JP4440406B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP4440406B2
JP4440406B2 JP2000016460A JP2000016460A JP4440406B2 JP 4440406 B2 JP4440406 B2 JP 4440406B2 JP 2000016460 A JP2000016460 A JP 2000016460A JP 2000016460 A JP2000016460 A JP 2000016460A JP 4440406 B2 JP4440406 B2 JP 4440406B2
Authority
JP
Japan
Prior art keywords
time
power supply
double layer
capacitor
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000016460A
Other languages
Japanese (ja)
Other versions
JP2001209444A (en
Inventor
岩男 相良
宣夫 芦立
Original Assignee
宣夫 芦立
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宣夫 芦立 filed Critical 宣夫 芦立
Priority to JP2000016460A priority Critical patent/JP4440406B2/en
Publication of JP2001209444A publication Critical patent/JP2001209444A/en
Application granted granted Critical
Publication of JP4440406B2 publication Critical patent/JP4440406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大容量の電気二重層コンデンサを利用した電源装置に係り、特にコンデンサの充放電特性を利用して充放電の残り時間の表示と動作時間を延長することができる電源装置に関する。
【0002】
【従来の技術】
電気二重層コンデンサは、静電容量が極めて大きなコンデンサであり、既に50〜500F程度のものが実用化されつつあり注目を集めている。そして、このコンデンサは急速な充放電が可能であり、また、繰り返し放電回数も例えば1000回以上が可能であるため、単なるコンデンサとしてよりも、バッテリに代替する電源装置として利用することも可能である。バッテリに代替する電源装置としての電気二重層コンデンサは、例えば鉛蓄電池と比較して小型軽量であり、また鉛等の重金属を使用しないため、環境への適合性も良好である。
【0003】
一方で太陽電池は、シリコン等の半導体のpn接合により光線を電気エネルギーに変換する変換素子である。この太陽電池もガラス等の基材上にアモルファスシリコンを蒸着等により形成し、その表面に透明電極膜を形成することにより製造でき、クリーンな電力源として普及しつつある。
【0004】
従って、太陽電池や発電機や商用電源などと上記電気二重層コンデンサとを組み合わせることにより、小型軽量で且つクリーンなバッテリに代替する電源設備を構成することが可能となる。特に電池駆動の電気自動車等においては、大容量の蓄電池を設備する必要があるが、このような用途に好適である。
【0005】
しかしながら、バッテリ等の蓄電装置においては、放電時の残り使用可能時間等を点検可能とすることが不可欠であり、通常、電圧計を備え、電圧を監視することにより充放電状況を確認することができる。ところが、電気二重層コンデンサを利用した電源装置は、蓄電がコンデンサで行われている故に、コンデンサの放電が進行すると端子電圧が急速に低下し、充放電の残り時間を確認することが困難であった。
【0006】
【発明が解決しようとする課題】
本発明は上述した事情に鑑みて為されたもので、電圧が大きく変動する電気二重層コンデンサの充放電の残り時間を正確に表示することと延長して動作させることが可能で、又残り時間を更に延長して動作させることが可能な、電気二重層コンデンサを用いた電源装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、電気二重層コンデンサを用いた充放電可能な電源装置において、第1の時間tと第2の時間tの時の電圧EとEとの測定手段と、コンデンサの充放電特性、E=Eo(1−e−(t/RC))、または、E=Eoe−(t/RC)、なる関係を利用して、時定数RCを算定する手段と、該算定された時定数RCを利用して、前記コンデンサの充放電特性から前記コンデンサの残り充放電時間を算定する手段と、該算定された残り充放電時間を表示する表示装置とを備えたことを特徴とする電源装置である。
【0008】
これにより、静電容量の大きな電気二重層コンデンサの充放電特性、および充電または放電の残り時間を算定して表示できるので、充電時の電源の内部抵抗又は放電時の負荷抵抗が不明であっても、電気二重層コンデンサの残り充放電時間を正確に知ることが可能となる。即ち、放電時の負荷機器の負荷抵抗または充電時の充電電源である例えば太陽電池の内部抵抗が一般に存在するが、正確に時定数RCを推定することができ、従って上記対数関数により正確に充電または放電の残り時間を検出することができる。従って、充電の際には電源側の内部抵抗の大小に係わらず、また放電時には負荷抵抗の大小に係わらず常に正確な残り時間が表示されるので、電気二重層コンデンサを用いた充放電装置を実用的に利用することが可能となる。
【0009】
また、前記電気二重層コンデンサの充電には、太陽電池を用いることが好ましい。これにより、電気二重層コンデンサと太陽電池を用い、クリーンで且つ十分な電力容量を有する電源装置を構成することができる。
【0010】
また、前記電気二重層コンデンサを複数個備え、該複数個のコンデンサを直列および並列に切換接続する切換回路と、前記電圧EとEとの測定結果から切換時期を判定する手段とを更に備えることが好ましい。これにより、電気二重層コンデンサの放電が進行し負荷側の所要最低電圧を下回る場合に、並列接続していた電気二重層コンデンサを直列に接続することで、電気二重層コンデンサの有する端子電圧を上昇させ、放電可能残り時間を延長して使用することができる。このような場合にも時定数が変化するので、接続切替え後の充放電の残り時間を継続して算定することが可能となる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照しながら説明する。
【0012】
図1は、本発明の実施の形態の電気二重層コンデンサを用いた電源装置を示す。この実施の形態例においては、充電電源装置として太陽電池11が用いられ、これにより電気二重層コンデンサ12が充電される。充電電源装置11と電気二重層コンデンサ12との間にはスイッチ14が接続され、これが閉じると電力供給源である太陽電池11側から電気二重層コンデンサ12に電流が供給され、これにより電気二重層コンデンサ12が充電される。ここで、電源装置11はpn接合一段当たり通常0.6〜0.7V程度の電圧が出力されるが、これを複数段直列に接続し、負荷装置の駆動に十分な程度の電圧出力が得られるようにしておくことが好ましい。
【0013】
そして、電気二重層コンデンサ12は、その電源としての使用時には、例えば自動車のモータや電子機器等の負荷装置13に接続される。負荷装置13と電気二重層コンデンサ12との間には同様にスイッチ15が配設され、このスイッチが閉じられることにより電気二重層コンデンサ12側から電流が負荷装置13に供給され、負荷装置13が動作する。電気二重層コンデンサ12は、単一のコンデンサを用いても、また複数のコンデンサを並列接続して用いてもよい。更に、後述するように複数個の電気二重層コンデンサを並列接続および直列接続に切り替え可能とすることが好ましい。
【0014】
電気二重層コンデンサ12の両端には電圧検出回路16が接続され、電気二重層コンデンサ12の両端に表れる電圧を検出する。そして、検出された電圧は演算装置17により演算処理が施され、充放電の残り時間が演算される。その演算結果が表示装置18により表示される。尚、表示装置18はアナログ式の表示計でもよく、また残り充放電時間を例えば分単位で表示するデジタル式の表示装置でもよい。また、電圧検出回路16、演算装置17および表示装置18の電源は、この電気二重層コンデンサ12の端子から供給してもよく、また別途の電源回路を用いてもよい。
【0015】
コンデンサの充電特性は、図2に示すように表される。即ち、充電電源電圧Eo、内部抵抗R、コンデンサCを直列に接続した場合、コンデンサCの両端の充電電圧Eは次の(1)式で表される。
E=Eo(1−e−(t/RC)) (1)
即ち、コンデンサ両端の電圧Eがゼロから一定の直流充電電源電圧Eoで充電すると、コンデンサの両端の電圧Eは対数関数に従って上昇し、緩やかに一定値Eoに漸近する。ここで、コンデンサ容量Cと内部抵抗Rの積CRは時間の次元を有し、これを時定数τ(=CR)と称し、t=τの時、
E=Eo(1−e−1
となる。即ち、この時定数τは対数関数曲線の立ち上がりまたは立ち下がりの緩やかさを示す指標である。例えば、C=100(F)、R=10(Ω)の場合、τ=100(F)×10(Ω)=1000秒であり、t=τ(1000秒)の場合、E=0.632Eoとなり、5τ(5000秒)でほぼ充電電源電圧Eoに近づく。
【0016】
このようにコンデンサの充電特性は図2に示すような対数曲線に従って電圧が上昇していくので、時刻tにおける電圧Eと時刻tにおける電圧Eとを検出することで、これにより時定数τ=CRを演算し、これから例えば充電完了時(例えば5τ=0.993Eoまでの残り時間を算定することができる。
【0017】
図3は、放電時の特性曲線を示す。即ち、放電時の特性は、次の(2)式で表され、
E=Eoe−(t/RC) (2)
ここで、抵抗Rは負荷装置13の負荷抵抗であり、容量Cは電気二重層コンデンサ12の静電容量である。この場合も、コンデンサ12の両端の電圧Eは、初期電圧をEoとすると、時間tの経過と共に対数関数に従って下降し、緩やかに一定値ゼロに漸近する。時定数である時刻τ(=CR)で電圧は0.368Eoまで低下し、更に時刻5τでほぼゼロである0.007Eoまで低下する。
【0018】
これにより上述と同様に、電圧検出回路16にて時刻tにおける電圧Eを測定し、時刻tにおける電圧Eを測定する。そして、演算装置17にて時定数τ=CRを求める。時定数τ(=CR)は、以下の演算により求められる。
=Eoe−(t1/CR)
=Eoe−(t2/CR)
ここで、充電電源電圧Eoを消去すると、
−(t2/CR)=E−(t1/CR)
両辺の底数eの対数を取ると、
logE―(t/CR)=logE―(t/CR)
これにより、
CR=(t−t)/(logE−logE
が得られる。
【0019】
更に時刻tからほぼ放電終了時の時刻を例えば3τとすると、対数関数に従った時刻3τ(この時の電圧E=0.05Eo)までの放電残り時間を算定することができる。
【0020】
このようにして電圧検出回路16及び演算装置17で検出された残り時間を表示装置18で表示することにより、電源の内部抵抗または負荷装置の負荷抵抗Rを考慮することなく、電気二重層コンデンサ12の残り充電時間または残り放電時間を表示することができる。そして、放電時の負荷抵抗、又は充電時の内部抵抗が変化した場合にも、その変化に対応した残り時間を直ちに表示することが出来る。尚、この実施の形態例においては、放電完了時を残り電圧約5%である時刻3τを基準としたが、負荷装置の最低動作可能電圧及び初期電圧Eoの大きさを考慮して、負荷装置の特性に応じて適宜決定する必要がある。
【0021】
上述したように電気二重層コンデンサを用いた電源装置では、放電特性が鉛電池などのようにほぼ直線的に低下するのでなく、放電開始後、対数的に電圧が急激に減少していく。このため、電圧がある程度低下すると、コンデンサ12内に電荷が蓄積されているにもかかわらず負荷装置13の所要最低動作電圧を割り込むことになり、負荷装置に電流の供給ができなくなる。この点を改良するためには、コンデンサ12として複数のコンデンサCa,Cbを備え、これらを直列および並列に接続する切替回路を備えるようにすればよい(例えば、特開平11−332112号公報参照)。
【0022】
図4(a)は、複数のコンデンサCa,Cbが並列接続され、負荷装置13に電力を供給する場合の等価回路を示す。これに対して、図4(b)は、複数のコンデンサCa,Cbが直列接続され、負荷装置(抵抗R)13に電力を供給する場合の等価回路を示す。ここで、一例として、Ca=Cb=Coとすると、並列接続時の時定数τは、
τ=2CoRとなり、直列接続時の時定数τは、τ=CoR/2となる。
【0023】
図5は、この切替回路を用いたときの電源装置の放電時の動作特性例を示す。この装置においても、充放電装置としての全体的な回路構成は図1に示したものと同様である。即ち、最初は図4(a)に示すように電気二重層コンデンサ12としてコンデンサCa,Cbを並列接続により運転し、電圧検出回路16を用い、電気二重層コンデンサ12の両端の電圧を監視し、この実施の形態例では初期電圧Eoの1/2まで電圧が低下したら、コンデンサCa,Cbの並列接続を図4(b)に示すように直列接続に切り替える。これにより、電圧は初期電圧Eoまで再度上昇し、その後再び対数曲線に沿って低減する。従って、コンデンサの放電可能時間を並列動作時の動作時間tに対して、直列動作時の動作時間t分を延長することができる。
【0024】
この時、並列動作時の時定数がτ=2CoRであるのに対して、直列動作時の時定数がτ=CoR/2であるので、t=t/4の関係にあり、その分だけ動作時間を延長することができる。この実施の形態例においても、第1の時刻tとその時の電圧E及び第2の時刻tとその時の電圧Eとの関係から時定数τ(=2CoR)を算定し、上述したように直列動作時の時定数も算定可能であるので、直列動作時tを含めた残り放電可能時間を算定して表示することができる。
【0025】
尚、以上の説明は、電気二重層コンデンサの両端の端子電圧の計測から残り充放電時間を算定する例について説明したが、電気二重層コンデンサに流れる電流から残り充放電時間を算定するようにしてもよい。
【0026】
【発明の効果】
以上説明したように本発明によれば、電気二重層コンデンサを用いた電源装置において、充放電の残り時間の表示を行うことができる。これにより、電気二重層コンデンサを用いた電源装置の実用上の使い易さを改善できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の電源装置の充放電回路の構成を示す図である。
【図2】図1に示す電源装置の充電特性を示す図である。
【図3】図1に示す電源装置の放電特性を示す図である。
【図4】複数のコンデンサを備えた電源装置における、(a)は並列接続の等価回路図であり、(b)は直列接続の等価回路図である。
【図5】図4の並列接続と直列接続の切替回路を用いた時の放電特性を示す図である。
【符号の説明】
11 充電電源装置(太陽電池)
12 電気二重層コンデンサ
13 負荷装置
14、15 スイッチ
16 電圧検出回路
17 演算装置
18 表示装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device that uses a large-capacity electric double layer capacitor, and more particularly to a power supply device that can display the remaining charge / discharge time and extend the operation time using the charge / discharge characteristics of the capacitor.
[0002]
[Prior art]
The electric double layer capacitor is a capacitor having an extremely large capacitance, and a capacitor having a capacitance of about 50 to 500 F is already being put into practical use and attracting attention. This capacitor can be rapidly charged and discharged, and the number of repeated discharges can be, for example, 1000 times or more, so that it can be used as a power supply device that replaces a battery rather than a simple capacitor. . An electric double layer capacitor as a power supply that replaces a battery is smaller and lighter than, for example, a lead-acid battery, and does not use heavy metals such as lead, and therefore has good environmental compatibility.
[0003]
On the other hand, a solar cell is a conversion element that converts light into electrical energy by a pn junction of a semiconductor such as silicon. This solar cell can also be manufactured by forming amorphous silicon on a substrate such as glass by vapor deposition or the like, and forming a transparent electrode film on the surface thereof, and is becoming widespread as a clean power source.
[0004]
Therefore, a combination of a solar cell, a generator, a commercial power source and the like and the electric double layer capacitor makes it possible to configure a power supply facility that can be replaced with a small, light and clean battery. In particular, battery-driven electric vehicles and the like need to be equipped with a large-capacity storage battery, which is suitable for such applications.
[0005]
However, in a power storage device such as a battery, it is essential to be able to check the remaining usable time at the time of discharge. Usually, a voltmeter is provided and the charge / discharge status can be confirmed by monitoring the voltage. it can. However, in a power supply device using an electric double layer capacitor, since the capacitor is charged and stored, the terminal voltage drops rapidly as the capacitor discharge proceeds, making it difficult to check the remaining charge / discharge time. It was.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the circumstances described above, and can accurately display and extend the remaining charge / discharge time of an electric double layer capacitor whose voltage fluctuates greatly, and can also be operated. An object of the present invention is to provide a power supply device using an electric double layer capacitor that can be operated with a further extension.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, in the chargeable / dischargeable power supply device using the electric double layer capacitor, the means for measuring the voltages E 1 and E 2 at the first time t 1 and the second time t 2 are used. And a means for calculating the time constant RC by using the relationship of charge / discharge characteristics of the capacitor, E = Eo (1-e− (t / RC) ), or E = Eoe− (t / RC) And means for calculating the remaining charge / discharge time of the capacitor from the charge / discharge characteristics of the capacitor by using the calculated time constant RC, and a display device for displaying the calculated remaining charge / discharge time. This is a power supply device.
[0008]
This makes it possible to calculate and display the charge / discharge characteristics of an electric double layer capacitor with a large capacitance and the remaining charge or discharge time, so the internal resistance of the power supply during charging or the load resistance during discharging is unknown. However, it is possible to accurately know the remaining charge / discharge time of the electric double layer capacitor. That is, there is generally a load resistance of a load device at the time of discharge or an internal resistance of, for example, a solar battery that is a charging power source at the time of charging. Alternatively, the remaining discharge time can be detected. Therefore, since the correct remaining time is always displayed regardless of the magnitude of the internal resistance on the power supply side during charging, and regardless of the magnitude of the load resistance during discharging, a charging / discharging device using an electric double layer capacitor is required. It can be used practically.
[0009]
In addition, it is preferable to use a solar cell for charging the electric double layer capacitor. As a result, it is possible to configure a power supply device having a clean and sufficient power capacity using an electric double layer capacitor and a solar battery.
[0010]
Also includes a plurality of the electric double layer capacitor, a switching circuit for switching connection several capacitors plurality in series and in parallel, and a means for determining the switching time period from the measurement result of the voltage E 1 and E 2 further It is preferable to provide. As a result, when the discharge of the electric double layer capacitor proceeds and falls below the required minimum voltage on the load side, the terminal voltage of the electric double layer capacitor is increased by connecting the electric double layer capacitors connected in parallel in series. The remaining dischargeable time can be extended and used. Even in such a case, since the time constant changes, the remaining charge / discharge time after connection switching can be continuously calculated.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0012]
FIG. 1 shows a power supply device using an electric double layer capacitor according to an embodiment of the present invention. In this embodiment, a solar battery 11 is used as a charging power supply device, and thereby the electric double layer capacitor 12 is charged. A switch 14 is connected between the charging power supply device 11 and the electric double layer capacitor 12. When this switch is closed, current is supplied to the electric double layer capacitor 12 from the solar cell 11 side which is a power supply source. The capacitor 12 is charged. Here, the power supply device 11 normally outputs a voltage of about 0.6 to 0.7 V per stage of the pn junction, but a plurality of stages are connected in series to obtain a voltage output sufficient for driving the load device. It is preferable to be able to do so.
[0013]
The electric double layer capacitor 12 is connected to a load device 13 such as an automobile motor or an electronic device when used as a power source. Similarly, a switch 15 is disposed between the load device 13 and the electric double layer capacitor 12. When this switch is closed, a current is supplied to the load device 13 from the electric double layer capacitor 12 side. Operate. The electric double layer capacitor 12 may be a single capacitor or a plurality of capacitors connected in parallel. Furthermore, it is preferable that a plurality of electric double layer capacitors can be switched between parallel connection and series connection as will be described later.
[0014]
A voltage detection circuit 16 is connected to both ends of the electric double layer capacitor 12 to detect a voltage appearing at both ends of the electric double layer capacitor 12. Then, the detected voltage is subjected to arithmetic processing by the arithmetic device 17, and the remaining charge / discharge time is calculated. The calculation result is displayed on the display device 18. The display device 18 may be an analog display meter, or may be a digital display device that displays the remaining charge / discharge time in minutes, for example. Further, the power of the voltage detection circuit 16, the arithmetic unit 17 and the display device 18 may be supplied from the terminal of the electric double layer capacitor 12, or a separate power circuit may be used.
[0015]
The charging characteristics of the capacitor are expressed as shown in FIG. That is, when the charging power supply voltage Eo, the internal resistance R, and the capacitor C are connected in series, the charging voltage E across the capacitor C is expressed by the following equation (1).
E = Eo (1-e- (t / RC) ) (1)
That is, when the voltage E across the capacitor is charged from zero with a constant DC charging power supply voltage Eo, the voltage E across the capacitor increases according to a logarithmic function and gradually approaches a constant value Eo. Here, the product CR of the capacitor capacitance C and the internal resistance R has a time dimension, which is called a time constant τ (= CR), and when t = τ,
E = Eo (1-e −1 )
It becomes. In other words, the time constant τ is an index indicating the gradual rise or fall of the logarithmic function curve. For example, when C = 100 (F) and R = 10 (Ω), τ = 100 (F) × 10 (Ω) = 1000 seconds, and when t = τ (1000 seconds), E = 0.632 Eo And approximately approaches the charging power supply voltage Eo in 5τ (5000 seconds).
[0016]
Since the charging characteristics of the capacitor as the voltage rises in accordance with a logarithmic curve as shown in FIG. 2, by detecting the voltage E 2 of the voltage E 1 and the time t 2 at time t 1, a time thereby The constant τ = CR is calculated, and from this, for example, the remaining time until charging is completed (for example, 5τ = 0.993 Eo) can be calculated.
[0017]
FIG. 3 shows a characteristic curve during discharge. That is, the characteristic at the time of discharge is expressed by the following equation (2):
E = Eoe− (t / RC) (2)
Here, the resistance R is the load resistance of the load device 13, and the capacitance C is the capacitance of the electric double layer capacitor 12. In this case as well, when the initial voltage is Eo, the voltage E across the capacitor 12 falls according to a logarithmic function with the passage of time t and gradually approaches a constant value of zero. At time τ (= CR), which is a time constant, the voltage decreases to 0.368 Eo, and further decreases to 0.007 Eo which is substantially zero at time 5τ.
[0018]
Thus in the same way as described above, the voltage E 1 was measured at time t 1 by the voltage detection circuit 16 measures the voltage E 2 at time t 2. Then, a time constant τ = CR is obtained by the arithmetic unit 17. The time constant τ (= CR) is obtained by the following calculation.
E 1 = Eoe − (t1 / CR)
E 2 = Eoe − (t2 / CR)
Here, if the charging power supply voltage Eo is erased,
E 1 e - (t2 / CR ) = E 2 e - (t1 / CR)
Taking the logarithm of the base e on both sides,
logE 1 − (t 2 / CR) = logE 2 − (t 1 / CR)
This
CR = (t 2 -t 1 ) / (logE 1 -logE 2 )
Is obtained.
[0019]
With further substantially discharge at the end of time, for example, 3 [tau] from the time t 2, the can be calculated discharge time remaining until the time according to a logarithmic function 3 [tau] (voltage at the E = 0.05Eo).
[0020]
By displaying the remaining time detected by the voltage detection circuit 16 and the arithmetic unit 17 on the display device 18 in this manner, the electric double layer capacitor 12 is taken into consideration without considering the internal resistance of the power source or the load resistance R of the load device. The remaining charging time or remaining discharging time can be displayed. Even when the load resistance during discharging or the internal resistance during charging changes, the remaining time corresponding to the change can be displayed immediately. In this embodiment, the time when the discharge is completed is based on the time 3τ when the remaining voltage is about 5%, but the load device is considered in consideration of the minimum operable voltage of the load device and the magnitude of the initial voltage Eo. It is necessary to determine appropriately according to the characteristics.
[0021]
As described above, in a power supply device using an electric double layer capacitor, the discharge characteristics do not decrease almost linearly as in a lead battery, but the voltage decreases exponentially after the start of discharge. For this reason, when the voltage drops to some extent, the required minimum operating voltage of the load device 13 is interrupted even though charges are accumulated in the capacitor 12, and current cannot be supplied to the load device. In order to improve this point, a plurality of capacitors Ca and Cb may be provided as the capacitor 12, and a switching circuit for connecting them in series and in parallel may be provided (see, for example, JP-A-11-332112). .
[0022]
FIG. 4A shows an equivalent circuit when a plurality of capacitors Ca and Cb are connected in parallel and power is supplied to the load device 13. On the other hand, FIG. 4B shows an equivalent circuit when a plurality of capacitors Ca and Cb are connected in series and power is supplied to the load device (resistor R) 13. Here, as an example, when Ca = Cb = Co, the time constant τ in parallel connection is
τ = 2CoR, and the time constant τ when connected in series is τ = CoR / 2.
[0023]
FIG. 5 shows an example of operating characteristics during discharging of the power supply device when this switching circuit is used. Also in this device, the overall circuit configuration as the charge / discharge device is the same as that shown in FIG. That is, first, as shown in FIG. 4A, the capacitors Ca and Cb are operated in parallel as the electric double layer capacitor 12, and the voltage across the electric double layer capacitor 12 is monitored using the voltage detection circuit 16. In this embodiment, when the voltage drops to 1/2 of the initial voltage Eo, the parallel connection of the capacitors Ca and Cb is switched to the serial connection as shown in FIG. As a result, the voltage rises again to the initial voltage Eo and then decreases again along the logarithmic curve. Therefore, the dischargeable time of the capacitor can be extended by the operation time t B in the series operation with respect to the operation time t A in the parallel operation.
[0024]
At this time, the time constant during the parallel operation is τ = 2CoR, whereas the time constant during the series operation is τ = CoR / 2, so that t B = t A / 4. Only the operating time can be extended. Also in this embodiment, the time constant τ (= 2 CoR) is calculated from the relationship between the first time t 1 and the voltage E 1 at that time, and the second time t 2 and the voltage E 2 at that time, and the above-mentioned Thus, since the time constant during the series operation can also be calculated, the remaining dischargeable time including the time t B during the series operation can be calculated and displayed.
[0025]
In addition, although the above description demonstrated the example which calculates remaining charging / discharging time from the measurement of the terminal voltage of the both ends of an electric double layer capacitor, it was made to calculate remaining charging / discharging time from the electric current which flows into an electric double layer capacitor. Also good.
[0026]
【The invention's effect】
As described above, according to the present invention, the remaining charge / discharge time can be displayed in the power supply device using the electric double layer capacitor. Thereby, the practical usability of the power supply device using the electric double layer capacitor can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a charge / discharge circuit of a power supply device according to an embodiment of the present invention.
FIG. 2 is a diagram showing charging characteristics of the power supply device shown in FIG.
FIG. 3 is a diagram showing discharge characteristics of the power supply device shown in FIG. 1;
4A is an equivalent circuit diagram of a parallel connection, and FIG. 4B is an equivalent circuit diagram of a series connection in a power supply device including a plurality of capacitors.
5 is a diagram showing discharge characteristics when the switching circuit of the parallel connection and the series connection shown in FIG. 4 is used. FIG.
[Explanation of symbols]
11 Charging power supply (solar cell)
12 Electric Double Layer Capacitor 13 Load Device 14, 15 Switch 16 Voltage Detection Circuit 17 Arithmetic Device 18 Display Device

Claims (3)

電気二重層コンデンサを用いた充放電可能な電源装置において、
第1の時間tと第2の時間tの時の電圧EとEとの測定手段と、
コンデンサの充放電特性、
E=Eo(1−e−(t/RC))、または、E=Eoe−(t/RC)
なる関係を利用して、時定数RCを算定する手段と、
該算定された時定数RCを利用して、前記コンデンサの充放電特性から前記コンデンサの残り充放電時間を算定する手段と、
該算定された残り充放電時間を表示する表示装置と、
を備えたことを特徴とする電源装置。
In a chargeable / dischargeable power supply using an electric double layer capacitor,
Means for measuring the voltages E 1 and E 2 at the first time t 1 and the second time t 2 ;
Capacitor charge / discharge characteristics,
E = Eo (1−e− (t / RC) ), or E = Eo− (t / RC) ,
Means for calculating the time constant RC using the relationship
Means for calculating the remaining charge / discharge time of the capacitor from the charge / discharge characteristics of the capacitor using the calculated time constant RC;
A display device for displaying the calculated remaining charge / discharge time;
A power supply device comprising:
前記電気二重層コンデンサの充電には、太陽電池を用いることを特徴とする請求項1に記載の電源装置。The power supply device according to claim 1, wherein a solar cell is used for charging the electric double layer capacitor. 前記電気二重層コンデンサを複数個備え、該複数個のコンデンサを直列および並列に切換接続する切換回路と、前記電圧EとEとの測定結果から切換時期を判定する手段とを更に備えたことを特徴とする請求項1に記載の電源装置。Comprising a plurality of the electric double layer capacitor, a switching circuit for switching connection several capacitors plurality in series and in parallel, further comprising a means for determining the switching time period from the measurement result of the voltage E 1 and E 2 The power supply device according to claim 1.
JP2000016460A 2000-01-26 2000-01-26 Power supply Expired - Fee Related JP4440406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000016460A JP4440406B2 (en) 2000-01-26 2000-01-26 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000016460A JP4440406B2 (en) 2000-01-26 2000-01-26 Power supply

Publications (2)

Publication Number Publication Date
JP2001209444A JP2001209444A (en) 2001-08-03
JP4440406B2 true JP4440406B2 (en) 2010-03-24

Family

ID=18543590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000016460A Expired - Fee Related JP4440406B2 (en) 2000-01-26 2000-01-26 Power supply

Country Status (1)

Country Link
JP (1) JP4440406B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885114B2 (en) 1999-10-05 2005-04-26 Access Business Group International, Llc Miniature hydro-power generation system
CN100416091C (en) * 2002-10-09 2008-09-03 通达商业集团国际公司 Miniature hydro-power generation system
JP4286198B2 (en) * 2004-09-01 2009-06-24 オリンパス株式会社 Foot switch and output system
JP2006320077A (en) * 2005-05-11 2006-11-24 Nec Engineering Ltd Usb equipment power supply circuit
KR100918926B1 (en) * 2006-11-22 2009-09-28 임중우 Motive Power Supply Apparatus for Actuator
JP5127508B2 (en) * 2008-02-28 2013-01-23 三洋電機株式会社 Storage / discharge device
JP5525743B2 (en) * 2009-03-30 2014-06-18 株式会社日本総合研究所 Battery control device, battery control method, and vehicle
JP5936919B2 (en) * 2012-05-30 2016-06-22 株式会社ディスコ POSITION DETECTION DEVICE, ITS CONTROL METHOD, AND ITS SYSTEM
JP6110235B2 (en) * 2013-07-01 2017-04-05 星和電機株式会社 Power storage device
WO2016098802A1 (en) 2014-12-18 2016-06-23 株式会社フジクラ Electrical storage system, and electrical storage method
JP6127108B2 (en) * 2015-10-14 2017-05-10 株式会社フジクラ Power storage system and power storage method
JP2018038116A (en) * 2016-08-29 2018-03-08 Sfj株式会社 Jump starter and jump start method
JP2018050395A (en) * 2016-09-21 2018-03-29 東芝シュネデール・インバータ株式会社 Inverter apparatus
AT521038B1 (en) * 2018-10-02 2019-10-15 Siemens Mobility GmbH Method and device for detecting disturbances of a sensor

Also Published As

Publication number Publication date
JP2001209444A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP4440406B2 (en) Power supply
JP4560540B2 (en) Secondary battery charge / discharge quantity estimation method and apparatus, secondary battery polarization voltage estimation method and apparatus, and secondary battery remaining capacity estimation method and apparatus
US9157966B2 (en) Method and apparatus for online determination of battery state of charge and state of health
JP4097182B2 (en) Secondary battery polarization voltage estimation method, secondary battery remaining capacity estimation method and apparatus, and battery pack system
JP3379283B2 (en) Battery state of charge detection method
CN108291944B (en) Battery management device
JP3720290B2 (en) Battery charging efficiency detection method and apparatus, battery charge electricity amount detection method and apparatus
JP6844090B2 (en) How to estimate the parameters of the equivalent circuit model for the battery and the battery management system
US20120032681A1 (en) Determination of the internal resistance of a battery cell of a traction battery while using resistive cell balancing
CN109616704B (en) Device for battery management and method for managing charging of a battery
JP2012032267A (en) Remaining capacitance detection apparatus and battery control ic
JP2005062028A (en) Method and device for correcting voltage of secondary cell, and method and device for estimating remaining capacity of secondary cell
JPH09200965A (en) Battery residual-quantity meter
TW201142313A (en) Device for detecting deterioration in insulation
CN112534283B (en) Battery management system, battery management method, battery pack, and electric vehicle
JP2011137681A (en) Impedance detection circuit, battery power supply apparatus, and battery utilization system
JP3371588B2 (en) Remaining battery capacity display
CN113748352B (en) Battery management system, battery pack, electric vehicle, and battery management method
EP1736789A1 (en) Method and equipment for estimating residual capacity of storage battery
WO2004088343A1 (en) Apparatus and method for detecting fully charged condition, apparatus and method for detecting charged condition, and apparatus and method for determining degree of degradation
JP2004271342A (en) Charging and discharging control system
JP3694959B2 (en) Battery remaining capacity detection method and apparatus
JP2001197686A (en) Capacitor uninterruptible power supply apparatus
CN112130077B (en) SOC estimation method of power battery pack under different working conditions
WO2007072988A1 (en) Secondary cell degradation judging device and degradation judging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees