JP4443785B2 - Buffer cushioning material for speaker, method and apparatus for manufacturing the same, and structure for holding buffer waterproof material for speaker - Google Patents

Buffer cushioning material for speaker, method and apparatus for manufacturing the same, and structure for holding buffer waterproof material for speaker Download PDF

Info

Publication number
JP4443785B2
JP4443785B2 JP2001076427A JP2001076427A JP4443785B2 JP 4443785 B2 JP4443785 B2 JP 4443785B2 JP 2001076427 A JP2001076427 A JP 2001076427A JP 2001076427 A JP2001076427 A JP 2001076427A JP 4443785 B2 JP4443785 B2 JP 4443785B2
Authority
JP
Japan
Prior art keywords
thermosetting composition
waterproof material
frame
shock
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001076427A
Other languages
Japanese (ja)
Other versions
JP2002281588A (en
Inventor
信也 田端
信也 溝根
伸二 奥田
正春 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunstar Giken KK
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Sunstar Giken KK
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunstar Giken KK, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Sunstar Giken KK
Priority to JP2001076427A priority Critical patent/JP4443785B2/en
Publication of JP2002281588A publication Critical patent/JP2002281588A/en
Application granted granted Critical
Publication of JP4443785B2 publication Critical patent/JP4443785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばスピーカ5のフレーム7の外周縁部8とスピーカ5の取付板9との間に介在させて、両者間に緩衝性と気密性とを保有せしめる機能を有する緩衝防水材とその製造方法及び製造装置並びに該スピーカ用緩衝防水材をスピーカフレーム7に保持する構造に関するものである。
【0002】
【従来の技術】
従来のスピーカ5の場合、上記機能を有する緩衝防水材1aは、弾性を有するリング状に形成したガスケットと呼称される仲介物を、主に図12に示すようにフレーム7の外周縁部8の取付板9との対向面に貼付け、該緩衝防水材1aを介してスピーカ5を取付板9に取り付け、スピーカ5の前後の空間を遮断して音波の相互干渉を防ぎ、スピーカ5の振動が取付板9に伝達して相互に悪影響を及ぼすことがないように作用する。図12の事例では、スピーカ5は取付板9の背面に取り付けられ、従って緩衝防水材1aはフレーム7の外周縁部8の前面に設けられている。従来の緩衝防水材1aは、上記した緩衝性と密閉性(特に水密性)とが要求される場合には、ゴム、ゴム又は樹脂の発泡体等を所定のリング状に成形し、又はシート状にしてリング状に打ち抜いたものを、接着剤、両面接着テープ等でスピーカフレーム7の所定の位置に接着して用いる。一般に多用されている発泡体を材料とした緩衝防水材1aは、SBSを主成分とし、テルペンフェノールや芳香族炭化水素樹脂を加えた熱可塑性樹脂を溶融し、不活性ガスを加圧状態で混合して発泡させた樹脂を塗布した形態となっている。
【0003】
【発明が解決しようとする課題】
上記従来の緩衝防水材1aは、先ず、表面にタック性(粘着性)が残留していて、例えばスピーカ5を取付板や車体等に取り付けるとき僅かに面に触れただけでフレーム7の外周縁部8の面から剥がれやすく、スピーカ5の取付時に位置調整が困難であり、又、ごみが付着して取付板等他の物体との接触面に挟まり、水密性を阻害しがちであった。又、耐熱性が低く、100℃程度の熱衝撃で圧縮永久歪みが生じ、物体との密着性が劣化して水漏れが発生することがあった。更に、耐薬品性が弱く、特にワックスリムーバー、オイル系溶剤に犯されやすく且つ変質して機能を消失し、圧縮等変形を受けた後の材料の反発性(復元性)に欠け、そしてこれらの諸欠点に起因して止水性能が弱いという欠点があった。その上硬化に時間が掛かり、生産性が低いという解決すべき課題を有していた。
【0004】
そこで本発明は、このような従来のこの種の緩衝防水材1aが有していた課題を解決するために、樹脂の起泡手段としてガスを機械的に混合する手段を採用して材料自身の物性並びに化学的に安定した機能性を得ると共に、発泡した樹脂の硬化に際して、硬化臨界温度に対してクリティカルな硬化状態を示す原材料樹脂を使用することで加熱硬化手段の温度の変動幅を小さくし、成形時の発泡硬化に要する時間を短縮して生産性を上昇させ、材料ロスが無く、発泡倍率の調節が幅広く、且つ精度よく可能で、設備が簡便でメンテナンス性に優れており、緩衝防水材として振動特性、防水性、リサイクル性に優れ、表面タック性(粘着性)の残留しない低価格な緩衝防水材1を提供することを目的とする。
【0005】
【課題を解決するための手段】
該目的を達成するための本発明の構成を実施例に対応する図1乃至図8を用いて説明すると、第1発明は、スピーカ5のフレーム7の外周縁部8と取付板9との間に介在させて、該両者間に衝撃緩衝性及び密閉性を保持せしめる緩衝防水材1であって、ポリウレタンプレポリマーと固形ポリアミンを不活性化した潜在性硬化剤を主成分とする熱硬化性組成物10に、ガス11を機械的に混合して得た発泡性熱硬化性組成物12を、その熱硬化臨界温度未満の状態で塗布対象とするフレーム7の外周縁部8の所定位置に塗布し、発泡させながら発泡性熱硬化性組成物12の熱硬化臨界温度以上に加熱することで、内部の気泡の直径寸法が、ほぼ1〜100ミクロンの範囲で所定形状に発泡硬化させた緩衝防水材1である。
【0006】
第2発明は、ポリウレタンプレポリマーと固形ポリアミンを不活性化した潜在性硬化剤を主成分とする熱硬化性組成物10に、ガス11を機械的に混合してフレーム7の外周縁部8の所定位置に吐出、発泡させながら熱硬化させる緩衝防水材の製造方法に於いて、発泡性熱硬化性組成物12をその熱硬化臨界温度未満の状態でフレーム7の外周縁部8の所定位置に吐出塗布し、発泡性熱硬化性組成物12を成形装置50によって発泡させながら熱硬化臨界温度以上に加熱して、内部の気泡の直径寸法が、ほぼ1〜100ミクロンの範囲で発泡硬化させる緩衝防水材1の製造方法である。
【0007】
第3発明は、ガス11を吸入して熱硬化性組成物10を該ガス11中に注入する供給装置20と、ガス11と熱硬化性組成物10とを機械的に混合分散させる混合装置30と、混合分散させた発泡性熱硬化性組成物12を緩衝防水材1が形成されるべきフレーム7上の外周縁部8上の所定位置に加圧吐出させる原材料吐出装置40と、フレーム7の外周縁部8上の所定位置に於いて発泡性熱硬化性組成物12を熱硬化臨界温度以上に加熱して、内部の気泡の直径寸法が、ほぼ1〜100ミクロンの範囲で発泡硬化させる成形装置50とからなる緩衝防水材1の製造装置である。
【0008】
第4発明は、緩衝防水材1の内部の気泡が独立気泡単独、または独立気泡と連続気泡の両者からなることを特徴とする第1発明の緩衝防水材1である。第5発明は、表面のスキン層が内側の発泡層に対して明確な界面を画することなく一体に形成されていることを特徴とする第1発明の緩衝防水材1である。第6発明は、密度が0.15〜0.9g/cmの範囲にあることを特徴とする第1発明の緩衝防水材1である。第7発明は、前記スピーカフレーム7が他の物体であることを特徴とする第1発明の緩衝防水材1である。
【0009】
発明は、前記発泡性熱硬化性組成物12の塗布に際して、前記フレーム7の外周縁部8の塗布位置の全範囲若しくは一部の範囲に凹陥部56が形成されており、発泡性熱硬化性組成物12の一部分が前記凹陥部56の内部に侵入して充填された状態で硬化されていることを特徴とする第1発明の緩衝防水材1を保持する構造である。第発明は、前記塗布されている発泡性熱硬化性組成物12が、成形装置50に於いてフレーム7を電磁誘導加熱法により加熱することで、間接的に熱硬化臨界温度以上に加熱されることを特徴とする第2発明の緩衝防水材1の製造方法である。第1発明は、前記塗布されている発泡性熱硬化性組成物12が、成形装置50に於いて高周波誘電加熱法により熱硬化臨界温度以上に加熱されることを特徴とする第2発明の緩衝防水材1の製造方法である。第1発明は、前記塗布されている発泡性熱硬化性組成物12が、成形装置50に於いて赤外線を照射することにより熱硬化臨界温度以上に加熱されることを特徴とする第2発明の緩衝防水材1の製造方法である。
【0010】
【発明の実施の形態】
以下上記した各解決手段について、各種の実施の形態を図面に基づいて説明する。本発明の緩衝防水材1の主材料である熱硬化性組成物10の実施例やその変形例等に関する詳細な実施要領は、本出願と同一発明者が開示した特開昭2000−117090号公報によるが、要点を記載すると、ポリイソシアネート化合物並びにポリオール成分に過剰量のポリイソシアネート化合物を反応させて得られる末端活性イソシアネート基を含有するウレタンプレポリマーの夫々単独又は混合物と、固形ポリアミンを不活性化した潜在性硬化剤として融点50℃以上で中心粒径20ミクロン程度の固形ポリアミン粉末の表面に中心粒径2ミクロンの微粉体を固着させて活性アミノ基を被覆した微粉体コーティングポリアミンとを、加熱活性化後のアミノ基とイソシアネート基との当量比が1/0.5〜2.0となるように配合して用いる。
【0011】
前記微粉体コーティングポリアミンに使用する微粉体は、無機材料としてはタルク、酸化チタン、炭酸カルシウム等と物性的に同等な物質、有機材料としてはポリアクリル樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリ塩化ビニール樹脂等が採用され、これらの1種又は2種以上の混合物が使用される。夫々の使用量の固形ポリアミン粉末/微粉体は、重量比で1/0.001〜0.5程度とする。固形ポリアミンを所定の粒径に粉砕しつつ微粉体材料を混合粉砕して固形ポリアミンの表面に微粉体を固着させるせん断摩擦式混合方式により製造する。具体的には拘束衝撃式混合撹拌機又は圧縮せん断式混合撹拌機等を使用する。
【0012】
上記により得た熱硬化性組成物10は、温度に対してクリティカルな硬化特性を有し、60℃未満では硬化しないが、80℃では硬化がほぼ完了する。従って成形時に金型の冷却加熱サイクルの温度幅を小さくし、同時にサイクルの周期を短縮することが可能となって生産性向上に寄与する。次に、熱硬化性組成物10に起泡剤としてのガス11を撹拌混合して機械的に混和し、発泡性熱硬化性組成物12とする。第1実施例ではガス11として空気を使用しているが、他の等価な気体であってもよいことは言うまでもない。尚、熱硬化性組成物10と起泡剤としてのガス11との機械的に混和する技術は、本願と同一の発明者により開示された特開平11−128709号公報に詳述されている。
【0013】
図1は第2発明に属する緩衝防水材1の製造方法を実施することを目的とする、第3発明に属する製造装置の構成を示す回路系統図である。先ず、供給装置20からガス11と熱硬化性組成物10が混合装置30のピストンポンプ31によって混合される。ピストンポンプ31はシリンダ32とピストン33により発泡用のガス11を吸入し、次いでポリウレタンプレポリマーと固形ポリアミンを不活性化した潜在性硬化剤を主成分とする熱硬化性組成物10を注入して加圧して機械的に混合する。混合された発泡性熱硬化性組成物12は、原材料吐出装置40のピストンポンプ41によってフレーム7等の被塗装物並びに塗布台55等を具備する成形装置50に圧送される。
【0014】
成形装置50では、塗布台55上にフレーム7等がセットされており、ピストンポンプ41によって圧送された発泡性熱硬化性組成物12は、原材料吐出装置40のノズル42からフレーム7の外周縁部8の所定位置に塗布される。この時、フレーム7は、発泡性熱硬化性組成物12の熱硬化臨界温度未満(約60℃以下)に保持されており、従って硬化すること無く発泡を続ける。塗布後、フレーム7を加熱するか発泡性熱硬化性組成物12を直接に加熱して熱硬化臨界温度以上に高め、約10秒程度で所定の形状に硬化させる。混合装置30と原材料吐出装置40のポンプはいかなる種類のポンプでもよいが、実施例のピストンポンプ31,41はシリンダー内をピストンが往復移動して吸入工程と吐出工程を行う体積動作型であるから原材料の圧送に適し、供給量が正確で再現性が良好な特徴を有する。又、ピストンポンプは一基だけでなく複数基を位相をずらせて並列駆動することにより、原材料を滑らかに圧送することができる。
【0015】
フレーム7の加熱の手段としては、フレーム7が金属製の場合は電磁誘導加熱法により加熱してもよく、又は塗布された原材料にマイクロウエーヴを照射する高周波誘電加熱法により加熱するか、簡単には赤外線を照射してもよい。硬化時間が短いので、電磁誘導コイル54やマイクロウエーヴアンテナ53や赤外線灯等をスピーカ5の製造ラインに上記した照射加熱装置を組み込んでおき、組立工程中の一工程として他の工程と周期を合わせることもできる。尚、現実の製造設備ではこの様な製造装置が平行して多数設置され、並列駆動されて生産性の向上に寄与している。尚、上記のようにして製造された緩衝防水材1とフレーム7の外周縁部8とは実用上差支えない程度の基体との付着力乃至接着力を有するが、更に強力な接着力を必要とする場合は、発泡性熱硬化性組成物12の塗布面を粗面とするか、又は例えばフレーム7の外周縁部8にホゾ溝類似の凹陥部56を形成し、該凹陥部56の内部に発泡性熱硬化性組成物12の一部分が侵入して充填された状態となっている構造とすればよい。
【0016】
上記製造方法並びに製造装置により製造した緩衝防水材1の内部の気泡は、主として独立気泡からなるが、発泡度が大きい場合は独立気泡と連続気泡の両者が混在する状態も出現する。製造後の緩衝防水材1の密度は0.15〜0.9g/cm3の範囲にあることが緩衝防水材1としての緩衝性並びに水密性を保持するに適当であり、機械的に混合されたガスによって起泡するので内部の気泡の大きさがある中心値に対する分散が小さくマクロに見た組織が均一であり、対応する物体a、又は物体bとの接触性が良好で、特に水密性の向上に寄与する。この内部の気泡の直径の中心値がほぼ1〜100ミクロンの範囲であること独立気泡の維持と弾力性の安定性の立場から望ましい。又、表面のスキン層が薄く、内側の発泡層に対して明確な界面を介することなく一体に形成されていてもよい。なお、本発明の実施の形態では、フレーム7に塗布する前提で説明したが、塗布対象物は他の物体でもよく、例えばスピーカボックスの嵌合部に塗布してもよい。この場合は、水密性の高い緩衝防水材1はボックス内部の空気を外部に漏らさず空気漏れによる不良を削減でき、生産性及び品質を向上することが可能である。
【0017】
本発明の緩衝防水材1の製造方法並びに製造装置は、熱硬化性組成物に起泡剤となるガスを成形直前に機械的に混合し、発泡させる構造となっており、主剤と硬化剤と発泡剤とを混合しなくてもよいので材料ロス(パージロスと呼称されている)が無い。起泡剤となるガスを機械的に混合して発泡させるので、組織はほとんどが独立気泡となり、連続気泡部は発生しないかあるいは極めて少ないので機械的強度や物性並びに水密性に優れている。又、組織がマクロに見て均質に近いので緩衝防水材としてフレーム7の外周縁8と取付板9相互間の緩衝性にも優れている。
【0018】
原材料である熱硬化性組成物はクリティカルな熱硬化臨界温度を有するので、被塗布物体の塗布時及び硬化時の温度差が小さくなり、臨界温度付近での加熱と冷却との間の時間が短くて済むので、生産サイクルを短くすることができ、前記した臨界温度以上で速(即)硬化することと相俟って生産性に優れている。又、熱硬化性組成物とガスとをピストンポンプで混合するので、混合精度がよく、発泡倍率の正確な調節が容易で、製品として物性の再現性が良好で品質が安定性している。なお、本発明の実施の形態では、フレーム7に塗布する前提で説明したが、塗布対象物は他の物体でもよく、例えばスピーカボックスの嵌合部に塗布してもよい。この場合は、水密性の高い緩衝防水材1はボックス内部の空気を外部に漏らさず、空気漏れによる不良を削減でき、生産性及び品質を向上することが可能である。
【0019】
【実施例】
第1実施例について説明する。平均分子量2000のポリエーテルポリオール79.3重量部とジフェニールメタンジイソシアネート20.7重量部とを、温度80℃で2時間反応させ、末端イソシアネート基含有量3.5%、粘度2000cps/20℃の末端活性イソシアネート基を含有するウレタンプレポリマーを得る。又、中心粒径約2mmの1,12−ドデカンジアミン(融点71℃)83.3重量部と中心粒径0.3ミクロンのポリ塩化ビニール樹脂微粉体16.7重量部とを混合し、ジェットミルにて粉砕することにより、中心粒径約10ミクロンの微粉体コーティングポリアミン100重量部を得る。次に、末端活性イソシアネート基を含有するウレタンプレポリマー90.9重量部と微粉体コーティングポリアミン9.1重量部とをケミスターラーで混合分散して、熱硬化臨界温度が約80℃である一液型の熱硬化性組成物10を得る。
【0020】
上記の一液型の熱硬化性組成物10に起泡剤としてのガス11、即ち空気を混合して機械的に混和し、発泡性熱硬化性組成物12を得、この発泡性熱硬化性組成物12を成形装置50に圧送して、該成形装置50の図1に示す断面形状で約60℃以下の温度となっているスピーカフレーム7の外周縁部8に、該スピーカフレーム7を回転させながら吐出装置40のノズル42からリング状に射出塗布され、フレーム7上方のマイクロウエーヴアンテナ53からマイクロウエーブを放射して誘電加熱を行い、前記熱硬化臨界温度以上に加熱して発泡硬化させて緩衝防水材1を得た。
【0021】
図4は上記第2実施例の成形方法を示している。この第2実施例は、第1実施例と同じく発泡性熱硬化性組成物12を成形装置50に圧送して、該成形装置50の図1に示す断面形状で約60℃以下の温度となっているスピーカフレーム7の外周縁部8に、該スピーカフレーム7を回転させながら吐出装置40のノズル42からリング状に射出塗布し、フレーム上方に設置した電磁誘導コイル54に交流電流を流して電磁誘導加熱法によりフレーム7を加熱し、間接的に発泡性熱硬化性組成物12を熱硬化臨界温度以上に加熱する方式である。この方式は危険な電磁波が周囲に漏洩する恐れがない特長を有する。
【0022】
図5に前記第1実施例による緩衝防水材のヤング率、tanδ等、物性値の温度特性を示す。主原料樹脂、硬化剤、発泡剤を予め混合して成形する従来の発泡体緩衝防水材の一例(=従来例…点線で記入、図6も同様)と比較して物性値の変動が小さく、温度特性が明瞭に改善されている。図6に同じく第1実施例について−40℃における緩衝防水材の外力に対する破断特性を示す。同じく従来例と比較して低温時(図6は−40℃)の破断強度が強くなり、機械的強度が改善されていることが明瞭である。すなわち、低温時の物性変化がなく改善されていることが明瞭である。又、図7には第1実施例の緩衝防水材の気泡直径の分布を示す。図8の従来例の気泡粒度と比較して、本発明の緩衝防水材1の方が均一性が優れている。更に図9及び図10に第1実施例の緩衝防水材1と従来例緩衝防水材1aについての発泡状態を示した。又、第1実施例による緩衝防水材について、完全に同一の材質のテストピースtを作成し、図11に示したU字溝水張り試験で水密性を測定した。このテストは同図に概略構造を示すように、アクリル樹脂板からなる2枚の板61,61の間に方形断面の細長いテストピースtをU字形に曲げて挟持し、ネジ62とスペーサ63とで適当に圧縮する。そしてこのU字形テストピースtと2枚のアクリル樹脂板61,61とで囲まれた空間に水64を満たし、U字形テストピースtの外側に漏出する水の有無を検出し、水の漏出が阻止される圧縮率を測定する。このテストの結果、従来例の発泡体は50%〜80%程度圧縮する必要があったが、第1実施例の発泡体は10%程度の圧縮率で完全な水密性が得られた。
【0023】
以上本発明の代表的と思われる実施例並びに変形例について説明したが、本発明は必ずしもこれらの実施例構造のみに限定されるものではなく、等価な材料の変更使用、金型の加熱手段を含む成形装置の改変等、本発明にいう前記の構成要件を備え、かつ、本発明にいう目的を達成し、以下にいう効果を有する範囲内において適宜改変して実施することができるものである。
【0024】
【発明の効果】
本発明による緩衝防水材の製造方法並びに製造装置は、一液型の熱硬化性組成物に起泡剤となるガスを成形直前に機械的に混合し、発泡させる構造であり、主剤と硬化剤と発泡剤とを混合しなくてもよいので材料ロス(パージロスと呼称されている)が無く、湿度や気温などの外気の影響を受けることも無いので作業停止時等の作業管理が非常に簡単容易である。又、体積動作形の原料供給手段の採用により供給量が精密で再現性がよく、発泡倍率の正確な調節が容易で作業ロットによりバラつくことは皆無であり、安定した品質を得る。硬化作業工法は一通りでなく融通が効く利点がある。更に、原材料である熱硬化性組成物はクリティカルな熱硬化臨界温度を有するので、臨界温度以上で速(即)硬化し、塗布時及び硬化時の温度差が小さいので、生産サイクルの周期を短くすることができ、前記した臨界温度以上で速(即)硬化することと相俟って生産性に優れている。
【0025】
得られた緩衝防水材に関しては、起泡剤となるガスを機械的に混合して発泡させるのでほとんどが独立気泡となり、連続気泡部は発生しないか、或いは極めて少なく且つ起泡のサイズを自由に制御し、且つ小さくできるので気泡組織がマクロに見て均質に近くなる。従って不均一さに起因する水密性の低下を生じることがなく、ガスケットとしての防水性を高めることができる等、機械的強度や耐久性に優れた緩衝防水材とすることができる。又、軽量で物性に優れていることから、音響振動特性にも優れ、性能が均一な製品を実現でき、その上、フレーム7等の被塗装物との接着力が付着状態を保持する程度には十分であるが、接着剤ほど強固でないので剥離が容易であり、リサイクル性に優れている。更に前述のようにコスト性に優れ、作業性が容易であることと相俟って、スピーカ5等の商品を提供するに際して従来のものには期待することが出来ない顕著な効果を有するに至ったのである。
【図面の簡単な説明】
【図1】第1実施例の緩衝防水材の製造装置の構成の回路系統図。
【図2】第1実施例の緩衝防水材近傍の斜視図。
【図3】同、緩衝防水材の成形時を示す成形部分の部分断面図。
【図4】第2実施例の成形時の状態を示す成形部分の部分断面図。
【図5】第1実施例による緩衝防水材の物性値の温度特性図。
【図6】同、−40℃における緩衝防水材の機械強度を示す破断特性図。
【図7】同、緩衝防水材の気泡組織の気泡直径の分布を示す分布説明ヒストグラフ。
【図8】従来の緩衝防水材の気泡組織の気泡直径の分布を示す分布説明ヒストグラフ。
【図9】本発明の緩衝防水材の気泡組織を示す説明図。
【図10】従来例緩衝防水材の気泡組織を示す説明図。
【図11】第1実施例のテストピースの漏水性測定装置の模式説明図。
【図12】従来例の緩衝防水材をスピーカとの関連で説明する部分斜視図。
【符号の説明】
本発明の緩衝防水材(ガスケット)
1a 従来の緩衝防水材
2 コルゲーション
3 振動板
4 ダンパー
5 スピーカ
6 ボイスコイルボビン
7 フレーム
8 フレームの外周縁部
9 取付板
10 熱硬化性組成物
11 ガス
12 発泡性熱硬化性組成物
20 供給装置
21 熱硬化性組成物の供給元
22 ガスの供給元
30 混合装置
31 混合装置のピストンポンプ
32 ピストンポンプのシリンダ
33 ピストンポンプのピストン
40 原材料吐出装置
41 吐出装置のピストンポンプ
42 ノズル
50 成形装置
53 マイクロウエーヴアンテナ
54 電磁誘導コイル
55 塗布台
56 凹嵌部
[0001]
BACKGROUND OF THE INVENTION
The present invention provides, for example, a shock-proof waterproof material 1 having a function of interposing between the outer peripheral edge 8 of the frame 7 of the speaker 5 and the mounting plate 9 of the speaker 5 so as to retain buffering and airtightness therebetween. The present invention relates to a manufacturing method and a manufacturing apparatus, and a structure for holding the speaker waterproofing material 1 for a speaker on a speaker frame 7.
[0002]
[Prior art]
In the case of the conventional speaker 5, the shock-proof waterproof material 1 a having the above-described function is an intermediary called a gasket formed in a ring shape having elasticity, and mainly an outer peripheral edge 8 of the frame 7 as shown in FIG. 12. Affixed to the surface facing the mounting plate 9, the speaker 5 is mounted on the mounting plate 9 via the cushioning waterproofing material 1a, the space before and after the speaker 5 is blocked to prevent mutual interference of sound waves, and the vibration of the speaker 5 is mounted. It acts on the plate 9 so as not to adversely affect each other. In the case of FIG. 12, the speaker 5 is attached to the back surface of the mounting plate 9, and thus the shock-proof waterproof material 1 a is provided on the front surface of the outer peripheral edge portion 8 of the frame 7. The conventional shock-proof waterproof material 1a is formed by molding a rubber, rubber or resin foam into a predetermined ring shape or a sheet shape when the above-described shock-absorbing property and sealing property (particularly water-tightness) are required. Then, the material punched into a ring shape is used by adhering to a predetermined position of the speaker frame 7 with an adhesive, a double-sided adhesive tape or the like. In general, the cushioning waterproofing material 1a made of a foam is used as a main component, melts a thermoplastic resin containing SBS as a main component and terpenephenol or an aromatic hydrocarbon resin, and mixes an inert gas under pressure. Then, the foamed resin is applied.
[0003]
[Problems to be solved by the invention]
The conventional waterproofing waterproof material 1a has a tackiness (adhesiveness) remaining on the surface. For example, when the speaker 5 is attached to a mounting plate or a vehicle body, the outer peripheral edge of the frame 7 is only touched to the surface. It is easy to peel off from the surface of the portion 8, and it is difficult to adjust the position when the speaker 5 is attached. Moreover, dust adheres and is caught between contact surfaces with other objects such as a mounting plate, and tends to hinder watertightness. Further, the heat resistance is low, and a compression set is generated by a thermal shock of about 100 ° C., the adhesion to an object is deteriorated and water leakage may occur. Furthermore, it is weak in chemical resistance, especially susceptible to being attacked by wax removers and oil-based solvents, and its function is lost due to deterioration, and the resilience (restorability) of the material after undergoing deformation such as compression is lacking. There was a fault that the water stop performance was weak due to the fault. In addition, it takes time to cure and has a problem to be solved that productivity is low.
[0004]
Therefore, the present invention adopts a means for mechanically mixing the gas as a foaming means for the resin in order to solve the problems of the conventional buffer waterproof material 1a of this type. In addition to obtaining physical properties and chemically stable functionality, it is possible to reduce the temperature fluctuation range of the heat curing means by using a raw material resin that exhibits a critical curing state with respect to the curing critical temperature when curing the foamed resin. Reduces the time required for foam curing at the time of molding, increases productivity, eliminates material loss, allows wide adjustment of foaming magnification with high accuracy, is simple in equipment, has excellent maintainability, and is buffered and waterproof An object of the present invention is to provide a low-cost cushioning waterproofing material 1 that is excellent in vibration characteristics, waterproofness, and recyclability as a material, and does not retain surface tackiness (adhesiveness).
[0005]
[Means for Solving the Problems]
The structure of the present invention for achieving the object will be described with reference to FIGS. 1 to 8 corresponding to the embodiment. The first invention is a structure between the outer peripheral edge 8 of the frame 7 of the speaker 5 and the mounting plate 9. A buffer waterproofing material 1 interposed between the two to maintain shock buffering property and sealing property, and a thermosetting composition mainly composed of a latent curing agent in which a polyurethane prepolymer and a solid polyamine are inactivated. The foamable thermosetting composition 12 obtained by mechanically mixing the gas 11 with the product 10 is applied to a predetermined position of the outer peripheral edge 8 of the frame 7 to be applied in a state below the thermosetting critical temperature. Then, the foamed thermosetting composition 12 is heated to a temperature equal to or higher than the thermosetting critical temperature of the foamable thermosetting composition 12, and the foamed and waterproofed foam is foam-cured and cured into a predetermined shape in the range of the diameter of the internal bubbles in the range of approximately 1 to 100 microns. This is material 1.
[0006]
In the second invention, a gas 11 is mechanically mixed with a thermosetting composition 10 mainly composed of a latent curing agent obtained by inactivating a polyurethane prepolymer and a solid polyamine, and the outer peripheral edge 8 of the frame 7 is mixed. In the manufacturing method of the shock-proof waterproof material that is thermally cured while being discharged and foamed at a predetermined position, the foamable thermosetting composition 12 is placed at a predetermined position on the outer peripheral edge 8 of the frame 7 in a state of less than the thermosetting critical temperature. A buffer that is applied by discharge and heated to a temperature equal to or higher than the thermosetting critical temperature while foaming the foamable thermosetting composition 12 by the molding apparatus 50 to foam and cure the foam within the diameter range of approximately 1 to 100 microns. This is a manufacturing method of the waterproof material 1.
[0007]
In the third invention, a supply device 20 for sucking the gas 11 and injecting the thermosetting composition 10 into the gas 11 and a mixing device 30 for mechanically mixing and dispersing the gas 11 and the thermosetting composition 10 are provided. A raw material discharge device 40 that pressurizes and discharges the foamed thermosetting composition 12 mixed and dispersed to a predetermined position on the outer peripheral edge 8 on the frame 7 where the buffer waterproof material 1 is to be formed; Molding in which the foamable thermosetting composition 12 is heated to a temperature equal to or higher than the thermosetting critical temperature at a predetermined position on the outer peripheral edge 8, and the diameter of the internal bubbles is foamed and cured within a range of approximately 1 to 100 microns. This is a manufacturing apparatus for the shock-proof waterproof material 1 including the device 50.
[0008]
The fourth invention is the shock-proof waterproof material 1 according to the first invention, characterized in that the bubbles inside the shock-proof waterproof material 1 consist of closed cells alone or both closed and open cells. A fifth invention is the shock-proof waterproof material 1 according to the first invention, wherein the skin layer on the surface is integrally formed without defining a clear interface with the inner foam layer. 6th invention is the buffer waterproofing material 1 of 1st invention characterized by being in the range of 0.15-0.9 g / cm < 3 >. A seventh invention is the shock-proof waterproof material 1 according to the first invention , wherein the speaker frame 7 is another object.
[0009]
In the eighth aspect of the present invention, when the foamable thermosetting composition 12 is applied, the recessed portion 56 is formed in the entire range or a partial range of the application position of the outer peripheral edge portion 8 of the frame 7. It is a structure for holding the shock-proof waterproof material 1 according to the first invention, wherein a part of the curable composition 12 is hardened in a state where it enters and fills the inside of the recessed portion 56. In the ninth aspect of the invention, the applied foamable thermosetting composition 12 is indirectly heated to the thermosetting critical temperature or higher by heating the frame 7 by an electromagnetic induction heating method in the molding apparatus 50. It is a manufacturing method of the shock-proof waterproof material 1 of 2nd invention characterized by the above-mentioned. The tenth aspect of the invention is characterized in that the foamable thermosetting composition 12 applied is heated to a temperature equal to or higher than the thermosetting critical temperature by a high frequency dielectric heating method in the molding apparatus 50. This is a manufacturing method of the buffer waterproof material 1. The first 1 invention, the coating has been and foamable thermosetting composition 12, second invention characterized by being heated in the thermosetting critical temperature or more by irradiating infrared rays at the molding device 50 This is a method for manufacturing the shock-proof waterproof material 1.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various embodiments of the above-described solving means will be described with reference to the drawings. Detailed implementation points regarding the examples of the thermosetting composition 10 which is the main material of the shock-proof waterproof material 1 of the present invention and the modified examples thereof are disclosed in Japanese Patent Laid-Open No. 2000-117090 disclosed by the same inventor as the present application. However, if the main point is described, the polyisocyanate compound and the urethane prepolymer containing a terminal active isocyanate group obtained by reacting an excess amount of the polyisocyanate compound with the polyol component alone or a mixture and the solid polyamine are inactivated. As a latent curing agent, a fine powder-coated polyamine coated with an active amino group by fixing a fine powder with a center particle size of 2 microns on the surface of a solid polyamine powder having a melting point of 50 ° C. or more and a center particle size of about 20 microns is heated. Used after blending so that the equivalent ratio of the activated amino group and isocyanate group is 1 / 0.5 to 2.0. That.
[0011]
The fine powder used for the fine powder coating polyamine is an inorganic material that is physically equivalent to talc, titanium oxide, calcium carbonate, etc., and the organic material is polyacrylic resin, polystyrene resin, polyethylene resin, polyvinyl chloride resin. Etc. are employed, and one or a mixture of two or more thereof is used. The amount of solid polyamine powder / fine powder used is about 1 / 0.001 to 0.5 by weight. It is produced by a shear friction mixing method in which a fine powder material is mixed and pulverized while the solid polyamine is pulverized to a predetermined particle size, and the fine powder is fixed to the surface of the solid polyamine. Specifically, a restraint impact type mixing stirrer or a compression shear type mixing stirrer is used.
[0012]
The thermosetting composition 10 obtained as described above has a critical curing characteristic with respect to temperature, and does not cure below 60 ° C., but curing is almost completed at 80 ° C. Accordingly, it is possible to reduce the temperature range of the cooling and heating cycle of the mold at the time of molding, and at the same time to shorten the cycle period, which contributes to productivity improvement. Next, a gas 11 as a foaming agent is stirred and mixed in the thermosetting composition 10 and mechanically mixed to obtain a foamable thermosetting composition 12. Although air is used as the gas 11 in the first embodiment, it goes without saying that other equivalent gases may be used. The technique of mechanically mixing the thermosetting composition 10 and the gas 11 as the foaming agent is described in detail in JP-A-11-128709 disclosed by the same inventor as the present application.
[0013]
FIG. 1 is a circuit system diagram showing a configuration of a manufacturing apparatus belonging to the third invention for the purpose of carrying out the manufacturing method of the shock-proof waterproof material 1 belonging to the second invention. First, the gas 11 and the thermosetting composition 10 are mixed from the supply device 20 by the piston pump 31 of the mixing device 30. The piston pump 31 sucks the foaming gas 11 through the cylinder 32 and the piston 33, and then injects the thermosetting composition 10 mainly composed of the latent curing agent inactivated with the polyurethane prepolymer and the solid polyamine. Press to mix mechanically. The mixed foamable thermosetting composition 12 is pressure-fed by a piston pump 41 of the raw material discharge device 40 to a molding device 50 including an object to be coated such as the frame 7 and an application table 55.
[0014]
In the molding apparatus 50, the frame 7 or the like is set on the coating table 55, and the foamable thermosetting composition 12 that is pumped by the piston pump 41 passes from the nozzle 42 of the raw material discharge apparatus 40 to the outer peripheral edge portion of the frame 7. 8 is applied to a predetermined position. At this time, the frame 7 is maintained at a temperature lower than the thermosetting critical temperature of the foamable thermosetting composition 12 (about 60 ° C. or less), and thus continues to foam without being cured. After the application, the frame 7 is heated or the foamable thermosetting composition 12 is directly heated to be higher than the thermosetting critical temperature, and is cured to a predetermined shape in about 10 seconds. The pumps of the mixing device 30 and the raw material discharge device 40 may be any type of pump, but the piston pumps 31 and 41 of the embodiment are volume operation types in which the piston reciprocates in the cylinder to perform the suction process and the discharge process. It is suitable for pumping raw materials, has the features of accurate supply and good reproducibility. In addition, the piston pump can smoothly feed the raw material by driving not only one unit but also a plurality of units in parallel while shifting the phase.
[0015]
As a means for heating the frame 7, when the frame 7 is made of metal, the frame 7 may be heated by an electromagnetic induction heating method, or may be heated by a high frequency dielectric heating method in which a coated raw material is irradiated with a microwave, or simply May be irradiated with infrared rays. Since the curing time is short, the electromagnetic heating coil 54, the microwave antenna 53, the infrared lamp, etc. are incorporated in the production line of the speaker 5 with the irradiation heating device described above, and the cycle is synchronized with other processes as one process in the assembly process. You can also. In an actual manufacturing facility, a large number of such manufacturing apparatuses are installed in parallel and driven in parallel to contribute to the improvement of productivity. The shock-proof waterproof material 1 manufactured as described above and the outer peripheral edge 8 of the frame 7 have an adhesive force or adhesive force to the base body that does not interfere with practical use, but a stronger adhesive force is required. In this case, the application surface of the foamable thermosetting composition 12 is roughened or, for example, a concave portion 56 similar to a groove is formed in the outer peripheral edge portion 8 of the frame 7, and the concave portion 56 is formed inside the concave portion 56. What is necessary is just to set it as the structure which has become the state which a part of foamable thermosetting composition 12 penetrate | invaded and filled.
[0016]
The bubbles inside the shock-proof waterproof material 1 manufactured by the manufacturing method and the manufacturing apparatus are mainly composed of closed cells. However, when the foaming degree is large, a state where both closed cells and open cells coexist appears. The density of the waterproofing material 1 after manufacture is suitably in the range of 0.15 to 0.9 g / cm 3 in order to maintain the shock-absorbing property and water-tightness of the waterproofing material 1 and is mixed mechanically. Since the bubbles are generated by the gas, the dispersion of the internal bubbles is small with respect to the center value, the structure seen macroscopically is uniform, the contact property with the corresponding object a or object b is good, and particularly watertight It contributes to the improvement. It is desirable from the sustain and elasticity stability standpoint of closed cell center value of the diameter of the interior of the bubble is in the range of approximately 1 to 100 microns. Further, the skin layer on the surface may be thin and formed integrally with the inner foam layer without a clear interface. In the embodiment of the present invention, description has been made on the premise that the object is applied to the frame 7. However, the object to be applied may be another object, for example, may be applied to a fitting portion of a speaker box. In this case, the buffer waterproof material 1 with high water-tightness can reduce defects due to air leakage without leaking air inside the box to the outside, and can improve productivity and quality.
[0017]
The manufacturing method and the manufacturing apparatus of the shock-proof waterproof material 1 of the present invention have a structure in which a gas that becomes a foaming agent is mechanically mixed and foamed immediately before molding into a thermosetting composition. There is no material loss (referred to as purge loss) because it is not necessary to mix the foaming agent. Since the foaming gas is mechanically mixed and foamed, most of the tissue becomes closed cells, and open cell portions are not generated or very few, so that the mechanical strength, physical properties and water tightness are excellent. Further, since the structure is close to homogeneity when viewed macroscopically, it is excellent in cushioning between the outer peripheral edge 8 of the frame 7 and the mounting plate 9 as a buffer waterproofing material.
[0018]
Since the thermosetting composition as a raw material has a critical thermosetting critical temperature, the temperature difference between applying and curing the object to be coated is small, and the time between heating and cooling near the critical temperature is short. Therefore, the production cycle can be shortened, and combined with rapid (immediate) curing at the above critical temperature, it is excellent in productivity. Further, since the thermosetting composition and the gas are mixed by a piston pump, the mixing accuracy is good, the foaming ratio can be easily adjusted, the reproducibility of physical properties as a product is good, and the quality is stable. In the embodiment of the present invention, description has been made on the premise that the object is applied to the frame 7. However, the object to be applied may be another object, for example, may be applied to a fitting portion of a speaker box. In this case, the highly waterproof water-proof cushioning material 1 does not leak air inside the box to the outside, can reduce defects due to air leakage, and can improve productivity and quality.
[0019]
【Example】
A first embodiment will be described. 79.3 parts by weight of a polyether polyol having an average molecular weight of 2000 and 20.7 parts by weight of diphenylmethane diisocyanate were reacted at a temperature of 80 ° C. for 2 hours to give a terminal isocyanate group content of 3.5% and a viscosity of 2000 cps / 20 ° C. A urethane prepolymer containing terminally active isocyanate groups is obtained. Further, 83.3 parts by weight of 1,12-dodecanediamine (melting point 71 ° C.) having a center particle size of about 2 mm and 16.7 parts by weight of a fine powder of polyvinyl chloride resin having a center particle size of 0.3 microns are mixed, and jetted. By grinding with a mill, 100 parts by weight of finely powder coated polyamine having a center particle size of about 10 microns is obtained. Next, 90.9 parts by weight of urethane prepolymer containing terminal active isocyanate groups and 9.1 parts by weight of fine powder-coated polyamine are mixed and dispersed with a chemistor, and a one-component liquid having a thermosetting critical temperature of about 80 ° C. A mold thermosetting composition 10 is obtained.
[0020]
A gas 11 as a foaming agent, that is, air, is mixed with the one-component thermosetting composition 10 and mechanically mixed to obtain a foamable thermosetting composition 12, and the foamable thermosetting composition is obtained. The composition 12 is pumped to the molding device 50, and the speaker frame 7 is rotated around the outer peripheral edge 8 of the speaker frame 7 having a cross-sectional shape shown in FIG. The nozzle 42 of the discharge device 40 is injected and applied in a ring shape, and the microwave is radiated from the microwave antenna 53 above the frame 7 to perform dielectric heating, and the foam is cured by heating above the thermosetting critical temperature. A buffer waterproof material 1 was obtained.
[0021]
FIG. 4 shows the molding method of the second embodiment. In the second embodiment, the foamable thermosetting composition 12 is pumped to the molding apparatus 50 as in the first embodiment, and the temperature is about 60 ° C. or less in the cross-sectional shape shown in FIG. The outer peripheral edge 8 of the speaker frame 7 is spray-coated in a ring shape from the nozzle 42 of the discharge device 40 while rotating the speaker frame 7, and an alternating current is passed through the electromagnetic induction coil 54 installed above the frame to electromagnetically In this method, the frame 7 is heated by an induction heating method, and the foamable thermosetting composition 12 is indirectly heated to the thermosetting critical temperature or higher. This method has a feature that dangerous electromagnetic waves do not leak to the surroundings.
[0022]
FIG. 5 shows temperature characteristics of physical properties such as Young's modulus and tan δ of the buffer waterproof material according to the first embodiment. Compared to an example of a conventional foam cushioning waterproofing material that is premixed with a main raw material resin, a curing agent, and a foaming agent (= conventional example ... filled with a dotted line, the same applies to FIG. 6), the variation in physical property values is small. The temperature characteristics are clearly improved. FIG. 6 also shows the breaking characteristics with respect to the external force of the buffer waterproof material at −40 ° C. for the first embodiment. Similarly, it is clear that the breaking strength at a low temperature (−40 ° C. in FIG. 6) becomes stronger and the mechanical strength is improved as compared with the conventional example . That is, it is clear that there is no change in physical properties at low temperatures and the improvement is achieved. FIG. 7 shows the bubble diameter distribution of the buffer waterproof material of the first embodiment. Compared to the bubble particle size of the conventional example of FIG. 8, the cushioning waterproof material 1 of the present invention is more uniform. Further, FIG. 9 and FIG. 10 show the foamed states of the buffer waterproof material 1 of the first embodiment and the conventional buffer waterproof material 1a. Further, for the shock-proof waterproof material 1 according to the first embodiment, a test piece t of the same material was made and the water tightness was measured by the U-shaped groove water filling test shown in FIG. In this test, as shown schematically in the drawing, an elongated test piece t having a rectangular cross section is bent and sandwiched between two plates 61, 61 made of acrylic resin plates, and a screw 62, a spacer 63, Compress appropriately. Then, the space surrounded by the U-shaped test piece t and the two acrylic resin plates 61, 61 is filled with water 64, and the presence or absence of water leaking outside the U-shaped test piece t is detected. Measure the compression rate that is blocked. As a result of this test, it was necessary to compress the foam of the conventional example by about 50% to 80%, but the foam of the first example obtained a complete water tightness with a compression ratio of about 10%.
[0023]
Although the embodiments and modifications considered to be representative of the present invention have been described above, the present invention is not necessarily limited to the structures of these embodiments. The invention includes the above-described constituent requirements of the present invention, such as modification of the forming apparatus, and the like, and achieves the object of the present invention and can be implemented with appropriate modifications within the scope of the following effects. .
[0024]
【The invention's effect】
The buffer waterproof material manufacturing method and manufacturing apparatus according to the present invention have a structure in which a foaming gas is mechanically mixed and foamed into a one-component thermosetting composition immediately before molding. There is no material loss (referred to as purge loss) because it does not have to be mixed with foaming agent, and it is not affected by outside air such as humidity and temperature, so work management when the work is stopped is very easy Easy. In addition, the volume supply type raw material supply means is used, the supply amount is precise and reproducible, the foaming magnification is easily adjusted accurately and does not vary depending on the work lot, and stable quality is obtained. There is an advantage that the curing work method is not one way but flexible. Furthermore, since the thermosetting composition as a raw material has a critical thermosetting critical temperature, it cures quickly (immediately) above the critical temperature, and the temperature difference between coating and curing is small, thus shortening the cycle of the production cycle. In combination with the rapid (immediate) curing at the above critical temperature, the productivity is excellent.
[0025]
With regard to the obtained waterproofing material, since the foaming gas is mechanically mixed and foamed, most of the bubbles become closed cells, and open cell portions are not generated or very small, and the size of the foam is freely set. Since it can be controlled and made small, the bubble structure becomes close to homogeneous in a macro manner. Therefore, it is possible to obtain a shock-proof waterproof material having excellent mechanical strength and durability, such as a reduction in watertightness due to non-uniformity and an increase in waterproofness as a gasket. In addition, because of its light weight and excellent physical properties, it is possible to realize a product with excellent acoustic vibration characteristics and uniform performance, and to the extent that the adhesive force with the object to be coated such as the frame 7 maintains the adhesion state. Is sufficient, but is not as strong as an adhesive, so it is easy to peel off and is excellent in recyclability. Furthermore, as described above, coupled with the excellent cost performance and easy workability, it has a remarkable effect that cannot be expected from the conventional products when providing products such as the speaker 5. It was.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a configuration of a shock-proof waterproof material manufacturing apparatus according to a first embodiment.
FIG. 2 is a perspective view of the vicinity of the shock-proof waterproof material of the first embodiment.
FIG. 3 is a partial cross-sectional view of a molded part showing the cushioning waterproof material during molding.
FIG. 4 is a partial cross-sectional view of a molding portion showing a state at the time of molding according to a second embodiment.
FIG. 5 is a temperature characteristic diagram of physical property values of the buffer waterproof material according to the first embodiment.
FIG. 6 is a fracture characteristic diagram showing the mechanical strength of the shock-proof waterproof material at −40 ° C.
FIG. 7 is a distribution explanation histgraph showing the distribution of the bubble diameter of the bubble tissue of the buffer waterproof material.
FIG. 8 is a distribution explanation histgraph showing the distribution of the bubble diameter of the bubble tissue of a conventional buffer waterproof material.
FIG. 9 is an explanatory view showing a bubble structure of the buffer waterproof material of the present invention.
FIG. 10 is an explanatory view showing a cell structure of a conventional buffer waterproof material.
FIG. 11 is a schematic explanatory view of a test piece water leakage measuring apparatus according to the first embodiment.
FIG. 12 is a partial perspective view illustrating a conventional waterproof waterproof material in relation to a speaker.
[Explanation of symbols]
1 cushioning waterproofing material (gasket) of the present invention
DESCRIPTION OF SYMBOLS 1a Conventional buffer waterproof material 2 Corrugation 3 Diaphragm 4 Damper 5 Speaker 6 Voice coil bobbin 7 Frame 8 Outer peripheral edge part 9 Mounting plate 10 Thermosetting composition 11 Gas 12 Foaming thermosetting composition 20 Supply device 21 Heat Source of curable composition 22 Source of gas 30 Mixing device 31 Piston pump 32 of mixing device Piston pump cylinder 33 Piston pump piston 40 Raw material discharge device 41 Discharge device piston pump 42 Nozzle 50 Molding device 53 Microwave antenna 54 Electromagnetic induction coil 55 Application base 56 Recessed portion

Claims (11)

スピーカ(5)のフレーム(7)の外周縁部(8)と取付板(9)との間に介在させて、該両者の間に衝撃緩衝性及び密閉性を保持せしめる緩衝防水材であって、ポリウレタンプレポリマーと固形ポリアミンを不活性化した潜在性硬化剤を主成分とする熱硬化性組成物(10)に、ガス(11)を機械的に混合して得た発泡性熱硬化性組成物(12)を、該発泡性熱硬化性組成物(12)の熱硬化臨界温度未満の状態で塗布対象とするフレーム(7)の外周縁部(8)の所定位置に塗布し、発泡させ発泡性熱硬化性組成物(12)の熱硬化臨界温度以上に加熱することで、内部の気泡の直径寸法が、ほぼ1〜100ミクロンの範囲で所定形状に発泡硬化させたスピーカ用緩衝防水材。It is a shock-proof waterproof material that is interposed between the outer peripheral edge (8) of the frame (7) of the speaker (5) and the mounting plate (9) and keeps shock buffering and sealing properties between the two. , A foamable thermosetting composition obtained by mechanically mixing a gas (11) with a thermosetting composition (10) whose main component is a latent curing agent inactivated with a polyurethane prepolymer and solid polyamine The product (12) is applied to a predetermined position on the outer peripheral edge (8) of the frame (7) to be applied in a state of less than the thermosetting critical temperature of the foamable thermosetting composition (12), and foamed. The shock-absorbing waterproofing material for a speaker, which is foam-cured and cured into a predetermined shape within a range of the diameter of the internal bubbles within a range of approximately 1 to 100 microns by heating to a temperature equal to or higher than the thermosetting critical temperature of the foamable thermosetting composition (12) . ポリウレタンプレポリマーと固形ポリアミンを不活性化した潜在性硬化剤を主成分とする熱硬化性組成物(10)に、ガス(11)を機械的に混合してフレーム(7)の外周縁部(8)の所定位置に吐出、発泡させ熱硬化させる緩衝防水材の製造方法に於いて、発泡性熱硬化性組成物(12)をその熱硬化臨界温度未満の状態でフレーム(7)の所定位置に吐出塗布し、発泡性熱硬化性組成物(12)を成形装置(50)によって発泡させながら熱硬化臨界温度以上に加熱して、内部の気泡の直径寸法が、ほぼ1〜100ミクロンの範囲で発泡硬化させる緩衝防水材の製造方法。A thermosetting composition (10) mainly composed of a latent curing agent in which a polyurethane prepolymer and a solid polyamine are inactivated, and a gas (11) are mechanically mixed to mix the outer peripheral edge of the frame (7) ( In the method of manufacturing a shock-proof waterproof material that is discharged, foamed and thermally cured at a predetermined position of 8), the foamable thermosetting composition (12) is placed at a predetermined position of the frame (7) in a state of less than the thermosetting critical temperature. The foamed thermosetting composition (12) is heated to a temperature higher than the thermosetting critical temperature while being foamed by the molding apparatus (50), and the diameter of the internal bubbles is in the range of approximately 1 to 100 microns. A method of manufacturing a shock-proof waterproofing material that is foam-cured with the use of a foam. ガス(11)を吸入して熱硬化性組成物(10)を該ガス(11)中に注入する供給装置(20)と、ガス(11)と熱硬化性組成物(10)とを機械的に混合分散させる混合装置(30)と、混合分散させた発泡性熱硬化性組成物(12)を緩衝防水材(1)が形成されるべきフレーム(7)の外周縁部(8)上の所定位置に加圧吐出させる原材料吐出装置(40)と、フレーム(7)の外周縁部(8)上の所定位置に於いて、発泡性熱硬化性組成物(12)を熱硬化臨界温度以上に加熱して、内部の気泡の直径寸法が、ほぼ1〜100ミクロンの範囲で発泡硬化させる成形装置(50)を備えた緩衝防水材の製造装置。A feeding device (20) for sucking the gas (11) and injecting the thermosetting composition (10) into the gas (11), and mechanically connecting the gas (11) and the thermosetting composition (10). On the outer peripheral edge (8) of the frame (7) on which the cushioning waterproof material (1) is to be formed. At a predetermined position on the outer peripheral edge (8) of the raw material discharge device (40) for pressurizing and discharging to a predetermined position and the frame (7), the foamable thermosetting composition (12) is at or above the thermosetting critical temperature. A shock-proof waterproof material manufacturing apparatus provided with a molding device (50) that is heated and heated and foamed and cured in a range where the diameter of the internal bubbles is approximately 1 to 100 microns . 緩衝防水材(1)の内部の気泡が独立気泡単独、または独立気泡と連続気泡の両者からなることを特徴とする請求項1に記載の緩衝防水材。  The cushioning waterproofing material according to claim 1, wherein the bubbles inside the cushioning waterproofing material (1) are made of closed cells alone or both closed and open cells. 表面のスキン層が内側の発泡層に対して明確な界面を画することなく一体に形成されていることを特徴とする請求項1記載の緩衝防水材。  2. The shock-proof waterproof material according to claim 1, wherein the skin layer on the surface is integrally formed without defining a clear interface with the inner foam layer. 密度が0.15〜0.9g/cmの範囲にあることを特徴とする請求項1に記載の緩衝防水材。The buffer waterproof material according to claim 1, wherein the density is in the range of 0.15 to 0.9 g / cm 3 . 前記スピーカフレーム(7)が他の物体であることを特徴とする請求項1に記載の緩衝防水材。  The shock-proof waterproof material according to claim 1, wherein the speaker frame (7) is another object. 前記発泡性熱硬化性組成物(12)の塗布に際して、前記フレーム(7)の外周縁部(8)の塗布位置の全範囲若しくは一部の範囲に凹陥部(56)が形成されており、発泡性熱硬化性組成物(12)の一部分が前記凹陥部(56)の内部に侵入して充填された状態で硬化されていることを特徴とする請求項1に記載の緩衝防水材を保持する構造。  During the application of the foamable thermosetting composition (12), a concave portion (56) is formed in the entire range or a partial range of the application position of the outer peripheral edge (8) of the frame (7), The cushioning waterproofing material according to claim 1, wherein a part of the foamable thermosetting composition (12) is hardened in a state where the foamed thermosetting composition (12) enters and fills the recess (56). Structure to do. 前記塗布されている発泡性熱硬化性組成物(12)が、成形装置(50)に於いてフレーム(7)を電磁誘導加熱法により加熱することで、間接的に熱硬化臨界温度以上に加熱されることを特徴とする請求項2記載の緩衝防水材の製造方法。  The applied foamable thermosetting composition (12) is heated indirectly above the thermosetting critical temperature by heating the frame (7) by electromagnetic induction heating method in the molding apparatus (50). The method for producing a shock-proof waterproof material according to claim 2, wherein: 前記塗布されている発泡性熱硬化性組成物(12)が、成形装置(50)に於いて高周波誘電加熱法により熱硬化臨界温度以上に加熱されることを特徴とする請求項2記載の緩衝防水材の製造方法。  The buffer according to claim 2, wherein the applied foamable thermosetting composition (12) is heated to a temperature not lower than the thermosetting critical temperature by a high frequency dielectric heating method in a molding device (50). A method of manufacturing a waterproof material. 前記塗布されている発泡性熱硬化性組成物(12)が、成形装置(50)に於いて赤外線を照射することにより熱硬化臨界温度以上に加熱されることを特徴とする請求項2記載の緩衝防水材の製造方法。  The said foamable thermosetting composition (12) apply | coated is more than the thermosetting critical temperature by irradiating an infrared ray in a shaping | molding apparatus (50), The heat curing composition temperature of Claim 2 characterized by the above-mentioned. A method of manufacturing a buffer waterproof material.
JP2001076427A 2001-03-16 2001-03-16 Buffer cushioning material for speaker, method and apparatus for manufacturing the same, and structure for holding buffer waterproof material for speaker Expired - Fee Related JP4443785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076427A JP4443785B2 (en) 2001-03-16 2001-03-16 Buffer cushioning material for speaker, method and apparatus for manufacturing the same, and structure for holding buffer waterproof material for speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076427A JP4443785B2 (en) 2001-03-16 2001-03-16 Buffer cushioning material for speaker, method and apparatus for manufacturing the same, and structure for holding buffer waterproof material for speaker

Publications (2)

Publication Number Publication Date
JP2002281588A JP2002281588A (en) 2002-09-27
JP4443785B2 true JP4443785B2 (en) 2010-03-31

Family

ID=18933360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076427A Expired - Fee Related JP4443785B2 (en) 2001-03-16 2001-03-16 Buffer cushioning material for speaker, method and apparatus for manufacturing the same, and structure for holding buffer waterproof material for speaker

Country Status (1)

Country Link
JP (1) JP4443785B2 (en)

Also Published As

Publication number Publication date
JP2002281588A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
CN100469822C (en) Electroconductive roller and a method of manufacturing a electroconductive roller
KR101149013B1 (en) Seal member and method for manufacturing the same
US6787221B2 (en) Co-dispensed compositions for gaskets and other objects
JP3040117B2 (en) Method for producing an electrically conductive foam
US6331349B1 (en) Form-in-place EMI gaskets
KR100879258B1 (en) Speaker edge, method of foam-molding the same, apparatus for foam-molding the same, speaker edge foam-molding system, and speaker employing the speaker edge
US6303180B1 (en) Form-in-place EMI gaskets
US6635354B2 (en) Form-in place EMI gaskets
JP4443785B2 (en) Buffer cushioning material for speaker, method and apparatus for manufacturing the same, and structure for holding buffer waterproof material for speaker
JP2010174146A (en) Method for producing base material for gasket, gasket produced by using the base material for gasket, and use of gasket
JP5399611B2 (en) Urethane insulation composition
JP2010239478A (en) Diaphragm for speaker, and method for manufacturing the same
JP2003040958A (en) Antistatic sheet
JP4188071B2 (en) Composite of metal and thermoplastic composition and method for producing the same
JPH1112378A (en) Two-component expanded polyurethane sealant composition
KR100640293B1 (en) Molding product from siloxane polymer compound with adhesion layer thereon, and formation method thereof
JP2008122588A (en) Multilayered belt for image forming apparatus and manufacturing method thereof
JPH08229961A (en) Production of polyurethane resin molded object
KR101400885B1 (en) Process and apparatus for fabricating sheet or film material using thermosetting polymer compositions
JP2003335134A (en) Door for automobile and its manufacturing method
JPH1158444A (en) Manufacture of metal insert molded body
SU992525A1 (en) Process for producing foamed plastic
JPH0516174A (en) Manufacture of composite molded product using thermosetting polyurethane
JP2002219066A (en) Bathtub insulating method
JP2002128854A (en) Foam composition and damping material using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Ref document number: 4443785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees