JP4442539B2 - Spatial information detection device - Google Patents

Spatial information detection device Download PDF

Info

Publication number
JP4442539B2
JP4442539B2 JP2005280912A JP2005280912A JP4442539B2 JP 4442539 B2 JP4442539 B2 JP 4442539B2 JP 2005280912 A JP2005280912 A JP 2005280912A JP 2005280912 A JP2005280912 A JP 2005280912A JP 4442539 B2 JP4442539 B2 JP 4442539B2
Authority
JP
Japan
Prior art keywords
light
difference
output
region
light reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005280912A
Other languages
Japanese (ja)
Other versions
JP2007093306A (en
Inventor
英喜 河原
健一 萩尾
栄次 中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005280912A priority Critical patent/JP4442539B2/en
Priority to TW94137350A priority patent/TWI272841B/en
Publication of JP2007093306A publication Critical patent/JP2007093306A/en
Application granted granted Critical
Publication of JP4442539B2 publication Critical patent/JP4442539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Exposure Control For Cameras (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Description

本発明は、所定周波数で強度を変調した信号光を対象空間に投光し、対象空間から受光した光に含まれる信号光の振幅を検出することにより、対象空間に存在する物体の反射率と物体までの距離とを含む空間情報を得るようにした空間情報の検出装置に関するものである。   The present invention projects the signal light whose intensity is modulated at a predetermined frequency to the target space, and detects the amplitude of the signal light contained in the light received from the target space, thereby obtaining the reflectance of the object existing in the target space. The present invention relates to a spatial information detection apparatus that obtains spatial information including a distance to an object.

従来から、投光手段から対象空間に投光し、対象空間を撮像手段で撮像するアクティブ型の空間情報の検出装置が知られている。この装置では、投光手段から対象空間に投光され対象空間に存在する対象物によって反射された光を撮像手段に受光させている。空間情報は、対象物の反射率や距離を反映した情報であって、この種の情報を得るために、投光手段から対象空間に投光する光の強度を所定周波数の変調信号で変調し、また撮像手段では変調信号の位相の特定の2区間に同期した光を受光し、両区間の受光出力の差分を求めることが考えられている(たとえば、特許文献1参照)。   2. Description of the Related Art Conventionally, there is known an active type spatial information detection device that projects light from a light projecting unit to a target space and images the target space with an image capturing unit. In this apparatus, light that is projected from the light projecting unit to the target space and reflected by the target existing in the target space is received by the imaging unit. Spatial information is information that reflects the reflectance and distance of an object. In order to obtain this type of information, the intensity of light projected from the light projecting means to the target space is modulated with a modulation signal of a predetermined frequency. In addition, it is considered that the imaging means receives light synchronized with two specific intervals of the phase of the modulation signal and obtains the difference between the light reception outputs of both intervals (for example, see Patent Document 1).

いま、投光手段から対象空間に投光する期間(投光期間という)と投光手段から対象空間に投光しない期間(非投光期間という)とを交互に設けるように変調信号の波形として矩形波を用いる場合を想定する。非投光期間には自然光のような環境光のみが撮像手段に入射し、投光期間には環境光のほかに投光手段から投光した光である信号光も撮像手段に入射する。光は撮像手段に対して加算的に入射するから、投光期間と非投光期間とで環境光が変化しなければ、投光期間の受光出力と非投光期間の受光出力との差分を求めることによって、信号光に相当する受光出力が得られる。   Now, as a waveform of the modulation signal, a period for projecting light from the light projecting means to the target space (referred to as a light project period) and a period for not projecting light from the light projecting means to the target space (referred to as a non-light project period) are alternately provided. Assume that a rectangular wave is used. During the non-projection period, only ambient light such as natural light is incident on the image pickup means, and in the light projection period, signal light, which is light projected from the light projection means, is also incident on the image pickup means. Since light is incident on the imaging means in addition, if the ambient light does not change between the light projection period and the non-light projection period, the difference between the light reception output during the light projection period and the light reception output during the non-light projection period is calculated. By obtaining, a light receiving output corresponding to the signal light can be obtained.

信号光の受光光量は、対象物までの距離と反射率とに主として依存する。つまり、距離が遠いほど受光光量は少なくなり、反射率が低いほど受光光量が少なくなる。したがって、信号光に相当する受光出力を求めることによって、反射率や距離を反映した空間情報を得ることができる。   The received light quantity of the signal light mainly depends on the distance to the object and the reflectance. That is, as the distance increases, the amount of received light decreases, and as the reflectance decreases, the amount of received light decreases. Therefore, by obtaining the light reception output corresponding to the signal light, it is possible to obtain spatial information reflecting the reflectance and distance.

ここで、対象空間において対象物以外の背景からは信号光が入射しないとすれば、上述のようにして差分を求めることで、撮像手段の受光出力から対象物で反射された信号光のみを抽出することができる。言い換えると、背景の情報を除去して対象物の情報のみを抽出することが可能である。   Here, if signal light does not enter from the background other than the target in the target space, only the signal light reflected by the target is extracted from the light reception output of the imaging means by obtaining the difference as described above. can do. In other words, it is possible to remove only background information and extract only object information.

上述の例では変調信号の波形を矩形波としているが、投光から受光までの光の飛行時間が受光出力では誤差の範囲になる程度の周波数の変調信号であれば、正弦波や三角波や鋸歯状波などを用いることも可能であり、これらの波形を用いた場合でも撮像手段において変調信号の位相の特定の2区間(通常、180度反転した位相)に同期するタイミングで求めた受光出力の差分を用いることによって、受光した信号光の振幅を求めることができる。投光側の信号光の振幅を一定とすれば、受光側の信号光の振幅は、対象物までの距離や対象物の反射率を反映していることになる。
特開2001−148808号公報
In the above example, the waveform of the modulation signal is a rectangular wave. However, if the modulation signal has a frequency such that the flight time from light projection to light reception is within the error range of the light reception output, it is a sine wave, triangular wave, or sawtooth. It is also possible to use a sine wave or the like, and even when these waveforms are used, the received light output obtained at the timing synchronized with two specific sections (usually 180 degrees inverted) of the phase of the modulation signal in the imaging means. By using the difference, the amplitude of the received signal light can be obtained. If the amplitude of the signal light on the light emitting side is constant, the amplitude of the signal light on the light receiving side reflects the distance to the object and the reflectance of the object.
JP 2001-148808 A

ところで、上述の構成を有する空間情報の検出装置に用いる撮像手段では、受光光量に上限があり、受光光量が上限を超えると受光出力が飽和する。撮像手段が飽和したときにその出力を受光出力として取り出す場合には、受光出力は上限であるから、受光光量が少なくとも上限以上であることがわかるが、上述のように変調信号の位相の特定の2区間に同期するタイミングで求めた受光出力の差分を求める場合には、差分を求める両受光出力の一方でも飽和していると求めた差分には有意の空間情報が含まれないことになる。とくに、両受光出力がともに飽和している場合には、差分した結果は零であり、背景として扱われることになる。   By the way, in the imaging means used for the spatial information detection apparatus having the above-described configuration, the received light amount has an upper limit, and the received light output is saturated when the received light amount exceeds the upper limit. When the output is taken out as a light reception output when the imaging means is saturated, the light reception output is the upper limit, so it can be seen that the amount of received light is at least the upper limit, but as described above, the phase of the modulation signal is specified. When the difference between the received light outputs obtained at the timing synchronized with the two sections is obtained, significant spatial information is not included in the difference obtained when one of the received light outputs for which the difference is obtained is saturated. In particular, when both the light receiving outputs are saturated, the difference result is zero and is treated as the background.

本発明は上記事由に鑑みて為されたものであり、その目的は、環境光の影響を除去するように差分をとった振幅画像を用いるとともに、受光出力が飽和すると次の受光出力の飽和を抑制し、つねに有意の振幅画像が得られるようにした空間情報の検出装置を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its purpose is to use an amplitude image obtained by taking a difference so as to eliminate the influence of ambient light, and when the received light output is saturated, the next received light output is saturated. An object of the present invention is to provide a spatial information detection apparatus that suppresses and always obtains a significant amplitude image.

請求項1の発明は、所定周波数の変調信号で強度を変調した信号光を対象空間に投光する投光手段と、複数個の画素を備え対象空間に存在する対象物で反射された信号光を受光するとともに各画素ごとに受光光量の変化に応じた受光出力が得られる撮像手段と、変調信号の位相における異なる2区間に同期した受光出力の差分を各画素ごとに求める差分演算手段と、差分演算手段で求めた各画素の前記差分を画素値に持つ振幅画像を生成する振幅画像生成手段と、前記2区間の少なくとも一方に同期するタイミングで得られる受光出力と規定した飽和閾値との大小を比較する飽和判定手段と、飽和判定手段において当該受光出力が飽和閾値より大きいと判断されると撮像手段の次の受光出力を低減させる補正処理を実行する補正手段とを備え、補正手段は、指示された操作量に応じて撮像手段の受光出力を調節する補正実施手段と、飽和判定手段による比較結果を用いて補正実施手段の操作量を求め当該操作量を補正実施手段に指示する補正演算手段とを備え、補正演算手段は、前記振幅画像内で着目領域を指定する領域指定手段と、領域指定手段で指定された着目領域内の画素に関する前記差分を用いて信号光に相当する受光出力を評価する輝度検出手段と、輝度検出手段で評価した信号光に対応する受光出力があらかじめ規定した基準に近付くように前記操作量を求める補正処理手段とを備え、補正処理手段は、前記着目領域の受光出力の代表値に対応付けて当該受光出力が小さいほど大きくなる係数を設定し、領域指定手段において次に指定する着目領域を求める際に前記差分に当該係数を乗じた後に前記有効閾値と比較することを特徴とする。 According to the first aspect of the present invention, there is provided light projecting means for projecting signal light, the intensity of which is modulated with a modulation signal having a predetermined frequency, into the target space, and signal light reflected by an object that includes a plurality of pixels and exists in the target space. Imaging means for obtaining a light reception output corresponding to a change in the amount of received light for each pixel, a difference calculation means for obtaining a difference between light reception outputs synchronized with two different sections in the phase of the modulation signal for each pixel, Amplitude image generation means for generating an amplitude image having the pixel value of the difference of each pixel obtained by the difference calculation means, and the magnitude of the received light output obtained at the timing synchronized with at least one of the two sections and the prescribed saturation threshold a saturation determination means for comparing the, e Bei and correction means the light receiving output in the saturation determining means to perform the following correction processing to reduce the light output of the are the imaging unit determined to be larger than the saturation threshold The correction unit is a correction execution unit that adjusts the light reception output of the imaging unit according to the instructed operation amount, and obtains the operation amount of the correction execution unit using the comparison result by the saturation determination unit, and the operation amount is stored in the correction execution unit. Correction calculation means for instructing, the correction calculation means for signal light using an area designating means for designating a region of interest in the amplitude image, and the difference regarding the pixels in the region of interest designated by the region designating means. A luminance detection unit that evaluates the corresponding light reception output; and a correction processing unit that obtains the operation amount so that the light reception output corresponding to the signal light evaluated by the luminance detection unit approaches a predetermined standard. In association with the representative value of the light reception output of the region of interest, a coefficient that increases as the light reception output decreases is set. And comparing said effective threshold after multiplied by the coefficient.

この構成によれば、受光出力が飽和するときに次の受光出力が低減されるように補正することで受光出力の飽和を抑制することが可能になり、結果的に受光出力の差分から有意の空間情報が得られるようにする。たとえば、対象空間に存在する対象物までの距離が小さすぎる場合や対象物の反射率が想定している反射率よりも高い場合には、受光出力が一旦は飽和するから当該受光出力を用いた振幅画像では有意の空間情報が得られないが、その後には受光出力が飽和しないように補正され、振幅画像により有意の空間情報を得ることが可能になる。
また、受光出力の差分を用いて振幅画像を得る構成において、飽和判定手段による受光出力と飽和閾値との比較結果を用いて補正実施手段の操作量を決定しているから、操作量が適宜に決定されると飽和していない受光出力について差分を求めることが可能になり、有意な振幅画像を得ることができる。
しかも、着目領域として対象物が存在する可能性が高い領域を指定しておくことによって、差分演算手段で求めた差分のうち着目領域内の画素から得られる差分は信号光に関する情報を持つことになる。したがって、信号光による受光出力を基準に近付けるように受光出力を補正することで、対象物に関して適正な値を持った振幅画像が得られるように振幅画像が補正されることになる。
その上、着目領域から得られる受光出力が小さいときには差分に大きい係数を乗じることで、着目領域の範囲として指定する範囲を拡げることができる。たとえば、対象物がやや遠方に存在している場合や対象物の反射率が想定している反射率よりも低い場合に、着目領域に対象物の一部しか含まれないことがあるが、係数を用いて着目領域を拡げることで対象物の全体を含むように着目領域を補正し、結果的に、対象物の全体を含む振幅画像を生成することができる。
According to this configuration, it is possible to suppress the saturation of the received light output by correcting so that the next received light output is reduced when the received light output is saturated. Make spatial information available. For example, when the distance to the target object existing in the target space is too small or when the reflectivity of the target object is higher than the assumed reflectivity, the received light output is used because the received light output is once saturated. Significant spatial information cannot be obtained from the amplitude image, but thereafter, the received light output is corrected so as not to be saturated, and significant spatial information can be obtained from the amplitude image.
Further, in the configuration in which the amplitude image is obtained using the difference between the light reception outputs, the operation amount of the correction execution unit is determined using the comparison result between the light reception output by the saturation determination unit and the saturation threshold value. When determined, a difference can be obtained for the light reception output that is not saturated, and a significant amplitude image can be obtained.
In addition, by specifying an area where the object is highly likely to exist as the target area, the difference obtained from the pixels in the target area among the differences obtained by the difference calculation means has information on the signal light. Become. Therefore, by correcting the light reception output so that the light reception output by the signal light is close to the reference, the amplitude image is corrected so that an amplitude image having an appropriate value with respect to the object can be obtained.
In addition, when the received light output obtained from the region of interest is small, the range specified as the region of interest can be expanded by multiplying the difference by a large coefficient. For example, if the target is located a little far away or if the reflectivity of the target is lower than the expected reflectivity, the target area may contain only a part of the target. By expanding the region of interest using, the region of interest is corrected so as to include the entire object, and as a result, an amplitude image including the entire object can be generated.

請求項2の発明では、請求項1の発明において、前記飽和判定手段は、比較結果において受光出力が飽和閾値より大きいときには前記差分演算手段で求めた差分に代えて規定値を出力させることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the invention, the saturation determining means outputs a prescribed value instead of the difference obtained by the difference calculating means when the received light output is larger than a saturation threshold in the comparison result. And

この構成によれば、飽和判定手段での判定結果を補正実施手段に直接反映するのではなく、飽和判定手段での判定結果が差分演算手段から出力される差分を用いて補正実施手段に反映される構成を採用しているにもかかわらず、差分演算手段の出力によって受光出力の飽和の有無を知ることができ、その結果を補正実施手段に反映させることができる。すなわち、差分が規定値になることで飽和しているか否かを受光出力から判断することができる。また、いずれかの画素に対応する受光出力が飽和したときに当該画素に対応する差分と周辺部位の差分との差が小さくなるような規定値を選択しておくことによって、振幅画像内での飽和部位の違和感を軽減することができる。   According to this configuration, the determination result in the saturation determination unit is not directly reflected in the correction execution unit, but the determination result in the saturation determination unit is reflected in the correction execution unit using the difference output from the difference calculation unit. In spite of adopting the configuration, it is possible to know the presence or absence of saturation of the received light output by the output of the difference calculation means, and to reflect the result on the correction execution means. That is, it can be determined from the received light output whether the difference is saturated when the difference reaches the specified value. In addition, by selecting a prescribed value that reduces the difference between the difference corresponding to the pixel and the difference between the peripheral portions when the light reception output corresponding to any pixel is saturated, The uncomfortable feeling at the saturated site can be reduced.

請求項3の発明では、請求項2の発明において、前記規定値は、前記差分演算手段から出力される差分の最大値であることを特徴とする。 According to a third aspect of the present invention, in the second aspect of the present invention, the specified value is a maximum value of a difference output from the difference calculating means.

この構成によれば、飽和部位の画素に差分が取りうる最大値を与えることによって、受光出力の飽和を補正演算手段に確実に認識させることができる。また、振幅画像においては、受光出力が飽和している部位を背景と区別することができる。   According to this configuration, by giving the maximum value that the difference can take to the pixels in the saturated portion, it is possible to reliably cause the correction calculation means to recognize the saturation of the light reception output. Further, in the amplitude image, a portion where the light reception output is saturated can be distinguished from the background.

請求項4の発明では、請求項1ないし請求項3のいずれかの発明において、領域指定手段は、差分演算手段で求めた前記差分を規定の有効閾値と比較し前記振幅画像内で前記差分が有効閾値を越える画素の存在する領域を前記着目領域として指定することを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the area designating unit compares the difference obtained by the difference calculating unit with a prescribed effective threshold value, and the difference is determined in the amplitude image. A region where pixels exceeding the effective threshold are present is designated as the region of interest.

この構成によれば、振幅画像の画素値(つまり、差分)によって着目領域を指定するから、反射率が同等の対象物であれば、近距離に存在する対象物を着目領域として指定することができる。つまり、ドアホン子機に用いるカメラのように比較的近距離に存在する人を対象物とする場合に、遠方で通過している人などは着目領域から除外することができ、対象物として必要な領域だけを着目領域に指定することが可能になる。   According to this configuration, since the region of interest is designated by the pixel value (that is, the difference) of the amplitude image, it is possible to designate an object existing at a short distance as the region of interest if the object has the same reflectance. it can. In other words, when a person who is present at a relatively short distance, such as a camera used in a door phone slave unit, is used as a target, a person who is passing far away can be excluded from the region of interest. Only the region can be designated as the region of interest.

請求項5の発明では、請求項1ないし請求項4のいずれかの発明において、前記撮像手段は、前記変調信号における異なる位相の2区間で各別に生成した電荷を変調信号の複数周期に亘る蓄積時間において蓄積した後に受光出力として取り出すイメージセンサを備え、前記補正実施手段は、前記操作量に応じて蓄積時間を変化させることを特徴とする。 According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the imaging means accumulates charges generated separately in two sections having different phases in the modulation signal over a plurality of periods of the modulation signal. An image sensor is provided that takes out as a received light output after being accumulated over time, and the correction execution unit changes the accumulation time according to the operation amount.

この構成は、イメージセンサの蓄積時間を調節することによって受光出力を調節しているから、撮像手段での受光光量が多ければ蓄積時間を短くして応答性を高めることができ、撮像手段での受光光量が少なければ蓄積時間が長くなって応答性が低下するものの、イメージセンサにおいて発生するショットノイズによるノイズレベルを抑制することが可能になる。なお、蓄積時間は各区間の1回の時間と周期数(蓄積回数)との積になる。   In this configuration, since the light reception output is adjusted by adjusting the accumulation time of the image sensor, if there is a large amount of light received by the imaging means, the accumulation time can be shortened to increase the responsiveness. If the amount of received light is small, the accumulation time becomes long and the responsiveness decreases, but the noise level due to shot noise generated in the image sensor can be suppressed. The accumulation time is a product of one time of each section and the number of cycles (number of accumulations).

本発明の構成によれば、受光出力が飽和するときに次の受光出力が低減し受光出力の飽和を抑制するから、環境光が多く存在する屋外などで使用する場合であっても、受光出力の飽和を抑制し、受光出力の差分から有意の空間情報が得られるようにすることができるという利点がある。その上、着目領域から得られる受光出力が小さいときには差分に大きい係数を乗じることで、着目領域の範囲として指定する範囲を拡げることができるという利点がある。 According to the configuration of the present invention, when the light reception output is saturated, the next light reception output is reduced to suppress the saturation of the light reception output. Therefore, even when used outdoors such as where there is a lot of ambient light, the light reception output There is an advantage that the saturation of the light can be suppressed and significant spatial information can be obtained from the difference between the received light outputs. In addition, when the received light output obtained from the region of interest is small, there is an advantage that the range designated as the region of the region of interest can be expanded by multiplying the difference by a large coefficient.

図1は本発明の構成を示しており、複数個の画素を備え各画素ごとに受光光量に応じた受光出力が得られる撮像手段1と、撮像手段1により撮像する対象空間に信号光を投光する投光手段2とを備える。   FIG. 1 shows a configuration of the present invention. An imaging unit 1 having a plurality of pixels and capable of obtaining a light reception output corresponding to the amount of received light for each pixel, and signal light is projected to a target space to be imaged by the imaging unit 1. And a light projecting means 2 for emitting light.

撮像手段1は、アイリス絞りやレンズからなる受光光学系11と、二次元平面に多数個の画素が配列され受光光学系11を通して対象空間からの光が画素に入射するイメージセンサ12と、イメージセンサ12の出力をデジタル信号に変換するAD変換部13とからなる。受光光学系11には種々の構成を採用することができ、アイリス絞りを用いる場合には外部信号により開口径の調節が可能になるものを用いる。また、アイリス絞りとレンズとの他に、透過率の異なる減光フィルタを複数用意しておき、外部信号によってどの減光フィルタを用いるかを選択する構成を採用することもできる。あるいはまた、液晶を用いた減光フィルタであって外部信号により透光率を変化させるものを用いることも可能である。受光光学系11に設けたレンズは、イメージセンサ12から対象空間を見る方向がイメージセンサ12の各画素に対応付ける。   The imaging unit 1 includes a light receiving optical system 11 including an iris diaphragm and a lens, an image sensor 12 in which a large number of pixels are arranged in a two-dimensional plane, and light from a target space is incident on the pixels through the light receiving optical system 11, and an image sensor The AD converter 13 converts the output of 12 into a digital signal. Various structures can be adopted for the light receiving optical system 11, and when an iris diaphragm is used, an aperture that can be adjusted by an external signal is used. In addition to the iris diaphragm and the lens, it is possible to prepare a plurality of neutral density filters having different transmittances and to select which neutral density filter to use according to an external signal. Alternatively, it is also possible to use a neutral density filter using liquid crystal that changes the transmissivity by an external signal. In the lens provided in the light receiving optical system 11, the direction in which the object space is viewed from the image sensor 12 is associated with each pixel of the image sensor 12.

投光手段2は、対象空間に光を照射する光源を備えた光照射手段21と、光照射手段21から照射する光の強度を変調するための所定周波数の変調信号を出力する変調手段22とからなる。光照射手段21には、たとえば複数個の発光ダイオードを一平面上に配列したものや半導体レーザと発散レンズとを組み合わせたものなどを用いることができる。また、可視光のほか赤外線などを用いることも可能である。変調手段22から出力される変調信号には矩形波を用いる。矩形波のオン期間に光照射手段21から対象空間に投光し、矩形波のオフ期間には光照射手段21から投光しない構成を採用する。すなわち、光照射手段21は投光(点灯)と非投光(消灯)とを所定周波数(10〜100kHz)で交互に繰り返す。以下では、光照射手段21から投光する期間を点灯期間と呼び、光照射手段21から投光していない期間を消灯期間と呼ぶ。   The light projecting unit 2 includes a light irradiating unit 21 having a light source that irradiates light to the target space, and a modulating unit 22 that outputs a modulation signal having a predetermined frequency for modulating the intensity of light irradiated from the light irradiating unit 21. Consists of. As the light irradiation means 21, for example, a plurality of light emitting diodes arranged on one plane or a combination of a semiconductor laser and a diverging lens can be used. In addition to visible light, infrared light can also be used. A rectangular wave is used for the modulation signal output from the modulation means 22. A configuration is adopted in which light is projected from the light irradiation means 21 to the target space during the rectangular wave on period, and light is not projected from the light irradiation means 21 during the rectangular wave off period. That is, the light irradiation means 21 repeats light projection (lighting) and non-light projection (light extinction) alternately at a predetermined frequency (10 to 100 kHz). Hereinafter, a period during which light is projected from the light irradiation means 21 is referred to as a lighting period, and a period during which light is not projected from the light irradiation means 21 is referred to as a light extinction period.

撮像手段1は、変調信号に同期するように制御され、点灯期間の受光出力と消灯期間の受光出力とが各別に取り出される。ただし、変調信号に同期させて各点灯期間および各消灯期間ごとに受光出力を取り出そうとすると、受光出力を1秒間に数万回取り出さなければならないから、応答速度の速い撮像手段1が必要になる。一般に、動画像は1秒間に30フレームであれば滑らかな動きが得られるから、撮像手段1の応答速度もこの程度にすることが望ましい。そこで、撮像手段1では、光照射により生成された電荷をそのまま取り出すのではなく、撮像手段1を構成するイメージセンサ12の内部において点灯期間の電荷と消灯期間の電荷とをそれぞれ蓄積し、変調信号の所定周期分の電荷を蓄積した後に受光出力として取り出す構成を採用する。この種のイメージセンサ12は、画素単位で受光感度の調節を可能とすることにより実現される。   The imaging means 1 is controlled to synchronize with the modulation signal, and the light receiving output during the lighting period and the light receiving output during the extinguishing period are taken out separately. However, if it is attempted to take out the light reception output in each lighting period and each extinguishing period in synchronization with the modulation signal, the light reception output has to be taken out tens of thousands of times per second, so that the imaging means 1 having a high response speed is required. . Generally, since a moving image can move smoothly if it is 30 frames per second, it is desirable that the response speed of the image pickup means 1 is also set to this level. Therefore, the image pickup means 1 does not take out the electric charge generated by the light irradiation as it is, but accumulates the charge during the lighting period and the electric charge during the extinction period inside the image sensor 12 constituting the image pickup means 1, respectively. A structure is adopted in which the charge for a predetermined period is accumulated and then taken out as a light reception output. This type of image sensor 12 is realized by making it possible to adjust the light receiving sensitivity in units of pixels.

たとえば、IT型のCCDイメージセンサを用いる場合には、点灯期間と消灯期間とのうち目的とする期間に生成された電荷を転送領域に移動させ目的としない期間に生成された電荷を廃棄するように制御すれば、転送領域には目的とする期間の電荷が蓄積される。この構成の場合、電荷を蓄積する期間(以下、「蓄積時間」という)を調節することが可能である。蓄積時間は、電荷を蓄積する1回の時間と、蓄積する回数(蓄積回数)との積になる。イメージセンサ12には、この種の用途に特化した構成を用いることも可能である。なお、変調信号の周波数をイメージセンサ12から1秒間に受光出力を取り出す回数の2分の1とすれば、通常のCCDイメージセンサでも対応可能である。たとえば、変調信号の周波数を30Hzとし、撮像手段1から受光出力を毎秒60回(つまり、点灯期間と消灯期間とが30回ずつ)取り出すようにしてもよい。以下では、イメージセンサ12から1回取り出した受光出力の単位を1フレームと呼ぶことにする。つまり、点灯期間と消灯期間との受光出力を1回ずつ取り出すと2フレームのデータを取り出したことになる。   For example, when an IT-type CCD image sensor is used, the charge generated during the target period of the lighting period and the extinguishing period is moved to the transfer region, and the charge generated during the non-target period is discarded. If controlled to this, the charge in the target period is accumulated in the transfer region. In the case of this configuration, it is possible to adjust a charge accumulation period (hereinafter referred to as “accumulation time”). The accumulation time is a product of one time for accumulating charges and the number of accumulations (accumulation number). It is also possible to use a configuration specialized for this type of application for the image sensor 12. If the frequency of the modulation signal is set to one half of the number of times the light receiving output is taken out from the image sensor 12 per second, a normal CCD image sensor can be used. For example, the frequency of the modulation signal may be 30 Hz, and the light reception output from the imaging unit 1 may be taken out 60 times per second (that is, the lighting period and the extinguishing period are 30 times each). Hereinafter, the unit of the light reception output taken out once from the image sensor 12 is referred to as one frame. That is, if the light reception outputs of the lighting period and the extinguishing period are extracted once, two frames of data are extracted.

撮像手段1からデジタル信号として取り出される受光出力はフレームメモリ3に一時的に格納される。フレームメモリ3は、最小では2フレーム分の容量があればよく、点灯期間と消灯期間との受光出力が1セットとして格納されることになる。変調信号の1周期内において撮像手段1で受光する環境光(太陽光や照明光)の光量に変化がないとすれば、点灯期間と消灯期間との受光出力の差分は光照射手段21から対象空間に投光した信号光が対象空間に存在する物体Obで反射した反射光の振幅を反映する。   The light reception output taken out as a digital signal from the imaging means 1 is temporarily stored in the frame memory 3. The frame memory 3 only needs to have a capacity of two frames at a minimum, and the received light output of the lighting period and the extinguishing period is stored as one set. If there is no change in the amount of ambient light (sunlight or illumination light) received by the imaging means 1 within one period of the modulation signal, the difference in the received light output between the lighting period and the extinguishing period is determined from the light irradiation means 21. The signal light projected on the space reflects the amplitude of the reflected light reflected by the object Ob existing in the target space.

本実施形態では、フレームメモリ3に格納された2フレーム分の受光出力の差分を求める差分演算手段4を設けてあり、差分演算手段4では点灯期間と消灯期間とで得られた撮像手段1の受光出力の差分を求める。フレームメモリ3は、撮像手段1から受光出力を取り出している期間に受光出力を格納し、撮像手段1が光照射による電荷を集積している期間にデータが読み出される。   In the present embodiment, there is provided a difference calculation means 4 for obtaining a difference between the light reception outputs for two frames stored in the frame memory 3, and the difference calculation means 4 of the imaging means 1 obtained by the lighting period and the extinction period. The difference of the received light output is obtained. The frame memory 3 stores the light reception output during a period in which the light reception output is taken out from the image pickup unit 1, and data is read out during a period in which the image pickup unit 1 accumulates charges due to light irradiation.

差分演算手段4で求めた差分値は振幅画像生成手段5に入力され、点灯期間と消灯期間とにおける各画素ごとの差分を画素値とする差分画像が生成される。この差分画像における各画素の値は理想的には信号光の受光強度に対応しており、撮像手段1で受光した信号光の振幅を反映する差分画像が得られるから、以下ではこの差分画像を振幅画像と呼ぶ。たとえば、点灯期間において図2(a)の画像P1に相当する受光出力が得られ、消灯期間において図2(b)の画像P2に相当する受光出力が得られたとすると、振幅画像P3は図2(c)のようになる。振幅画像では対象空間において信号光を反射する対象物Ob以外の背景が消去され、振幅画像内には対象物Obのみが存在することになる(対象物Ob以外の画素値は0であって黒画素になる)。なお、差分演算手段4において点灯期間と消灯期間との受光出力の差分を求めずに、点灯期間と消灯期間との一方の受光出力のみを通過させれば、背景を含む濃淡画像を得ることができる。   The difference value obtained by the difference calculating means 4 is input to the amplitude image generating means 5 to generate a difference image having the pixel value as the difference for each pixel in the lighting period and the extinguishing period. The value of each pixel in this difference image ideally corresponds to the received light intensity of the signal light, and a difference image reflecting the amplitude of the signal light received by the imaging means 1 is obtained. This is called an amplitude image. For example, assuming that a light reception output corresponding to the image P1 in FIG. 2A is obtained in the lighting period and a light reception output corresponding to the image P2 in FIG. 2B is obtained in the lighting period, the amplitude image P3 is as shown in FIG. As shown in (c). In the amplitude image, the background other than the object Ob that reflects the signal light in the object space is erased, and only the object Ob exists in the amplitude image (the pixel value other than the object Ob is 0 and black). Become a pixel). In addition, if the difference calculation means 4 does not obtain the difference between the light reception output between the lighting period and the light extinction period, and passes only one light reception output between the lighting period and the light extinction period, a gray image including the background can be obtained. it can.

ところで、フレームメモリ3と差分演算手段4との間には飽和判定手段6が設けられ、飽和判定手段6では、点灯期間と消灯期間との受光出力について各画素ごとに規定した飽和閾値との大小を比較する。いま、点灯期間の各画素ごとの受光出力Aa、消灯期間の各画素ごとの受光出力をAbとすれば、環境光の変化が実質的に生じないとみなせる短時間内であれば、Aa>Abが一般に成立するから、受光出力Aaが規定の飽和閾値Th1を超えていなければ、受光出力Abが飽和閾値Th1を超えていないことを保証できる。そこで、飽和判定手段6では、点灯期間の受光出力Aaについて飽和閾値Th1との大小を比較する(図3のS3参照)。飽和閾値Th1は受光出力Aaの飽和を判定する閾値であり、飽和判定手段6では、受光出力Aaが飽和閾値Th1を超えているときに、受光出力Aaが飽和していると判断する。ここで、Aa>Abは一般に成立するが、場合によっては、この関係が成立しないこともあるから、飽和閾値Th1と受光出力Abとの比較も併せて行うようにしてもよい。   By the way, a saturation determination unit 6 is provided between the frame memory 3 and the difference calculation unit 4, and the saturation determination unit 6 determines the magnitude of the saturation threshold defined for each pixel with respect to the light reception output during the lighting period and the extinction period. Compare Now, assuming that the light reception output Aa for each pixel in the lighting period and the light reception output for each pixel in the light-off period are Ab, Aa> Ab within a short time when it can be considered that a change in environmental light does not substantially occur. Therefore, if the light reception output Aa does not exceed the prescribed saturation threshold Th1, it can be guaranteed that the light reception output Ab does not exceed the saturation threshold Th1. Therefore, the saturation determination means 6 compares the light reception output Aa during the lighting period with the saturation threshold Th1 (see S3 in FIG. 3). The saturation threshold Th1 is a threshold for determining the saturation of the light reception output Aa. The saturation determination means 6 determines that the light reception output Aa is saturated when the light reception output Aa exceeds the saturation threshold Th1. Here, Aa> Ab is generally established, but in some cases, this relationship may not be established. Therefore, the comparison between the saturation threshold Th1 and the light reception output Ab may be performed together.

受光出力Aaが飽和閾値Th1を超えていることは、上述のように受光出力Aaが飽和しているということであるから、このような受光出力Aaは空間情報を反映していない。言い換えると、差分演算手段4において差分ΔAを求めても振幅画像を生成することができない。そこで、飽和判定手段6において飽和と判定されたときには、差分演算手段4に対して出力値を規定値にするように指示する。つまり、飽和時には、差分演算手段4の出力は規定値になる。   The fact that the light reception output Aa exceeds the saturation threshold Th1 means that the light reception output Aa is saturated as described above. Therefore, such light reception output Aa does not reflect spatial information. In other words, an amplitude image cannot be generated even if the difference ΔA is obtained by the difference calculation means 4. Therefore, when the saturation determination unit 6 determines that the value is saturated, the difference calculation unit 4 is instructed to set the output value to a specified value. That is, at the time of saturation, the output of the difference calculation means 4 becomes a specified value.

この規定値としては、差分演算手段4の出力値として許容された範囲の最大値や中央値を用いたり、差分演算手段4から通常は出力しない特定の値を採用することができる。たとえば、受光出力Aa,Abを8ビットすなわち255段階で表す場合、規定値として最大値を採用するときには「255」を用いる。差分演算手段4の出力値として最大値を用いると、受光出力Aaが飽和している画素を背景と区別することができる。また、差分演算手段4の出力値の範囲の中央値を用いると、飽和している画素と周辺画素との差を比較的小さくすることができるから、違和感のない振幅画像を得ることができる。   As the specified value, the maximum value or median value of the range allowed as the output value of the difference calculation means 4 can be used, or a specific value that is not normally output from the difference calculation means 4 can be adopted. For example, when the light reception outputs Aa and Ab are expressed by 8 bits, that is, in 255 levels, “255” is used when the maximum value is adopted as the specified value. When the maximum value is used as the output value of the difference calculation means 4, a pixel in which the light reception output Aa is saturated can be distinguished from the background. Further, when the median value of the output value range of the difference calculation means 4 is used, the difference between the saturated pixels and the peripheral pixels can be made relatively small, so that an amplitude image without a sense of incongruity can be obtained.

また、規定値を他の画素で生じない値(たとえば、255段階のうち差分ΔAについては254段階で表し、「255」は差分ΔAでは発生しない値としておく)とすれば、規定値の画素を受光出力Aaが飽和している無効な画素とすることが可能になる。このように、飽和している画素を無効な画素として他の画素と区別すれば、振幅画像生成手段5において、無効な画素を周辺の画素の値で補間することが可能になる。補間した振幅画像を用いれば、振幅画像において異常値を持つ画素が発生しにくくなり違和感の少ない画像が得られる。   Also, if the specified value is a value that does not occur in other pixels (for example, the difference ΔA is expressed in 254 steps out of 255 steps, and “255” is a value that does not occur in the difference ΔA), the pixels of the specified value are changed. An invalid pixel in which the light reception output Aa is saturated can be obtained. In this way, if the saturated pixel is distinguished from other pixels as an invalid pixel, the amplitude image generating unit 5 can interpolate the invalid pixel with the values of surrounding pixels. If the interpolated amplitude image is used, it is difficult to generate pixels having abnormal values in the amplitude image, and an image with less sense of discomfort can be obtained.

ところで、受光出力が飽和していれば、その受光出力は空間情報を反映しておらず、当該画素に上述のように規定値を当て嵌めたとしても、その値は振幅画像を表示したときに違和感を与えないための疑似的な値に過ぎない。したがって、フレームメモリ3に次に格納する受光出力は飽和閾値を超えないように補正しなければならない。また、振幅画像では上述したように、背景を除去して対象物Obのみの画像を得ることが目的であるから、対象物Obに対応する画素の受光出力が飽和していなければ、目的とする振幅画像を得ることができる。   By the way, if the light reception output is saturated, the light reception output does not reflect the spatial information, and even if the prescribed value is applied to the pixel as described above, the value is obtained when the amplitude image is displayed. It is only a pseudo value for not giving a sense of incongruity. Therefore, the received light output to be stored next in the frame memory 3 must be corrected so as not to exceed the saturation threshold. In addition, as described above, in the amplitude image, the purpose is to obtain an image of only the object Ob by removing the background. Therefore, if the light reception output of the pixel corresponding to the object Ob is not saturated, the object is obtained. An amplitude image can be obtained.

以下では、撮像手段1からの受光出力について指定された着目領域内での飽和の有無を判断し、着目領域内に飽和している受光出力が存在するときには、当該領域に関して次の受光出力では飽和を抑制する方向に制御する技術を説明する。飽和を抑制する方向に制御するための具体的手段としては、光照射手段21の発光強度と受光光学系11の透過率とイメージセンサ12の蓄積時間との少なくとも1種類を用いることができる。すなわち、光照射手段21の発光強度を低減させるか、受光光学系11の透過率を低減させるか、イメージセンサ12の蓄積時間を短縮すれば、撮像手段1の受光出力が低下するから、受光出力の飽和を抑制することができる。したがって、光照射手段21と受光光学系11とイメージセンサ12とは補正実施手段として機能する。なお、本実施形態では、受光出力が飽和したときに差分演算手段4の出力を規定値に設定することで、振幅画像の違和感を防止できるだけではなく、この規定値を用いることで受光出力が飽和していることを補正実施手段に反映させることができるようにしている。つまり、規定値を設定することは2つの機能に兼用される。   In the following, it is determined whether or not the light reception output from the imaging unit 1 is saturated in the designated region of interest, and when there is a light reception output saturated in the region of interest, the next light reception output is saturated for the region. A technique for controlling in a direction to suppress the above will be described. As specific means for controlling in a direction to suppress the saturation, at least one kind of light emission intensity of the light irradiation means 21, transmittance of the light receiving optical system 11, and accumulation time of the image sensor 12 can be used. That is, if the light emission intensity of the light irradiation means 21 is reduced, the transmittance of the light receiving optical system 11 is reduced, or if the accumulation time of the image sensor 12 is shortened, the light reception output of the imaging means 1 is reduced. Can be suppressed. Therefore, the light irradiation means 21, the light receiving optical system 11, and the image sensor 12 function as correction execution means. In this embodiment, when the received light output is saturated, the output of the difference calculating means 4 is set to a specified value, so that not only the amplitude image can be prevented from being strange, but also the received light output is saturated by using this specified value. This is reflected in the correction execution means. That is, setting the specified value is used for two functions.

着目領域には対象物Obの存在する領域を用いる。これは、振幅画像では対象物Obにのみ着目すればよいからである。このような着目領域は差分演算手段4の出力を用いることにより決定することができる。すなわち、領域指定手段7において、差分演算手段4から出力された差分ΔAが有効閾値Th2を超える領域を着目領域とする(図3のS7〜S9参照)。この方法では、図2(c)のような振幅画像P3から図2(d)のような着目領域Daを求めることができる。また、本装置をたとえばドアホン子機に付設するカメラとして用いる場合には、対象物Obとして撮像手段1から所定の距離範囲内に存在する人物の顔を抽出することができるように有効閾値Th2があらかじめ設定される。   A region where the object Ob exists is used as the region of interest. This is because it is only necessary to focus on the object Ob in the amplitude image. Such a region of interest can be determined by using the output of the difference calculation means 4. That is, in the area designating unit 7, an area in which the difference ΔA output from the difference calculating unit 4 exceeds the effective threshold Th2 is set as a focused area (see S7 to S9 in FIG. 3). In this method, the region of interest Da as shown in FIG. 2D can be obtained from the amplitude image P3 as shown in FIG. Further, when the present apparatus is used as a camera attached to a door phone slave unit, for example, the effective threshold Th2 is set so that a person's face existing within a predetermined distance range from the imaging means 1 can be extracted as the object Ob. Set in advance.

ただし、対象物Obの範囲内でも反射率の相違や凹凸による距離の相違などによって差分値が有効閾値Th2を超えない場合があるから(受光出力が飽和している部位は規定値で置き換えを行うことによって有効閾値Th2を超えるようにしているものとする)、有効閾値Th2を超えた領域について膨張処理などを行う。この処理により、全体としては有効閾値Th2を超えている領域のうちの微小な一部領域が有効閾値Th2を超えていない場合であっても、当該一部領域を着目領域に取り込むことができる。たとえば、対象物Obが顔である場合に、目、眉毛、髪などは反射率が低いから、これらの部位については差分演算手段4で得られる差分が有効閾値Th2よりも小さくなる可能性があるが、顔の全体としては有効閾値Th2を超えている画素のほうが多いから、膨張処理を行うことで目、眉毛、髪などを着目領域に取り込むことができる。   However, the difference value may not exceed the effective threshold Th2 even within the range of the object Ob due to a difference in reflectance or a difference in distance due to unevenness (the portion where the light reception output is saturated is replaced with a specified value). Therefore, an expansion process or the like is performed on a region exceeding the effective threshold Th2. With this process, even if a small partial region of the region that exceeds the effective threshold Th2 as a whole does not exceed the effective threshold Th2, the partial region can be taken into the region of interest. For example, when the object Ob is a face, the reflectance of eyes, eyebrows, hair, etc. is low, so the difference obtained by the difference calculation means 4 may be smaller than the effective threshold Th2 for these parts. However, since there are more pixels that exceed the effective threshold Th2 for the entire face, eyes, eyebrows, hair, and the like can be taken into the region of interest by performing the expansion process.

上述した補正実施手段は、画像全体の受光出力を増減することができるが、一部領域について受光出力を増減することができるわけではない。そこで、領域指定手段7で検出した領域内の画素の受光出力の平均値を輝度検出手段8において求め、この平均値を用いて補正実施手段に指示する操作量を補正処理手段9で求める。すなわち、輝度検出手段8には、振幅画像における対象物Obの適正な輝度に相当する基準値があらかじめ設定されており、この基準値を目標値として上記平均値との誤差を求める。また、補正処理手段9は輝度検出手段8から与えられた誤差に基づいて補正実施手段の操作量を決定する。   The correction execution means described above can increase or decrease the light reception output of the entire image, but cannot increase or decrease the light reception output for a partial region. Therefore, the average value of the light reception output of the pixels in the area detected by the area specifying unit 7 is obtained by the luminance detecting unit 8, and the operation amount instructed to the correction performing unit is obtained by the correction processing unit 9 using this average value. That is, a reference value corresponding to the appropriate luminance of the object Ob in the amplitude image is set in advance in the luminance detection means 8, and an error from the average value is obtained using this reference value as a target value. Further, the correction processing unit 9 determines an operation amount of the correction execution unit based on the error given from the luminance detection unit 8.

補正処理手段9では、着目領域内の受光出力の平均値が基準値よりも大きいときには受光出力が低下する方向に補正実施手段の操作量を決定し、逆に受光出力の平均値が基準値よりも小さいときには受光出力が増加する方向に補正実施手段の操作量を決定する。ただし、補正実施手段の動作範囲には限界があるから、動作範囲の上限または下限に達したときには現状を維持する。   In the correction processing means 9, when the average value of the light reception output in the region of interest is larger than the reference value, the operation amount of the correction execution means is determined in the direction in which the light reception output decreases, and conversely, the average value of the light reception output is greater than the reference value. Is smaller, the operation amount of the correction execution means is determined in the direction in which the light reception output increases. However, since the operation range of the correction execution unit is limited, the current state is maintained when the upper or lower limit of the operation range is reached.

なお、補正実施手段として複数種類の手段を組み合わせるときには、各手段に優先順位を決めておき、いずれかの手段の動作範囲の上限または下限に達したときに他の手段の操作量を変化させる構成としてもよい。また、操作量の変化量を誤差の大きさに応じて可変とする構成を採用することができるが、操作量の1回の変化量を一定にしておき誤差が大きいときには操作量が数回変化する間に基準値に達する構成としてもよい。この構成を採用すれば、瞬間的な光量変化に応答することによる振幅画像の乱れを抑制することができる。さらに、基準値に幅を持たせておき、着目領域内の受光出力の平均値が基準値の範囲内であるときに補正実施手段の操作量を変化させないようにしておけば、補正実施手段の無駄な動作を防止することができる。なお、運転開始時の補正実施手段の初期値は、動作範囲の上限としておくのが望ましい。   When combining a plurality of types of means as correction execution means, a priority order is determined for each means, and the operation amount of the other means is changed when the upper limit or lower limit of the operation range of any means is reached. It is good. In addition, it is possible to adopt a configuration in which the amount of change in the manipulated variable can be changed according to the magnitude of the error. However, when the amount of change in the manipulated variable is constant and the error is large, the manipulated variable changes several times. It may be configured to reach the reference value in the meantime. By adopting this configuration, it is possible to suppress the disturbance of the amplitude image due to the response to the instantaneous light quantity change. Furthermore, if the reference value has a width and the operation amount of the correction execution unit is not changed when the average value of the received light output in the region of interest is within the range of the reference value, the correction execution unit Useless operation can be prevented. It is desirable that the initial value of the correction execution means at the start of operation is the upper limit of the operating range.

上述のように、領域指定手段7と輝度検出手段8と補正処理手段9とは、補正判定手段4での判定結果に基づいて補正実施手段の操作量を決定するから、補正演算手段として機能する。また、補正実施手段と補正演算手段とにより補正手段が構成される。なお、図1において撮像手段1および受光手段2を除く部位はマイコンで適宜のプログラムを実行することにより実現される。   As described above, the region designating unit 7, the luminance detecting unit 8, and the correction processing unit 9 determine the operation amount of the correction performing unit based on the determination result by the correction determining unit 4, and thus function as a correction calculating unit. . Further, a correction means is constituted by the correction execution means and the correction calculation means. In FIG. 1, the parts other than the imaging means 1 and the light receiving means 2 are realized by executing an appropriate program with a microcomputer.

本実施形態の動作を図3にまとめて簡単に説明する。装置の動作が開始されると、まず撮像手段1による対象空間の撮像が行われる(S1)。上述したように撮像は投光手段2の点灯期間と消灯期間とに同期して行われる。点灯期間の受光出力Aaが得られると(S2)、飽和判定手段6では飽和閾値Th1と受光出力Aaとを比較する(S3)。受光出力Aaが飽和閾値Th1以下であれば受光出力は飽和していないから、差分演算手段4において受光出力Aa,Abの差分ΔAが求められる(S4)。一方、受光出力Aaが飽和閾値Th1を超えている場合は、差分ΔAを規定値とする(S5)。こうして求めた差分ΔAは振幅画像生成手段5を通して振幅画像として出力される(S6)。   The operation of this embodiment will be briefly described with reference to FIG. When the operation of the apparatus is started, first, imaging of the target space is performed by the imaging unit 1 (S1). As described above, imaging is performed in synchronization with the lighting period and the extinguishing period of the light projecting means 2. When the light reception output Aa in the lighting period is obtained (S2), the saturation determination means 6 compares the saturation threshold Th1 with the light reception output Aa (S3). If the light reception output Aa is equal to or less than the saturation threshold Th1, the light reception output is not saturated, and the difference calculation means 4 determines the difference ΔA between the light reception outputs Aa and Ab (S4). On the other hand, when the light reception output Aa exceeds the saturation threshold Th1, the difference ΔA is set as a specified value (S5). The difference ΔA thus obtained is output as an amplitude image through the amplitude image generating means 5 (S6).

また、差分ΔAは補正実施部を制御するために領域指定手段7にも与えられる。領域指定手段7では差分ΔAが有効閾値Th2と比較され(S7)、有効閾値Th2を超えている画素が着目領域の画素として記憶される(S8)。この処理は振幅画像のすべての画素を対象として行われる(S9)。こうして着目領域が決まると、輝度検出手段8において着目領域内の画素について差分ΔAの平均値が求められる(S10)。   The difference ΔA is also given to the area specifying means 7 for controlling the correction execution unit. In the area designating means 7, the difference ΔA is compared with the effective threshold Th2 (S7), and the pixels exceeding the effective threshold Th2 are stored as pixels of the target area (S8). This process is performed for all the pixels of the amplitude image (S9). When the region of interest is thus determined, the luminance detection means 8 obtains the average value of the differences ΔA for the pixels in the region of interest (S10).

補正処理手段9では、着目領域内の差分ΔAの平均値が基準値と比較され(S11)、差分ΔAの平均値が基準値よりも大きいときには受光出力を減少させる操作量が補正実施部に与えられ(S13)、差分ΔAの平均値が基準値以下であるときには受光出力を増加させる操作量が補正実施部に与えられる(S15)。ただし、補正実施部の操作量の範囲には上限と下限とがあるから、受光出力を減少させる方向において操作量が最小になるか(S12)、受光出力を増加させる方向において操作量が最大になる場合(S14)には、操作量を変化させずに次の撮像を行う(S1)。   In the correction processing means 9, the average value of the difference ΔA in the region of interest is compared with the reference value (S11), and when the average value of the difference ΔA is larger than the reference value, an operation amount for reducing the light reception output is given to the correction execution unit. When the average value of the differences ΔA is less than or equal to the reference value, an operation amount for increasing the light reception output is given to the correction execution unit (S15). However, since there is an upper limit and a lower limit in the operation amount range of the correction execution unit, the operation amount is minimized in the direction of decreasing the light reception output (S12), or the operation amount is maximized in the direction of increasing the light reception output. If so (S14), the next imaging is performed without changing the operation amount (S1).

上述の動作では、点灯期間と消灯期間との受光出力の差分を1回得るたびに補正処理手段9から補正実施手段に指示を与えているが、補正処理手段9では、輝度検出手段8において求めた受光出力の平均値が基準値より大きい状態が規定回数連続して生じるか、または輝度検出手段8において求めた受光出力の平均値が小さい状態が規定回数連続して生じた場合に、補正実施手段に指示を与える構成を採用してもよい。   In the above-described operation, every time the difference between the light reception outputs of the lighting period and the extinguishing period is obtained, the correction processing unit 9 gives an instruction to the correction execution unit. Correction is performed when a state in which the average value of the received light output is greater than the reference value occurs continuously for a specified number of times, or a state in which the average value of the received light output obtained in the luminance detection means 8 is continuously generated a specified number of times. You may employ | adopt the structure which gives an instruction | indication to a means.

また、補正実施手段でのハンチングを防止するために、補正処理手段9においてヒステリシスを持つようにしてもよい。たとえば、平均値が基準値より大きくなり補正実施手段に対して受光出力を低下させる指示を与えた後には、平均値が基準値よりも小さくなる誤差が発生しても、当該誤差の絶対値が規定値以上にならなければ受光出力を増加させる指示を与えないようにし、逆に、平均値が基準値より小さくなり補正実施手段に対して受光出力を増加させる指示を与えた後には、平均値が基準値よりも大きくなる誤差が発生しても、当該誤差の絶対値が規定値以上にならなければ受光出力を低下させる指示を与えないようにするのである。   Further, in order to prevent hunting by the correction execution means, the correction processing means 9 may have hysteresis. For example, after the average value is larger than the reference value and the correction execution unit is instructed to reduce the light reception output, even if an error occurs in which the average value becomes smaller than the reference value, the absolute value of the error is If the specified value is not exceeded, the instruction to increase the received light output is not given, and conversely, after the average value becomes smaller than the reference value and the correction execution means is given an instruction to increase the received light output, the average value Even if an error that becomes larger than the reference value occurs, an instruction to reduce the received light output is not given unless the absolute value of the error exceeds a specified value.

なお、輝度検出手段8において受光出力の平均値を求める代わりに、着目領域内において受光出力が基準値を超える画素の個数を計数し、この個数に応じて操作量を決定してもよい。   Instead of obtaining the average value of the light reception output in the luminance detection means 8, the number of pixels whose light reception output exceeds the reference value in the region of interest may be counted, and the operation amount may be determined according to this number.

また、上述の例では着目領域の受光出力の平均値を1つの基準値と比較しているが、基準値を複数段階に設定しておき、各段階ごとに補正実施手段の補正量を段階的に変化させる構成を採用してもよい。この構成では、補正実施手段の操作量を段階的に決定できるから、デジタル信号による制御が容易である。基準値を複数段階に設定する場合に各段階ごとの画素の個数を計数し、最大度数が得られる段階に対応するように操作量を決定することも可能である。   In the above example, the average value of the light reception output of the region of interest is compared with one reference value. However, the reference value is set in a plurality of steps, and the correction amount of the correction execution means is stepwise for each step. You may employ | adopt the structure changed to. In this configuration, the operation amount of the correction execution unit can be determined in a stepwise manner, so that control using a digital signal is easy. When the reference value is set in a plurality of stages, the number of pixels at each stage is counted, and the operation amount can be determined so as to correspond to the stage where the maximum frequency is obtained.

さらに、領域指定手段7において着目領域を抽出する際に、差分演算手段4で得られた差分に係数を乗じた後の結果を有効閾値Th2と比較するとともに、差分に乗じる係数を輝度検出手段8で求めた受光出力の平均値に応じて複数段階に変化させる構成を採用してもよい。係数は、平均値が大きいほど小さくなるように設定され、着目領域の受光出力の平均値が小さく暗い画像であれば、差分に乗じる係数を大きくすることにより着目領域として抽出される範囲を広げるようにする。ここでは、係数を決定するために、輝度検出手段8で求めた受光出力の代表値である平均値を用いているが、代表値としては、最大値、モードなどの他の値を用いることも可能である。   Further, when the region designating unit 7 extracts the region of interest, the result obtained by multiplying the difference obtained by the difference calculating unit 4 by the coefficient is compared with the effective threshold Th2, and the coefficient to be multiplied by the difference is used as the luminance detecting unit 8. A configuration may be adopted in which the average value of the received light output obtained in step 1 is changed in a plurality of stages. The coefficient is set to be smaller as the average value is larger. If the average value of the light reception output of the target area is small and dark, the coefficient extracted by the difference is increased to widen the range extracted as the target area. To. Here, in order to determine the coefficient, an average value that is a representative value of the received light output obtained by the luminance detecting means 8 is used, but other values such as a maximum value and a mode may be used as the representative value. Is possible.

すなわち、対象物Obが遠方に存在する場合や対象物Obの反射率が低い場合のように、信号光の振幅が小さいときには、着目領域を拡げることによって対象物Obが着目領域に含まれる可能性を高めることができる。この動作により、対象物Obまでの距離や対象物Obの反射率の変化によらず、対象物Obに対応する画素値をほぼ規定の範囲内に保つことができ、振幅画像生成手段5から出力される振幅画像について対象物Obの見やすい画像を得ることができる。   That is, when the amplitude of the signal light is small, such as when the object Ob exists in the distance or when the reflectance of the object Ob is low, the object Ob may be included in the region of interest by expanding the region of interest. Can be increased. With this operation, the pixel value corresponding to the object Ob can be kept within a specified range regardless of the distance to the object Ob and the change in the reflectance of the object Ob. An easy-to-view image of the object Ob can be obtained with respect to the amplitude image to be displayed.

上述の構成例において、輝度検出手段8において受光出力の平均値(あるいは、所定条件を満たす画素数)を求める領域は、必ずしも対象物Obを抽出した領域でなくてもよく、領域設定手段7では、画像内の全画素を着目領域として設定したり、画像内の中央部における所定範囲を着目領域として設定したり、画像内の適宜の場所に着目領域を設定したりすることが可能である。着目領域をどのように設定するかは用途によって適宜に選択すればよいが、着目領域をあらかじめ決めている場合には、領域指定手段7は差分演算手段4で求めた差分とは無関係に着目領域を指定することになる。   In the above configuration example, the area for obtaining the average value (or the number of pixels satisfying the predetermined condition) of the light reception output in the luminance detection means 8 does not necessarily have to be the area from which the object Ob is extracted. It is possible to set all the pixels in the image as the region of interest, set a predetermined range in the center of the image as the region of interest, or set the region of interest at an appropriate location in the image. How to set the region of interest may be appropriately selected depending on the application. However, if the region of interest is determined in advance, the region designating unit 7 may determine the region of interest regardless of the difference obtained by the difference calculating unit 4. Will be specified.

また、フレームメモリ3では、点灯期間と消灯期間との受光出力を1回分だけ保持し、差分演算手段4では1回ずつの点灯期間と消灯期間との受光出力の差分を求めているが、点灯期間と消灯期間とのそれぞれについて複数回分ずつの受光出力をフレームメモリ3に加算して保持してもよい。この場合、差分演算手段4、飽和判定手段6、輝度検出手段8における処理は、点灯期間と消灯期間との複数回分の加算値を用いた処理になるから、受光出力に含まれるノイズ分が抑えられる。また、受光出力を取り出した回数で加算値を除算することにより得られる平均値を用いてもよい。さらには、差分演算手段4で得られる差分を加算し、差分の加算値あるいは差分の平均値を用いてもよい。   The frame memory 3 holds the light reception output for the lighting period and the light extinction period only once, and the difference calculation means 4 obtains the difference in the light reception output between the lighting period and the light extinction period for each time. The received light output for a plurality of times for each of the period and the extinguishing period may be added to the frame memory 3 and held. In this case, the processing in the difference calculation means 4, the saturation determination means 6, and the luminance detection means 8 is a process using a plurality of addition values of the lighting period and the extinguishing period, so that noise included in the light reception output is suppressed. It is done. Alternatively, an average value obtained by dividing the added value by the number of times the received light output is taken out may be used. Furthermore, the difference obtained by the difference calculation means 4 may be added, and the added value of the differences or the average value of the differences may be used.

上述のように受光出力の平均値あるいは受光出力の差分の平均値を用いる場合には、加算回数と除数との一方を変化させれば、領域指定手段7において着目領域を検出する際に用いた係数を変化させる場合と同様の作用が期待できる。また、受光出力の平均値あるいは受光出力の差分の平均値を用いると、点灯期間と消灯期間との受光出力を1回だけ用いる場合に比較するとフレームレートが低下するが、イメージセンサ12で発生するショットノイズを低減することができる。そこで、環境光が少ない室内などでは加算回数を少なくし、環境光が多い屋外などでは加算回数を多くすることで、ノイズの影響を軽減するようにしてもよい。   As described above, when the average value of the received light output or the average value of the difference of the received light output is used, if one of the number of additions and the divisor is changed, the region designating unit 7 is used to detect the region of interest. The same effect as when the coefficient is changed can be expected. If the average value of the received light output or the average value of the difference between the received light outputs is used, the frame rate is reduced as compared with the case where the received light output of the lighting period and the unlit period is used only once, but this occurs in the image sensor 12. Shot noise can be reduced. Therefore, the influence of noise may be reduced by reducing the number of additions in a room with little ambient light and increasing the number of additions in the outdoors where there is a lot of ambient light.

上述の構成例では、光照射手段21において点灯期間と消灯期間とを設けているが、光照射手段21を制御する変調信号は矩形波だけではなく、正弦波、三角波、鋸歯状波などを用いてもよい。この場合、変調信号の位相における異なる特定の2区間に同期した受光出力を撮像手段1から取り出し、この2区間の受光出力の差分を求めるようにしても、環境光の成分が除去されるから、振幅画像に類似した画像を得ることができる。撮像素子1から取り出す区間の幅は適宜に選択することができるが、両区間の位相差が180度異なる場合には、実質的に点灯期間と消灯期間との差分を求めた場合と同様の動作になる。ただし、両区間の位相差は180度以外でもよい。   In the above-described configuration example, the light irradiation means 21 is provided with a lighting period and a light extinction period, but the modulation signal for controlling the light irradiation means 21 is not only a rectangular wave but also a sine wave, a triangular wave, a sawtooth wave, or the like. May be. In this case, the component of the ambient light is removed even if the light reception output synchronized with two different specific sections in the phase of the modulation signal is extracted from the imaging unit 1 and the difference between the light reception outputs of the two sections is obtained. An image similar to the amplitude image can be obtained. The width of the section taken out from the image sensor 1 can be selected as appropriate, but when the phase difference between the two sections is 180 degrees, the operation is substantially the same as when the difference between the lighting period and the extinguishing period is obtained. become. However, the phase difference between both sections may be other than 180 degrees.

実施形態を示すブロック図である。It is a block diagram which shows embodiment. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above.

符号の説明Explanation of symbols

1 撮像手段
2 投光手段
3 フレームメモリ
4 差分演算手段
5 振幅画像生成手段
6 飽和判定手段
7 領域指定手段
8 輝度検出手段
9 補正処理手段
Ob 対象物
DESCRIPTION OF SYMBOLS 1 Image pickup means 2 Light projection means 3 Frame memory 4 Difference calculation means 5 Amplitude image generation means 6 Saturation determination means 7 Area designation means 8 Luminance detection means 9 Correction processing means Ob Object

Claims (5)

所定周波数の変調信号で強度を変調した信号光を対象空間に投光する投光手段と、複数個の画素を備え対象空間に存在する対象物で反射された信号光を受光するとともに各画素ごとに受光光量の変化に応じた受光出力が得られる撮像手段と、変調信号の位相における異なる2区間に同期した受光出力の差分を各画素ごとに求める差分演算手段と、差分演算手段で求めた各画素の前記差分を画素値に持つ振幅画像を生成する振幅画像生成手段と、前記2区間の少なくとも一方に同期するタイミングで得られる受光出力と規定した飽和閾値との大小を比較する飽和判定手段と、飽和判定手段において当該受光出力が飽和閾値より大きいと判断されると撮像手段の次の受光出力を低減させる補正処理を実行する補正手段とを備え、補正手段は、指示された操作量に応じて撮像手段の受光出力を調節する補正実施手段と、飽和判定手段による比較結果を用いて補正実施手段の操作量を求め当該操作量を補正実施手段に指示する補正演算手段とを備え、補正演算手段は、前記振幅画像内で着目領域を指定する領域指定手段と、領域指定手段で指定された着目領域内の画素に関する前記差分を用いて信号光に相当する受光出力を評価する輝度検出手段と、輝度検出手段で評価した信号光に対応する受光出力があらかじめ規定した基準に近付くように前記操作量を求める補正処理手段とを備え、補正処理手段は、前記着目領域の受光出力の代表値に対応付けて当該受光出力が小さいほど大きくなる係数を設定し、領域指定手段において次に指定する着目領域を求める際に前記差分に当該係数を乗じた後に前記有効閾値と比較することを特徴とする空間情報の検出装置。 A light projecting means for projecting signal light, the intensity of which is modulated with a modulation signal of a predetermined frequency, into the target space, and a signal light reflected by an object existing in the target space with a plurality of pixels, and for each pixel The imaging means for obtaining the received light output according to the change in the amount of received light, the difference calculating means for obtaining the difference between the received light outputs synchronized with two different sections in the phase of the modulation signal for each pixel, An amplitude image generating means for generating an amplitude image having the pixel difference as a pixel value; and a saturation determining means for comparing the magnitude of a received light output obtained at a timing synchronized with at least one of the two sections and a specified saturation threshold value. , e Bei and correction means the light output to perform reduced to correction processing for the next light receiving output is the the imaging unit determined to be larger than the saturation threshold in the saturation determining means, correcting means, indicated Correction execution means for adjusting the light reception output of the image pickup means according to the operated amount, and correction calculation means for obtaining the operation amount of the correction execution means using the comparison result of the saturation determination means and instructing the correction execution means The correction calculation means includes a region designation means for designating a region of interest in the amplitude image, and a light reception output corresponding to the signal light using the difference regarding the pixels in the region of interest designated by the region designation means. A luminance detection means for evaluation, and a correction processing means for obtaining the manipulated variable so that a received light output corresponding to the signal light evaluated by the luminance detection means approaches a predetermined standard, and the correction processing means comprises: A coefficient that increases as the light reception output decreases in association with the representative value of the light reception output is set, and the area designation unit multiplies the difference by the coefficient when determining the target area to be designated next. Detection device of spatial information and comparing said effective threshold after. 前記飽和判定手段は、比較結果において受光出力が飽和閾値より大きいときには前記差分演算手段で求めた差分に代えて規定値を出力させることを特徴とする請求項1記載の空間情報の検出装置。 The spatial information detection device according to claim 1 , wherein the saturation determination unit outputs a specified value instead of the difference obtained by the difference calculation unit when the light reception output is larger than a saturation threshold in the comparison result . 前記規定値は、前記差分演算手段から出力される差分の最大値であることを特徴とする請求項2記載の空間情報の検出装置。 The spatial information detection device according to claim 2 , wherein the specified value is a maximum value of a difference output from the difference calculation means . 前記領域指定手段は、前記差分演算手段で求めた前記差分を規定の有効閾値と比較し前記振幅画像内で前記差分が有効閾値を越える画素の存在する領域を前記着目領域として指定することを特徴とする請求項1ないし請求項3のいずれか1項に記載の空間情報の検出装置。 The region designating unit compares the difference obtained by the difference calculating unit with a prescribed effective threshold value, and designates, as the region of interest, a region where a pixel whose difference exceeds the effective threshold value exists in the amplitude image. The spatial information detection device according to any one of claims 1 to 3 . 前記撮像手段は、前記変調信号における異なる位相の2区間で各別に生成した電荷を変調信号の複数周期に亘る蓄積時間において蓄積した後に受光出力として取り出すイメージセンサを備え、前記補正実施手段は、前記操作量に応じて蓄積時間を変化させることを特徴とする請求項1ないし請求項4のいずれか1項に記載の空間情報の検出装置。 The image pickup means includes an image sensor that stores charge generated separately in two sections of different phases in the modulation signal in an accumulation time over a plurality of periods of the modulation signal and then takes out as a light reception output, and the correction execution means detection equipment spatial information according to any one of claims 1 to 4, characterized in that to vary the accumulation time in accordance with the operation amount.
JP2005280912A 2004-10-25 2005-09-27 Spatial information detection device Expired - Fee Related JP4442539B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005280912A JP4442539B2 (en) 2005-09-27 2005-09-27 Spatial information detection device
TW94137350A TWI272841B (en) 2004-10-25 2005-10-25 Spatial information determining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280912A JP4442539B2 (en) 2005-09-27 2005-09-27 Spatial information detection device

Publications (2)

Publication Number Publication Date
JP2007093306A JP2007093306A (en) 2007-04-12
JP4442539B2 true JP4442539B2 (en) 2010-03-31

Family

ID=37979212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280912A Expired - Fee Related JP4442539B2 (en) 2004-10-25 2005-09-27 Spatial information detection device

Country Status (1)

Country Link
JP (1) JP4442539B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732317B2 (en) * 2006-12-08 2011-07-27 富士通株式会社 Imaging control device, imaging device, imaging control program, and imaging control method
JP5112702B2 (en) * 2007-01-16 2013-01-09 富士フイルム株式会社 Imaging apparatus, method, and program
JP4915314B2 (en) * 2007-08-23 2012-04-11 オムロン株式会社 Imaging apparatus and imaging control method
JP5149641B2 (en) * 2008-02-06 2013-02-20 パナソニック株式会社 Imaging device
JP2011033497A (en) * 2009-08-03 2011-02-17 Honda Motor Co Ltd Environmental recognition system, environmental recognition method, and robot
JP5662659B2 (en) * 2009-08-26 2015-02-04 パナソニックIpマネジメント株式会社 Imaging device
JP5520562B2 (en) * 2009-10-06 2014-06-11 本田技研工業株式会社 Three-dimensional shape measuring system and three-dimensional shape measuring method
JP5519381B2 (en) 2010-04-09 2014-06-11 トヨタ自動車株式会社 Spectrum measuring device
JP5060580B2 (en) 2010-04-09 2012-10-31 トヨタ自動車株式会社 Spectrum measuring device
JP2014062926A (en) * 2011-01-18 2014-04-10 Fujifilm Corp Autofocus system
DE102011104198A1 (en) * 2011-06-15 2012-12-20 Abb Ag Method for image-based automatic exposure correction
JP6019621B2 (en) * 2012-03-01 2016-11-02 日産自動車株式会社 Distance measuring device
JP5896877B2 (en) * 2012-10-18 2016-03-30 オリンパス株式会社 Light control device
WO2014080937A1 (en) 2012-11-21 2014-05-30 三菱電機株式会社 Image generation device
JP6178585B2 (en) * 2013-02-19 2017-08-09 株式会社Screenホールディングス Position detection apparatus, exposure apparatus, and light amount adjustment method
JP6929109B2 (en) * 2017-04-14 2021-09-01 キヤノン株式会社 Imaging equipment and programs
JP6953233B2 (en) 2017-08-24 2021-10-27 株式会社トプコン 3D surveying device
KR102476757B1 (en) * 2017-12-21 2022-12-09 삼성전자주식회사 Device and method to detect reflection

Also Published As

Publication number Publication date
JP2007093306A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4442539B2 (en) Spatial information detection device
JP4626689B2 (en) Imaging apparatus, correction circuit, and correction method
JP5775732B2 (en) Camera and camera control method
JP6170355B2 (en) Imaging apparatus and control method thereof
JP6137792B2 (en) IMAGING DEVICE, CONTROL METHOD FOR IMAGING DEVICE, PROGRAM, AND STORAGE MEDIUM
JP2013101305A (en) Focus adjustment device and control method for focus adjustment device
US9979876B2 (en) Imaging apparatus, imaging method, and storage medium
US9706131B2 (en) Image combining apparatus for generating a combined image from a plurality of images, image combining system, and image combining method
US9509899B2 (en) Camera system and method for correcting focus detection pixel
US10108878B2 (en) Image processing apparatus, image processing method, and storage medium for tone control of each object region in an image
KR20110061919A (en) Method for processing digital image signal, medium for recording the method and apparatus for processing digital image signal
US11343434B2 (en) Image processing apparatus and control method for same
JP2020109924A (en) Image processing device and image processing method
JP5106283B2 (en) Video camera
JP7479831B2 (en) Imaging device, control method thereof, and program
JP6017749B1 (en) IMAGING DEVICE AND IMAGING DEVICE OPERATING METHOD
JP5347488B2 (en) Projection device
JP2020010168A (en) Image processing apparatus
JP6505295B2 (en) Imaging device, control method therefor, and control program
JP2007517443A (en) Anti-glare device, method and accessory, and image system with increased brightness dynamics
JP6980449B2 (en) Image processing device, control method and program of image processing device
US11516408B2 (en) Image capturing apparatus, method for driving image capturing apparatus to detect flicker during shooting
JP6160416B2 (en) Exposure control device and photographing device
JP2019149719A (en) Image processing apparatus and method, and imaging apparatus
JP6631649B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees