JP4443294B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP4443294B2
JP4443294B2 JP2004125324A JP2004125324A JP4443294B2 JP 4443294 B2 JP4443294 B2 JP 4443294B2 JP 2004125324 A JP2004125324 A JP 2004125324A JP 2004125324 A JP2004125324 A JP 2004125324A JP 4443294 B2 JP4443294 B2 JP 4443294B2
Authority
JP
Japan
Prior art keywords
temperature
surface temperature
clothing surface
air
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004125324A
Other languages
Japanese (ja)
Other versions
JP2005306196A (en
Inventor
敏雄 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2004125324A priority Critical patent/JP4443294B2/en
Publication of JP2005306196A publication Critical patent/JP2005306196A/en
Application granted granted Critical
Publication of JP4443294B2 publication Critical patent/JP4443294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、車両用空調装置に関するものである。   The present invention relates to a vehicle air conditioner.

特開2002−127728号公報に開示された車両用空調装置は、乗員の着衣の表面温度を検出して着衣部温度信号を出力する着衣表面温度センサを備え、制御装置が、乗員の温熱感の推定値を着衣部温度信号に基づいて算出し、この温熱感推定値に基づいて車室内の空調制御を行うようにしている。   The vehicle air conditioner disclosed in Japanese Patent Application Laid-Open No. 2002-127728 is provided with a clothing surface temperature sensor that detects the surface temperature of the occupant's clothing and outputs a clothing part temperature signal, and the control device detects the thermal sensation of the occupant. The estimated value is calculated based on the clothing part temperature signal, and the air conditioning control of the passenger compartment is performed based on the thermal feeling estimated value.

この車両用空調装置によれば、着衣は乗員の顔面の面積よりも大きく、また乗員が着座した状態での着衣の移動量は顔面よりも少ないため、乗員の動作、体格、着座姿勢等に関わらず、着衣が着衣表面温度センサの温度検出範囲から外れる可能性が小さく、温度を精度良く安定して検出することができるため、適切な空調制御を行うことができるとされている。
特開2002−127728号公報
According to this vehicle air conditioner, the clothing is larger than the area of the occupant's face and the amount of movement of the garment when the occupant is seated is less than that of the face. Therefore, the possibility that the clothes are out of the temperature detection range of the clothes surface temperature sensor is small, and the temperature can be detected with high accuracy and stability, so that appropriate air conditioning control can be performed.
JP 2002-127728 A

しかしながら、この車両用空調装置では、温熱感の推定値を求めるにあたって、日射センサが検出した日射量を用いて温熱感を数式で表している。この日射センサは、乗員に日射が直接当たる場合と、ルーフ等で遮られる場合とを区別しないため、温熱感推定値と実際に乗客が感じる温熱感との間に差が生じ、乗員の温熱感に合った適切な空調制御を行うことができないと考えられる。   However, in this vehicle air conditioner, when the estimated value of the thermal sensation is obtained, the thermal sensation is expressed by a mathematical expression using the amount of solar radiation detected by the solar radiation sensor. Since this solar radiation sensor does not distinguish between the case where the occupant is directly exposed to solar radiation and the case where the occupant is blocked by a roof or the like, there is a difference between the thermal sensation estimated value and the thermal sensation actually felt by the passenger. It is thought that proper air conditioning control that suits the situation cannot be performed.

本発明は上記問題点に鑑みてなされたものであり、その目的は、乗員の温熱感に合った適切な空調制御を行えるようにした車両用空調装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle air conditioner capable of performing appropriate air conditioning control in accordance with a passenger's thermal feeling.

上記課題を解決するために、第1の発明に係る車両用空調装置は、車室温を検出する室温センサ26と、車室内輻射温度を検出する輻射温度センサ27と、乗員の着衣表面温度を検出する着衣表面温度センサ28と、内外気を導入して温調し、車室内に供給する空調ユニット2と、車室温、車室内輻射温度、及び着衣表面温度に基づいて空調ユニット2を制御する制御装置24と、を備え、制御装置24は、車室温及び車室内輻射温度から外気温を推定し、その外気温において乗員が快適と感じられる着衣表面温度を目標着衣表面温度とし、実際の着衣表面温度が目標着衣表面温度となるように空調ユニット2を制御することを特徴としている。   In order to solve the above-described problems, a vehicle air conditioner according to a first aspect of the present invention detects a room temperature sensor 26 that detects a vehicle room temperature, a radiation temperature sensor 27 that detects a vehicle interior radiation temperature, and detects the occupant's clothing surface temperature. Clothing surface temperature sensor 28, air conditioning unit 2 for controlling the temperature by introducing inside and outside air, and supplying the vehicle interior, and control for controlling air conditioning unit 2 based on vehicle room temperature, vehicle interior radiation temperature, and clothing surface temperature And the control device 24 estimates the outside air temperature from the vehicle room temperature and the vehicle interior radiation temperature, sets the clothing surface temperature at which the occupant feels comfortable at the outside air temperature as the target clothing surface temperature, and sets the actual clothing surface. The air conditioning unit 2 is controlled so that the temperature becomes the target clothing surface temperature.

また、第2の発明に係る車両用空調装置は、車室内輻射温度を検出する輻射温度センサ27と、乗員の着衣表面温度を検出する着衣表面温度センサ28と、内外気を導入して温調し、車室内に供給する空調ユニット2と、車室内輻射温度及び着衣表面温度に基づいて空調ユニット2を制御する制御装置24と、を備え、制御装置24は、車室内輻射温度及び着衣表面温度から設定される快適温度領域内に実際の車室内輻射温度及び着衣表面温度が入るように空調ユニット2を制御することを特徴としている。   In addition, the vehicle air conditioner according to the second aspect of the present invention introduces a radiation temperature sensor 27 for detecting the vehicle interior radiation temperature, a clothing surface temperature sensor 28 for detecting the clothing surface temperature of the occupant, and temperature control by introducing the inside and outside air. And an air conditioning unit 2 to be supplied into the vehicle interior and a control device 24 for controlling the air conditioning unit 2 based on the vehicle interior radiation temperature and the clothing surface temperature. The control device 24 includes the vehicle interior radiation temperature and the clothing surface temperature. The air conditioning unit 2 is controlled so that the actual vehicle interior radiation temperature and the clothing surface temperature fall within the comfortable temperature range set from the above.

本発明では、車室温や車室内輻射温度から求められる目標着衣表面温度と実際の着衣表面温度との差から、日射量、着衣の熱容量等による影響を正確に把握することができ、また、車室内輻射温度や着衣表面温度に基づく快適な状態をつくり出すことができる。したがって、乗員の温熱感に合った適切な空調制御を行うことができる。   In the present invention, from the difference between the target clothing surface temperature obtained from the vehicle room temperature and the vehicle interior radiation temperature and the actual clothing surface temperature, it is possible to accurately grasp the influence of the amount of solar radiation, the heat capacity of the clothing, etc. A comfortable state based on the indoor radiation temperature and the clothing surface temperature can be created. Therefore, it is possible to perform appropriate air conditioning control that matches the occupant's thermal feeling.

以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明の一実施形態である車両用空調装置の空調ユニットの概略構成図、図2は実施形態の冷凍サイクルの概略構成図、図3は実施形態の制御システムの概略構成図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an air conditioning unit of a vehicle air conditioner according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a refrigeration cycle of the embodiment, and FIG. 3 is a schematic configuration diagram of a control system of the embodiment. .

図1に示す車両用空調装置は、内部に空気通路1が形成された空調ユニット2を備えており、この空調ユニット2の上流側には、車室内空気を取り入れるための内気導入口3と、車室外空気を取り入れるための外気導入口4とが設けられている。   The vehicle air conditioner shown in FIG. 1 includes an air conditioning unit 2 having an air passage 1 formed therein, and an upstream side of the air conditioning unit 2 has an inside air inlet 3 for taking in vehicle interior air, An outside air inlet 4 for taking in outside air in the passenger compartment is provided.

空調ユニット2の上流側の内部には、内気導入口3及び外気導入口4を選択的に開閉する内外気切換装置としてのインテークドア5と、内気導入口3及び外気導入口4を介して内外気を導入すると共に下流側に向けて送風する送風装置としてのブロワ6とが設けられている。   Inside the air conditioning unit 2, there are an intake door 5 as an inside / outside air switching device for selectively opening and closing the inside air introduction port 3 and the outside air introduction port 4, and the inside and outside through the inside air introduction port 3 and the outside air introduction port 4. A blower 6 serving as a blower that introduces air and blows air toward the downstream side is provided.

ブロワ6の下流側には、空気通路1を通る空気から吸熱して冷却する熱交換器7が設けられ、この熱交換器7の下流側には、空気通路1を通る空気を暖めるヒータコア8と、冷却された空気の一部をヒータコア8に導くと共に残りの空気をヒータコア8をバイパスさせる温調装置としてのミックスドア9とが設けられている。   On the downstream side of the blower 6, there is provided a heat exchanger 7 that absorbs heat from the air passing through the air passage 1 and cools it, and on the downstream side of the heat exchanger 7, there is a heater core 8 that warms the air that passes through the air passage 1. A mix door 9 is provided as a temperature control device that guides a part of the cooled air to the heater core 8 and bypasses the remaining air to the heater core 8.

ミックスドア9の下流にはエアミックスチャンバ10が設けられ、このエアミックスチャンバ10に連通するように、空調風吹出口としてのデフロスタ吹出口11、ベント吹出口12、及びフット吹出口13が設けられている。吹出口11、12、13は、それぞれ配風装置としてのデフロスタドア14、ベントドア15、フットドア16によって開閉されるようになっている。   An air mix chamber 10 is provided downstream of the mix door 9, and a defroster outlet 11, a vent outlet 12, and a foot outlet 13 are provided as air-conditioned air outlets so as to communicate with the air mix chamber 10. Yes. The air outlets 11, 12, and 13 are opened and closed by a defroster door 14, a vent door 15, and a foot door 16 as air distribution devices, respectively.

このような車両用空調装置にあっては、インテークドア5により内気導入口3又は外気導入口4が開口され、ブロワ6が駆動されると内気又は外気が取り込まれる。取り込まれた空気は熱交換器7で冷却された後、ミックスドア9によりヒータコア8を通る流路とヒータコア8を迂回する流路とに適宜の比率で分配される。   In such a vehicle air conditioner, the inside air introduction port 3 or the outside air introduction port 4 is opened by the intake door 5, and the inside air or outside air is taken in when the blower 6 is driven. The taken-in air is cooled by the heat exchanger 7 and then distributed by the mix door 9 into a flow path that passes through the heater core 8 and a flow path that bypasses the heater core 8 at an appropriate ratio.

そして、ヒータコア8で温められた空気とヒータコア8を迂回した空気とがエアミックスチャンバ10で混合され、空調風として吹出口11〜13から車室内に向けて吹き出す。   And the air warmed by the heater core 8 and the air which detoured the heater core 8 are mixed by the air mix chamber 10, and it blows off toward the vehicle interior from the blower outlets 11-13 as an air conditioning wind.

熱交換器7は図2に示す冷凍サイクルの一部を構成しており、このサイクルを循環する冷媒を蒸発させることにより空気を冷却する。図2において、19は圧縮機であり、エンジン等からの駆動力により駆動されて冷媒を圧縮する。圧縮機19で圧縮された冷媒は車室外に配置された熱交換器20で凝縮し、膨張弁21で膨張した後、熱交換器7で蒸発して圧縮機19に戻る。   The heat exchanger 7 constitutes a part of the refrigeration cycle shown in FIG. 2, and cools the air by evaporating the refrigerant circulating in this cycle. In FIG. 2, 19 is a compressor, which is driven by a driving force from an engine or the like to compress the refrigerant. The refrigerant compressed by the compressor 19 is condensed by the heat exchanger 20 arranged outside the passenger compartment, expanded by the expansion valve 21, evaporated by the heat exchanger 7, and returned to the compressor 19.

図3に示すように、本実施形態の制御システムは、CPU、ROM、RAMを含むマイクロコンピュータにより構成された制御装置としての制御アンプ24を備えている。   As shown in FIG. 3, the control system according to the present embodiment includes a control amplifier 24 as a control device configured by a microcomputer including a CPU, a ROM, and a RAM.

この制御アンプ24には、外気温を検出する外気温センサ25、車室温を検出する室温センサ26、車室内の内装材から発する輻射温度を検出する輻射温度センサ27、乗員の着衣の表面温度を検出する着衣表面温度センサ28が接続されている。   The control amplifier 24 includes an outside air temperature sensor 25 that detects the outside air temperature, a room temperature sensor 26 that detects the vehicle room temperature, a radiation temperature sensor 27 that detects the radiation temperature emitted from the interior material in the vehicle interior, and the surface temperature of the occupant's clothing. A clothing surface temperature sensor 28 to be detected is connected.

輻射温度センサ27は、車室内内装材(例えばパネル、ルーフ、フロア、ウインド等)表面の平均輻射温度と相関が取れる部品の温度を検出するもので、そのような部品としては、例えば、運転席や助手席シートの背側の表面、リア座席バックシート中央部等、外気からの熱伝導が無く、且つ空調風が直接当たらない所であり、さらに日射が直接当たらない所であるのが好ましい。   The radiation temperature sensor 27 detects the temperature of a component that can be correlated with the average radiation temperature of the surface of a vehicle interior material (for example, a panel, roof, floor, window, etc.). Further, it is preferable that the surface of the back side of the passenger seat, the center portion of the back seat of the rear seat, or the like is a place where there is no heat conduction from the outside air and where the conditioned air is not directly applied, and where the solar radiation is not directly applied.

なお、輻射温度センサ27としては、被測定物に接触して温度を検出する接触式のもの(例えば、サーミスタ、熱電対)や、被測定物に接触せずに温度を検出する非接触式のもの(例えば、焦熱センサ、サーモパイル)等を適宜使用することができる。これらのセンサを用いることにより、製造コストが安価となり、省スペース化を図ることができるという利点がある。   The radiation temperature sensor 27 may be a contact type that detects the temperature by contacting the object to be measured (for example, a thermistor or a thermocouple), or a non-contact type that detects the temperature without contacting the object to be measured. A thing (for example, a pyrothermal sensor, a thermopile) etc. can be used suitably. By using these sensors, there are advantages that the manufacturing cost is reduced and the space can be saved.

輻射温度はMRT=Σ(表面温度×各部の面積)/各部の面積(℃):周壁平均温度でも表現される。なお、MRT(Mean Radiant Temperature)は、車両内装材表面で人体に投射面積で平均化した温度である。   The radiation temperature is also expressed as MRT = Σ (surface temperature × area of each part) / area of each part (° C.): peripheral wall average temperature. In addition, MRT (Mean Radiant Temperature) is the temperature averaged by the projection area on the human body on the vehicle interior material surface.

測定方法は一般的にはグローブ温度計を用い、MRT=グローブ温度+2.4×√V×(グローブ温度−気温)で求めるが、風速が推定できれば定義に従って輻射面の平均温度を使用することが可能である。車室内ではファン速度でほぼ風速が決まるので輻射面からの測定も可能である。   Generally, a glove thermometer is used as a measurement method, and MRT = glove temperature + 2.4 × √V × (glove temperature−temperature). If the wind speed can be estimated, the average temperature of the radiation surface may be used according to the definition. Is possible. In the passenger compartment, the wind speed is almost determined by the fan speed, so measurement from the radiation surface is also possible.

本発明では、このような測定を行わず、輻射温度センサ27の検出値から制御アンプ24が車室内内装材表面の平均輻射温度を推定するようにしている。すなわち、対象車両の空調安定時を基準とした平均輻射温度を、車室温と外気温の関数で、k1×所定部品表面温度(空調安定時)と仮定し、車室温と外気温が決まると車両の熱伝導率から車室内内装材表面温度が決まることを利用する。   In the present invention, such a measurement is not performed, and the control amplifier 24 estimates the average radiation temperature on the surface of the vehicle interior material from the detection value of the radiation temperature sensor 27. In other words, assuming that the average radiation temperature based on the air conditioning stability of the target vehicle is a function of the vehicle room temperature and the outside air temperature, k1 × predetermined part surface temperature (when the air conditioning is stable), and the vehicle room temperature and the outside air temperature are determined. The fact that the surface temperature of interior material of the vehicle interior is determined from the thermal conductivity of the vehicle is utilized.

k1は比例定数で、輻射温度センサ27が実際に測定した部品表面温度と空調安定時の部品表面温度との差から平均輻射温度を推定する。次式を基に実際の平均輻射温度を推定する。   k1 is a proportional constant, and the average radiation temperature is estimated from the difference between the part surface temperature actually measured by the radiation temperature sensor 27 and the part surface temperature when the air conditioning is stable. The actual average radiation temperature is estimated based on the following formula.

実際平均輻射温度−平均輻射温度(安定時)=k1×(実測部品表面温度−安定時部品表面温度)。なお、安定時は、車室温と外気温で車両温度が安定した時点から求める。   Actual average radiation temperature-average radiation temperature (when stable) = k1 x (measured component surface temperature-stable component surface temperature). When the vehicle temperature is stable, the vehicle temperature and the outside air temperature are determined from the time when the vehicle temperature is stabilized.

このような方法によれば、特別な輻射温度センサを用いる必要が無くなるため、製造コストの増加を抑えることができる。   According to such a method, since it is not necessary to use a special radiation temperature sensor, an increase in manufacturing cost can be suppressed.

着衣表面温度センサ28は、着衣における日射が当たる範囲を含む表面の温度を検出するもので、被測定物に接触せずに温度を検出する非接触式のセンサ(例えば、焦熱センサ、サーモパイル)が用いられる。   The clothing surface temperature sensor 28 detects the temperature of the surface including the range where the sun shines on the clothing, and a non-contact type sensor (for example, a pyrothermal sensor or a thermopile) that detects the temperature without contacting the object to be measured. Used.

なお、着衣表面温度センサ28を、赤外線センサ、特に複眼で細やかな温度測定を行うものとすると、着衣表面外で輻射温度代表を兼ねる部位も同時測定することで、輻射温度センサ27も兼ねるようにすることができるため、製造コストが低減する。   If the clothing surface temperature sensor 28 is an infrared sensor, particularly a compound eye that performs precise temperature measurement, the radiation temperature sensor 27 can also serve as the radiation temperature sensor 27 by simultaneously measuring the radiation temperature representative outside the clothing surface. Manufacturing costs can be reduced.

なお、着衣における日射が当たる範囲を含む表面温度を検出することで、着衣表面温度が推定温度より高い場合に、日射が直接乗員に当たっていると見なして、その影響をキャンセルする空調制御を行うことができるため、乗員の温熱感に合った適切な空調制御が可能となる。また、日射センサを省くことができるため、製造コストが低減する。   In addition, by detecting the surface temperature including the range where the solar radiation hits the clothing, if the clothing surface temperature is higher than the estimated temperature, it is assumed that the solar radiation is directly hitting the occupant, and air conditioning control is performed to cancel the effect. Therefore, it is possible to perform appropriate air conditioning control that matches the occupant's thermal feeling. Further, since the solar radiation sensor can be omitted, the manufacturing cost is reduced.

制御アンプ24は、推定された平均輻射温度と車室温と車両の熱伝導率から外気温を推定し、推定した外気温において乗員が快適と感じられる着衣表面温度を目標着衣表面温度とし、実際の着衣表面温度が目標着衣表面温度となるように空調ユニット2を制御する。   The control amplifier 24 estimates the outside air temperature from the estimated average radiation temperature, the vehicle room temperature, and the thermal conductivity of the vehicle, and sets the clothing surface temperature at which the occupant feels comfortable at the estimated outside temperature as the target clothing surface temperature. The air conditioning unit 2 is controlled so that the clothing surface temperature becomes the target clothing surface temperature.

なお、目標着衣表面温度は、日射が乗員に当たらないときで、そのときの外気温に対し空調されて快適とされる室内環境での着衣量のとき、車室温、車室内輻射温度が快適な状態のときの着衣の表面温度である。   Note that the target clothing surface temperature is when the amount of clothing in an indoor environment that is comfortable by being air-conditioned to the outside air temperature when the solar radiation does not hit the occupant, the vehicle room temperature and the vehicle interior radiation temperature are comfortable. It is the surface temperature of the clothes when in a state.

この目標着衣表面温度は、新標準有効温度(SET:Standard New Effective Temperature)や快適度指数(PMV:Predicted Mean Vote comfort equation) 等の温熱生理学的に90%以上の人が快適と感じる範囲で設定すると、客観的基準であるため適切な空調制御が可能となると共に、制御範囲に幅を持たせて弾力的な制御を行うことができる。   This target clothing surface temperature is set within a range where more than 90% of the person feels comfortable in terms of thermophysiology, such as Standard New Effective Temperature (SET) and Predicted Mean Vote comfort equation (PMV). Then, since it is an objective standard, appropriate air-conditioning control can be performed, and flexible control can be performed with a wide control range.

車室温と、車室内輻射温度と、乗員が快適と感じるときの着衣表面温度とは相関がある。例えば車室温が車室内輻射温度より高いときは、日射を受けて車室温が上がっているか、暖房された車両から下車して再び乗り込むまでの時間が短く、熱容量の関係で温度差が保たれている場合であると考えられる。つまり、日射の影響や昇降間隔の影響が大きい。   There is a correlation between the vehicle room temperature, the vehicle interior radiation temperature, and the clothing surface temperature when the passenger feels comfortable. For example, when the vehicle room temperature is higher than the vehicle interior radiation temperature, the vehicle room temperature has risen due to sunlight, or it takes a short time to get off the heated vehicle and board again, and the temperature difference is maintained due to heat capacity. This is considered to be the case. That is, the influence of solar radiation and the influence of the lifting interval are large.

車室内輻射温度と目標着衣表面温度の相関関係は、実測による特性線図から求めるようにしてもよいし、温熱生理学等の理論に基づく計算により求めるようにしてもよい。   The correlation between the vehicle interior radiation temperature and the target clothing surface temperature may be obtained from a characteristic diagram obtained by actual measurement, or may be obtained by calculation based on a theory such as thermal physiology.

図4は、外気温に対する平均輻射温度(符号A)、目標着衣表面温度(符号B)、外気温を基準とした、乗員が快適と考える車室内設定温度(符号C)、外気温に対して温調された車室内での推定着衣量(符号D)の関係を示す特性線図である。   FIG. 4 shows the average radiation temperature (symbol A) with respect to the outside air temperature, the target clothing surface temperature (symbol B), the vehicle interior set temperature (symbol C) that the occupant considers comfortable based on the outside air temperature, and the outside air temperature. It is a characteristic diagram which shows the relationship of the estimated amount of clothes (code | symbol D) in the vehicle interior temperature-controlled.

なお、着衣量の単位であるcloは着衣の熱絶縁量であり、ASHREで提唱されている値で、椅子に腰掛けている白人標準男性被服者が平均皮膚温33℃の快適な状態を維持できるのに必要な着衣の熱絶縁量である。   In addition, clo, which is the unit of clothing amount, is the amount of thermal insulation of clothing, and is the value proposed by ASHRE, and a white standard male clothing person sitting on a chair can maintain a comfortable state with an average skin temperature of 33 ° C. This is the amount of thermal insulation required for clothing.

図4において符号Bで示す目標着衣表面温度より実際の着衣表面温度が高いときは、車室温が高いか、着衣が日射等の輻射を得て受熱量がオーバーしているか、着衣の温度が高いまま乗車して快適範囲からずれていることを示している。この状態では乗員が暑く感じることになる。また、その逆であれば着衣が冷えているか車室温が低いことを示し、体感的には受熱量が不足で寒く感じられる。   When the actual clothing surface temperature is higher than the target clothing surface temperature indicated by the symbol B in FIG. 4, the vehicle room temperature is high, the clothing receives radiation such as solar radiation, or the amount of heat received is over, or the clothing temperature is high. It shows that it has departed from the comfort range. In this state, the passengers feel hot. On the other hand, if it is the opposite, it indicates that the clothes are cold or the vehicle room temperature is low.

目標着衣表面温度と実際の着衣表面温度を比較することで、日射による影響等を量的に把握することができ、空調制御することにも、空調制御の補正を行うことにも用いることができる。空調制御の場合には、目標車室温、目標車室内輻射温度、目標着衣表面温度になるように制御シーケンスを作ることであり、空調制御の補正の場合には、空調制御に日射補正としての制御シーケンスを組み込むことになる。   By comparing the target clothing surface temperature with the actual clothing surface temperature, it is possible to quantitatively grasp the influence of solar radiation, etc., and it can be used for air conditioning control and correction of air conditioning control. . In the case of air-conditioning control, a control sequence is made so that the target vehicle room temperature, target vehicle interior radiation temperature, and target clothing surface temperature are achieved. In the case of air-conditioning control correction, control as solar radiation correction is performed. A sequence will be incorporated.

乗員が外気にさらされている時間が長い場合など、着衣表面温度が目標温度から差が生じた場合でも、その量を把握でき、制御や補正制御を自動的に行うことができるので、体感に合った制御を行うことができる。つまり、目標着衣表面温度を決めて、その温度になるように制御することで、適切な空調が可能である。   Even if the occupant is exposed to the outside air for a long time, even if the clothing surface temperature differs from the target temperature, the amount can be grasped, and control and correction control can be performed automatically. Matched control can be performed. That is, appropriate air conditioning is possible by determining the target clothing surface temperature and controlling it to reach that temperature.

図4に示す特性曲線は、制御アンプ24のメモリ24a(記憶手段)内に格納されており、制御マップとして用いられる。   The characteristic curve shown in FIG. 4 is stored in the memory 24a (storage means) of the control amplifier 24 and used as a control map.

本実施形態の制御システムのその他の構成は従来と同様であり、図示しないが、熱交換器7の吸込空気温度センサ及び吹出空気温度センサ、エンジン等の冷却水温センサやヒータコア8の温度センサ、圧縮機19の吐出冷媒圧センサ等を備えている。   Other configurations of the control system of the present embodiment are the same as those of the conventional system, and although not shown, the intake air temperature sensor and the blown air temperature sensor of the heat exchanger 7, the cooling water temperature sensor of the engine, the temperature sensor of the heater core 8, the compression A discharge refrigerant pressure sensor of the machine 19 is provided.

次に、第1の実施形態の制御手順を図5に示すフローチャートに基づいて説明する。   Next, the control procedure of 1st Embodiment is demonstrated based on the flowchart shown in FIG.

エアコンスイッチがONされて制御がスタートすると、各種センサや制御アンプ24が初期化された後、ステップS5で車両が停止中か否かを判定し、YESの場合にはフローを終了する。NOの場合にはステップS10で制御アンプ24が室温センサ26の検出値Tr及び着衣表面温度センサ28の検出値Tcloを読み込むと共に、輻射温度センサ27の検出値を読み込んで平均輻射温度Tmrtを算出する。   When the air conditioner switch is turned on and control is started, after various sensors and control amplifier 24 are initialized, it is determined in step S5 whether or not the vehicle is stopped. If YES, the flow ends. In the case of NO, in step S10, the control amplifier 24 reads the detection value Tr of the room temperature sensor 26 and the detection value Tclo of the clothing surface temperature sensor 28, and also reads the detection value of the radiation temperature sensor 27 to calculate the average radiation temperature Tmrt. .

そして、ステップS20で、制御アンプ24は、推定された平均輻射温度と車室温と車両の熱伝導率から外気温を推定し、推定した外気温における目標着衣表面温度Taを算出する。   In step S20, the control amplifier 24 estimates the outside air temperature from the estimated average radiation temperature, the vehicle room temperature, and the thermal conductivity of the vehicle, and calculates the target clothing surface temperature Ta at the estimated outside air temperature.

次いで、ステップS30で、Tclo>Ta+αであるか否かを判定する。なお、αは快適である温度偏差であり、ここではTcloが図4のグレーの領域Rよりも上であるか否かを判定している。YESの場合には、ステップS40で車室温が下がるように空調ユニット2を制御する。   Next, in step S30, it is determined whether Tclo> Ta + α. Α is a comfortable temperature deviation. Here, it is determined whether or not Tclo is above the gray region R in FIG. In the case of YES, the air conditioning unit 2 is controlled so that the vehicle room temperature is lowered in step S40.

ステップS30でNOの場合にはステップS50に進み、Tclo>Ta−αであるか否かを判定する。YESの場合には、Tcloが図4のグレーの領域R内にあることを意味するので、ステップS60で空調ユニット2の制御状態を現状とし、車室温が変化しないようにする。   If NO in step S30, the process proceeds to step S50 to determine whether Tclo> Ta-α. In the case of YES, it means that Tclo is in the gray region R in FIG. 4, so that the control state of the air conditioning unit 2 is made the current state in step S60 so that the vehicle room temperature does not change.

ステップS50でNOの場合には、Tcloが図4のグレーの領域Rよりも下にあることを意味するので、ステップS70に進み、車室温が上がるように空調ユニット2を制御する。   In the case of NO in step S50, it means that Tclo is below the gray region R in FIG. 4, so the process proceeds to step S70 and the air conditioning unit 2 is controlled so that the vehicle room temperature is raised.

このように、車室温や車室内輻射温度から外気温を推定し、これに基づいて目標着衣表面温度を設定し、実際の着衣表面温度が目標着衣表面温度になるように制御を行うことで、日射量、着衣の熱容量等による影響を正確に把握することができるので、乗員の温熱感に応じた快適な室内温度環境を提供することができる。   Thus, by estimating the outside air temperature from the vehicle room temperature and the vehicle interior radiation temperature, setting the target clothing surface temperature based on this, and performing control so that the actual clothing surface temperature becomes the target clothing surface temperature, Since it is possible to accurately grasp the influence of the amount of solar radiation, the heat capacity of clothes, etc., it is possible to provide a comfortable indoor temperature environment according to the thermal sensation of the occupant.

また、輻射温度センサによって車室内の輻射温度を測定しているので、ウォームアップやクールダウンのような空調過渡期において、車両の内装材からの輻射量を考慮した適切な温度制御ができるため、乗員の温熱感に対して素早く温度調節を行うことができ、過渡期において所望の空調性能に到達する時間を短縮することができる。また、輻射温度に合わせた室温となるように自動的に制御されるため、各種の補正制御が簡素化される。   In addition, since the radiation temperature in the passenger compartment is measured by the radiation temperature sensor, appropriate temperature control can be performed in consideration of the amount of radiation from the interior of the vehicle during the air conditioning transition period such as warm-up and cool-down. The temperature can be quickly adjusted with respect to the passenger's feeling of heat, and the time to reach the desired air conditioning performance in the transition period can be shortened. In addition, since the control is automatically performed so that the room temperature matches the radiation temperature, various correction controls are simplified.

また、輻射温度センサで輻射温度を測定することにより、乗員の乗降が頻繁な場合に、車両の温まり具合、冷え具合を把握することができるため、最適な空調制御量を求めることができる。   Further, by measuring the radiation temperature with the radiation temperature sensor, it is possible to grasp the warming condition and the cooling condition of the vehicle when the passenger gets on and off frequently, so that the optimal air conditioning control amount can be obtained.

また、目標着衣表面温度に快適温度範囲を設定し、実際の着衣表面温度が快適温度範囲外にあるときには、その点が快適温度範囲内に入るように最大能力で運転するため、不快な温度範囲からすばやく逃れることができる。   In addition, a comfortable temperature range is set for the target clothing surface temperature, and when the actual clothing surface temperature is outside the comfortable temperature range, driving is performed at the maximum capacity so that the point falls within the comfortable temperature range. You can escape quickly.

さらに、室温と輻射温度と着衣表面温度を用いて制御するため、外気温センサを省くこともできる。また、日射の影響は着衣表面温度や輻射温度に反映されるため、日射センサが不要である。したがって、製造コストが低減する。   Furthermore, since it controls using room temperature, radiation temperature, and clothing surface temperature, an external temperature sensor can also be omitted. Moreover, since the influence of solar radiation is reflected in the clothing surface temperature and radiation temperature, a solar radiation sensor is unnecessary. Therefore, the manufacturing cost is reduced.

なお、着衣表面温度の測定範囲を日射の影響を受ける部位だけでなく、上半身、下半身、右半身、左半身等のように測定部位を細分化し、これらを個別に測定し、各部位に対して表面温度に応じた空調制御(吹き出し温度制御、モード制御、風量制御、風向制御等)を行うようにすると、より快適性が向上する。   In addition, the measurement range of the clothing surface temperature is not only the part affected by solar radiation, but the measurement part is subdivided such as the upper body, lower body, right body, left body, etc., and these are measured individually, for each part When air conditioning control (blowout temperature control, mode control, air volume control, wind direction control, etc.) corresponding to the surface temperature is performed, comfort is further improved.

次に、本発明の第2の実施形態を説明する。なお、本実施形態のハードウエアの構成は第1の実施形態と同様であり、重複する説明は省略してある。   Next, a second embodiment of the present invention will be described. Note that the hardware configuration of this embodiment is the same as that of the first embodiment, and a duplicate description is omitted.

図6に示すように、車室内輻射温度と着衣表面温度との間には相関関係があり、関数で表すことが可能である。また、車室内輻射温度の不快領域と着衣表面温度の不快領域とにぞれぞれ上限と下限を設け、制御値として用いることが可能である。   As shown in FIG. 6, there is a correlation between the vehicle interior radiation temperature and the clothing surface temperature, which can be expressed as a function. Further, an upper limit and a lower limit can be provided for the uncomfortable region of the vehicle interior radiation temperature and the uncomfortable region of the clothing surface temperature, respectively, and used as control values.

乗客が快適と感じる領域は符号1〜3に示す領域で表すことができる。そして、その中央値である制御目標線C・Lは数式で表現することができる。各領域1〜3毎に制御目標線C.Lの数式が変化するため、それに応じて制御方法を変更し、車室内輻射温度と着衣表面温度とから成る座標を制御目標線C.Lに近づけるようにすればよい。   The area where the passenger feels comfortable can be represented by the areas indicated by reference numerals 1-3. The control target line C · L that is the median value can be expressed by a mathematical expression. The control target line C.D. Since the mathematical expression of L changes, the control method is changed accordingly, and the coordinates composed of the vehicle interior radiation temperature and the clothing surface temperature are represented by the control target line C.I. What is necessary is just to make it approach L.

制御アンプ24は、着衣表面温度センサ28の値が、制御目標線C.Lに沿って形成された帯状の快適領域R’に入るよう、空調ユニット2のインテークドア5、ブロワ6、デフロスタドア14、ベントドア15、フットドア16等を制御する。   The control amplifier 24 indicates that the value of the clothing surface temperature sensor 28 is equal to the control target line C.I. The intake door 5, blower 6, defroster door 14, vent door 15, foot door 16, etc. of the air conditioning unit 2 are controlled so as to enter the belt-shaped comfort area R ′ formed along L.

すなわち、着衣表面温度センサが制御目標線C.Lから外れた位置では急速駆動し、制御目標線C.Lに近づくように制御を行う。車室内輻射温度が改善されると、最適な着衣表面温度も変化するので、変化率を捉えて制御目標を設定して制御することも可能である。   That is, the clothing surface temperature sensor is controlled by the control target line C.I. When the position deviates from L, it is driven rapidly and the control target line C.I. Control is performed so as to approach L. When the vehicle interior radiation temperature is improved, the optimum clothing surface temperature also changes, so it is possible to control by setting the control target based on the rate of change.

上述したように、着衣表面温度の外乱因子としては日射が大きい。そのため、日射を受けやすい上半身と下半身とでは空調装置の挙動が異なり、上半身だけでなく下半身の着衣表面温度が測定できると、それぞれの体感温度を把握できるので、それに合わせて空調制御を細かく行うことができる。例えば、日射が当たる部位だけに空調風を向ける等のフィーリング改善操作が可能となる。   As described above, solar radiation is a large disturbance factor for the clothing surface temperature. Therefore, the behavior of the air conditioning system differs between the upper body and lower body, which are prone to solar radiation, and if the clothing surface temperature of not only the upper body but also the lower body can be measured, the temperature of each body can be ascertained. Can do. For example, it is possible to perform a feeling improving operation such as directing the conditioned air only to a portion that is exposed to solar radiation.

制御アンプ24は、空調ユニット2が車室内に供給する空調風の温度を車室内輻射温度に基づいて制御し、車室温と目標車室温(設定温度)の差、車室内輻射温度と目標車室内輻射温度の差、及び着衣表面温度と目標着衣表面温度の差に基づいて空調ユニット2の風速制御を行う。   The control amplifier 24 controls the temperature of the conditioned air supplied from the air conditioning unit 2 to the vehicle interior based on the vehicle interior radiation temperature, and the difference between the vehicle room temperature and the target vehicle room temperature (set temperature), the vehicle interior radiation temperature and the target vehicle interior. The air speed control of the air conditioning unit 2 is performed based on the difference in radiation temperature and the difference between the clothing surface temperature and the target clothing surface temperature.

このように、輻射温度と着衣表面温度を中心に空調制御を行うことで、室温のみで空調制御を行う場合に比べて、より乗員の温熱感に近い制御を行うことができるので、快適性が向上する。   In this way, by performing air conditioning control centered on radiation temperature and clothing surface temperature, it is possible to perform control closer to the passenger's thermal feeling than when performing air conditioning control only at room temperature, so comfort is improved. improves.

なお、吹き出し風速による影響を制御内容に盛り込むためには、グリルでの吹き出し風温を把握できるようにする必要が有るため、空調ユニット2のモード設定に従って配風制御する部分もしくは吹き出しグリルでの温度測定用センサを追加することになる。なお、吹き出し口の温度が分かれば、他の方法でもよい。   In order to incorporate the effect of the blown air velocity into the control content, it is necessary to be able to grasp the blown air temperature at the grill. Therefore, the temperature at the portion where the air distribution is controlled according to the mode setting of the air conditioning unit 2 or at the blow grill A sensor for measurement will be added. If the temperature of the outlet is known, other methods may be used.

次に、第2実施形態の制御手順を図6、図7に基づいて説明する。   Next, the control procedure of 2nd Embodiment is demonstrated based on FIG. 6, FIG.

エアコンスイッチがONされて制御がスタートすると、各種センサや制御アンプ24が初期化された後、ステップS105で車両が停止中か否かを判定し、YESの場合にはフローを終了する。NOの場合にはステップS110で制御アンプ24が着衣表面温度センサ28の検出値Tcloを読み込むと共に、輻射温度センサ27の検出値を読み込んで平均輻射温度Tmrtを算出する。   When the air conditioner switch is turned on and control is started, after various sensors and the control amplifier 24 are initialized, it is determined in step S105 whether or not the vehicle is stopped. If YES, the flow ends. In the case of NO, in step S110, the control amplifier 24 reads the detection value Tclo of the clothing surface temperature sensor 28 and also reads the detection value of the radiation temperature sensor 27 to calculate the average radiation temperature Tmrt.

そして、ステップS120でT1≦Tclo≦T2及びTm1≦Tmrt≦Tm2であるかを判定する。ここで、T1は設定温度で約90%の人が快適と感じる下限気温、T2は設定温度で約90%の人が快適と感じる上限気温である。   In step S120, it is determined whether T1 ≦ Tclo ≦ T2 and Tm1 ≦ Tmrt ≦ Tm2. Here, T1 is a lower limit temperature at which a person who is about 90% feels comfortable at the set temperature, and T2 is an upper limit temperature at which a person who is about 90% feels comfortable at the set temperature.

また、Tm1は暖房で快適と考えられる最低輻射温度(通常、冬季の室内環境の服装で設定温度のときに快適感が得られる輻射温度)であり、Tm2は冷房で快適と考えられる最高輻射温度(通常、夏季の室内環境の服装で設定温度のときに快適感が得られる輻射温度)である。   Tm1 is the lowest radiation temperature that is considered comfortable for heating (usually the radiation temperature that provides a comfortable feeling at the set temperature in the winter environment) Tm2 is the highest radiation temperature that is considered comfortable for cooling (Normally, the radiation temperature at which a comfortable feeling can be obtained at the set temperature in the clothing of the indoor environment in summer).

ステップS120でYESの場合にはステップS130に進み、Tma≦Tmrt≦Tmbであるかを判定する(図5参照)。ここで、Tmaはオートエアコンで設定温度を補正することなく乗員が快適と感じる最低温度(通常、冬季の室内環境の服装で設定温度のときに快適感が得られる輻射温度)である。また、Tmbは設定温度(空調された屋内環境の服装をした人が乗車した際に90%以上の人が快適感が得られる温度)の中央値であり、一般的には25℃前後である。   If YES in step S120, the process proceeds to step S130 to determine whether Tma ≦ Tmrt ≦ Tmb (see FIG. 5). Here, Tma is the lowest temperature at which the occupant feels comfortable without correcting the set temperature with the automatic air conditioner (usually the radiation temperature at which the comfortable feeling is obtained when the set temperature is used in the indoor environment in winter). Tmb is a median value of the set temperature (a temperature at which 90% or more people can feel comfortable when a person dressed in an air-conditioned indoor environment gets on), and is generally around 25 ° C. .

ステップS130でYESの場合にはステップS140に進み、着衣表面温度センサ28の検出値Tcloが制御目標線C.L(図5参照)以下に位置するか否かを判定する。   If YES in step S130, the process proceeds to step S140, and the detected value Tclo of the clothing surface temperature sensor 28 is equal to the control target line C.I. It is determined whether it is located below L (see FIG. 5).

YESの場合にはステップS150に進み、暖房能力を増強して運転する。また、NOの場合にはステップS60に進み、暖房能力を低減する。従ってTcloとTmrtを座標とする点が制御目標線C.Lに近づくことになる。   In the case of YES, the process proceeds to step S150, and the heating capacity is increased to operate. Moreover, in the case of NO, it progresses to step S60 and reduces heating capability. Therefore, the point with Tclo and Tmrt as coordinates is the control target line C.I. L will be approached.

ステップS120でNOの場合にはステップS170に進み、Tmrt<Tm1又はTclo<T1であるかを判定する。YESの場合にはステップS175に進み、Tmrt>Tm2及びTclo<T1であるかを判定し、NOの場合にはステップS180に進み、最大暖房能力で運転する。YESの場合にはステップS190に進み、最大冷房能力で運転する。また、ステップS170でNOの場合にもステップS190に進む。   If NO in step S120, the process proceeds to step S170 to determine whether Tmrt <Tm1 or Tclo <T1. If YES, the process proceeds to step S175 to determine whether Tmrt> Tm2 and Tclo <T1, and if NO, the process proceeds to step S180 to operate at the maximum heating capacity. In the case of YES, it progresses to step S190 and it drive | operates with the maximum cooling capacity. Also, if NO in step S170, the process proceeds to step S190.

ステップS130でNOの場合には、ステップS200に進み、Tm1≦Tmrt<Tmaであるかを判定する(図5参照)。YESの場合には、ステップS210に進み、着衣表面温度センサ28の検出値Tcloが制御目標線C.L以下に位置するか否かを判定する。なお、図5に示すように、この制御範囲の目標着衣表面温度は全範囲にわたって一定(Tcb)である。   If NO in step S130, the process proceeds to step S200 to determine whether Tm1 ≦ Tmrt <Tma (see FIG. 5). In the case of YES, the process proceeds to step S210, where the detected value Tclo of the clothing surface temperature sensor 28 is the control target line C.I. It is determined whether it is located below L. As shown in FIG. 5, the target clothing surface temperature in this control range is constant (Tcb) over the entire range.

ステップS210でYESの場合にはステップS220に進み、暖房能力を増強して運転する。NOの場合にはステップS230に進み、暖房能力を低減する。   If YES in step S210, the process proceeds to step S220, and the heating capacity is increased to operate. If NO, the process proceeds to step S230, and the heating capacity is reduced.

ステップS200でNOの場合には、Tmb<Tmrt≦Tm2であり(図5参照)、ステップS240に進んで着衣表面温度センサ28の検出値Tcloが制御目標線C.L以上に位置するか否かを判定する。なお、図5に示すように、この制御範囲の目標着衣表面温度は全範囲にわたって一定(Tca)である。   If NO in step S200, Tmb <Tmrt ≦ Tm2 (see FIG. 5), the process proceeds to step S240, and the detected value Tclo of the clothing surface temperature sensor 28 is the control target line C.I. It is determined whether or not the position is greater than or equal to L. As shown in FIG. 5, the target clothing surface temperature in this control range is constant (Tca) over the entire range.

ステップS240でYESの場合にはステップS250に進み、冷房能力を増強して運転する。NOの場合にはステップS260に進み、冷房能力を低減する。   If YES in step S240, the process proceeds to step S250, and the cooling capacity is increased to operate. If NO, the process proceeds to step S260, and the cooling capacity is reduced.

このように、輻射温度及び着衣表面温度がそれぞれ制御目標線に近づくように制御を行うので、乗員の温熱感に応じた快適な室内温度環境を提供することができる。   As described above, since the control is performed so that the radiation temperature and the clothing surface temperature approach the control target line, a comfortable indoor temperature environment corresponding to the thermal sensation of the occupant can be provided.

また、輻射温度センサによって車室内の輻射温度を測定しているので、ウォームアップやクールダウンのような空調過渡期において、車両の内装材からの輻射量を考慮した適切な温度制御ができるため、乗員の温熱感に対して素早く温度調節を行うことができ、過渡期において所望の空調性能に到達する時間を短縮することができる。また、輻射温度に合わせた室温となるように自動的に制御されるため、各種の補正制御が簡素化される。   In addition, since the radiation temperature in the passenger compartment is measured by the radiation temperature sensor, appropriate temperature control can be performed in consideration of the amount of radiation from the interior of the vehicle during the air conditioning transition period such as warm-up and cool-down. The temperature can be quickly adjusted with respect to the passenger's feeling of heat, and the time to reach the desired air conditioning performance in the transition period can be shortened. In addition, since the control is automatically performed so that the room temperature matches the radiation temperature, various correction controls are simplified.

また、輻射温度センサ27で輻射温度を測定することにより、乗員の乗降が頻繁な場合に、車両の温まり具合、冷え具合を把握することができるため、最適な空調制御量を求めることができる。   Further, by measuring the radiation temperature with the radiation temperature sensor 27, it is possible to grasp the warming condition and the cooling condition of the vehicle when the passenger gets on and off frequently, so that the optimum air conditioning control amount can be obtained.

また、快適温度範囲を設定し、着衣表面温度及び平均輻射温度を座標とする点が快適温度範囲外にあるときには、その点が快適温度範囲内に入るように最大能力で運転するため、不快な温度範囲からすばやく逃れることができる。   In addition, if a comfortable temperature range is set and the point with the coordinates of the clothing surface temperature and average radiation temperature is outside the comfortable temperature range, driving is performed at maximum capacity so that the point falls within the comfortable temperature range. Quickly escape from the temperature range.

さらに、室温と輻射温度と着衣表面温度を用いて制御するため、外気温センサを省くこともできる。また、日射の影響は着衣表面温度や輻射温度に反映されるため、日射センサが不要である。したがって、製造コストが低減する。   Furthermore, since it controls using room temperature, radiation temperature, and clothing surface temperature, an external temperature sensor can also be omitted. Moreover, since the influence of solar radiation is reflected in the clothing surface temperature and radiation temperature, a solar radiation sensor is unnecessary. Therefore, the manufacturing cost is reduced.

ータベースを制御アンプ24のメモリ24aに記憶させておき、このデータベー
また、着衣表面温度の測定範囲を日射の影響を受ける部位だけでなく、上半身、下半身、右半身、左半身等のように測定部位を細分化し、これらを個別に測定し、各部位に対して表面温度に応じた空調制御(吹き出し温度制御、モード制御、風量制御、風向制御等)を行うようにすると、より快適性が向上する。
The database is stored in the memory 24a of the control amplifier 24, and this database is also used to measure the measurement range of the clothing surface temperature as well as the part affected by solar radiation, such as the upper body, lower body, right body, left body. The comfort is improved by subdividing the parts, measuring these individually, and performing air conditioning control (blowout temperature control, mode control, air volume control, wind direction control, etc.) according to the surface temperature for each part. To do.

その他にも、本発明の要旨を逸脱しない範囲で上記実施形態に種々の改変を施すことができる。   In addition, various modifications can be made to the above embodiment without departing from the gist of the present invention.

本発明の一実施形態である車両用空調装置の空調ユニットの概略構成図。The schematic block diagram of the air-conditioning unit of the vehicle air conditioner which is one Embodiment of this invention. 実施形態の冷凍サイクルの概略構成図。The schematic block diagram of the refrigerating cycle of embodiment. 実施形態の制御システムの概略構成図。The schematic block diagram of the control system of embodiment. 外気温に対する平均輻射温度、目標着衣表面温度、車室内設定温度、想定着衣量の関係を示す特性線図。The characteristic line figure which shows the relationship of the average radiation temperature with respect to external temperature, target clothing surface temperature, vehicle interior preset temperature, and assumed clothing amount. 第1の実施形態の制御フローチャート。The control flowchart of 1st Embodiment. 車室内輻射温度と着衣表面温度の関係を示す特性線図。The characteristic line figure which shows the relationship between vehicle interior radiation temperature and clothing surface temperature. 第2の実施形態の制御フローチャート。The control flowchart of 2nd Embodiment. 第2の実施形態の制御フローチャート。The control flowchart of 2nd Embodiment.

符号の説明Explanation of symbols

2 空調ユニット
24 制御アンプ(制御装置)
24a メモリ(記憶手段)
25 外気温センサ
26 室温センサ
27 輻射温度センサ
28 着衣表面温度センサ
2 Air conditioning unit 24 Control amplifier (control device)
24a Memory (storage means)
25 Outside temperature sensor 26 Room temperature sensor 27 Radiation temperature sensor 28 Clothing surface temperature sensor

Claims (11)

車室温を検出する室温センサ(26)と、
車室内輻射温度を検出する輻射温度センサ(27)と、
乗員の着衣表面温度を検出する着衣表面温度センサ(28)と、
内外気を導入して温調し、車室内に供給する空調ユニット(2)と、
車室温、車室内輻射温度、及び着衣表面温度に基づいて空調ユニット(2)を制御する制御装置(24)と、
を備え、
制御装置(24)は、車室温及び車室内輻射温度から外気温を推定し、その外気温において乗員が快適と感じられる着衣表面温度を目標着衣表面温度とし、実際の着衣表面温度が目標着衣表面温度となるように空調ユニット(2)を制御することを特徴とする車両用空調装置。
A room temperature sensor (26) for detecting the vehicle room temperature;
A radiation temperature sensor (27) for detecting the vehicle interior radiation temperature;
A clothing surface temperature sensor (28) for detecting the clothing surface temperature of the occupant;
An air conditioning unit (2) that introduces internal and external air to regulate the temperature and supplies the air to the passenger compartment;
A control device (24) for controlling the air conditioning unit (2) based on the vehicle room temperature, the vehicle interior radiation temperature, and the clothing surface temperature;
With
The control device (24) estimates the outside air temperature from the vehicle room temperature and the vehicle interior radiation temperature, sets the clothing surface temperature at which the occupant feels comfortable at the outside air temperature as the target clothing surface temperature, and the actual clothing surface temperature is the target clothing surface temperature. An air conditioner for vehicles which controls an air conditioning unit (2) so that it may become temperature.
車室内輻射温度を検出する輻射温度センサ(27)と、
乗員の着衣表面温度を検出する着衣表面温度センサ(28)と、
内外気を導入して温調し、車室内に供給する空調ユニット(2)と、
車室内輻射温度及び着衣表面温度に基づいて空調ユニット(2)を制御する制御装置(24)と、
を備え、
制御装置(24)は、車室内輻射温度及び着衣表面温度から設定される快適温度領域内に実際の車室内輻射温度及び着衣表面温度が入るように空調ユニット(2)を制御することを特徴とする車両用空調装置。
A radiation temperature sensor (27) for detecting the vehicle interior radiation temperature;
A clothing surface temperature sensor (28) for detecting the clothing surface temperature of the occupant;
An air conditioning unit (2) that introduces internal and external air to regulate the temperature and supplies the air to the passenger compartment;
A control device (24) for controlling the air conditioning unit (2) based on the vehicle interior radiation temperature and the clothing surface temperature;
With
The control device (24) controls the air conditioning unit (2) so that the actual vehicle interior radiation temperature and the clothing surface temperature are within a comfortable temperature range set from the vehicle interior radiation temperature and the clothing surface temperature. A vehicle air conditioner.
着衣表面温度センサ(28)は、着衣における日射が当たる範囲を含む表面の温度を検出することを特徴とする請求項1又は請求項2記載の車両用空調装置。   The vehicular air conditioner according to claim 1 or 2, wherein the clothing surface temperature sensor (28) detects a temperature of a surface including a range where the solar radiation hits the clothing. 制御装置(24)は、空調ユニット(2)が車室内に供給する空調風の温度を車室内輻射温度に基づいて制御し、車室温と目標車室温の差、車室内輻射温度と目標車室内輻射温度の差、及び着衣表面温度と目標着衣表面温度の差に基づいて空調ユニット(2)の風速制御を行うことを特徴とする請求項1又は請求項2記載の車両用空調装置。   The control device (24) controls the temperature of the conditioned air supplied to the vehicle interior by the air conditioning unit (2) based on the vehicle interior radiation temperature, and the difference between the vehicle room temperature and the target vehicle room temperature, the vehicle interior radiation temperature and the target vehicle interior. The vehicle air conditioner according to claim 1 or 2, wherein the air speed control of the air conditioning unit (2) is performed based on a difference in radiation temperature and a difference between a clothing surface temperature and a target clothing surface temperature. 目標着衣表面温度と車室内輻射温度の相関関係を、実測による特性曲線から求めるか、又は温熱生理学等の理論に基づく計算式から求めることを特徴とする請求項1又は請求項2記載の車両用空調装置。   3. The vehicle according to claim 1, wherein the correlation between the target clothing surface temperature and the vehicle interior radiation temperature is obtained from a characteristic curve obtained by actual measurement or from a calculation formula based on a theory such as thermal physiology. Air conditioner. 制御装置(24)は、着衣表面温度と目標着衣表面温度の差が所定値以上の場合、空調ユニット(2)から車室内に供給される空調風の方向を、着衣における日射が当たる範囲に変更することを特徴とする請求項3記載の車両用空調装置。   When the difference between the clothing surface temperature and the target clothing surface temperature is greater than or equal to a predetermined value, the control device (24) changes the direction of the conditioned air supplied from the air conditioning unit (2) to the vehicle interior so that it is exposed to sunlight in the clothing. The vehicle air conditioner according to claim 3, wherein 輻射温度センサ(27)は車室内の所定の部品の表面温度を検出するものであり、制御装置(24)は、外気温、室温及び輻射温度に基づいて平均輻射温度を推定することを特徴とする請求項1又は請求項2記載の車両用空調装置。   The radiation temperature sensor (27) detects the surface temperature of a predetermined part in the passenger compartment, and the control device (24) estimates an average radiation temperature based on the outside air temperature, the room temperature, and the radiation temperature. The vehicle air conditioner according to claim 1 or 2. 制御装置(24)は、新標準有効温度や快適度指数等の温熱生理学的に90%以上の人が快適とする範囲で目標着衣表面温度幅を決定し、着衣表面温度がその温度幅内となるように空調ユニット(2)を制御することを特徴とする請求項1又は請求項2記載の車両用空調装置。   The control device (24) determines the target clothing surface temperature range within a range where 90% or more of the person is comfortable with thermophysiology such as the new standard effective temperature and the comfort index, and the clothing surface temperature is within the temperature range. The vehicle air conditioner according to claim 1 or 2, wherein the air conditioning unit (2) is controlled so as to become. 着衣表面温度センサ(28)は、着衣の複数の部位の表面温度を個別に測定し、制御装置(24)は、各部位に対して表面温度に応じた空調風を供給するように空調ユニット(2)を制御することを特徴とする請求項1又は請求項2記載の車両用空調装置。   The clothing surface temperature sensor (28) individually measures the surface temperature of a plurality of parts of the clothing, and the control device (24) supplies an air conditioning unit according to the surface temperature to each part. The vehicle air conditioner according to claim 1 or 2, wherein 2) is controlled. 着衣表面温度センサ(28)は、車室内の所定の部品の表面温度を検出する輻射温度センサ(27)を兼ねることを特徴とする請求項1又は請求項2記載の車両用空調装置。   The vehicular air conditioner according to claim 1 or 2, wherein the clothing surface temperature sensor (28) also serves as a radiation temperature sensor (27) for detecting a surface temperature of a predetermined part in the passenger compartment. 輻射温度センサ(27)及び着衣表面温度センサ(28)は、被測定物に接触しないで温度を検出する非接触式のものであることを特徴とする請求項10記載の車両用空調装置。
11. The vehicle air conditioner according to claim 10, wherein the radiation temperature sensor (27) and the clothing surface temperature sensor (28) are non-contact type sensors that detect temperature without contacting the object to be measured.
JP2004125324A 2004-04-21 2004-04-21 Air conditioner for vehicles Expired - Fee Related JP4443294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125324A JP4443294B2 (en) 2004-04-21 2004-04-21 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125324A JP4443294B2 (en) 2004-04-21 2004-04-21 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2005306196A JP2005306196A (en) 2005-11-04
JP4443294B2 true JP4443294B2 (en) 2010-03-31

Family

ID=35435437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125324A Expired - Fee Related JP4443294B2 (en) 2004-04-21 2004-04-21 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP4443294B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120143A (en) * 2007-11-19 2009-06-04 Toyota Motor Corp Body temperature detector, and vehicle air conditioner
JP5446049B2 (en) * 2010-04-23 2014-03-19 株式会社デンソー Vehicle air conditioning control system for infants and vehicles equipped with the system
GB2505664A (en) * 2012-09-06 2014-03-12 Jaguar Land Rover Ltd A vehicle cabin temperature control system
JP7036706B2 (en) * 2018-12-12 2022-03-15 本田技研工業株式会社 Vehicle air conditioning control systems, vehicle air conditioning control methods, and programs
FR3091599B1 (en) * 2019-01-07 2021-05-21 Valeo Systemes Thermiques Thermal management system for motor vehicles

Also Published As

Publication number Publication date
JP2005306196A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP3948355B2 (en) Air conditioner for vehicles
US6202934B1 (en) Air conditioner for a vehicle having infrared ray sensor
US7389812B2 (en) Vehicle air conditioning system having non-contacting temperature sensors
JP4591133B2 (en) Air conditioner for vehicles
US20080248736A1 (en) Air conditioner for vehicle
US11919366B2 (en) Vehicle heating device, and vehicle provided with vehicle heating device
JP2006089018A (en) Air conditioner for vehicle
JP2006001310A (en) Vehicular inside/outside air change control device
US11766918B2 (en) Vehicle air-conditioning device and vehicle provided with vehicle air-conditioning device
JP4443294B2 (en) Air conditioner for vehicles
JP2020121644A (en) Air conditioner for vehicle and heating system
JP2012158226A (en) Air conditioning device for vehicle with seat air conditioning device
JP4186377B2 (en) Air conditioner for vehicles
JPH06239128A (en) Clothing condition deciding device and air-conditioning device for vehicle
JP3429673B2 (en) Vehicle air conditioner
JPH0725219A (en) Air conditioner for automobile
JP2002144849A (en) Vehicular air conditioner
JP2768177B2 (en) Automotive air conditioners
JPH0532117A (en) Air-conditioning control device
JP2005199923A (en) Vehicular air-conditioner
JP4259258B2 (en) Air conditioner for vehicles
JPH1134633A (en) Air conditioner for vehicle
JP2004042706A (en) Air conditioner for vehicle
JP2005193780A (en) Vehicular air-conditioner
JP2745744B2 (en) Automotive air conditioning controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees