JP4439744B2 - Sample container moving device in sample preparation section of particle size distribution measuring device - Google Patents

Sample container moving device in sample preparation section of particle size distribution measuring device Download PDF

Info

Publication number
JP4439744B2
JP4439744B2 JP2001005716A JP2001005716A JP4439744B2 JP 4439744 B2 JP4439744 B2 JP 4439744B2 JP 2001005716 A JP2001005716 A JP 2001005716A JP 2001005716 A JP2001005716 A JP 2001005716A JP 4439744 B2 JP4439744 B2 JP 4439744B2
Authority
JP
Japan
Prior art keywords
sample
container
sample container
speed
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001005716A
Other languages
Japanese (ja)
Other versions
JP2002214114A (en
Inventor
哲司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2001005716A priority Critical patent/JP4439744B2/en
Publication of JP2002214114A publication Critical patent/JP2002214114A/en
Application granted granted Critical
Publication of JP4439744B2 publication Critical patent/JP4439744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は、分散媒と試料容器に収容された液体試料とを混合部に投入して試料を調整し、調整された測定液を用いて試料の粒径分布情報をうるよう構成された粒径分布測定装置の試料調整部における試料容器移動装置に関するものである。
【0002】
【従来の技術】
一般に、粘性の高い物質や高濃度の物質の粒径分布を測定する場合、こうした物質を直接測定しようとすると、試料の移送が困難であったり、試料容器内での物質の均一性を確保することが困難で測定誤差が大きくなったりすることから、所定の分散媒によって希釈する方法が採られる。
【0003】
具体的には、図6において、試料容器32内の液体試料31を混合部33に投入するとともに分散媒37をポンプ38によって混合部33に投入し、混合調整された測定液39は、測定用ポンプ(図示せず)によって、所定の流速で試料調整部30bから粒径分布測定部30aに移送され、粒径分布測定部30aにおいては、試料セル35に充たされた測定液39に所定の光Lを照射し、その散乱光L’を測定することで液体試料31の粒径分布情報をえるとともに、1つの試料測定が終了すると、試料調整部30bでは、再び次の試料容器が混合部33に位置する。
【0004】
こうした粒径分布測定装置では、試料調整部30bに液体試料31を自動投入する機能を有するものが多く用いられているが、その1つとして試料容器32を所定の位置で下方に傾けて液体試料を投入するオートサンプラーが用いられる場合がある。
【0005】
詳しくは、前記試料調整部30bには、容器ホルダ44が複数個設けられており、カップ形状の試料容器32に液体試料31を採取し、これらの試料容器32を容器ホルダ44に保持させる。そして、手動または自動的に装置が稼動し、試料調整部30bに設けた回転機構55によって、容器ホルダ44は自動的に移動し混合部33の上部で液体試料31が収容された試料容器32を保持しながら停止する。次に、容器ホルダ44が回動して試料容器32が傾倒し、液体試料31は試料容器32から混合部33に投入される。この状態で一定時間保持されると液体試料31は混合部33に投入されることとなる。
【0006】
ところで、前記回転機構55は平面視円形の回転板58を有する。この回転板58には、円周方向に沿って前記容器ホルダ44が複数個設けられている。そしてステッピングモータ6により回転板58は容器ホルダ44とともに回転軸ZのまわりにA方向に回転するよう構成されている。
【0007】
【発明が解決しようとする課題】
しかし、従来では、図7に示すように、液体試料31が収容された試料容器32を採取位置(ステップ101参照)から前記混合部33の位置(ステップ102参照)まで移動させるにあたり、極低速で、かつ一定速度でステッピングモータ6を回転させていた。
【0008】
すなわち、図1におけるMは、液体試料31が収容された試料容器32が移動する際の従来の速度変化モードを示すが、このモードになるようステッピングモータ6を回転制御させていた。この速度変化モードMは横長の矩形形状である。つまり、液体試料31を試料容器32からこぼさず移動させるために、試料容器32の動き始めの速度(初速度)V3 (mm/sec)を液体試料31がこぼれないような極低速に設定し、かつ、この初速度V3 (mm/sec)を維持しながら試料容器32を混合部33の位置まで移動させた後混合部33の位置で試料容器32を停止させるように回転板58のA方向への回転制御を行っていた。要するに、始動時には、速度(初速度)V3 (mm/sec)に相当する数の入力パルスをステッピングモータ6に与えて速度が0mm/secの状態から試料容器32の速度V(mm/sec)を一気に立ち上げるが、液体試料31がこぼれないような極低速に設定しているので、液体試料31はこぼれない。逆に、停止時には速度V3 (mm/sec)の状態から試料容器32の速度V(mm/sec)を一気に0mm/secに落とすが、速度V3 (mm/sec)が極低速に設定しているので、液体試料31はこぼれない。
【0009】
これにより、移動中は勿論、始動時と停止時にも液体試料31が試料容器32からこぼれることを回避できるけれども、移動速度V3 (mm/sec)が極低速であることから、移動に要する時間t4 が長くかかり、複数個の試料容器32をそれぞれ採取位置から混合部33の位置まで(V3 ×t4 )(mm)に相当する距離を移動させる場合を考えると、測定に非常に長時間を要することとなり、試料調整処理や粒径分布測定の効率化が図れなかった。
【0010】
この発明は、上述の事柄に留意してなされたもので、その目的は、液体試料をこぼすことなく短時間で試料容器を液体試料採取位置から混合部の位置まで移動できる粒径分布測定装置の試料調整部における試料容器移動装置を提供することにある。
【0011】
【課題を解決するための手段】
上記問題点を解決するために、この発明に係る粒径分布測定装置の試料調整部における試料容器移動装置は、液体試料が収容された試料容器を混合部の位置まで移動させ、この混合部の位置で試料容器内の液体試料を混合部に投入し、分散媒と液体試料とを混合調整し、その混合調整された測定液を用いて液体試料の粒径分布情報をうるよう構成された粒径分布測定装置の試料調整部における試料容器移動装置において、前記試料容器を保持する容器ホルダと、前記混合部の位置までの移動経路では、前記容器ホルダを、前記試料容器の口部が斜め上方外方に向かう傾斜姿勢に保持して移動案内し、かつ、前記混合部の位置では、前記傾斜姿勢の保持を解除して前記容器ホルダを、重力により試料容器の口部が斜め下方に向かう傾斜姿勢に傾倒させて液体試料を前記混合部に投入させる移動案内部材とを有する試料容器移動機構が設けられているとともに、前記試料容器および容器ホルダを前記混合部の位置まで移動させるにあたり、移動開始時には液体試料が試料容器からこぼれない速度に設定され、この設定速度を同一時間間隔で小刻みに加えて順次加速させて最高速度まで上昇させ、その最高速度を所定時間維持して前記試料容器および容器ホルダを所定距離移動させ、続いて、最高速度から前記設定速度を同一時間間隔で小刻みに引いて順次減速させて前記試料容器および容器ホルダを前記混合部の位置で停止させるように構成された移動速度制御部が設けられていることを特徴としている。
【0012】
【発明の実施の形態】
以下、この発明の実施の形態について、具体例として図面を参照しながら説明する。
【0013】
図1〜図5は、液体試料と分散媒とを適切に混合調整するために、例えば動的光散乱式の粒径分布測定装置の試料調整部にこの発明を適用した場合における実施の形態を示す。なお、この発明と従来例との相違点は試料調整部における試料容器移動装置にあり、粒径分布測定部と試料調整部の構成の大部分は従来と変わるところがないのでこの発明の実施形態の説明でも図6をそのまま使用する。なお、図5は、試料調整部において、試料容器を保持する容器ホルダに試料容器が保持されていない状態を示している。また、図2〜図4、図6は、容器ホルダに試料容器が保持されている状態を示している。
【0014】
図2〜図6において、試料調整部30bに設けた回転機構55は平面視円形の回転板58を有する。この回転板58には、円周方向に沿って容器ホルダ44が複数個設けられている。すなわち、回転板58上に支持フレーム88(図5参照)が円周方向に沿って複数個設けられており、各支持フレーム88には、容器ホルダ44がその重力によってB方向に傾倒するよう水平軸Xで枢着されており、ステッピングモータ6により回転板58は容器ホルダ44とともに回転軸ZのまわりにA方向に回転する(図3参照)よう構成されている。この容器ホルダ44(図5参照)は回転板58の径方向外方側に試料容器32を挟持する一対の上下挟持部材44b,44cを有する一方、回転板58の径方向内方側に円柱状の突出部44aを有する。なお、前記上挟持部材44bは板バネ状の部材であり、前記下挟持部材44cは横断面円弧状の板部材である。
【0015】
そして、液体試料31を収容してある深いカップ形状の試料容器32が、その口部32a(図2参照)を前記径方向外方側で、かつ、上方に向けた状態で、前記上下挟持部材44b,44cに挿入・挟持される。
【0016】
そして、固定フレーム99には垂直部分99bと水平部分99aよりなる逆L形状のアーム部材100(図5参照)が立設され、上部案内部材9が前記水平部分99aに固定設置されている。この上部案内部材9の水平下端面9aの周縁部に、図5に示すように、前記突出部44aが当接しながら試料容器32が回転板58の回転に伴って容器ホルダ44とともに回転する(図3参照)。上部案内部材9は前記水平下端面9aを有する一方、混合部33に対向する位置に切欠部10を有する。そして、前記突出部44aが前記水平下端面9aの周縁部に当接した状態で水平に回転していた容器ホルダ44は、突出部44aが切欠部10の位置に到達して切欠部10内に入り込むと重力により傾倒し、かつ、回転が停止するよう構成されている。
【0017】
すなわち、前記切欠部10は、回転軸Zに沿う垂直面10bと、傾斜面10cとを有するとともに、垂直面10bと傾斜面10cを繋ぐ水平面10aを下端面に有する。容器ホルダ44は切欠部10に従って図2に示す状態から、図6、図2に示すB方向に傾倒し、試料容器32も傾倒して口部32aを下方に向ける。つまり、水平下端面9aの周縁部に当接している前記突出部44aが切欠部10の位置に到達すると、前記突出部44aは前記垂直面10bの周縁部に沿って直ぐさま水平面10aに当接するとともに、容器ホルダ44の回転が停止する。そして、切欠部10の下方位置に混合部3が配置されているので、試料容器32内の液体試料31は口部32aから混合部3に投入される。
【0018】
この場合、試料容器32を有底の四角筒状とし、液体試料31投入時には、口部2aの角部分K(図2参照)が下方に位置するようにしてあるため液体試料31の投入をスムースに行える。
【0019】
この実施形態では、動作スイッチ(図示せず)をONにすると、前述したように、回転板58によって容器ホルダ44は自動的に水平回転し混合部33に対向する位置(前記切欠部10を設けてある位置)で停止するが、容器ホルダ44の動きをスムースにし液体試料31の飛散を防止するために所定の制御部(図示せず)を用いてステッピングモータ6により回転板58の回転運動を制御する方法が採用されている。
【0020】
なお、この実施形態では容器ホルダ44の移動を回転板58上で行う構成を示しているが、この発明では、複数の容器ホルダを直線状、曲線状又はジグザグ状に配置することも可能である。また、板バネ状の部材44bによって試料容器32を固定する構成を示しているが、これに限定されるものではない。
【0021】
以下、図1を用いてこの発明の特徴的構成について説明する。
【0022】
図1におけるNは、液体試料31が収容された試料容器32が移動する際のこの発明の速度変化モードを示し、このモードNになるようステッピングモータ6を回転制御させる。この速度変化モードNは、従来の前記速度変化モードMの高さV3 よりも高い高さVt を有する台形形状であり、等脚台形形状が好ましい。
【0023】
すなわち、図1に示すように、液体試料31の採取位置から液体試料31が収容された試料容器32を前記混合部33の位置まで移動させるにあたり、
(1)この発明の始動時には、まず、前記速度V3 (mm/sec)に相当する数よりも小さな入力パルス、例えば前記速度V3 (mm/sec)の場合の1/3程度の数の入力パルスをステッピングモータ6に与えて速度が0mm/secの状態から試料容器32の速度VをV1 (mm/sec)に設定する。前記速度V3 (mm/sec)は液体試料31がこぼれないような極低速であるので初速度V1 (mm/sec)も液体試料31がこぼれないような速度である。
【0024】
(2)そして、この実施形態では、以後時刻T1 になるまで同一時間間隔で小刻みに加速していく。例えば初速度V1 (mm/sec)の整数倍の速度に順次加速していく。
【0025】
すなわち、液体試料31が初速度V1 (mm/sec)を得た後、2×V1 (mm/sec)→3×V1 (≒V3 )(mm/sec)→…→10×V1 (mm/sec)→…→20×V1 (mm/sec)→…→31×V1 (=Vt )(mm/sec)というふうにして試料容器32の移動速度を最高速度Vt (mm/sec)に持っていく。
【0026】
例えば10×V1 (mm/sec)の速度を加速させるのに、10×V1 (mm/sec)に、液体試料31がこぼれないような極低速である1×V1 (mm/sec)を加えた速度で加速していくので、始動時(時刻0)から時刻T1 までのt1 秒までの加速動作中に試料容器32から液体試料31がこぼれることはない。つまり、最高速度Vt (mm/sec)で移動しても液体試料31がこぼれることはない。始動時(時刻0)から時刻T1 までの試料容器32の移動距離は略〔(1/2)×Vt ×t1 〕mmである。
【0027】
そして、時刻T1 から時刻T2 までの間は、最高速度Vt (mm/sec)を維持することにより試料容器32の移動距離を稼ぐことができる。この間の試料容器32の移動距離は、(Vt ×t2 )mmである。
【0028】
移動距離を稼いだ後、試料容器32を最高速度Vt (mm/sec)から順次減速させて停止させる。
【0029】
この場合は前記加速時とは反対の動作がなされる。すなわち、最高速度Vt (=31×V1 )(mm/sec)から一気に0(mm/sec)に減速させると試料容器32にかかる力によって液体試料31がこぼれるので、31×V1 (mm/sec)→30×V1 (mm/sec)→…→20×V1 (mm/sec)→…→10×V1 (mm/sec)→…→3×V1 (mm/sec)→2×V1 (mm/sec)→1×V1 (mm/sec)→0(mm/sec)というふうに液体試料31がこぼれないような極低速で小刻みに減速して試料容器32を最終的に停止させる。
【0030】
例えば、最高速度Vt (=31×V1 )(mm/sec)を減速させるのに、最高速度Vt (=31×V1 )(mm/sec)から、液体試料31がこぼれないような極低速である1×V1 (mm/sec)を引いた速度で減速していくので、減速開始時(時刻T2 )から停止時(時刻T3 )までのt3 秒間の減速動作中に試料容器32から液体試料31がこぼれることはない。つまり、減速中および停止時を通して液体試料31がこぼれることはない。減速開始時刻T2 から停止時刻T3 までの試料容器32の移動距離は略〔(1/2)×Vt ×t3 〕mmである。
【0031】
ここで、試料容器32の全移動距離=〔(1/2)×Vt ×t1 〕mm+(Vt ×t2 )mm+〔(1/2)×Vt ×t3 〕mm≒V3 ×t4 である。
【0032】
このように、始動時は、速度0(mm/sec)からの駆動で液体試料31がこぼれないような極低速の速度V1 (mm/sec)に設定し、続いて、この速度V1 (mm/sec)分だけの速度を順次加えることにより加速して高速に挙げていき、最終到達速度である最高速度Vt (=31×V1 )(mm/sec)まで上げる。そして、この最高速度Vt (=31×V1 )(mm/sec)にて移動距離を稼ぎ、続いて、この最高速度Vt (=31×V1 )(mm/sec)から、速度V1 (mm/sec)分だけの速度を順次引くことにより徐々に減速していき、試料容器32を停止させる。
【0033】
なお、ステッピングモータ6を早く回し過ぎると脱調状態に陥り前記モータ6のコントロールがきかなくなることを考慮して最高速度Vt の上限値を決定する必要がある。
【0034】
また、前記時間t1 ,t2 ,t3 や最高速度Vt 等は事前に装置の大きさや容器ホルダ44の数等に応じて決められている定数であり、マイコンあるいは制御用パソコン(PC)により記憶されている。
【0035】
また、この発明は、試料容器32を回転移動させる回転式以外に、試料容器32を左右の方向に移動させる左右直動型、試料容器32を上下の方向に移動させる上下直動型等試料容器32の移動方向に関係なく採用できる。更に、この発明では、前記時間t1 ,t2 ,t3 や最高速度Vt 等は予め決まっている場合もあるが、移動距離に応じて上記定数を演算変更して試料容器32の移動の最速化を図るように構成することも可能である。
【0036】
更に、この発明は、試料容器32の数が多い程、かつ、試料容器32が長距離移動させる場合程時間短縮の点でより効果がある。
【0037】
しかも、この発明は、複数個の試料容器32がある場合、測定順に試料容器32が設置されていなかったり、ランダムに試料容器32を測定する事態になっても上位コンピュータからの指示で即座に試料容器32を混合部33の位置まで移動させることができることにより移動させる場合の待ち時間を減らすように構成できることから、測定時間の効率化も可能となる。
【0038】
【発明の効果】
以上のようにこの発明では、試料容器が混合部の位置に達したとき、試料容器内に収容された液体試料を混合部に投入させるための姿勢変更を容易に行えるように試料容器をその口部が斜め上方外方に向かう傾斜姿勢に保持して移動させるものでありながら、採取位置から混合部の位置まで移動させる際に、液体試料をこぼすことなく短時間で試料容器を液体試料採取位置から混合部の位置まで移動させることができる粒径分布測定装置の試料調整部における試料容器移動装置を提供できる。
【図面の簡単な説明】
【図1】この発明の一実施形態の速度変化モードと従来例の速度変化モードを比較して示す図である。
【図2】上記実施形態に用いる回転機構における混合部への試料投入前の状態を示す構成説明図である。
【図3】上記実施形態に用いる回転機構示す側面図である。
【図4】上記実施形態に用いる回転機構を示す平面図である。
【図5】実施形態に用いる回転機構示す側面図である。
【図6】粒径分布測定装置の構成説明図である。
【図7】従来例を示すフローチャートである。
【符号の説明】
30b…試料調整部、31…液体試料、32…試料容器、33…混合部、37…分散媒、39…測定液、44…容器ホルダ、Vt …最高速度、N…速度変化モード。
[0001]
[Technical field to which the invention belongs]
In the present invention, a dispersion medium and a liquid sample contained in a sample container are put into a mixing unit to adjust the sample, and the particle size distribution configured to obtain the particle size distribution information of the sample using the adjusted measurement liquid The present invention relates to a sample container moving device in a sample adjusting section of a distribution measuring device.
[0002]
[Prior art]
In general, when measuring the particle size distribution of highly viscous substances or highly concentrated substances, it is difficult to transfer the sample or to ensure the uniformity of the substance in the sample container when trying to measure such a substance directly. Since this is difficult and the measurement error increases, a method of diluting with a predetermined dispersion medium is employed.
[0003]
Specifically, in FIG. 6, the liquid sample 31 in the sample container 32 is charged into the mixing unit 33 and the dispersion medium 37 is charged into the mixing unit 33 by the pump 38. The sample is transferred from the sample adjusting unit 30b to the particle size distribution measuring unit 30a by a pump (not shown) at a predetermined flow rate. In the particle size distribution measuring unit 30a, the measurement liquid 39 filled in the sample cell 35 is supplied with a predetermined value. The particle size distribution information of the liquid sample 31 is obtained by irradiating the light L and measuring the scattered light L ′, and when one sample measurement is completed, the sample adjustment unit 30b again sets the next sample container to the mixing unit. 33.
[0004]
Many of these particle size distribution measuring apparatuses have a function of automatically loading the liquid sample 31 into the sample adjusting unit 30b. As one of them, the sample container 32 is tilted downward at a predetermined position to obtain a liquid sample. In some cases, an autosampler that supplies the
[0005]
Specifically, the sample adjusting unit 30 b is provided with a plurality of container holders 44, and the liquid sample 31 is collected in the cup-shaped sample container 32 and these sample containers 32 are held by the container holder 44. Then, the apparatus is operated manually or automatically, and the container holder 44 is automatically moved by the rotating mechanism 55 provided in the sample adjusting unit 30b, so that the sample container 32 in which the liquid sample 31 is accommodated at the upper part of the mixing unit 33. Stop while holding. Next, the container holder 44 rotates to tilt the sample container 32, and the liquid sample 31 is introduced from the sample container 32 into the mixing unit 33. If kept in this state for a certain period of time, the liquid sample 31 is put into the mixing unit 33.
[0006]
By the way, the rotation mechanism 55 has a rotary plate 58 that is circular in plan view. The rotating plate 58 is provided with a plurality of the container holders 44 along the circumferential direction. Then, the rotating plate 58 is configured to rotate in the A direction around the rotation axis Z together with the container holder 44 by the stepping motor 6.
[0007]
[Problems to be solved by the invention]
However, conventionally, as shown in FIG. 7, when moving the sample container 32 containing the liquid sample 31 from the collection position (see step 101) to the position of the mixing unit 33 (see step 102), at a very low speed. The stepping motor 6 is rotated at a constant speed.
[0008]
That is, M in FIG. 1 indicates a conventional speed change mode when the sample container 32 containing the liquid sample 31 moves, and the stepping motor 6 is rotationally controlled so as to be in this mode. The speed change mode M has a horizontally long rectangular shape. That is, in order to move the liquid sample 31 without spilling from the sample container 32, the speed (initial speed) V 3 (mm / sec) at which the sample container 32 starts to move is set to an extremely low speed so that the liquid sample 31 does not spill. In addition, after maintaining the initial velocity V 3 (mm / sec), the sample container 32 is moved to the position of the mixing section 33 and then the sample container 32 is stopped at the position of the mixing section 33. The rotation was controlled in the direction. In short, at the time of starting, a number of input pulses corresponding to the speed (initial speed) V 3 (mm / sec) is given to the stepping motor 6 so that the speed V (mm / sec) of the sample container 32 from the state where the speed is 0 mm / sec. However, the liquid sample 31 is not spilled because it is set to an extremely low speed so that the liquid sample 31 does not spill. Conversely, when stopping, the speed V 3 (mm / sec) of the sample container 32 is reduced to 0 mm / sec at a stretch from the state of the speed V 3 (mm / sec), but the speed V 3 (mm / sec) is set to a very low speed. As a result, the liquid sample 31 does not spill.
[0009]
As a result, the liquid sample 31 can be prevented from spilling from the sample container 32 not only during the movement but also at the time of starting and stopping. However, since the movement speed V 3 (mm / sec) is extremely low, the time required for the movement is reduced. Considering the case where t 4 takes a long time and a plurality of sample containers 32 are moved by a distance corresponding to (V 3 × t 4 ) (mm) from the collection position to the position of the mixing unit 33, the measurement is very long. Time was required, and the efficiency of sample preparation and particle size distribution measurement could not be achieved.
[0010]
The present invention has been made in consideration of the above-mentioned matters, and its purpose is to provide a particle size distribution measuring apparatus capable of moving a sample container from a liquid sample collection position to a mixing section in a short time without spilling a liquid sample. An object of the present invention is to provide a sample container moving device in a sample adjusting unit.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the sample container moving device in the sample adjusting section of the particle size distribution measuring apparatus according to the present invention moves the sample container containing the liquid sample to the position of the mixing section. At this position, the liquid sample in the sample container is put into the mixing unit , the dispersion medium and the liquid sample are mixed and adjusted, and the particle size distribution information of the liquid sample is obtained using the mixed and adjusted measurement liquid In the sample container moving device in the sample adjusting section of the diameter distribution measuring device , the container holder is held obliquely upward in the moving path to the position of the mixing holder and the container holder that holds the sample container. In the position of the mixing section, the holding position of the mixing container is released and the container holder is released, and the mouth of the sample container is inclined obliquely downward by gravity. Leaning on posture With the sample container moving mechanism is provided having a moving guide member which by introducing the liquid sample into the mixing unit, when moving the sample container and container holder to the position of the mixing section, the liquid sample at the time of moving the start Is set to a speed at which the sample container does not spill, and the set speed is added in small increments at the same time interval to increase the speed up to the maximum speed, and the maximum speed is maintained for a predetermined time to keep the sample container and the container holder at a predetermined speed. distance moved, subsequently, moving speed controller configured to stop at small increments subtracting the sample container and container holder are sequentially decelerated positions of the mixing portion of the set speed in the same time interval from the maximum speed It is characterized by being provided .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings as specific examples.
[0013]
1 to 5 show an embodiment in which the present invention is applied to, for example, a sample adjusting unit of a dynamic light scattering type particle size distribution measuring device in order to appropriately mix and adjust a liquid sample and a dispersion medium. Show. The difference between the present invention and the conventional example lies in the sample container moving device in the sample adjusting unit, and most of the configurations of the particle size distribution measuring unit and the sample adjusting unit are not different from the conventional ones. In the description, FIG. 6 is used as it is. FIG. 5 shows a state where the sample container is not held in the container holder that holds the sample container in the sample adjusting unit. 2 to 4 and 6 show a state in which the sample container is held by the container holder.
[0014]
2 to 6, the rotation mechanism 55 provided in the sample adjustment unit 30 b includes a rotation plate 58 having a circular shape in plan view. The rotating plate 58 is provided with a plurality of container holders 44 along the circumferential direction. That is, a plurality of support frames 88 (see FIG. 5) are provided on the rotating plate 58 along the circumferential direction, and each support frame 88 is horizontal so that the container holder 44 tilts in the B direction due to its gravity. The rotary plate 58 is pivotally attached to the axis X, and the rotary plate 58 is configured to rotate in the A direction around the rotary axis Z together with the container holder 44 by the stepping motor 6 (see FIG. 3). The container holder 44 (see FIG. 5) has a pair of upper and lower clamping members 44b and 44c that clamp the sample container 32 on the radially outer side of the rotating plate 58, and a cylindrical shape on the radially inner side of the rotating plate 58. Projecting portion 44a. The upper holding member 44b is a plate spring-like member, and the lower holding member 44c is a plate member having an arcuate cross section.
[0015]
The deep cup-shaped sample container 32 containing the liquid sample 31 has the upper and lower clamping members in a state in which the mouth portion 32a (see FIG. 2) is directed outward in the radial direction and upward. 44b and 44c are inserted and clamped.
[0016]
An inverted L-shaped arm member 100 (see FIG. 5) composed of a vertical portion 99b and a horizontal portion 99a is erected on the fixed frame 99, and the upper guide member 9 is fixedly installed on the horizontal portion 99a. As shown in FIG. 5, the sample container 32 rotates with the container holder 44 as the rotating plate 58 rotates while the protrusion 44a abuts the peripheral edge of the horizontal lower end surface 9a of the upper guide member 9 (see FIG. 5). 3). The upper guide member 9 has the horizontal lower end surface 9 a and a notch 10 at a position facing the mixing portion 33. Then, the container holder 44 that has been rotated horizontally with the protruding portion 44a in contact with the peripheral edge of the horizontal lower end surface 9a, the protruding portion 44a reaches the position of the cutout portion 10 and enters the cutout portion 10. When entering, it is configured to tilt by gravity and stop rotating.
[0017]
That is, the notch 10 has a vertical surface 10b along the rotation axis Z and an inclined surface 10c, and has a horizontal surface 10a connecting the vertical surface 10b and the inclined surface 10c at the lower end surface. The container holder 44 tilts in the direction B shown in FIGS. 6 and 2 from the state shown in FIG. 2 according to the notch 10, and the sample container 32 also tilts so that the mouth 32a faces downward. That is, when the protrusion 44a that is in contact with the peripheral edge of the horizontal lower end surface 9a reaches the position of the notch 10, the protrusion 44a immediately contacts the horizontal surface 10a along the peripheral edge of the vertical surface 10b. At the same time, the rotation of the container holder 44 stops. And since the mixing part 3 is arrange | positioned under the notch part 10, the liquid sample 31 in the sample container 32 is thrown into the mixing part 3 from the opening part 32a.
[0018]
In this case, the sample container 32 has a bottomed rectangular tube shape, and when the liquid sample 31 is charged, the corner portion K (see FIG. 2) of the mouth portion 2a is positioned downward, so that the liquid sample 31 is smoothly charged. It can be done.
[0019]
In this embodiment, when an operation switch (not shown) is turned ON, as described above, the container holder 44 automatically rotates horizontally by the rotating plate 58 and faces the mixing portion 33 (the notch portion 10 is provided). In order to make the movement of the container holder 44 smooth and prevent the liquid sample 31 from scattering, the stepping motor 6 rotates the rotating plate 58 using a predetermined control unit (not shown). The control method is adopted.
[0020]
In this embodiment, the container holder 44 is moved on the rotating plate 58. However, in the present invention, a plurality of container holders can be arranged in a linear shape, a curved shape, or a zigzag shape. . Moreover, although the structure which fixes the sample container 32 with the leaf | plate spring-shaped member 44b is shown, it is not limited to this.
[0021]
The characteristic configuration of the present invention will be described below with reference to FIG.
[0022]
1 indicates the speed change mode of the present invention when the sample container 32 containing the liquid sample 31 moves, and the stepping motor 6 is rotationally controlled so as to be in this mode N. The speed change mode N is a trapezoidal shape having a conventional the speed change mode height V 3 large height V t than the M, isosceles trapezoidal shape are preferable.
[0023]
That is, as shown in FIG. 1, in moving the sample container 32 containing the liquid sample 31 from the collection position of the liquid sample 31 to the position of the mixing unit 33,
(1) At the time of start-up of the invention, first, the speed V 3 (mm / sec) small input pulses than the number corresponding to, for example, the number of 1/3 in the case of the velocity V 3 (mm / sec) An input pulse is applied to the stepping motor 6 to set the velocity V of the sample container 32 to V 1 (mm / sec) from the state where the velocity is 0 mm / sec. Since the speed V 3 (mm / sec) is an extremely low speed at which the liquid sample 31 does not spill, the initial speed V 1 (mm / sec) is a speed at which the liquid sample 31 does not spill.
[0024]
(2) In this embodiment, acceleration is performed in small increments at the same time interval until time T 1 is reached. For example, the acceleration is sequentially accelerated to an integral multiple of the initial velocity V 1 (mm / sec).
[0025]
That is, after the liquid sample 31 has obtained the initial velocity V 1 (mm / sec), 2 × V 1 (mm / sec) → 3 × V 1 (≈V 3 ) (mm / sec) →... → 10 × V 1 (mm / sec) → ... → 20 × V 1 (mm / sec) →… → 31 × V 1 (= V t ) (mm / sec) The moving speed of the sample container 32 is set to the maximum speed V t. Take it to (mm / sec).
[0026]
For example to accelerate the speed of 10 × V 1 (mm / sec ), the 10 × V 1 (mm / sec ), which is extremely low speed such as the liquid sample 31 does not spill 1 × V 1 (mm / sec ) since we are accelerated by the speed plus, starting (time 0) the liquid sample 31 will not spill from the sample container 32 during acceleration operation of t to 1 second to the time T 1 from. That is, the liquid sample 31 does not spill even if it moves at the maximum speed V t (mm / sec). The moving distance of the sample container 32 from the time of starting (time 0) to time T 1 is approximately [(1/2) × V t × t 1 ] mm.
[0027]
Then, from time T 1 to time T 2 are, you can make the moving distance of the sample container 32 by maintaining the maximum speed V t (mm / sec). The moving distance of the sample container 32 during this period is (V t × t 2 ) mm.
[0028]
After earning the moving distance, the sample container 32 is sequentially decelerated from the maximum speed V t (mm / sec) and stopped.
[0029]
In this case, an operation opposite to that during the acceleration is performed. That is, when the speed is decelerated from the maximum speed V t (= 31 × V 1 ) (mm / sec) to 0 (mm / sec) all at once, the liquid sample 31 is spilled by the force applied to the sample container 32, so that 31 × V 1 (mm / Sec) → 30 × V 1 (mm / sec) →… → 20 × V 1 (mm / sec) →… → 10 × V 1 (mm / sec) →… → 3 × V 1 (mm / sec) → The sample container 32 is finally decelerated at a very low speed so that the liquid sample 31 does not spill, such as 2 × V 1 (mm / sec) → 1 × V 1 (mm / sec) → 0 (mm / sec). Stop.
[0030]
For example, the maximum speed V t (= 31 × V 1 ) (mm / sec) to decelerate the, from the maximum velocity V t (= 31 × V 1 ) (mm / sec) , such as the liquid sample 31 does not spill Since the vehicle decelerates at a very low speed of 1 × V 1 (mm / sec), during the deceleration operation for t 3 seconds from the start of deceleration (time T 2 ) to the stop (time T 3 ). The liquid sample 31 does not spill from the sample container 32. That is, the liquid sample 31 does not spill during the deceleration and the stop. The moving distance of the sample container 32 from the deceleration start time T 2 to the stop time T 3 is approximately [(1/2) × V t × t 3 ] mm.
[0031]
Here, the total moving distance of the sample container 32 = [(1/2) × V t × t 1 ] mm + (V t × t 2 ) mm + [(1/2) × V t × t 3 ] mm≈V 3 Xt 4
[0032]
Thus, at the time of starting, the speed V 1 (mm / sec) is set to an extremely low speed at which the liquid sample 31 is not spilled by driving from the speed 0 (mm / sec), and then this speed V 1 ( The speed is increased by increasing the speed by sequentially adding the speed of mm / sec), and the speed is increased to the maximum speed V t (= 31 × V 1 ) (mm / sec) which is the final arrival speed. Then, the travel distance is earned at this maximum speed V t (= 31 × V 1 ) (mm / sec), and then from this maximum speed V t (= 31 × V 1 ) (mm / sec), the speed V The sample container 32 is stopped by gradually decelerating by sequentially drawing a speed of 1 (mm / sec).
[0033]
Incidentally, it is necessary to determine the upper limit of the maximum speed V t in consideration of the fact that no longer hear the control of the motor 6 falls into out-of too turning quickly stepping motor 6.
[0034]
The times t 1 , t 2 , t 3 , the maximum speed V t and the like are constants determined in advance according to the size of the apparatus, the number of container holders 44 and the like, and are microcomputers or personal computers (PCs) for control. Is stored.
[0035]
In addition to the rotary type that rotates and moves the sample container 32, the present invention is a sample container such as a left / right linear movement type that moves the sample container 32 in the left / right direction, and a vertical movement type that moves the sample container 32 in the vertical direction. It can be employed regardless of the 32 moving directions. Furthermore, in the present invention, the times t 1 , t 2 , t 3 , the maximum speed V t, etc. may be determined in advance, but the above constant is calculated and changed in accordance with the moving distance to move the sample container 32. It is also possible to configure so as to achieve the maximum speed.
[0036]
Furthermore, the present invention is more effective in terms of time reduction as the number of sample containers 32 is larger and when the sample containers 32 are moved longer distances.
[0037]
Moreover, in the present invention, when there are a plurality of sample containers 32, even if the sample containers 32 are not installed in the order of measurement or the sample containers 32 are measured at random, the sample is immediately given by an instruction from the host computer. Since the container 32 can be moved to the position of the mixing unit 33, the waiting time when the container 32 is moved can be reduced, so that the measurement time can be made more efficient.
[0038]
【The invention's effect】
As described above, according to the present invention, when the sample container reaches the position of the mixing unit , the sample container is placed in its mouth so that the posture can be easily changed so that the liquid sample stored in the sample container is charged into the mixing unit. The sample container can be moved to the liquid sample collection position in a short time without spilling the liquid sample when moving from the collection position to the position of the mixing unit while the part is held in an inclined posture toward the upper part obliquely outward. It is possible to provide a sample container moving device in the sample adjusting section of the particle size distribution measuring apparatus that can be moved from the position to the position of the mixing section.
[Brief description of the drawings]
FIG. 1 is a diagram showing a comparison between a speed change mode of an embodiment of the present invention and a speed change mode of a conventional example.
FIG. 2 is a configuration explanatory view showing a state before a sample is put into a mixing unit in a rotating mechanism used in the embodiment.
FIG. 3 is a side view showing a rotation mechanism used in the embodiment.
FIG. 4 is a plan view showing a rotation mechanism used in the embodiment.
FIG. 5 is a side view showing a rotation mechanism used in the embodiment.
FIG. 6 is a diagram illustrating the configuration of a particle size distribution measuring apparatus.
FIG. 7 is a flowchart showing a conventional example.
[Explanation of symbols]
30b ... sample preparation unit, 31 ... liquid sample, 32 ... sample container, 33 ... mixing unit, 37 ... dispersion medium, 39 ... measurement liquid, 44 ... container holder, V t ... maximum speed, N ... speed change mode.

Claims (1)

液体試料が収容された試料容器を混合部の位置まで移動させ、この混合部の位置で試料容器内の液体試料を混合部に投入し、分散媒と液体試料とを混合調整し、その混合調整された測定液を用いて液体試料の粒径分布情報をうるよう構成された粒径分布測定装置の試料調整部における試料容器移動装置において、前記試料容器を保持する容器ホルダと、前記混合部の位置までの移動経路では、前記容器ホルダを、前記試料容器の口部が斜め上方外方に向かう傾斜姿勢に保持して移動案内し、かつ、前記混合部の位置では、前記傾斜姿勢の保持を解除して前記容器ホルダを、重力により試料容器の口部が斜め下方に向かう傾斜姿勢に傾倒させて液体試料を前記混合部に投入させる移動案内部材とを有する試料容器移動機構が設けられているとともに、前記試料容器および容器ホルダを前記混合部の位置まで移動させるにあたり、移動開始時には液体試料が試料容器からこぼれない速度に設定され、この設定速度を同一時間間隔で小刻みに加えて順次加速させて最高速度まで上昇させ、その最高速度を所定時間維持して前記試料容器および容器ホルダを所定距離移動させ、続いて、最高速度から前記設定速度を同一時間間隔で小刻みに引いて順次減速させて前記試料容器および容器ホルダを前記混合部の位置で停止させるように構成された移動速度制御部が設けられていることを特徴とする粒径分布測定装置の試料調整部における試料容器移動装置 Move the sample container containing the liquid sample to the position of the mixing unit, put the liquid sample in the sample container into the mixing unit at the position of the mixing unit, adjust the mixing of the dispersion medium and the liquid sample, and adjust the mixing In the sample container moving device in the sample adjustment unit of the particle size distribution measuring apparatus configured to obtain the particle size distribution information of the liquid sample using the measured measurement liquid, a container holder for holding the sample container, and a mixing unit In the movement path to the position, the container holder is moved and guided while being held in an inclined posture in which the mouth portion of the sample container is obliquely upward and outward, and the inclined posture is held at the position of the mixing portion. There is provided a sample container moving mechanism having a movement guide member that releases the container holder and tilts the mouth portion of the sample container obliquely downward by gravity so that the liquid sample is introduced into the mixing unit. And To, when moving the sample container and container holder to the position of the mixing unit, when moving the start is set to the speed at which the liquid sample does not spill from the sample container, are sequentially accelerated by adding in small steps at the same time intervals the set speed Te is raised to the maximum speed, the maximum speed while maintaining a predetermined time by a predetermined distance moves the sample container and the container holder, then, the set speed from the maximum speed little by little pull is successively decelerated at the same time interval A sample container moving device in a sample adjusting unit of a particle size distribution measuring apparatus, wherein a moving speed control unit configured to stop the sample container and the container holder at the position of the mixing unit is provided .
JP2001005716A 2001-01-12 2001-01-12 Sample container moving device in sample preparation section of particle size distribution measuring device Expired - Fee Related JP4439744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001005716A JP4439744B2 (en) 2001-01-12 2001-01-12 Sample container moving device in sample preparation section of particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005716A JP4439744B2 (en) 2001-01-12 2001-01-12 Sample container moving device in sample preparation section of particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2002214114A JP2002214114A (en) 2002-07-31
JP4439744B2 true JP4439744B2 (en) 2010-03-24

Family

ID=18873725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005716A Expired - Fee Related JP4439744B2 (en) 2001-01-12 2001-01-12 Sample container moving device in sample preparation section of particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP4439744B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325628B1 (en) * 2009-11-23 2013-06-26 Mettler-Toledo AG Thermal analysis device
JP6710553B2 (en) * 2015-05-21 2020-06-17 株式会社堀場製作所 Sample introduction device

Also Published As

Publication number Publication date
JP2002214114A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
US8951803B2 (en) Sample analyzer and sample analyzing method
CA1167437A (en) Apparatus and method for the controlled, non-invasive mixing of substances
US5195825A (en) Device for mixing at least one aqueous fluid substance
US5104807A (en) Analyzing apparatus in which liquid can be stirred and analyzing method thereof
RU2663042C2 (en) Microplate
JPH0663945B2 (en) Stirrer
JP3661076B2 (en) Chemical analyzer
JPH04208864A (en) Apparatus and method for selecting and agitating component
US8372341B2 (en) Assay device processing apparatus and method
JPH0248136B2 (en)
JP4439744B2 (en) Sample container moving device in sample preparation section of particle size distribution measuring device
JP2000176268A (en) Deaerating agitator
JP2008298692A (en) Sample-agitating device and specimen analyzer
US5154896A (en) Apparatus for promoting reaction between solid and liquid phases
JP6782720B2 (en) Automatic analyzers, automatic analysis systems, and analytical methods
JP3504092B2 (en) Coating liquid application method
US5511880A (en) Method and apparatus for storing and mixing a plurality of fluids and body fluid sampling cartridge using same
JP6587735B2 (en) Automatic analyzer
JP2019197035A (en) Stirrer, analysis device, and dispensing method
JPH0755815A (en) Sample container rotary unit
JPH06324058A (en) Dispensing apparatus
JP2002188991A (en) Method of feeding sample in sample preparation part of instrument for measuring particle size distribution
JPS60231173A (en) Automatic analyzer
JPH0921815A (en) Automatic analyzing device
JPS5918350Y2 (en) Particle size distribution measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees