JP4443249B2 - Method for manufacturing solid-state imaging device - Google Patents

Method for manufacturing solid-state imaging device Download PDF

Info

Publication number
JP4443249B2
JP4443249B2 JP2004021507A JP2004021507A JP4443249B2 JP 4443249 B2 JP4443249 B2 JP 4443249B2 JP 2004021507 A JP2004021507 A JP 2004021507A JP 2004021507 A JP2004021507 A JP 2004021507A JP 4443249 B2 JP4443249 B2 JP 4443249B2
Authority
JP
Japan
Prior art keywords
solid
package
state imaging
imaging device
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004021507A
Other languages
Japanese (ja)
Other versions
JP2005217155A (en
Inventor
寿朗 甲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2004021507A priority Critical patent/JP4443249B2/en
Publication of JP2005217155A publication Critical patent/JP2005217155A/en
Application granted granted Critical
Publication of JP4443249B2 publication Critical patent/JP4443249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid-state image pickup device for greatly improving image defects after assembly. <P>SOLUTION: The manufacturing method of the solid-state image pick-up device comprises: a preparation process for preparing a semiconductor wafer in which a plurality of solid-state image pickup elements are formed; a dicing process for breading the semiconductor wafer into pieces by dicing; a junction process for joining each of the plurality of solid-state image pickup elements broken into pieces by the dicing process into the package; a cleaning process for cleaning the package joined to the solid-state image pick-up element; and a sealing process for sealing the solid-state image pickup element into the package by fitting the sealing member into the cleaned package. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、固体撮像装置の製造方法に関し、より詳しくは、固体撮像素子のパッケージング方法に関する。   The present invention relates to a method for manufacturing a solid-state imaging device, and more particularly to a packaging method for a solid-state imaging device.

従来、固体撮像装置の組立工程では、複数の固体撮像素子が形成されている半導体ウェハをダイシング処理によって、個々の半導体チップ(固体撮像素子)に個片化した後に、固体撮像素子をセラミック等で形成されるパッケージに収納する。このパッケージへの収納は、個片化した固体撮像素子を銀ペースト等でパッケージに接合させた後、固体撮像素子のパッド部分とパッケージのインナーリード部分を金線等のワイヤーボンディングにより結線するワイヤーボンディング工程を経て、ガラスもしくは光学部品等の封止部材をパッケージに装着して固体撮像素子をパッケージ内に密封することにより行われる。   Conventionally, in an assembly process of a solid-state image pickup device, a semiconductor wafer on which a plurality of solid-state image pickup elements are formed is separated into individual semiconductor chips (solid-state image pickup elements) by a dicing process, and then the solid-state image pickup element is made of ceramic or the like. Store in the package to be formed. To store in this package, wire bonding in which the solid-state image sensor is bonded to the package with silver paste or the like, and then the pad portion of the solid-state image sensor and the inner lead portion of the package are connected by wire bonding such as a gold wire. Through the process, a sealing member such as glass or an optical component is attached to the package, and the solid-state imaging device is sealed in the package.

上述のダイシング処理において、純水を流して切削屑を半導体ウェハ外へ流去させる際に、半導体ウェハ上に乾燥領域が発生し、該乾燥領域に切削屑が、付着する場合がある。そのような乾燥領域を無くすために、ダイシング処理前に半導体ウェハの表面にプラズマ処理を施すことにより、ウェハ表面を親水化することが知られている。(例えば特許文献1参照)。   In the above-described dicing process, when pure water is flowed and the cutting waste is caused to flow out of the semiconductor wafer, a dry region may be generated on the semiconductor wafer, and the cutting waste may adhere to the dry region. In order to eliminate such a dry region, it is known to hydrophilize the wafer surface by subjecting the surface of the semiconductor wafer to plasma treatment before dicing. (For example, refer to Patent Document 1).

特開平05−335412号公報Japanese Patent Laid-Open No. 05-335412

従来の製造工程では、ダイシング処理で発生する切削屑やその他の異物が、封止部材によるパッケージの密封前に固体撮像素子及びパッケージの内側に付着し、組み立て後の画像欠陥が発生する恐れがある。   In the conventional manufacturing process, cutting chips and other foreign matters generated in the dicing process may adhere to the inside of the solid-state imaging device and the package before the package is sealed by the sealing member, and image defects after assembly may occur. .

そのため、これらの異物を除去する必要があるが、溶剤を用いた場合には、固体撮像素子を侵食・溶解することから生じる光学特性劣化の可能性があるとともに、製造コストが上がってしまう。   For this reason, it is necessary to remove these foreign substances. However, when a solvent is used, there is a possibility that optical characteristics are deteriorated due to erosion and dissolution of the solid-state imaging device, and the manufacturing cost is increased.

本発明の目的は、組み立て後の画像欠陥を大幅に改善する固体撮像装置の製造方法を提供することである。   An object of the present invention is to provide a method of manufacturing a solid-state imaging device that greatly improves image defects after assembly.

本発明の一観点によれば、固体撮像装置の製造方法は、複数の固体撮像素子が形成された半導体ウェハを準備する準備工程と、前記半導体ウェハをダイシングして個片化するダイシング工程と、前記ダイシング工程により個片化された前記複数の固体撮像素子のそれぞれをパッケージ内に接合する接合工程と、前記固体撮像素子の表面を、低ダメージプラズマ処理条件によるプラズマ処理により親水化する親水化工程と、それぞれが異なる周波数による少なくとも2回の超音波洗浄により前記固体撮像素子を接合したパッケージを洗浄する洗浄工程と、前記洗浄したパッケージに封止部材を装着して該パッケージ内に固体撮像素子を密封する密封工程とを有する。 According to one aspect of the present invention, a manufacturing method of a solid-state imaging device includes a preparation step of preparing a semiconductor wafer on which a plurality of solid-state imaging elements are formed, a dicing step of dicing the semiconductor wafer into individual pieces, A bonding step of bonding each of the plurality of solid-state imaging devices separated into pieces by the dicing step into a package; and a hydrophilicizing step of hydrophilizing the surface of the solid-state imaging device by plasma processing under low damage plasma processing conditions A cleaning step of cleaning the package in which the solid-state image sensor is bonded by ultrasonic cleaning at different frequencies, and a solid-state image sensor is mounted in the package by attaching a sealing member to the cleaned package. And a sealing step for sealing.

本発明によれば、組み立て後の画像欠陥を大幅に改善する固体撮像装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid-state imaging device which improves the image defect after an assembly significantly can be provided.

図1は、本発明の実施例による固体撮像素子のパッケージへの接合工程を説明するための図である。   FIG. 1 is a diagram for explaining a bonding process of a solid-state imaging device to a package according to an embodiment of the present invention.

図1(A)は、本実施例によるプラズマ処理を行う前の半導体ウェハ1の断面図である。   FIG. 1A is a cross-sectional view of the semiconductor wafer 1 before performing plasma processing according to this embodiment.

半導体ウェハ1は、例えば、直径6インチ、厚さ500μmのシリコンウェハである。半導体ウェハ1には、複数列複数行にわたって固体撮像素子12が形成されている。     The semiconductor wafer 1 is, for example, a silicon wafer having a diameter of 6 inches and a thickness of 500 μm. A solid-state imaging device 12 is formed on the semiconductor wafer 1 over a plurality of columns and a plurality of rows.

固体撮像素子12は、例えば、CCD型の固体撮像素子であり、多数の光電変換素子、光電変換素子で発生する信号電荷を垂直方向に転送する垂直電荷転送装置(VCCD)、各光電変換素子上に形成されるマイクロレンズ32等を含む受光領域、VCCDによって転送された信号電荷水平方向に転送する水平電荷転送装置及び出力アンプ等を含む周辺回路を含んで構成される。なお、固体撮像素子12は、CCD型に限らず、MOS型等でも良い。   The solid-state imaging device 12 is, for example, a CCD type solid-state imaging device, and includes a large number of photoelectric conversion elements, a vertical charge transfer device (VCCD) that transfers signal charges generated by the photoelectric conversion elements in the vertical direction, and on each photoelectric conversion element. And a peripheral circuit including a light receiving region including the microlens 32 and the like, a horizontal charge transfer device for transferring the signal charge transferred by the VCCD in the horizontal direction, and an output amplifier. The solid-state imaging device 12 is not limited to the CCD type, and may be a MOS type or the like.

マイクロレンズ32は、固体撮像素子12に形成される多数の光電変換素子のそれぞれに対応して、固体撮像素子12の表面に形成される。マイクロレンズ32は、例えば、透明樹脂層を平坦化膜上に形成した後、この透明樹脂層をフォトリソグラフィ法等によって所定形状にパターニングした後に、リフローさせることによって形成される。   The microlens 32 is formed on the surface of the solid-state image sensor 12 corresponding to each of a large number of photoelectric conversion elements formed on the solid-state image sensor 12. The microlens 32 is formed, for example, by forming a transparent resin layer on a planarizing film, patterning the transparent resin layer into a predetermined shape by a photolithography method or the like, and then performing reflow.

図1(B)は、光電変換素子12をパッケージ19に接合した状態を示す概略図である。   FIG. 1B is a schematic diagram illustrating a state in which the photoelectric conversion element 12 is bonded to the package 19.

まず、半導体ウェハ1に対してダイシング処理を行い、各チップが一つの光電変換素子12を含むように個片化する。次ぎに、個片化した光電変換素子12のチップを、セラミック又はプラスチック等で形成されるパッケージ19に、銀ペースト18等で固定する。   First, a dicing process is performed on the semiconductor wafer 1 so that each chip includes a single photoelectric conversion element 12. Next, the chip | tip of the photoelectric conversion element 12 separated into pieces is fixed to the package 19 formed with a ceramic or a plastic with the silver paste 18 grade | etc.,.

その後、パッケージ19と光電変換素子12を電気的に接続するためのワイヤーボンディング工程を行う。ワイヤーボンディング工程は、パッケージ19に設けられるインナーリード部20と固体撮像素子12に設けられるパッド部17とを、金線又はアルミ線等のワイヤーボンディング21で接続することで行われる。   Thereafter, a wire bonding step for electrically connecting the package 19 and the photoelectric conversion element 12 is performed. The wire bonding step is performed by connecting the inner lead portion 20 provided in the package 19 and the pad portion 17 provided in the solid-state imaging device 12 with a wire bonding 21 such as a gold wire or an aluminum wire.

この時、図に示すように、パッケージ19内及び光電変換素子12上には、サイズの大きい異物51とサイズの小さい異物52とが多数存在する。サイズの大きい異物51は、例えば、半導体ウェハ1の切削時に発生するシリコン切削屑等であり、その大きさは数μm〜数十μm程度である。サイズの小さい異物52は、例えば、パッケージ19の材料であるセラミックやSUS系の異物等であり、その大きさは、1μm〜数μm程度である。   At this time, as shown in the drawing, a large size foreign matter 51 and a small size foreign matter 52 exist in the package 19 and on the photoelectric conversion element 12. The large foreign matter 51 is, for example, silicon cutting waste generated when the semiconductor wafer 1 is cut, and the size is about several μm to several tens μm. The small foreign material 52 is, for example, a ceramic or SUS-based foreign material that is a material of the package 19, and the size thereof is about 1 μm to several μm.

図2は、パッケージ19に接合された光電変換素子12に対する親水化処理を説明するための概略図である。   FIG. 2 is a schematic diagram for explaining a hydrophilic treatment for the photoelectric conversion element 12 bonded to the package 19.

多数の異物51及び52が付着したパッケージ19に接合された光電変換素子12を、減圧方式のOプラズマチャンバーにセットし、親水化処理を施す。ここでのプラズマ処理条件は、例えば、13.56MHzの高周波電源出力を50(W)、チャンバー内真空度20(Torr)、処理に用いるガス流量を10(ml/min)とする。このようなプラズマ処理条件下で、例えば、プラズマ照射時間を10(sec)とする。なお、プラズマ処理に用いるガスは、Oガスに限らず、O+Ar混合ガスでも良い。 The photoelectric conversion element 12 bonded to the package 19 to which a large number of foreign substances 51 and 52 are attached is set in a decompression type O 2 plasma chamber and subjected to a hydrophilic treatment. The plasma processing conditions here are, for example, a high frequency power output of 13.56 MHz is 50 (W), a degree of vacuum in the chamber is 20 (Torr), and a gas flow rate used for processing is 10 (ml / min). Under such plasma processing conditions, for example, the plasma irradiation time is set to 10 (sec). The gas used in the plasma treatment is not limited to O 2 gas, it may be O 2 + Ar gas mixture.

上記のプラズマ処理により、固体撮像素子12の表面に形成されるマイクロレンズ32に対して親水化処理が施される。マイクロレンズ32は、例えば、高さ1μmで、直径3μm程度である。上記条件により、マイクロレンズ32の表面が、0.03μm程度エッチングされるが、マイクロレンズ32の高さの約3%程度であるので、マイクロレンズ32の光学特性にはほとんど影響がない。   By the above plasma treatment, the microlens 32 formed on the surface of the solid-state imaging device 12 is subjected to a hydrophilic treatment. For example, the microlens 32 has a height of 1 μm and a diameter of about 3 μm. Under the above conditions, the surface of the microlens 32 is etched by about 0.03 μm. However, since it is about 3% of the height of the microlens 32, the optical characteristics of the microlens 32 are hardly affected.

なお、上記プラズマ条件程度以上の処理条件では、急激な反応によって、上記プラズマ処理の目的である光電変換素子12の表面の親水化以外の影響、具体的には、マイクロレンズ32の光学的特性の劣化及び固体撮像素子12の電気特性劣化が生じる恐れがある。よって、本実施例におけるプラズマ処理は、上述のような低ダメージプラズマ条件であることが必要である。ここで低ダメージプラズマ条件とは、例えば、有機物のエッチングが300Å以下に抑えられるプラズマ処理条件である。   It should be noted that under processing conditions equal to or higher than the above plasma conditions, an abrupt reaction causes an effect other than the hydrophilicity of the surface of the photoelectric conversion element 12 that is the purpose of the plasma processing, specifically, the optical characteristics of the microlens 32. There is a risk of deterioration and deterioration of the electrical characteristics of the solid-state imaging device 12. Therefore, the plasma treatment in this embodiment needs to be under the low damage plasma conditions as described above. Here, the low damage plasma condition is, for example, a plasma processing condition in which etching of an organic substance is suppressed to 300 mm or less.

なお、上記の親水化処理は、プラズマ処理に限らない。例えば、紫外放射(UV)とオゾン(O3)を用いた光オゾン法により、表面改質を行い接着材4及びマイクロレンズ32の表面を親水化しても良い。   The hydrophilic treatment is not limited to plasma treatment. For example, the surface of the adhesive 4 and the micro lens 32 may be hydrophilized by surface modification by a photo-ozone method using ultraviolet radiation (UV) and ozone (O 3).

通常の状態では、固体撮像素子12の表面(マイクロレンズ32)は親水基を持たず後に行う洗浄工程における洗浄水をはじいてしまい、物理的な圧力で異物51及び52が流れ出した場合に、再度固体撮像素子12の表面(マイクロレンズ32)に付着してしまう場合がある。しかし、上述の親水化処理を行うことにより、固体撮像素子12の表面(マイクロレンズ32)の表面を改質して、親水化し、洗浄水をはじかなくして洗浄性を高めることができる。また、付着した汚染物等を高い物理的圧力を必要とせずに洗い流すことができるようになる。   In a normal state, the surface of the solid-state imaging device 12 (microlens 32) does not have a hydrophilic group and repels cleaning water in a subsequent cleaning process, so that the foreign matter 51 and 52 flows out again due to physical pressure. In some cases, the solid-state imaging device 12 may adhere to the surface (microlens 32). However, by performing the above-described hydrophilization treatment, the surface of the solid-state imaging device 12 (the microlens 32) can be modified to be hydrophilic and the cleaning performance can be improved without repelling the cleaning water. Moreover, it becomes possible to wash away the adhered contaminants and the like without requiring a high physical pressure.

図3は、本実施例による第1の洗浄工程を表す図である。図中矢印で洗浄水の流れを示す。   FIG. 3 is a diagram illustrating a first cleaning process according to the present embodiment. The flow of washing water is indicated by arrows in the figure.

親水化処理を施したパッケージ19に接合された光電変換素子12を、第1の超音波洗浄槽40にセットし、第1の洗浄工程を行う。第1の超音波洗浄槽40は、例えば、100KHzの高い周波数で超音波洗浄を行うための水槽である。この第1の超音波洗浄槽40で、親水化処理を施したパッケージ19に接合された光電変換素子12を、例えば、60秒間洗浄する。この高い周波数の超音波洗浄により、サイズの小さい異物52を流しだすことが出来る。また、サイズの大きい異物51を次の第2の洗浄工程において外部に排出しやすくする。長時間の超音波洗浄を行うと、固体撮像素子12にクラック等の欠陥が生じる恐れがあるので、本実施例では、60秒と比較的短時間の洗浄を行う。   The photoelectric conversion element 12 bonded to the package 19 subjected to the hydrophilic treatment is set in the first ultrasonic cleaning tank 40, and the first cleaning process is performed. The first ultrasonic cleaning tank 40 is a water tank for performing ultrasonic cleaning at a high frequency of 100 KHz, for example. In the first ultrasonic cleaning tank 40, the photoelectric conversion element 12 bonded to the package 19 subjected to the hydrophilic treatment is cleaned for 60 seconds, for example. By this high frequency ultrasonic cleaning, the small foreign matter 52 can be discharged. Further, the large foreign matter 51 is easily discharged to the outside in the next second cleaning step. If ultrasonic cleaning is performed for a long time, defects such as cracks may occur in the solid-state imaging device 12, and therefore cleaning is performed in a relatively short time of 60 seconds in this embodiment.

図4は、本実施例による第2の洗浄工程を表す図である。図中矢印で洗浄水の流れを示す。   FIG. 4 is a diagram illustrating a second cleaning process according to the present embodiment. The flow of washing water is indicated by arrows in the figure.

第1の洗浄工程を経たパッケージ19に接合された光電変換素子12を、第2の超音波洗浄槽41にセットし、第2の洗浄工程を行う。第2の超音波洗浄槽41は、例えば、80KHzの低い周波数で超音波洗浄を行うための水槽である。この第2の超音波洗浄槽41で、第1の洗浄工程を経たパッケージ19に接合された光電変換素子12を、例えば、60秒間洗浄する。この低い周波数の超音波洗浄により、サイズの大きい異物51を流しだすことが出来る。長時間の超音波洗浄を行うと、固体撮像素子12にクラック等の欠陥が生じる恐れがあるので、本実施例では、60秒と比較的短時間の洗浄を行う。   The photoelectric conversion element 12 bonded to the package 19 that has undergone the first cleaning process is set in the second ultrasonic cleaning tank 41, and the second cleaning process is performed. The second ultrasonic cleaning tank 41 is a water tank for performing ultrasonic cleaning at a low frequency of 80 KHz, for example. In the second ultrasonic cleaning tank 41, the photoelectric conversion element 12 bonded to the package 19 that has undergone the first cleaning process is cleaned, for example, for 60 seconds. By this low frequency ultrasonic cleaning, a large foreign substance 51 can be flowed out. If ultrasonic cleaning is performed for a long time, defects such as cracks may occur in the solid-state imaging device 12, and therefore cleaning is performed in a relatively short time of 60 seconds in this embodiment.

図5は、本実施例による第3の洗浄工程を表す図である。図中矢印で洗浄水の流れを示す。   FIG. 5 is a diagram illustrating a third cleaning process according to the present embodiment. The flow of washing water is indicated by arrows in the figure.

第2の洗浄工程を経たパッケージ19に接合された光電変換素子12を、純水リンス槽42にセットし、第3の洗浄工程を行う。純水リンス槽42は、例えば、23℃の純水で洗浄を行うための水槽である。この純水リンス槽42で、第2の洗浄工程を経たパッケージ19に接合された光電変換素子12を、例えば、300秒間洗浄する。   The photoelectric conversion element 12 joined to the package 19 that has undergone the second cleaning step is set in the pure water rinsing tank 42, and the third cleaning step is performed. The pure water rinsing tank 42 is a water tank for cleaning with pure water at 23 ° C., for example. In the pure water rinsing tank 42, the photoelectric conversion element 12 bonded to the package 19 that has undergone the second cleaning step is cleaned, for example, for 300 seconds.

以上の第1〜第3の洗浄工程により、パッケージ19内及び光電変換素子12上に付着していた大きい異物51及び小さい異物52を完全に外部に排出することが出来る。   Through the above first to third cleaning steps, the large foreign matter 51 and the small foreign matter 52 that have adhered to the inside of the package 19 and on the photoelectric conversion element 12 can be completely discharged to the outside.

図6は、本実施例による乾燥工程を表す図である。   FIG. 6 is a diagram illustrating a drying process according to the present embodiment.

第3の洗浄工程を経たパッケージ19に接合された光電変換素子12に対して、図に示すように、例えば、100℃の温風ブローを300秒以上行い、乾燥させる。その後、ガラスもしくは光学部品等の封止部材をパッケージ19に装着して固体撮像素子12をパッケージ内に密封する。   As shown in the figure, for example, hot air blow at 100 ° C. is performed for 300 seconds or more on the photoelectric conversion element 12 bonded to the package 19 that has undergone the third cleaning step and dried. Thereafter, a sealing member such as glass or an optical component is attached to the package 19 to seal the solid-state imaging device 12 in the package.


以上、本発明の実施例によれば、固体撮像素子をパッケージ内に接合した後に、洗浄工程を行うので、パッケージ内の異物及び組立工程中に発生する固体撮像素子上の異物をパッケージ密封前に排除することが出来る。

As described above, according to the embodiment of the present invention, since the cleaning process is performed after the solid-state imaging device is joined in the package, the foreign matter in the package and the foreign matter on the solid-state imaging device generated during the assembly process are removed before the package is sealed. Can be eliminated.

また、本発明の実施例によれば、固体撮像素子をパッケージ内に接合した後に、親水化処理を行うので、高い物理的圧力による洗浄を必要としない。よって、超音波洗浄によりパッケージ内の異物及び組立工程中に発生する固体撮像素子上の異物を排除することが出来る。   Further, according to the embodiment of the present invention, since the hydrophilic treatment is performed after the solid-state imaging device is joined in the package, cleaning with a high physical pressure is not required. Therefore, the foreign substance in a package and the foreign substance on the solid-state image sensor which generate | occur | produce during an assembly process can be excluded by ultrasonic cleaning.

また、本発明によれば、パッケージ内の異物及び組立工程中に発生する固体撮像素子上の異物を排除することができ、固体撮像装置のカメラ実装後の振動等による固体撮像素子への移動が懸念される異物を排除することが可能となる。よって、固体撮像装置の画像欠陥を大幅に低減することが出来る。   In addition, according to the present invention, the foreign matter in the package and the foreign matter on the solid-state imaging device generated during the assembly process can be eliminated, and the movement of the solid-state imaging device to the solid-state imaging device due to vibration after the camera is mounted can be eliminated. It becomes possible to eliminate the foreign matter concerned. Therefore, image defects of the solid-state imaging device can be greatly reduced.

なお、実施例では、パッケージ19を垂直方向にセットして洗浄工程を行ったが、これに限らず水平方向にセットして洗浄工程を行っても良い。   In the embodiment, the cleaning process is performed by setting the package 19 in the vertical direction. However, the cleaning process may be performed by setting the package 19 in the horizontal direction.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

本発明の実施例による固体撮像素子のパッケージへの接合工程を説明するための図である。It is a figure for demonstrating the joining process to the package of the solid-state image sensor by the Example of this invention. パッケージ19に接合された光電変換素子12に対する親水化処理を説明するための概略図である。6 is a schematic diagram for explaining a hydrophilic treatment for the photoelectric conversion element 12 bonded to a package 19. FIG. 本実施例による第1の洗浄工程を表す図である。It is a figure showing the 1st washing | cleaning process by a present Example. 本実施例による第2の洗浄工程を表す図である。It is a figure showing the 2nd washing | cleaning process by a present Example. 本実施例による第3の洗浄工程を表す図である。It is a figure showing the 3rd washing | cleaning process by a present Example. 本実施例による乾燥工程を表す図である。It is a figure showing the drying process by a present Example.

符号の説明Explanation of symbols

1…半導体ウェハ、12…固体撮像素子、17…パッド部、18…銀ペースト、19…パッケージ、20…インナーリード部、21…ワイヤーボンディング、32…マイクロレンズ、40…第1の超音波洗浄槽、41…第2の超音波洗浄槽、42…純水リンス槽、51、52…異物 DESCRIPTION OF SYMBOLS 1 ... Semiconductor wafer, 12 ... Solid-state image sensor, 17 ... Pad part, 18 ... Silver paste, 19 ... Package, 20 ... Inner lead part, 21 ... Wire bonding, 32 ... Microlens, 40 ... 1st ultrasonic cleaning tank 41 ... 2nd ultrasonic cleaning tank, 42 ... Pure water rinse tank, 51, 52 ... Foreign material

Claims (1)

複数の固体撮像素子が形成された半導体ウェハを準備する準備工程と、
前記半導体ウェハをダイシングして個片化するダイシング工程と、
前記ダイシング工程により個片化された前記複数の固体撮像素子のそれぞれをパッケージ内に接合する接合工程と、
前記固体撮像素子の表面を、低ダメージプラズマ処理条件によるプラズマ処理により親水化する親水化工程と、
それぞれが異なる周波数による少なくとも2回の超音波洗浄により前記固体撮像素子を接合したパッケージを洗浄する洗浄工程と、
前記洗浄したパッケージに封止部材を装着して該パッケージ内に固体撮像素子を密封する密封工程と
を有する固体撮像装置の製造方法。
Preparing a semiconductor wafer on which a plurality of solid-state imaging devices are formed; and
A dicing step of dicing the semiconductor wafer into individual pieces;
A bonding step of bonding each of the plurality of solid-state imaging devices separated into pieces by the dicing step into a package;
A hydrophilization step of hydrophilizing the surface of the solid-state imaging device by plasma treatment under low damage plasma treatment conditions;
A cleaning step of cleaning the package to which the solid-state imaging device is bonded by at least two ultrasonic cleanings each having a different frequency ;
A method of manufacturing a solid-state imaging device, comprising: a sealing step of mounting a sealing member on the cleaned package and sealing the solid-state imaging device in the package.
JP2004021507A 2004-01-29 2004-01-29 Method for manufacturing solid-state imaging device Expired - Fee Related JP4443249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021507A JP4443249B2 (en) 2004-01-29 2004-01-29 Method for manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021507A JP4443249B2 (en) 2004-01-29 2004-01-29 Method for manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2005217155A JP2005217155A (en) 2005-08-11
JP4443249B2 true JP4443249B2 (en) 2010-03-31

Family

ID=34905128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021507A Expired - Fee Related JP4443249B2 (en) 2004-01-29 2004-01-29 Method for manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4443249B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142207A (en) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd Solid-state image pickup device, and manufacturing method thereof
JP4765688B2 (en) * 2006-03-08 2011-09-07 日亜化学工業株式会社 LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE

Also Published As

Publication number Publication date
JP2005217155A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4280085B2 (en) Wafer sawing method
TWI278121B (en) FBGA and COB package structure for image sensor
JP5091066B2 (en) Method for manufacturing solid-state imaging device
US8890191B2 (en) Chip package and method for forming the same
KR100758887B1 (en) Manufacturing method of semiconductor device
KR100994845B1 (en) Solid-state imaging device and method for manufacturing the same
JP5279775B2 (en) Manufacturing method of semiconductor device
KR20080053240A (en) Imagine sensor package and forming method of the same
JP2005158948A (en) Solid-state imaging device and method for manufacturing the same
US20120217600A1 (en) Semiconductor device and manufacturing method of semiconductor device
US8829635B2 (en) Solid-state imaging device, manufacturing method thereof, electronic apparatus, and semiconductor device
TW201108405A (en) Method of manufacturing solid state imaging device, and solid state imaging device
JP2011077297A (en) Semiconductor device, semiconductor device manufacturing method, electronic apparatus, and electronic apparatus manufacturing method
US20070120041A1 (en) Sealed Package With Glass Window for Optoelectronic Components, and Assemblies Incorporating the Same
JP4443249B2 (en) Method for manufacturing solid-state imaging device
TW200818482A (en) Method for image sensor protection
JP2005203679A (en) Method of manufacturing solid-state image pickup device
US20050158913A1 (en) Solid state imaging apparatus and its manufacturing method
JP2005286028A (en) Solid-state imaging device package, manufacturing method thereof semiconductor package, and camera module
WO2020003796A1 (en) Solid-state imaging device, electronic apparatus, and manufacturing method of solid-state imaging device
JP2010177351A (en) Solid-state imaging device and electronic apparatus including the same
JP2005217154A (en) Method for manufacturing solid-state image pickup device
JP2006100735A (en) Cleaning method of cover glass
JP2014155914A (en) Method of cleaning semiconductor module, method of cleaning camera module, method of manufacturing semiconductor module, and method of manufacturing camera module
JP2000031442A (en) Method for forming microlens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees