離物吸い込み板を備えた剥離物回収装置を取り付けることによりプロペラ表面を研磨するとき発生する研磨屑及び海洋性付着物の剥離物を海中に吐き出すことなく、負圧による吸引で水面にある剥離物貯留装置に容易に回収することができるようになる。 Also, by attaching a peeled material recovery device equipped with a peeled material diffusion prevention brush and a peeled material suction plate to the polishing machine, the scraps generated when polishing the propeller surface and the exfoliated material of marine deposits are not discharged into the sea. Then, it becomes possible to easily recover the exfoliation storage device on the surface of the water by suction with a negative pressure.

本発明は、船舶をドックに入れることなく、係留及び停泊中の船舶のプロペラの粗度計測を行い粗度の状況に応じて水中プロペラ研磨機を使いダイバーに研磨させプロペラの性能の向上を図ることが出来る。又係留および停泊中に短時間でプロペラ研磨を行うことができるので運行に大きな支障をきたすことなく、短時間に少数の人員で船舶プロペラの水中研磨と水中粗度測定を用いた水中保守整備作業が施工出来、推進器の性能を維持することができるようになる。 The present invention measures the roughness of a propeller of a moored and anchored ship without putting the ship into a dock and polishes the diver using an underwater propeller polishing machine according to the roughness condition to improve the propeller performance. I can do it. Also, because propeller polishing can be performed in a short time during mooring and berthing, there is no major hindrance to the operation, and underwater maintenance work using underwater polishing and underwater roughness measurement of ship propellers with a small number of personnel in a short time. Can be constructed and the performance of the propeller can be maintained.

本発明の船舶の推進機の水中保守設備は小規模設備のため、移動が容易で、普通車貨物車両程度の車1台で研磨資機材を搬入搬出でき、又沖合での研磨作業でも小型船舶1艘に積める程度の機材で構成され、重機などを必要としないで運搬できるので船舶係留地で行うことができ運航にあまり支障をきたさないように保守整備ができる。 Since the underwater maintenance facility for the ship propulsion device of the present invention is a small-scale facility, it is easy to move, and it is possible to carry in and carry out the polishing materials and equipment with a single car of the size of a regular freight vehicle. It is composed of equipment that can be loaded on one base, and can be transported without requiring heavy machinery, so it can be carried out at a ship mooring point and can be maintained and maintained so as not to hinder the operation.

本発明の対象物は壁面となっている船舶のプロペラであるが、水中で研磨及び粗度測定の必要がある壁面及び天井となっている対象物であればこの技術を応用し、水中で研磨及び粗度を計測してその研磨状況を確認するのに利用することができる。 The object of the present invention is a ship propeller that is a wall surface. However, if the object is a wall surface and ceiling that require polishing and roughness measurement in water, this technique can be applied to polish in water. And it can be used to measure the roughness and confirm the polishing situation.

水中でプロペラの水中特殊研磨をしている状況の概念図Conceptual diagram of underwater special polishing of propeller underwater 水中プロペラ研磨機の構造の概念図Conceptual diagram of structure of underwater propeller polishing machine 水中粗度計を使い粗度を計測している概念図Conceptual diagram of measuring roughness using an underwater roughness meter 水中で粗度計測をしている概念図の拡大図Enlarged view of the conceptual diagram measuring roughness in water 水中粗度計測室となる粗度測定補助箱の断面の概念図Schematic diagram of the cross section of the roughness measurement auxiliary box that will be the underwater roughness measurement chamber 水中粗度計測室となる粗度測定補助箱の正面の概念図Conceptual diagram of the front of the roughness measurement auxiliary box that becomes the underwater roughness measurement room 水中粗度計概念図Underwater roughness meter conceptual diagram 水中粗度計計測部概念図の拡大図Enlarged view of the underwater roughness meter measuring unit conceptual diagram プロペラ翼面粗度による燃料効率資料Fuel efficiency data based on propeller blade surface roughness

図1は水中でプロペラの表面の水中研磨を岸壁より行っていることを現した概念図である。水面上の機材設置位置で監視員と作業員がダイバーを支援して、符号5の微小剥離物回収装置と符号10の水中プロペラ研磨機動力発生装置と符号11の剥離物回収負圧発生装置の機材類を管理操作している。作業員が符号10の水中プロペラ研磨機用動力発生装置を作動させ、符号10の水中プロペラ研磨機用動力発生装置で発生した動力を、研磨作業を行うのに支障ないように符号9のホース類沈降防止浮力体を使い設置された符号7の研磨機動力伝達ケーブル又はホースを使い符号1の水中プロペラ研磨機に動力を送る。符合1の水中プロペラ研磨機がその動力を受け作動し、研磨剤入りの研磨ディスクが取り付けられた研磨ディスクを回転させて研磨を行っている概念図である。 FIG. 1 is a conceptual diagram showing that the underwater polishing of the surface of the propeller is performed from the quay in water. The monitoring staff and workers assist the diver at the equipment installation position on the surface of the water. Manage and operate equipment. Hose of reference numeral 9 so that the worker operates the power generator for the underwater propeller polishing machine indicated by reference numeral 10 and the power generated by the power generation apparatus for the underwater propeller polishing machine indicated by reference numeral 10 does not hinder the polishing operation. Power is sent to the underwater propeller polishing machine of the reference number 1 using the polishing machine power transmission cable or hose of the reference number 7 installed using the anti-settling buoyancy body. FIG. 3 is a conceptual diagram in which an underwater propeller polishing machine of No. 1 is operated by receiving the power, and polishing is performed by rotating a polishing disk to which a polishing disk containing an abrasive is attached.

図1中に示す符号1は水中プロペラ研磨機である。符号19の研磨ダイバーが手で持って研磨操作が出来る重量で、プロペラに押し付けても速度が落ちない8MPa〜50MPaの間の作動圧力を受け1000rpm〜10000rpm内の回転速度で研磨ディスクを回し、符号6のプロペラの表面をRa1μm〜Ra0.01μmの間で研磨できる機能を持っている。又符号1の水中プロペラ研磨機の研磨ディスク部は、直径が50cm〜5cmの間の大きさで、曲面を持っているプロペラに吸着してプロペラ表面を支障なく研磨施工できる性能を有している水中プロペラ研磨機である。 Reference numeral 1 shown in FIG. 1 is an underwater propeller polishing machine. The weight of the polishing diver 19 can be held by hand, and the polishing disk is rotated at a rotational speed of 1000 rpm to 10000 rpm under an operating pressure of 8 MPa to 50 MPa that does not decrease the speed even when pressed against the propeller. 6 has a function capable of polishing the surface of the propeller between Ra 1 μm and Ra 0.01 μm . Further, the polishing disk portion of the underwater propeller polishing machine of No. 1 has a diameter of 50 cm to 5 cm, and has a performance capable of adhering to a propeller having a curved surface and polishing the propeller surface without hindrance. It is an underwater propeller polishing machine.

図1中に示す符号3は剥離物回収機である。符号1の水中プロペラ研磨機が研磨時にプロペラ表面から剥離した剥離物を、回収機先端部カバーの折り曲げ部ですくい上げることにより研磨ディスクの回転を利用して遠心力で外部に吐き出される剥離物と水を回収できる剥離物回収機で、符号1の水中プロペラ研磨機に簡単な工具で着脱出来る構造である。更に符号11の剥離物回収用負圧発生装置又は符号5の微小剥離物回収装置の吸引ポンプで剥離物と水を回収用ホースに吸引し、水面に設けられた符号4の剥離物貯留装置に回収できる剥離物回収装置である。 The code | symbol 3 shown in FIG. 1 is a peeled material collection | recovery machine. The exfoliated material exfoliated from the surface of the propeller during polishing by the underwater propeller polisher 1 is scooped up at the bent portion of the recovery device front end cover, and the exfoliated material and water discharged to the outside by centrifugal force using the rotation of the polishing disc It is a structure that can be attached to and detached from the underwater propeller polishing machine 1 with a simple tool. Further, the peeled material and water are sucked into the collection hose by the suction pump of the peeled material collecting negative pressure generator 11 or the finely peeled material collecting device 5, and the peeled material storage device 4 is provided on the water surface. It is a stripped material recovery device that can be recovered.

図1中に示す符号4は剥離物貯留装置である。透水性のある布状の袋で作成され水面上に浮力体又は吊り下げ装置を使用して設置されている。袋状なので4m×4m×5m程度の大きさでも簡単に設置することができ80トン程度の剥離物と水を貯留することができる設備である。符号3の剥離物回収機により水と同時に送り込まれた回収物を沈降させる機能と分離された水を排水する機能を有し、研磨終了後沈降堆積した剥離物だけを回収できる特徴を持つ剥離物貯留装置である。又すぐに沈降しない剥離物に対して、沈降剤を使用して沈降させて回収できる機能も符号4の剥離物貯留装置は持っている。 The code | symbol 4 shown in FIG. 1 is a peeled material storage apparatus. It is made of a water-permeable cloth-like bag and is installed on the water surface using a buoyant body or a hanging device. Since it is in the form of a bag, it can be easily installed even with a size of about 4 m × 4 m × 5 m, and it is equipment that can store exfoliated material and water of about 80 tons. A peeled material having a function of settling the collected material sent simultaneously with water by the peeled material collecting machine of reference number 3 and a function of draining the separated water, and collecting only the separated and settled material after polishing. It is a storage device. Further, the exfoliated substance storage device 4 also has a function of using a precipitating agent to settle and recover the exfoliated material that does not settle immediately.

図1中に示す符号5は微小剥離物回収装置である。符号4の剥離物貯留装置にある回収した剥離物のうち沈降しきらない微小剥離物を、沈降を待たずに回収する装置である。符号8の吸引ホースを使い符号4の剥離物貯留装置から微小剥離物と水を回収し、符号5の微小剥離物回収装置で濾過し、水は水中にもどし微粉末の剥離物は符号5の微小剥離物回収装置内に回収することができる装置である。 The code | symbol 5 shown in FIG. 1 is a micro peeling material collection apparatus. It is an apparatus which collect | recovers the fine exfoliation objects which do not fully settle among the collect | recovered exfoliation objects in the exfoliation substance storage device of the code | symbol 4, without waiting for sedimentation. Using the suction hose numbered 8, the fine peeled material and water were collected from the peeled material storage device numbered 4, filtered by the fine peeled material collection device numbered 5, and the water was returned to the water. It is an apparatus which can collect | recover in a micro peeling material collection apparatus.

図1中に示す符号6は就航中の船舶のプロペラである。就航中は常にプロペラ部は水中部に没している。各船舶によりプロペラの形状は様々で、独自の捻りを持った曲面で構成され、特に中央部付け根部分は大きな捻りと曲がりを持っている。 The code | symbol 6 shown in FIG. 1 is the propeller of the ship in service. During service, the propeller section is always submerged in the water. The shape of the propeller varies depending on the ship, and it is composed of a curved surface with its own twist. The central root part has a large twist and bend.

図1中に示す符号19はプロペラ研磨を行っている研磨ダイバーである。水中プロペラ研磨機用動力発生装置より動力を受け、符号1の水中プロペラ研磨機を手で操作して符号6のプロペラの表面を研磨している。 Reference numeral 19 shown in FIG. 1 is a polishing diver performing propeller polishing. Power is received from an underwater propeller polishing machine power generator, and the surface of the propeller 6 is polished by manually operating the underwater propeller polishing machine 1.

図1中に示す符号7は水中プロペラ研磨機の研磨機動力伝達ホースである。(動力には電気と水流と空気と油圧を使うものがあるが当説明の装置は油圧動力装置を想定して述べるので伝達ホースと記載している)符号10の水中プロペラ研磨機用動力発生装置で発生した8MPa〜50MPaの間の作動圧力の動力を符号1の水中プロペラ研磨機に送れる能力がある動力伝達ホースである。 Reference numeral 7 shown in FIG. 1 is a polishing machine power transmission hose of an underwater propeller polishing machine. (Although some power uses electricity, water flow, air, and oil pressure, the device of this description is described as a transmission hose because it is assumed to be a hydraulic power device.) Power generator for underwater propeller polisher 10 It is a power transmission hose which has the capability to send the power of the working pressure between 8MPa and 50MPa which generate | occur | produced in (1) to the underwater propeller polisher of the code | symbol 1.

図1中に示す符号8は吸引及び放水ホースである。剥離物が少ないとき(2回目以降の研磨で回収が必要な時)直接符号3の剥離物回収機より水と一緒に剥離物を回収することができるホースと、符号4の剥離物貯留装置から沈降しきらない剥離物を回収して符号5の微小剥離物回収装置に送るホースと、きれいになった水を余水として水中に帰すホースである。 Reference numeral 8 shown in FIG. 1 is a suction and water discharge hose. From the hose that can collect the peeled material together with water from the peeled material collecting machine 3 directly, and the peeled material storage device 4, when there is little peeled material (when recovery is necessary in the second and subsequent polishing) These are a hose that collects the exfoliated material that has not settled and sends it to the fine exfoliated material recovery device 5, and a hose that returns clean water as residual water.

図1中に示す符号9はホース類沈降防止浮力体である。研磨作業が支障なく行え、操作しやすい位置にとどまるよう水中に符号9のホース類沈降防止浮力体及び錘などを使い、沈まないよう又浮き上がらないように調整して設置されている。各ホース類がどの位置にあるか位置確認ができるよう、又ホース類が絡まないようにするため、沈降防止浮力体をホースにつけ、中性状態にして水面に浮かべることもできる。 Reference numeral 9 shown in FIG. 1 denotes a hose sedimentation preventing buoyancy body. The hose 9 is used in the water to prevent the sinking work from sinking or to be lifted so that the polishing work can be performed without any trouble and stays in an easy-to-operate position. In order to check the position of each hose, and to prevent the hoses from getting tangled, an anti-settling buoyant body can be attached to the hose to make it neutral and float on the water surface.

図1中に示す符号10は水中プロペラ研磨機用動力発生装置である。符号1の水中プロペラ研磨機に符号7の研磨機動力伝達ホースを使って、強いトルクと高回転をさせる流体動力発生装置で水中プロペラ研磨機に8MPa〜50MPaの間の作動圧力の動力を送る能力を持っている。(回転装置に電気モーターを利用することもできる) Reference numeral 10 shown in FIG. 1 is a power generator for an underwater propeller polishing machine. Ability to send power of working pressure between 8MPa and 50MPa to submersible propeller polisher with hydrodynamic power generator that makes high torque and high rotation using polisher power transmission hose of reference 7 to submersible propeller polisher of reference 1 have. (An electric motor can also be used for the rotating device)

図1中に示す符号11は剥離物回収用負圧発生装置である。空気の浮上による負圧及びポンプによる吸引他いろいろな動力を利用して負圧を発生させ、剥離物を吸引することが行える装置である。 The code | symbol 11 shown in FIG. 1 is the negative pressure generator for a separated material collection | recovery. It is a device that can generate a negative pressure by using various powers such as a negative pressure due to air levitation and suction by a pump, and can suck a peeled material.

図2は図1にある符号1の水中プロペラ研磨機の動作を示す。符号7の研磨機動力伝達ホースから回転動力を得、その動力で符号1の水中プロペラ研磨機の符号14の研磨機モーターの回転部を回転させ、回転部先端に取り付けられた符号12の研磨剤入り研磨ディスクを高速で回転させ、負圧を発生させ、研磨機をプロペラに吸着させて、プロペラ表面の研磨を行っている概念図を拡大した図である。 FIG. 2 shows the operation of the underwater propeller polishing machine 1 shown in FIG. Rotating power is obtained from a polishing machine power transmission hose indicated by reference numeral 7, and the rotating part of a polishing machine motor indicated by reference numeral 14 of an underwater propeller polishing machine indicated by reference numeral 1 is rotated by that power, and an abrasive indicated by reference numeral 12 attached to the tip of the rotating part. It is the figure which expanded the conceptual diagram which rotates an entering grinding | polishing disk at high speed, generate | occur | produces a negative pressure, and makes a grinding machine adsorb | suck to a propeller, and is grind | polishing the surface of a propeller.

図2中に示す符号12は研磨剤入り研磨ディスクである。研磨ディスクはプロペラよりも硬い材質の研磨材を含んだ研磨パッドで通水性と弾性をもった構造の材質で出来ており、水中でプロペラの表面を1000rpm〜10000rpm内の間で高速で回転して研磨するとき符号12の研磨ディスクのパッドがプロペラの研磨くずと水とを含んだ剥離物を研磨剤としてプロペラの表面を研磨することによりプロペラの表面をRa1μm〜Ra0.01μmの粗度に研磨できる性能を持つ。又符合12の研磨剤入り研磨ディスクは幅のある円筒状のドーナツ型の形状のもの若しくは円盤状で、厚みがあり柔軟性又はクッション性とある程度の通水性を持ち、中央部にくぼみを備えくぼみ内部の水が研磨ディスク外部に出ることにより負圧が発生しやすい特徴を備えている研磨剤入り研磨ディスクである。 Reference numeral 12 shown in FIG. 2 is an abrasive-containing abrasive disc. The polishing disc is a polishing pad containing a harder abrasive material than the propeller and made of a material having water permeability and elasticity, and the surface of the propeller is rotated at a high speed between 1000 rpm and 10,000 rpm in water. When polishing, the surface of the propeller can be polished to a roughness of Ra1 μm to Ra0.01 μm by polishing the surface of the propeller with the pad of the polishing disk denoted by reference numeral 12 using the exfoliated material containing the propeller polishing waste and water as an abrasive. With performance. Also, the abrasive disc of No. 12 has a wide cylindrical donut shape or disk shape, has thickness, flexibility or cushioning and a certain degree of water permeability, and has a depression at the center. This is a polishing disk containing an abrasive having a feature that a negative pressure is likely to be generated when the water in the inside comes out of the polishing disk.

図2中に示す符号13は研磨ディスク高速回転による負圧発生部である。符号1の水中プロペラ研磨機の内部で、符号7の研磨機動力伝達ホースより動力を受けた符号14の研磨機モーターが符号12の研磨剤入り研磨ディスクを高速回転させることにより符号1の水中プロペラ研磨機の符号13の負圧発生部の部分の水が遠心力で符合12の研磨ディスクのパッド内を通り外部に放出する水の動きを作る。符号13の負圧発生部が陰圧となり符号6のプロペラに符号1の水中プロペラ研磨機が吸着されるので、研磨作業が行いやすくなる。 Reference numeral 13 shown in FIG. 2 is a negative pressure generating portion caused by high-speed rotation of the polishing disk. Inside the underwater propeller polishing machine indicated by reference numeral 1, the polishing machine motor indicated by reference numeral 14 that receives power from the polishing machine power transmission hose indicated by reference numeral 7 rotates the polishing disk containing the abrasive indicated by reference numeral 12 at a high speed, thereby rotating the underwater propeller indicated by reference numeral 1. The water in the negative pressure generating portion of the polishing machine 13 passes through the pad of the polishing disk 12 and is released to the outside by centrifugal force. Since the negative pressure generating part of reference numeral 13 becomes negative pressure and the underwater propeller polishing machine of reference numeral 1 is adsorbed by the propeller of reference numeral 6, the polishing operation is facilitated.

図2中に示す符号14は研磨機モーターである。水中で弾性と通水性を持った符号12の研磨剤入り研磨ディスクが取り付けられ研磨ディスクを水中で符合14の研磨機モーターが8MPa〜50MPaの間の作動圧力を受け、1000rpm〜10000rpm内の高速で研磨ディスク外周部を回転させる性能を有している研磨機モーターである。 Reference numeral 14 shown in FIG. 2 is a polishing machine motor. A polishing disk with a reference numeral 12 having elasticity and water permeability in water is attached, and the polishing disk is subjected to an operating pressure between 8 MPa and 50 MPa in water and the polishing disk is subjected to an operating pressure of 8 MPa to 50 MPa at a high speed within 1000 rpm to 10,000 rpm. This is a polishing machine motor having the ability to rotate the outer periphery of the polishing disk.

図2中に示す符号15は剥離物拡散防止ブラシである。符号3の剥離物回収装置が符号6のプロペラ表面を傷めないための防護と符号12の研磨剤入り研磨ディスクの回転により剥離物が拡散するのを防ぐのと、符号11の剥離物回収用負圧発生装置の負圧吸引装置により研磨機外部より水を吸い込ませる機能がある。図で示すのは、符号6のプロペラより柔らかい材質で構成されるブラシである。なおプロペラより柔らかい材質で作られ剥離物が拡散するのを防ぎ、水を吸い込める構造であるならば形態はブラシに限定することはない。 Reference numeral 15 shown in FIG. 2 is a delamination diffusion preventing brush. The protection for preventing the peeled material collecting apparatus of reference numeral 3 from damaging the surface of the propeller of reference numeral 6 and the prevention of spreading of the peeled object due to the rotation of the abrasive disk containing the reference numeral 12 and the negative load for recovering the peeled object of reference numeral 11 There is a function of sucking water from the outside of the polishing machine by the negative pressure suction device of the pressure generator. Shown in the figure is a brush made of a material softer than the propeller denoted by reference numeral 6. If the structure is made of a softer material than the propeller and prevents the peeled material from diffusing and sucks water, the form is not limited to a brush.

図2中に示す符号16は剥離物吸い込み板である。研磨ディスクが回転することにより、遠心力で吐き出される水と剥離物を、斜めに設置している吸い込み板に当てて研磨機と剥離物回収装置の内側に取り込むことにより、剥離物の拡散を押さえ、遠心力を利用して水と混ざった剥離物のほとんどを回収することが出来る。 Reference numeral 16 shown in FIG. 2 is a peeled material suction plate. By rotating the polishing disk, the water and exfoliated material discharged by centrifugal force are applied to the suction plate installed diagonally and taken inside the polishing machine and exfoliated material recovery device to suppress the diffusion of the exfoliated material. By using centrifugal force, most of the exfoliated material mixed with water can be recovered.

図2中に示す符号17は微粉末研磨屑及び剥離物である。研磨パッドより外れた符号17の微粉末研磨屑及び剥離物は符号8の吸引及び放水ホース又は11の剥離物回収用負圧発生装置による負圧で符号3の剥離物回収機から吸引され、吸引された水と回収物は符号3の剥離物回収機の中を通り、吸引ホースへ吸い込まれる。又研磨機内部及び外部の水の流れと剥離物の流れを矢印で示した。 The code | symbol 17 shown in FIG. 2 is a fine powder grinding | polishing waste and a peeled material. Fine powdered scraps and exfoliated material 17 separated from the polishing pad are aspirated by the exfoliated material collecting machine 3 by negative pressure generated by the suction and discharge hose 11 or the negative pressure generator 11 for collecting exfoliated material. The water and the collected material pass through the peeled material collecting machine 3 and are sucked into the suction hose. The flow of water inside and outside of the polishing machine and the flow of exfoliated material are indicated by arrows.

図3は係留および係船中の船舶のプロペラの表面粗度を符号22の検査ダイバーが計測している概念図である。符号22の検査ダイバーが符号18の粗度測定補助箱と符号2の水中粗度計を使い粗度の計測をしている。符号23の検査補助ダイバーがその検査状況を符号20の水中ビデオカメラで撮影して船上に送っている。又符号25の作業船上にある符号21のモニターテレビを介して符号24の立会者が、粗度測定場所と測定状況と符号2の水中粗度計の符号33の粗度表示部分の粗度の数値を確認している図である。 FIG. 3 is a conceptual diagram in which the inspection diver 22 measures the surface roughness of the propellers of the mooring and mooring vessel. An inspection diver 22 is used to measure roughness using a roughness measuring auxiliary box 18 and an underwater roughness meter 2. An inspection assistant diver 23 takes a picture of the inspection state with an underwater video camera 20 and sends it to the ship. Also, the attendant of the reference numeral 24 through the monitor TV of the reference numeral 21 on the work ship of the reference numeral 25, the roughness measurement location and the measurement situation, and the roughness of the roughness display portion of the reference numeral 33 of the underwater roughness meter of reference numeral 2 It is a figure which is confirming a numerical value.

図3中に示す符号18は粗度測定補助箱である。符号6のプロペラ表面に符号30の吸着装置で取り付けられた符号18の粗度測定補助箱はプロペラ計測面と下部が開放されている構造で、外部との圧力差及び浮力に耐えられる強度を持ち、内部は気体を溜れる構造となっている。又符号18の粗度測定補助箱の中は、外部より見ることができる材質で作成されているので粗度測定ダイバーが粗度計測状況を確認しながら粗度計測が行える。 Reference numeral 18 shown in FIG. 3 is a roughness measurement auxiliary box. The auxiliary roughness measurement box 18 attached to the surface of the propeller 6 with a suction device 30 has a structure in which the propeller measurement surface and the lower part are open, and has strength to withstand pressure differences and buoyancy with the outside. The interior has a structure that allows gas to accumulate. The roughness measurement auxiliary box 18 is made of a material that can be seen from the outside, so that the roughness measurement diver can measure the roughness while checking the roughness measurement status.

図3中に示す符合2は水中粗度計である。水深30mの水圧に耐える防水及び耐圧能力を有している。陸上で使われている携帯型接触式粗度計を演算部と測定部に分けて耐圧箱にいれ、符合37の圧力伝達防止コネクターを介して符号36の耐圧ケーブルでつながれている。符合32の粗度計演算部耐圧箱の符合35の粗度計演算部は水中で符合34の粗度計操作装置を使い外部より操作ができ符号33の粗度表示部分で粗度の確認ができる構造である、符合38の粗度計測定部耐圧箱は水中でプロペラに設置された符号18の粗度測定補助箱の気中となっている部分で開閉できる構造であり、測定部の触針部は加圧下でも作動できる機能を備えた粗度計である。 Reference numeral 2 shown in FIG. 3 is an underwater roughness meter. It has waterproof and pressure resistant capability to withstand water pressure of 30m depth. A portable contact-type roughness meter used on land is divided into a calculation unit and a measurement unit and placed in a pressure-resistant box, and is connected by a pressure-resistant cable of 36 through a pressure transmission prevention connector of reference numeral 37. Roughness meter calculation unit of code 32 The roughness meter calculation unit of code 35 of the pressure-resistant box can be operated from the outside by using a roughness meter operating device of code 34 in water, and the roughness can be confirmed in the roughness display portion of code 33. The pressure gauge box of the roughness meter measuring unit with reference numeral 38, which is a structure that can be opened and closed at the part of the air that is in the air of the roughness measuring auxiliary box of reference numeral 18 installed on the propeller in the water, The needle part is a roughness meter having a function that can be operated even under pressure.

更に符合2の水中粗度計は、水中で符合18の粗度測定用補助箱を使い粗度の測定ができる水中粗度計であるが、水中に限らず気中部においてでも使用でき4気圧内の圧力下であれば、携帯式粗度計として粗度の計測を行うことができる特徴を備えている。又耐圧箱の耐圧機能を上げることにより、より高圧下での計測も行えるようになる。しかし大きな船舶のプロペラでも最深部の位置は水心30m以内であるのでプロペラの粗度測定には支障がない水中粗度計である。 Further, the underwater roughness meter of No. 2 is an underwater roughness meter that can measure roughness using an auxiliary box for roughness measurement of No. 18 in water, but it can be used not only in water but also in the aerial part and within 4 atm. If it is under the pressure of, it has the characteristic which can measure roughness as a portable roughness meter. In addition, by increasing the pressure resistance function of the pressure box, measurement under higher pressure can be performed. However, even in the case of a propeller of a large ship, the deepest position is within 30 m of the water core, so it is an underwater roughness meter that does not hinder the measurement of the roughness of the propeller.

図3中に示す符号20は水中ビデオカメラである。水中での粗度測定状況を陸上の符号24の立会者に符号21のモニターテレビへ映像を送れる機能を持っている。 Reference numeral 20 shown in FIG. 3 is an underwater video camera. It has a function that can send the image of the roughness measurement underwater to the monitor television of reference numeral 21 to the witness of reference numeral 24 on land.

図3中に示す符号21はモニターテレビである。符号20の水中ビデオカメラで、水中で行われている粗度計測状況を符号24の立会者が確認できる機能を持っている。 Reference numeral 21 shown in FIG. 3 is a monitor television. The underwater video camera denoted by reference numeral 20 has a function that allows an witness denoted by reference numeral 24 to check the roughness measurement status being performed underwater.

図3中に示す符号22は検査ダイバーである。符号2の水中粗度計と符号18の粗度測定補助箱を使いプロペラ表面の粗度を計測できる技能を持つ検査ダイバーである。 Reference numeral 22 shown in FIG. 3 is an inspection diver. This is an inspection diver who has the skill to measure the roughness of the surface of the propeller using the underwater roughness meter of 2 and the roughness measuring auxiliary box of 18.

図3中に示す符号23は検査補助ダイバーである。検査ダイバーを補助し、粗度測定の補助及び検査状況を撮影することができるダイバーである。 Reference numeral 23 shown in FIG. 3 is an inspection auxiliary diver. It is a diver that assists the inspection diver and can photograph the roughness measurement assistance and the inspection status.

図3中に示す符号24は立会者である。プロペラの粗度の計測を水上部より指示しその状況を符号21のモニターテレビを見て確認し記録している。 Reference numeral 24 shown in FIG. 3 is a witness. The measurement of roughness of the propeller look at the monitor TV of water above the indicated numeral 21 the situation has been confirmed record.

図3中に示す符号25は作業船である。水中プロペラ研磨設備を積み込むことができる同時にダイバー作業にも使える能力のある小型船である。 The code | symbol 25 shown in FIG. 3 is a work ship. If it is possible to load the underwater propeller polishing equipment is a small ship with a capacity can also be used to divers working at the same time.

図3中に示す符号26は水面に浮いている船舶である、水中で自船のプロペラの研磨が行われている。 The code | symbol 26 shown in FIG. 3 is the ship which floats on the water surface, and the propeller of the own ship is polished underwater.

図4は図3の粗度計測情況の拡大図で符号18の粗度測定補助箱と符号2の粗度計を使い粗度を計測している概念図である。符号22の検査ダイバーがプロペラ表面の計測位置に、水を抜いて周囲と同じ加圧下の状態で設置された符号18の粗度測定補助箱を使い、符号2の水中粗度計を耐圧箱に入れた状態で水中に持ち込み、符号39の粗度計測定部を符号38の粗度計測定部耐圧箱に入れたまま符号18の粗度測定補助箱の中に持ち込み、粗度が計測できる状態に符号43の測定部蓋を開放し符号39の粗度計測定部の符号40の粗度計触針部をプロペラ表面に当て、符号32の粗度計演算部の符号34の粗度計操作装置を使い、(計測前に、事前に符号18の粗度測定補助箱の中に設置してある符号27の基準粗度板で符号2の水中粗度計が正常に作動するのを確認する)符号6のプロペラの表面の粗度を測定している。その測定状況を符号23の検査補助ダイバーが符号20の水中ビデオカメラを使い映像を水上の符号21のモニターテレビに送っている概念図である。 FIG. 4 is an enlarged view of the roughness measurement situation of FIG. 3 and is a conceptual diagram in which the roughness is measured using the roughness measurement auxiliary box 18 and the roughness meter 2. The inspection diver with the reference numeral 22 uses the roughness measuring auxiliary box with the reference numeral 18 installed at the measurement position on the surface of the propeller under the same pressure as the surroundings, and the underwater roughness meter with the reference numeral 2 is used as the pressure box. Bring it into the water in a state where it is put in, and bring the roughness meter measuring unit 39 into the roughness measuring auxiliary box 18 with the roughness meter measuring unit 38 in the pressure box, and measure the roughness. The measurement unit lid of reference numeral 43 is opened, the roughness meter stylus part of reference numeral 40 of the roughness meter measurement part of reference numeral 39 is applied to the surface of the propeller, and the roughness meter operation of reference numeral 34 of the roughness meter calculation part of reference numeral 32 is operated. Using the device (Before measurement, confirm that the underwater roughness meter No. 2 operates normally with the No. 27 reference roughness plate installed in the No. 18 roughness measurement auxiliary box in advance. ) The roughness of the surface of the propeller denoted by reference numeral 6 is measured. It is the conceptual diagram which the inspection auxiliary | assistant diver of the code | symbol 23 is sending the image | video to the monitor television of the code | symbol 21 on the water using the underwater video camera of the code | symbol 20 about the measurement condition.

図4中に示す符号27は基準粗度板である。水中に持ち込んだ符号2の水中粗度計が正常に作動しているか、粗度計測直前に確認できるように符号18の粗度測定補助箱の中に設置されている。 Reference numeral 27 shown in FIG. 4 is a reference roughness plate. It is installed in a roughness measurement auxiliary box 18 so that it can be confirmed immediately before the roughness measurement whether the underwater roughness meter 2 brought into the water is operating normally.

接触式粗度計の測定部を水中で使用するには、触針部が動作できる気中部が水中で必要となる。水中で気中となる装置にダイビングベル(潜水函ともいい吊下げ式で底部が開放されておりダイバーが底部より出入りできる構造でダイビングベルの中は空気で満たされている)がある。しかしダイビングベルは人が中に入れるような大きなもので、下向きの底の部分だけ開口部が設けられ、おわん状または箱を伏せたような形である。(ダイビングベルは水中でダイバーが中に入って休憩や減圧などを行うのに使われている) In order to use the measuring unit of the contact-type roughness meter in water, an aerial part in which the stylus part can operate is required in water. There is a diving bell (a submersible canopy type with a bottom open and a diver can enter and exit from the bottom so that the diving bell is filled with air). However, a diving bell is a large one that a person can put inside, and an opening is provided only in the bottom part facing downward, and it is shaped like a bowl or a box. (The diving bell is used to take a break or decompression when a diver enters underwater.)

水中にあるプロペラの粗度計測をする場合、計側面は垂直状態である。ダイビングベル式の構造のものを使用して粗度計測をする場合は計測部のプロペラ全部を覆う必要があるが構造上無理である。水中でプロぺラの測定行うには粗度計側面側(プロペラの表面の方向)及び下部の部分に開口部がある、ダイビングベルとは違う形状の、水中で気中部を作ることができる構造の、粗度測定補助箱が必要となる。 When measuring the roughness of a propeller in water, the side surface is vertical. When measuring the roughness using a diving bell structure, it is necessary to cover the entire propeller of the measuring unit, but this is not possible. Propeller measurement in water Roughness meter side side (propeller surface direction) and lower part has an opening, different shape from diving bell, can make aerial part in water The roughness measurement auxiliary box is required.

粗度測定補助箱はプロペラ表面に設置後、内部に気体を入れ、水を排除する構造となる。そのような構造のため粗度測定補助箱に入った気体の体積分だけ浮力が働き設置面から離れようとする。粗度測定補助箱固定に錘を使う方法がある。初めからおもりを取り付ける方法と後からおもりを取り付ける方法がある。又設置面から粗度測定補助箱が離れようとするので離れ防止対策も行うことが必要となる。 The roughness measurement auxiliary box has a structure in which after being installed on the propeller surface, gas is introduced into the interior and water is excluded. Due to such a structure, the buoyancy works by the volume of the gas contained in the roughness measurement auxiliary box and tries to leave the installation surface. There is a method of using a weight to fix the roughness measurement auxiliary box. There is a method of attaching a weight from the beginning and a method of attaching a weight later. Further, since the roughness measurement auxiliary box is about to be separated from the installation surface, it is necessary to take measures for preventing the separation.

図5・図6は符号18の粗度測定補助箱固定に吸着装置を使った方法を記載している。粗度測定補助箱をプロペラに押し付ける形で吸着させて固定させる方法なので、浮き及び離れ防止対策を同時に行うことができる。吸着させるプロペラ表面は研磨前で汚れている時もあるが、汚れていても吸着面を清掃することで粗度測定補助箱が設置可能となる。 5 and 6 describe a method in which a suction device is used to fix the roughness measuring auxiliary box 18. Since the roughness measuring auxiliary box is sucked and fixed in such a manner as to be pressed against the propeller, it is possible to simultaneously take measures to prevent floating and separation. The surface of the propeller to be adsorbed may be dirty before polishing, but even if it is dirty, the roughness measuring auxiliary box can be installed by cleaning the adsorbing surface.

図5及び図6は符号18の粗度測定補助箱の参考の概念図である。例として400mm×600mm×300mm、浮力は72kg程度のプロペラ粗度測定専用の粗度測定補助箱で(測定条件及び粗度計により大きさは変えられる)水中部より内部が視認できる材質で作られた構造となっており設置と粗度計測が行い易く、水中で外圧や浮力を受けても壊れない強度と材質で構成されている。プロペラの計測面側と下部側は開放されており、設置後は内部の水が下部側より排出できる構造であり、プロペラ計測面側はエアー漏れ及び水の浸水を防げる構造となっている。 5 and 6 are reference conceptual diagrams of the roughness measuring auxiliary box 18. As an example, it is 400mm x 600mm x 300mm, and the buoyancy is about 72kg. Propeller roughness measurement dedicated box for measuring roughness (changeable depending on measurement conditions and roughness meter). It has a structure that is easy to install and measure roughness, and is made of strength and material that will not break even under external pressure or buoyancy in water. The propeller measurement surface side and the lower side are open, and after installation, the internal water can be discharged from the lower side, and the propeller measurement surface side can prevent air leakage and water infiltration.

更に符号6のプロペラの表面は捻じれた曲面である。符号18の粗度測定補助箱の当り面をプロペラの捻じれた曲面に合うように製作することは困難である。ネオプレーンゴムのようなクッション性と少しの強度を持つような特殊な材質を使ってクッション部を作ることで多少の曲面に対応することもできるが、計測位置ごとに曲面の形が変わるので符号18の粗度測定補助箱は直面の構造となっている。符号18の粗度測定補助箱のプロペラ当り部の直面とプロペラ表面の曲面の隙間を埋めて空間を確保するため、符号28のエアー漏れ止めパッキンと符号29の曲面補助止水材を使用し、固定ボルトの長さと角度の調整できる符号30の吸着装置で符号18の粗度測定補助箱を固定する。 Further, the surface of the propeller denoted by reference numeral 6 is a twisted curved surface. It is difficult to manufacture the contact surface of the roughness measurement auxiliary box 18 with a twisted curved surface of the propeller. By using a special material that has a cushioning property and a little strength like neoprene rubber, it is possible to cope with a slightly curved surface, but the shape of the curved surface changes with each measurement position. The roughness measuring auxiliary box has a confronting structure. In order to fill the gap between the face of the propeller contact portion of the roughness measurement auxiliary box of reference numeral 18 and the curved surface of the propeller surface to secure a space, an air leakage stopper packing of reference numeral 28 and a curved auxiliary water stop material of reference numeral 29 are used, The roughness measuring auxiliary box 18 is fixed by a suction device 30 that can adjust the length and angle of the fixing bolt .

図5中に示す符号28はエアー漏れ止めパッキンである。通気性のない柔らかい材質のもので作られており、符号18の粗度測定補助箱の中に送り込まれた気体により符号28のエアー漏れ止めパッキンが符号6のプロペラ表面に押さえつけられて符号18の粗度測定補助箱下部以外からの気体の漏れ防止及び水の浸入防止を行う。 Reference numeral 28 shown in FIG. 5 is an air leakage prevention packing. It is made of a soft material that is not breathable, and the air leak-proof packing 28 is pressed against the surface of the propeller 6 by the gas fed into the roughness measurement auxiliary box 18 so that the 18 Prevents leakage of gas and water from other than the bottom of the roughness measurement auxiliary box.

図5中に示す符号29は曲面補助止水材である。柔軟性がありあまり縮まない性質を持った材質のもので出来ている。プロペラ表面はすべて曲面で出来ているが少しの曲面であれば、符号28のエアー漏れ止めパッキンで気体漏れ及び水漏れに対応することができる。しかし曲面との隙間が大きい場合はやわらかい材質で出来ている符号28のエアー漏れ止めパッキンは隙間にパッキンが吸い込まれて気体が吸い出され水が浸入してくるようになる。縮まない性質を持ち柔軟性があり厚みの調整が効く符号29の曲面補助止水材を使うことにより符号6のプロペラの曲面と符号18の粗度測定補助箱の間の隙間を小さくして、符号28のエアー漏れ止めパッキンでも気体の漏れを防止できる隙間とする曲面補助止水材である。 The code | symbol 29 shown in FIG. 5 is a curved surface auxiliary | assistant water stop material. Made of flexible material that does not shrink too much. The propeller surface is entirely curved, but if it is a small curved surface, it can cope with gas leakage and water leakage with the air leakage prevention packing of 28. However, when the gap between the curved surface and the curved surface is large, the air leak-proof packing of reference numeral 28 made of a soft material is sucked into the gap, gas is sucked out, and water enters. By using a curved surface auxiliary waterproofing material of reference numeral 29 that has a non-shrinking property, flexibility, and thickness adjustment, the gap between the curved surface of the propeller of reference numeral 6 and the roughness measurement auxiliary box of reference numeral 18 is reduced. It is a curved auxiliary water-stopping material having a gap that can prevent gas leakage even with the air leak-proof packing of reference numeral 28.

図5中に示す符号30は吸着装置である。符号18の粗度測定補助箱を符号6のプロペラに設置できる機能を持つ吸着装置である。符号18の粗度測定補助箱に取り付けられプロペラに吸着させて設置する。符号6のプロペラの粗度は符号30の吸着装置が吸着出来る粗度とは限らず、プロペラ表面の粗度が悪くて吸着装置が吸いつかない場合もある、吸着出来ない場合は、プロペラ表面の符号30の吸着装置が吸着する予定部分だけを吸着できるように清掃して吸着させ、符号18の粗度測定補助箱を設置する。 The code | symbol 30 shown in FIG. 5 is an adsorption | suction apparatus. This is a suction device having a function capable of installing the roughness measurement auxiliary box of reference numeral 18 on the propeller of reference numeral 6. It is attached to a roughness measurement auxiliary box 18 and is attached to a propeller. The roughness of the propeller of reference number 6 is not limited to the roughness that can be adsorbed by the adsorption device of reference number 30. The roughness of the propeller surface is poor and the adsorption device may not suck. Only a portion to be adsorbed by the adsorbing device 30 is cleaned and adsorbed, and a roughness measurement auxiliary box 18 is installed.

図5中に示す符号31は粗度測定補助箱の下部の開放部である。符号18の粗度測定補助箱の下部であるこの部分は開放されており、符号18の粗度測定補助箱の中に符号31の開放部から気体を送り込む、符号18の粗度測定補助箱の中は、送り込まれた気体が溜まった分だけ水を符号31の下部より排水し、中は気体で充満され水のない状態となる。ダイバーがこの部分を利用して符号18の粗度測定補助箱の中を気中状態にして符号38の粗度計測定部耐圧箱を出し入れする出入り口となる。 Reference numeral 31 shown in FIG. 5 is an open portion at the bottom of the roughness measurement auxiliary box. This portion, which is the lower part of the roughness measuring auxiliary box 18, is opened, and gas is fed into the roughness measuring auxiliary box 18 from the opening 31, and the roughness measuring auxiliary box 18. The inside drains water from the lower portion of the reference numeral 31 as much as the sent gas accumulates, and the inside is filled with gas and is in a state without water. Using this part, the diver serves as an inlet / outlet for putting the roughness measurement auxiliary pressure box 18 in the air in the air in the roughness measurement auxiliary box 18 in the air.

図6は符号18の粗度測定補助箱の正面図である。図5の側面図と同じ構造の参考図である。 FIG. 6 is a front view of the roughness measurement auxiliary box 18. FIG. 6 is a reference diagram of the same structure as the side view of FIG. 5.

図7はケーブルが陸上まで延長できない携帯用接触式粗度計を符号35の粗度計演算部及び符号39の粗度計測定部に分けてそれぞれを耐圧箱にいれ、符号37の圧力伝達防止コネクターを使い符号36の耐圧ケーブルで符号35の粗度計演算部と符号39の粗度計測定部を結んでいる概念図である。 FIG. 7 shows a portable contact-type roughness meter whose cable cannot be extended to land. It is divided into a roughness meter calculating unit 35 and a roughness meter measuring unit 39, and each is placed in a pressure-resistant box to prevent pressure transmission 37. It is the conceptual diagram which connected the roughness meter calculating part of the code | symbol 35, and the roughness meter measurement part of the code | symbol 39 with the pressure | voltage resistant cable of the code | symbol 36 using a connector.

図7中に示す符号32は粗度計演算部耐圧箱である。符号35の粗度計演算部を符号32の粗度計演算部耐圧箱で大気圧下の状態で耐圧箱に入れており水深30mでも使用できる耐圧防水機能を持っている。水中の加圧下に於いても外部の圧力の影響を受けることなく符号34の粗度計操作装置を使って、水中で符号39の粗度計測定部を操作でき、更に符号33の粗度表示部分に符号39の粗度計測定部で計測された表示を水中で外部より確認出来る、粗度計演算部耐圧箱である。 The code | symbol 32 shown in FIG. 7 is a roughness meter calculating part pressure | voltage resistant box. The roughness meter computing unit 35 is placed in a pressure box under the atmospheric pressure with the roughness meter computing unit pressure box 32 and has a pressure-resistant waterproofing function that can be used even at a depth of 30 m. Even under pressure in water, the roughness meter measuring unit 39 can be operated in water using the roughness meter operating device 34 without being affected by external pressure. This is a pressure gauge box for the roughness meter calculation unit, which can confirm the display measured by the roughness meter measuring unit with reference numeral 39 in water from the outside.

図7中に示す符号33は粗度計演算部の粗度表示部分である。外部より符号35の粗度計演算部の粗度表示部分が読み取れる特徴を持っている。 Reference numeral 33 shown in FIG. 7 is a roughness display portion of the roughness meter calculation unit. It has a feature that the roughness display portion of the roughness meter calculation unit 35 can be read from the outside.

図7中に示す符号34は粗度計操作装置である。水中にある粗度計演算部の操作装置で耐圧箱内部の符号35の粗度計演算部の操作装置を耐圧箱外部から操作できる機能をもつ。 Reference numeral 34 shown in FIG. 7 is a roughness meter operating device. It has the function of operating the operating device of the roughness meter computing unit indicated by reference numeral 35 inside the pressure box from the outside of the pressure box with the operating device of the roughness meter computing unit in water.

図7中に示す符号35は粗度計演算部である。耐圧箱で防護され中は大気圧の状態となっておりキャパシタンスなどの圧力変化に対応できない構造のものでも大気圧を保っているので正常に作動する。又37の圧力伝達防止コネクターを介して符号36の耐圧ケーブルで符号39の粗度計測定部とつながれている。 The code | symbol 35 shown in FIG. 7 is a roughness meter calculating part. Even if it is protected by a pressure-resistant box, it is in an atmospheric pressure state, and even a structure that cannot cope with pressure changes such as capacitance operates normally because it maintains the atmospheric pressure. Further, a roughness meter measuring unit 39 is connected to a roughness meter measuring unit 39 by a pressure-resistant cable 36 through a pressure transmission preventing connector 37.

図7中に示す符号36は耐圧ケーブルである。符号32の粗度計演算部耐圧箱と符号38の粗度計測定部耐圧箱にある符号37の圧力伝達防止コネクターをつなぐ耐圧ケーブルで符号35の粗度計演算部より操作信号と符号39の粗度計測定部が計測したデーター信号を誤差のない状態で伝えられるケーブルである。 The code | symbol 36 shown in FIG. 7 is a pressure | voltage resistant cable. An operation signal and a reference numeral 39 are supplied from the roughness meter calculation section 35 by a pressure cable connecting the pressure transmission prevention connector 37 of the roughness meter calculation section pressure box 32 and the roughness meter measurement section pressure box 38. It is a cable that can transmit the data signal measured by the roughness meter measuring unit without error.

図7中に示す符号37は圧力伝達防止コネクターである。このコネクターは圧力を遮断する性能を持ち符号32の粗度計演算部耐圧箱と符号38の粗度計測定部耐圧箱に取り付けられている。圧力伝達防止コネクターは、電気的信号は伝えるが圧力及び水は伝わらない特徴を持っている接続コネクターである。符号39の粗度計測定部は符号18の粗度測定補助箱内で加圧状態となる。この加圧された圧力が符号36の圧力伝達防止コネクターから符号36の耐圧ケーブルを通じて符号35の粗度計演算部に伝わるとキャパシタンスを使っている符号35の粗度計演算部が正常に作動しなくなる可能性が大きい。符号37の圧力防止コネクターはこれを防止する機能をもっている。 Reference numeral 37 shown in FIG. 7 is a pressure transmission preventing connector. This connector has the ability to block pressure, and is attached to the roughness meter calculation section pressure box 32 and the roughness meter measurement section pressure box 38. The pressure transmission prevention connector is a connection connector having a characteristic of transmitting an electrical signal but not transmitting pressure and water. The roughness meter measuring unit 39 is in a pressurized state in the roughness measuring auxiliary box 18. When this pressurized pressure is transmitted from the pressure transmission preventing connector 36 to the roughness meter calculator 35 via the pressure cable 36, the roughness meter calculator 35 using the capacitance operates normally. There is a high possibility of disappearing. The pressure preventing connector 37 has a function to prevent this.

図7中に示す符号38は粗度計測定部耐圧箱である。水深30mまでの圧力変化に対して対応できる構造と強度を持っている。符号43の測定部蓋を開放して符号39の粗度計測定部の取り出しが行え、更に符号43の測定部開放蓋を外すだけで符号40の粗度計触針部を耐圧箱から取り外さずに粗度測定が行えるようにすることも出来る。 The code | symbol 38 shown in FIG. 7 is a roughness meter measurement part pressure | voltage resistant box. It has a structure and strength that can cope with pressure changes up to a depth of 30m. The measurement unit lid of reference numeral 43 is opened and the roughness meter measurement part of reference numeral 39 can be taken out, and the stylus probe part of reference numeral 40 is not removed from the pressure-resistant box by simply removing the measurement part opening cover of reference numeral 43. It is also possible to measure roughness.

図7中に示す符号39は粗度計測定部である。水中では符号38の粗度計測定部耐圧箱で保護されており符号18の粗度測定補助箱の加圧下の気中となっている中で粗度を計測できる機能を備えている。 The code | symbol 39 shown in FIG. 7 is a roughness meter measuring part. Underwater, it is protected by a pressure gauge box 38 for measuring the roughness meter, and has a function of measuring the roughness in the air under pressure of the roughness measuring auxiliary box 18.

図7中に示す符号40は粗度計触針部である。加圧下の気中となっている符号18の粗度測定補助箱の中で支障なく稼動し、粗度の計測ができる機能がある。 The code | symbol 40 shown in FIG. 7 is a roughness meter stylus part. There is a function in which roughness can be measured by operating without difficulty in the roughness measurement auxiliary box 18 in the air under pressure.

図7中に示す符号41は圧力調整弁である。符号38の粗度計測定部耐圧箱に取り付けられておりダイバーにより、符号18の粗度測定補助箱の気中内で符号41の圧力調整弁を開放することにより符号18の粗度測定補助箱と38の粗度測定部耐圧箱内が均圧となり、符号43の測定部蓋は符号18の粗度測定補助箱の加圧下の気中の中で容易に開け閉めができるようになる。又計測終了後符号43の測定部蓋を閉め符号41の圧力調整弁を閉鎖することにより密閉され、符号18の粗度測定補助箱から水中に出しても水の浸入を防ぐことができる。 Reference numeral 41 shown in FIG. 7 is a pressure regulating valve. A roughness measuring auxiliary box designated by reference numeral is opened by opening a pressure regulating valve designated by reference numeral 41 in the air of the auxiliary roughness measuring box designated by reference numeral 18 by a diver attached to the pressure gauge box designated by reference numeral 38. The pressure inside the roughness measuring section pressure box of 38 and 38 is equalized, and the measuring section lid of reference numeral 43 can be easily opened and closed in the air under pressure of the roughness measuring auxiliary box of reference numeral 18. In addition, after the measurement is completed, the measurement unit lid of reference numeral 43 is closed and the pressure adjustment valve of reference numeral 41 is closed, so that the water can be prevented from entering even if it is taken out from the roughness measurement auxiliary box of reference numeral 18.

図7中に示す符号42は逆止弁である。符号41の圧力調整弁もしくは符号38の粗度計測定部耐圧箱に取り付けられており、外圧及び水の浸入を防止できる構造となっている。粗度計測終了後加圧下で符号38の粗度計測定部耐圧箱は閉鎖され閉鎖水深の圧力状態となる。加圧下となっている符号38の粗度計測部耐圧箱内部が水面に向かうことにより周囲の圧力が減少する。外部より耐圧箱内部の圧力が高くなった場合は耐圧箱内の圧力を自動的に減少させて外部圧と同じにする機能を符号42の逆止弁は備えている。符号42の逆止弁の機能により常に符号38の粗度計測定部耐圧箱内部は外部圧と同じか、低い状態に保たれる様になり符号38の粗度計測定部耐圧箱を膨張させない機能を符号42の逆止弁は持つ。(通常の耐圧箱の構造は加圧には強いが逆圧となる膨張に対しては非常に弱い構造になりやすい) Reference numeral 42 shown in FIG. 7 is a check valve. It is attached to the pressure regulating valve 41 or the roughness meter measuring section pressure box 38, so that the external pressure and water can be prevented from entering. After the roughness measurement is completed, the pressure gauge box 38 of the roughness meter measuring unit is closed under pressure and is in a pressure state at a closed water depth. The surrounding pressure decreases as the inside of the pressure measuring box of the roughness measuring section 38 under pressure is directed toward the water surface. When the pressure inside the pressure box becomes higher than the outside, the check valve 42 has a function of automatically reducing the pressure inside the pressure box so as to be the same as the external pressure. By the function of the check valve 42, the inside of the roughness meter measuring section pressure box 38 is always kept at the same or lower level as the external pressure, and the roughness meter measuring section pressure box 38 is not expanded. The check valve 42 has a function. (Normal pressure box structure is strong against pressurization, but tends to be very weak against expansion resulting in reverse pressure)

図7中に示す符号43は測定部蓋である。符号38の粗度計測定部耐圧箱に取り付けられているが、計測する触針部分だけを現して粗度計測できる機能も備えることができる。 The code | symbol 43 shown in FIG. 7 is a measurement part cover. Although it is attached to the pressure gauge box 38 of the roughness meter measuring section, it can be provided with a function of measuring the roughness by showing only the stylus part to be measured.

図8は符号38の粗度計測定部耐圧箱に入れられた符号39の粗度計測定部の拡大図である。符号36の耐圧ケーブルが符号37の圧力伝達防止コネクターを介して符号38の粗度計測定部耐圧箱内にある符号39の粗度計測定部に接続されている状況と、符号38の粗度計測定部耐圧箱と符号40の粗度計触針部と符号43の測定部蓋と符号41の圧力調整弁と符号42の逆止弁が配置されている概念図である。 FIG. 8 is an enlarged view of the roughness meter measuring unit 39, which is placed in the pressure box of the roughness meter measuring unit 38. The situation in which the pressure-resistant cable 36 is connected to the roughness meter measuring section 39 in the roughness box measuring section 38, through the pressure transmission preventing connector 37, and the roughness 38 FIG. 4 is a conceptual diagram in which a meter measuring unit pressure box, a roughness meter stylus part with reference numeral 40, a lid with a measuring part with reference numeral 43, a pressure regulating valve with reference numeral 41, and a check valve with reference numeral 42 are arranged.

図9はプロペラ表面の粗度による燃料効率の参考資料である。粗度がRa2μm以下であれば燃料損失はほとんど起こらないが、これを超えると燃料損失が現れ効率が落ちはじめる。Ra30μmを超えると顕著に燃料損失が発生するのが見受けられる参考資料である。 FIG. 9 is a reference data of fuel efficiency according to the roughness of the propeller surface. If the roughness is Ra 2 μm or less, almost no fuel loss occurs, but if it exceeds this, fuel loss appears and efficiency begins to drop. This is a reference material in which significant fuel loss occurs when Ra exceeds 30 μm .

従来ドックに入れなければ行えなかった推進器のプロペラの保守点検が就航中容易に行えるようになり、船舶の燃料削減ができる。 Maintenance and inspection of propeller propellers, which could not be done without prior docking, can now be easily performed during service, and fuel for ships can be reduced.

1 水中プロペラ研磨機
2 水中粗度計
3 剥離物回収機
4 剥離物貯留装置
5 微小剥離物回収装置
6 プロペラ
7 研磨機動力伝達ケーブル又はホース
8 吸引及び放水ホース
9 ホース類沈降防止浮力体
10 水中プロペラ研磨機用動力発生装置
11 剥離物回収用負圧発生装置
12 研磨剤入り研磨ディスク
13 研磨ディスク高速回転による負圧発生部
14 研磨機モーター
15 剥離物拡散防止ブラシ
16 剥離物吸い込み板
17 微粉末の研磨クズ
18 粗度測定補助箱
19 研磨ダイバー
20 水中ビデオカメラ
21 モニターテレビ
22 検査ダイバー
23 検査補助ダイバー
24 立会者
25 作業船
26 計測対象船
27 基準粗度板
28 エアー洩止パッキン
29 曲面補助止水材
30 吸着装置
31 ドライボックス下部の開放部
32 粗度計演算部耐圧箱
33 粗度表示部分
34 粗度計操作装置
35 粗度計演算部
36 耐圧ケーブル
37 圧力伝達防止コネクター
38 粗度計測定部耐圧箱
39 粗度計測定部
40 粗度計触針部
41 圧力調整弁
42 逆止弁
43 測定部蓋
DESCRIPTION OF SYMBOLS 1 Underwater propeller polisher 2 Underwater roughness meter 3 Exfoliated material collection machine 4 Exfoliated material storage device 5 Fine exfoliated material collection device 6 Propeller 7 Polishing machine power transmission cable or hose 8 Suction and water discharge hose 9 Hose sedimentation prevention buoyant body 10 Underwater Power generator for propeller polishing machine 11 Negative pressure generator for recovery of peeled material 12 Polishing disk with abrasive 13 Negative pressure generator by polishing disk high-speed rotation 14 Polishing machine motor 15 Stripping material diffusion prevention brush 16 Stripping material suction plate 17 Fine powder 18 Polishing scrap 18 Roughness measurement auxiliary box 19 Polishing diver 20 Underwater video camera 21 Monitor TV 22 Inspection diver 23 Inspection auxiliary diver 24 Witness 25 Work ship 26 Ship to be measured 27 Standard roughness plate 28 Air seal packing 29 Curved auxiliary stop Water material 30 Adsorber 31 Opening part at the bottom of dry box 32 Degree meter computing unit breakdown voltage box 33 roughness display portion
34 Roughness meter operation device 35 Roughness meter calculation unit 36 Pressure-resistant cable 37 Pressure transmission prevention connector 38 Roughness meter measurement unit Pressure-resistant box 39 Roughness meter measurement unit 40 Roughness meter stylus part 41 Pressure adjustment valve 42 Check valve 43 Measuring unit lid

Claims (3)

船舶のプロペラを水中で保守管理が行える水中保守設備であって、係留中に水中で船舶推進機のプロペラ表面を研磨できる水中研磨機は、可搬式で研磨ディスクは通水性と弾力性を持つ素材で中央部に窪みを持ち、8MPa〜50MPaの間の作動圧力を受け1000rpm〜10000rpmで高速回転する性能を有し研磨面に負圧により当接させ、研磨面をRa1μm〜Ra0.01μmまでの間に研磨できる水中研磨機と、水中にあるプロペラの表面の粗度測定部を気中部にして粗度を計測してプロペラの性能を確定できる、粗度計測設備を備えることを特徴とする、水中保守設備。An underwater maintenance facility that can maintain and manage ship propellers underwater. The underwater polisher that can polish the propeller surface of a ship propulsion device underwater while moored is portable, and the polishing disc is a material with water permeability and elasticity. With a depression at the center, receiving a working pressure of between 8 MPa and 50 MPa and rotating at a high speed of 1000 rpm to 10,000 rpm, the polishing surface is brought into contact with negative pressure, and the polishing surface is between Ra 1 μm and Ra 0.01 μm It is equipped with an underwater polishing machine capable of polishing the surface and a roughness measurement facility that can determine the propeller performance by measuring the roughness with the roughness measurement part of the surface of the propeller in water as the air. Maintenance equipment. 請求項1に記載されている水中にあるプロペラの粗度測定部で粗度計測できる粗度計測設備は、水中で粗度測定面に取り付けられて内部が気中となる粗度測定補助箱とその気中となった粗度測定補助箱の中でプロペラの粗度計測を行うことが出来る粗度計と、粗度計を保護して水中に持ち込み粗度測定補助箱の中で取り出せることができる耐圧箱とを備えることを特徴とする水中保守設備。 The roughness measuring equipment capable of measuring the roughness with the roughness measuring unit of the propeller in water described in claim 1, the roughness measuring auxiliary box attached to the roughness measuring surface in water and the inside is in the air A roughness meter that can measure the roughness of the propeller in the roughness measurement auxiliary box that is in the air, and the roughness meter can be protected and brought into the water and taken out in the roughness measurement auxiliary box An underwater maintenance facility comprising a pressure-resistant box that can be used. 請求項1、2のいずれかに記載されている水中にある気中部で粗度測定が出来る粗度計測設備の耐圧箱は、外部の圧力変化に対応でき粗度測定補助箱の気中部の中で粗度計計測部が取り出せる構造で、粗度計の演算部と計測部は耐圧箱に設置された圧力伝達防止コネクターを介してケーブルで接続され、粗度計の計測部は加圧された粗度測定補助箱の中で粗度計測ができ演算部にケーブルを通じて測定数値を送れることを特徴とする、水中保守設備。

The pressure-resistant box of the roughness measuring facility capable of measuring the roughness in the aerial part in the water described in claim 1 is capable of responding to an external pressure change, and is in the aerial part of the auxiliary roughness measuring box. The roughness meter measuring part can be taken out with the cable, the calculation part and measuring part of the roughness meter are connected with a cable through the pressure transmission prevention connector installed in the pressure box, and the measuring part of the roughness meter is pressurized An underwater maintenance facility characterized in that the roughness measurement can be performed in the roughness measurement auxiliary box, and the measured numerical value can be sent to the arithmetic unit through a cable.

JP2009089728A 2009-02-04 2009-04-02 Underwater maintenance equipment for ship propellers Expired - Fee Related JP4446034B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009089728A JP4446034B1 (en) 2009-02-04 2009-04-02 Underwater maintenance equipment for ship propellers
PCT/JP2010/050948 WO2010090096A1 (en) 2009-02-04 2010-01-26 Underwater maintenance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009023314 2009-02-04
JP2009089728A JP4446034B1 (en) 2009-02-04 2009-04-02 Underwater maintenance equipment for ship propellers

Publications (2)

Publication Number Publication Date
JP4446034B1 true JP4446034B1 (en) 2010-04-07
JP2010201609A JP2010201609A (en) 2010-09-16

Family

ID=42211598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089728A Expired - Fee Related JP4446034B1 (en) 2009-02-04 2009-04-02 Underwater maintenance equipment for ship propellers

Country Status (2)

Country Link
JP (1) JP4446034B1 (en)
WO (1) WO2010090096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523732B1 (en) * 2013-10-11 2015-05-28 삼성중공업 주식회사 Cleaning apparatus and method for ship

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101732362B1 (en) * 2015-11-06 2017-05-04 삼성중공업 주식회사 Appratus for measuring fouling
JP6191750B1 (en) * 2016-09-30 2017-09-06 日本サカス株式会社 Water tank wall surface polishing apparatus and water tank wall surface polishing method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383297A (en) * 1976-11-04 1978-07-22 Lundberg Hans Method of cleaning underwater structure like hull and the like and device for the same
JPS57147197U (en) * 1981-03-12 1982-09-16
JPS6180889U (en) * 1984-10-29 1986-05-29
JPS61117686U (en) * 1985-01-09 1986-07-24
JPS6246546U (en) * 1985-09-09 1987-03-20
JPH0314845U (en) * 1989-06-27 1991-02-14
JPH081326A (en) * 1994-06-17 1996-01-09 Hitachi Ltd Under water working device
JP2000273836A (en) * 1999-03-23 2000-10-03 Babcock Hitachi Kk Marine deposit organism removing device and removing method therefor
JP2003081180A (en) * 2001-09-10 2003-03-19 Zaisei Fudosan:Kk Deposit removing device for propeller blade
JP2004050326A (en) * 2002-07-18 2004-02-19 Mitsubishi Heavy Ind Ltd Three-dimensional curved surface grinding device
JP2005326324A (en) * 2004-05-17 2005-11-24 Toshiba Corp Apparatus surface roughness measuring device and method
JP2007315995A (en) * 2006-05-29 2007-12-06 Japan Atomic Energy Agency Method and device for decontaminating surface peripheral portion polluted by radioactive isotope, without remelting, re-diffusion and redeposition by using nonthermal laser exfoliation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089715A (en) * 1983-10-21 1985-05-20 Unyusho Kowan Gijutsu Kenkyusho Inspecting and measuring device of underwater working surface

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383297A (en) * 1976-11-04 1978-07-22 Lundberg Hans Method of cleaning underwater structure like hull and the like and device for the same
JPS57147197U (en) * 1981-03-12 1982-09-16
JPS6180889U (en) * 1984-10-29 1986-05-29
JPS61117686U (en) * 1985-01-09 1986-07-24
JPS6246546U (en) * 1985-09-09 1987-03-20
JPH0314845U (en) * 1989-06-27 1991-02-14
JPH081326A (en) * 1994-06-17 1996-01-09 Hitachi Ltd Under water working device
JP2000273836A (en) * 1999-03-23 2000-10-03 Babcock Hitachi Kk Marine deposit organism removing device and removing method therefor
JP2003081180A (en) * 2001-09-10 2003-03-19 Zaisei Fudosan:Kk Deposit removing device for propeller blade
JP2004050326A (en) * 2002-07-18 2004-02-19 Mitsubishi Heavy Ind Ltd Three-dimensional curved surface grinding device
JP2005326324A (en) * 2004-05-17 2005-11-24 Toshiba Corp Apparatus surface roughness measuring device and method
JP2007315995A (en) * 2006-05-29 2007-12-06 Japan Atomic Energy Agency Method and device for decontaminating surface peripheral portion polluted by radioactive isotope, without remelting, re-diffusion and redeposition by using nonthermal laser exfoliation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523732B1 (en) * 2013-10-11 2015-05-28 삼성중공업 주식회사 Cleaning apparatus and method for ship

Also Published As

Publication number Publication date
WO2010090096A1 (en) 2010-08-12
JP2010201609A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US9434456B2 (en) Submergible cleaning system
CN1141717C (en) Maintenance method for nuclear power plant
CN105480395B (en) For marine ship and the cavitating cleaner of platform surface biodeterioration
CN205602073U (en) Hull cleaning system
JP4446034B1 (en) Underwater maintenance equipment for ship propellers
CN201439086U (en) Pipeline dredging device
CN104309782A (en) Automatic floating device for underwater hull attachment cleaning robot
CN204184555U (en) A kind of novel floating drydock
CN105752290A (en) Hull cleaning system
CN204078021U (en) Marine fault boats and ships are carried out to the new herbicide of rapid uplift maintenance
CN211844847U (en) High-speed water spraying propelling remote control rescue robot
CN102802818A (en) Marine growth removal device
CN103803035A (en) Alternative method for removing marine organisms in dock of tug seawater system
GB2471204A (en) Submersible surface cleaning apparatus
Narewski HISMAR-underwater hull inspection and cleaning system as a tool for ship propulsion system performance increase
CN110682217A (en) Abrasive recovery device for sand blasting cleaning of outer surface of ship
CN204223162U (en) Remove the automatic flotation gear of underwater hull attachment robot
Akinfiev et al. A brief survey of ship hull cleaning devices.
CN103100983B (en) A kind of Combined water Jet Polishing device
CN104164893A (en) Slinging method
CN210262987U (en) Movable floater collecting device
CN204210705U (en) Remove underwater hull attachment robot Special Work ship
CN206202629U (en) Hull cleans monitoring underwater robot transfer with water
CN202175981U (en) Submersible discharge pipe
WO2010146360A2 (en) Improvements relating to submersible apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees