JP4439460B2 - Water supply system - Google Patents

Water supply system Download PDF

Info

Publication number
JP4439460B2
JP4439460B2 JP2005317702A JP2005317702A JP4439460B2 JP 4439460 B2 JP4439460 B2 JP 4439460B2 JP 2005317702 A JP2005317702 A JP 2005317702A JP 2005317702 A JP2005317702 A JP 2005317702A JP 4439460 B2 JP4439460 B2 JP 4439460B2
Authority
JP
Japan
Prior art keywords
water
amount
purification plant
supply
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005317702A
Other languages
Japanese (ja)
Other versions
JP2007120263A (en
JP2007120263A5 (en
Inventor
卓夫 佐伯
栄 岩下
敦司 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005317702A priority Critical patent/JP4439460B2/en
Publication of JP2007120263A publication Critical patent/JP2007120263A/en
Publication of JP2007120263A5 publication Critical patent/JP2007120263A5/ja
Application granted granted Critical
Publication of JP4439460B2 publication Critical patent/JP4439460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、最大取水量が規定された水源からの取水を浄水場で浄水し、この浄水場から単一または複数の需要家に給水する水供給システムに関する。   The present invention relates to a water supply system that purifies water from a water source with a specified maximum water intake amount at a water purification plant, and supplies water to a single or a plurality of customers from the water purification plant.

従来の水供給システムは、河川、ダム貯水池、地下水等の水源からの取水を浄水場に送込み、ここで浄化された後、単一又は複数の需要家へ給水している。   In the conventional water supply system, water from a water source such as a river, a dam reservoir, or groundwater is sent to a water purification plant, where it is purified and then supplied to a single or a plurality of customers.

この場合、水源から浄水場に送込まれる最大取水量は水利権により一定流量に規定され、また浄水場においては各季節を通しての需要量変動(季節変動)に対応するため、一年間を通じた最大需要量に対応できる水利権の設定と供給能力をもつ設備が設置され、しかも1日を通しての需要量変動(日間変動)に対応するため、1日の需要変動に応じて給水量を変動させる給水運転が行われている。   In this case, the maximum amount of water taken from the water source to the water treatment plant is regulated by the water rights, and the maximum amount throughout the year is required for the water treatment plant to respond to fluctuations in demand (seasonal variation) throughout each season. Water supply that sets the water rights that can respond to the demand and has the capacity to supply, and also responds to fluctuations in demand throughout the day (daily fluctuations). Driving is taking place.

しかし、このような従来の水供給システムにおいて、年間を通して需要量の変動が大きい場合には、浄水場にその最大需要量に対応した給水設備が設置されるが、この給水設備に対する年間通しての利用率が低く、不経済であった。   However, in such a conventional water supply system, when the fluctuation in demand is large throughout the year, a water supply facility corresponding to the maximum demand is installed in the water treatment plant. The utilization rate was low and uneconomical.

また、水源からの最大取水量は水利権で一定流量に規定されている関係上、需要の変動に追随できず、また実際の取水可能量が、気候などにより左右されて安定しないため、渇水時などには、需要量を満足する水供給ができないことがあった。   In addition, since the maximum water intake from the water source is regulated by water rights, it cannot follow fluctuations in demand, and the actual water intake depends on the climate and is not stable. In some cases, water supply that satisfies the demand could not be achieved.

さらに、浄水場で1日の需要変動に応じた給水運転を行うことは容易ではなく、運転員にかかる人的負荷も高かった。逆に1日の需要変動に応じた浄水場の運転を行わないで、常に設定された水利権一杯の取水を行って浄水場の運転を行う場合には、需要量以上に浄水を行った超過分の運転コストが無駄になっていた。   Furthermore, it is not easy to perform water supply operation according to the daily demand fluctuation at the water purification plant, and the human load on the operator is high. Conversely, if the water purification plant is not operated in response to daily demand fluctuations and the water purification plant is operated with a full set of water rights, the excess of the purified water will be exceeded. The operating cost of minutes was wasted.

本発明は上記のような課題を解決し、システム全体の設備利用率を上げることができ、しかも1日の需要変動に応じた給水運転も容易で運転員にかかる人的負担も軽減でき、しかも気候などに左右されず水源の渇水時にも安定した水供給が可能な水供給システムを提供することを目的とする。   The present invention solves the problems as described above, can increase the equipment utilization rate of the entire system, can easily perform water supply operation according to daily demand fluctuations, and can reduce the burden on the operator. The purpose of the present invention is to provide a water supply system that can supply water stably even when the water source is drought, regardless of the climate.

本発明は、上記の目的を達成するため、次のような手段により給水システムを構成するものである。   In order to achieve the above object, the present invention constitutes a water supply system by the following means.

本発明は、最大取水量が規定された第1の水源と、この第1の水源からの取水を浄化して給水系を通して単一または複数の需要家に一定量の給水を行う第1の浄水場と、最大取水量の制限を受けない第2の水源と、この第2の水源からの取水を浄化して前記給水系に給水可能に連繋された第2の浄水場と、前記需要家に設置された計測センサにより計測される受水量計測信号が入力され、前記第1の浄水場からの給水量に対する需要家の受水量を監視して前記第2の浄水場からの給水量を調整する監視装置とを備え、前記監視装置は、前記計測センサにより計測された需要家の受水量の合計値を総需要量として演算し、この総需要量と前記第1の浄水場からの一定給水量との差演算および大小比較演算を行う演算手段を有し、この演算手段の大小比較演算結果が前記一定給水量より前記総需要量が大きいとき、この供給不足量に相当する給水量を前記第2の浄水場から給水調整する。   The present invention provides a first water source in which a maximum water intake amount is defined, and a first purified water that purifies the water intake from the first water source and supplies a certain amount of water to a single or a plurality of consumers through a water supply system. A second water source that is not subject to the maximum water intake, a second water purification plant that is connected to the water supply system so that the water taken from the second water source can be purified, and to the consumer. The received water amount measurement signal measured by the installed measurement sensor is input, and the amount of water received from the customer with respect to the amount of water supplied from the first water purification plant is monitored to adjust the amount of water supplied from the second water purification plant. A monitoring device, wherein the monitoring device calculates a total value of the amount of water received by the consumer measured by the measurement sensor as a total demand amount, and the total demand amount and a constant water supply amount from the first water purification plant And a calculation means for performing a difference calculation and a size comparison calculation. When the small comparison operation result is larger the total demand than the predetermined water supply amount, and water adjusting the water amount corresponding to the supply shortage from the second water purification plants.

また、本発明は、最大取水量が規定された第1の水源と、この第1の水源からの取水を浄化して給水系を通して単一または複数の需要家に一定量の給水を行う第1の浄水場と、最大取水量の制限を受けない第2の水源と、この第2の水源からの取水を浄化して前記給水系に給水可能に連繋された第2の浄水場と、この第2の浄水場と前記給水系との間に前記第2の浄水場の浄水が補給可能に且つ前記給水系との間で供給水が流出入可能に設けられた貯水槽と、前記需要家に設置された計測センサにより計測される受水量計測信号が入力され前記第1の浄水場からの給水量に対する需要家の受水量を監視して前記第2の浄水場からの給水量を調整する監視装置とを備え、前記監視装置は、前記計測センサにより計測された需要家の受水量の合計値を総需要量として演算し、この総需要量と前記第1の浄水場からの一定給水量との差演算および大小比較演算を行う演算手段を有し、この演算手段の大小比較演算結果が前記一定給水量より前記総需要量が小さいときはその差演算結果である供給超過量が前記貯水槽に貯水され、大小比較演算結果が前記一定給水量より前記総需要量が大きいときはその差演算結果である供給不足量が前記貯水槽から前記給水系に給水され、この貯水槽の貯水量が給水されても更に不足する場合には前記第2の浄水場から前記貯水槽へ供給水を補給して前記第1の浄水場の給水負荷を平準化給水調整する。   Further, the present invention provides a first water source having a maximum water intake amount, and a first water source that purifies the water intake from the first water source and supplies a certain amount of water to a single or a plurality of consumers through a water supply system. A second water source that is not subject to the maximum water intake, a second water source that is connected to the water supply system so as to be able to supply water to the second water source, and this second water source. A water storage tank provided between the water purification plant and the water supply system so that the purified water of the second water purification plant can be replenished and the supply water can flow into and out of the water supply system; Monitoring that adjusts the amount of water supplied from the second water treatment plant by monitoring the amount of water received by the customer with respect to the amount of water supplied from the first water purification plant by receiving a water amount measurement signal measured by an installed measurement sensor The monitoring device is a total amount of water received by the consumer measured by the measurement sensor Is calculated as a total demand, and has a calculation means for performing a difference calculation and a size comparison calculation between the total demand and a constant water supply amount from the first water purification plant, and the magnitude comparison calculation result of the calculation means When the total demand is smaller than a certain amount of water supply, the excess supply amount that is the difference calculation result is stored in the water tank, and when the total demand is greater than the constant water supply amount, the difference calculation If the resulting supply shortage is supplied to the water supply system from the water storage tank and the water storage capacity of the water storage tank is still insufficient, the supply water is replenished from the second water purification plant to the water storage tank. Then, the water supply load of the first water purification plant is leveled and adjusted.

本発明によれば、従来のような水利権やダム容量等によって規定された第1の水源から取水する第1の浄水場の給水能力を年間変動需要量の最大量からベースロード給水量に低減し、不足分のみは水利権やダム容量等による制約を受けない第2の水源から取水する第2の浄水場から給水することによって、システム全体の設備利用率を上げることが可能になり、気候などに左右されず、渇水時にも安定した水供給が可能となる。   According to the present invention, the water supply capacity of the first water treatment plant that draws water from the first water source defined by conventional water rights, dam capacity, etc. is reduced from the maximum amount of annual fluctuation demand to the base load water supply amount. However, it is possible to increase the facility utilization rate of the entire system by supplying water from the second water treatment plant that draws water from the second water source that is not restricted by water rights or dam capacity. Stable water supply is possible even during drought.

また、需要量変動(日間変動)は、需要変動対応用の貯水槽や負荷応答性に優れた第2の浄水場にて対応するため、1日の需要変動に応じて、第1の浄水場の給水量を変動する必要がなく、水供給システム全体として運転も容易で、運転員にかかる人的負荷も低減できる。   Moreover, in order to respond to demand fluctuations (daily fluctuations) in a water tank for demand fluctuations or a second water treatment plant with excellent load responsiveness, the first water purification plant according to daily demand fluctuations. Therefore, the water supply system as a whole can be easily operated and the human load on the operator can be reduced.

以下、図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による水供給システムの第1の実施形態を示す構成図である。   FIG. 1 is a configuration diagram showing a first embodiment of a water supply system according to the present invention.

図1において、1は河川、ダム貯水池、地下水等の第1の水源、2はこの第1の水源1より最大取水量が水利権により規定された一定流量の原水が供給される第1の浄水場で、この第1の浄水場2は原水を浄化し、複数の需要家3-1〜3-5に給水系4を通して一定給水量Mを供給するものである。   In FIG. 1, 1 is a first water source such as a river, a dam reservoir, and groundwater, and 2 is a first purified water to which a constant flow of raw water whose maximum water intake is regulated by water rights is supplied from the first water source 1. The first water purification plant 2 purifies the raw water and supplies a certain amount of water M through the water supply system 4 to the plurality of consumers 3-1 to 3-5.

また、5は各需要家3-1〜3-5から排水される排水系、6はこの排水系5を通して各需要家3-1〜3-5からの排水を回収する第2の水源で、この第2の水源6に回収された排水は第2の浄水場7に供給され、浄化される。この場合、各需要家3-1〜3-5で使用した水のうち、水資源として利用できる水を排水系5に排出し、利用不可能な汚水は廃棄される。 In addition, 5 is a drainage system drained from each customer 3-1 to 3-5, and 6 is a second water source that collects drainage from each customer 3-1 to 3-5 through this drainage system 5. The wastewater collected in the second water source 6 is supplied to the second water purification plant 7 and purified. In this case, out of the water used by each of the consumers 3-1 to 3-5, water that can be used as a water resource is discharged to the drainage system 5, and unusable sewage is discarded.

この第2の浄水場7で浄化された水はレベル一定制御機能を有する貯水槽8に供給される。この貯水槽8は図2に示すように槽内を浄水の流入側と流出側の2室に区分する堰8aを設けたもので、この堰8aは槽内の底面側で両室が連通するような高さ位置に取付けられている。   The water purified in the second water purification plant 7 is supplied to a water tank 8 having a constant level control function. As shown in FIG. 2, this water storage tank 8 is provided with a weir 8a that divides the inside of the tank into two chambers on the clean water inflow side and outflow side, and this weir 8a communicates with both chambers on the bottom side in the tank. It is installed at such a height position.

また、このような貯水槽8は第1の浄水場2より低い位置に設置され、浄水流入側の室の上部より第2の浄水場7からの浄水が流入し、浄水流出側の室の下部は前述した給水系4に連繋され、給水系4との高低差による位置エネルギーにより給水系4の過剰供給水が流入し、また給水系4の供給水が不足している場合には図示しないポンプにより浄水を給水系4に流出可能になっている。   Moreover, such a water storage tank 8 is installed in a position lower than the first water purification plant 2, and purified water from the second water purification plant 7 flows in from the upper part of the room on the purified water inflow side, and the lower part of the room on the water purification outflow side. Is connected to the water supply system 4 described above, and an unillustrated pump is supplied when excess supply water of the water supply system 4 flows in due to positional energy due to the height difference from the water supply system 4 and when the supply water of the water supply system 4 is insufficient. Thus, the purified water can be discharged into the water supply system 4.

一方、9は第2の水源6側でシステム全体を監視する監視装置で、この監視装置9には、各需要家3-1〜3-5に設置された流量センサ10-1〜10-5により計測された受水量(需要量)計測信号と各需要家3-1〜3-5からの排水量を計測する流量センサ11-1〜11-5により計測された排水量計測信号が入力され、第1の浄水場2から各需要家3-1〜3-5に供給される既知の一定給水量Mをもとに監視に必要な所定の演算及び判定処理を行うものである。 On the other hand, 9 is a monitoring device for monitoring the entire system on the second water source 6 side. The monitoring device 9 includes flow sensors 10-1 to 10-5 installed in the respective consumers 3-1 to 3-5. The received water amount (demand amount) measurement signal and the drainage amount measurement signal measured by the flow sensors 11-1 to 11-5 that measure the drainage amount from each of the consumers 3-1 to 3-5 are input. A predetermined calculation and determination process necessary for monitoring is performed based on a known constant water supply amount M supplied from each water purification plant 2 to each of the consumers 3-1 to 3-5.

図3は上記監視装置9による演算処理を説明するための機能ブロック図である。   FIG. 3 is a functional block diagram for explaining the arithmetic processing by the monitoring device 9.

図3において、9-1は需要家3-1〜3-5の流量センサ10-1〜10-5により計測された受水量計測信号を加算して総需要量Pを求める演算器、9−2は需要家3-1〜3-5の流量センサ11-1〜11-5により計測された排水量計測信号を加算して総排水量Qを求める演算器である。   In FIG. 3, reference numeral 9-1 denotes an arithmetic unit that calculates the total demand P by adding the received water amount measurement signals measured by the flow sensors 10-1 to 10-5 of the consumers 3-1 to 3-5. Reference numeral 2 denotes an arithmetic unit for obtaining a total drainage amount Q by adding drainage amount measurement signals measured by the flow sensors 11-1 to 11-5 of the consumers 3-1 to 3-5.

また、9-3は演算器9-1で求めた総需要量Pと第1の浄水場2から需要家へ供給される一定給水量Mとの差演算(P−M)及び大小比較演算を行う第1の演算部、9-4は第1の演算部9-3での大小比較演算結果がP−M>0であれば、P−M>Qであるか否かの比較演算を行って供給不足量を求める第2の演算部である。   9-3 represents a difference calculation (P−M) and a magnitude comparison calculation between the total demand P obtained by the calculator 9-1 and the constant water supply M supplied from the first water purification plant 2 to the customer. The first calculation unit 9-4 performs a comparison calculation as to whether or not PM> Q if the magnitude comparison calculation result in the first calculation unit 9-3 is PM> 0. This is a second calculation unit for obtaining the supply shortage.

次に上記のように構成された水供給システムの作用について述べる。   Next, the operation of the water supply system configured as described above will be described.

まず、第1の浄水場2の給水能力(一定給水量M)が総受水量(需要量)P以下かPの変動範囲内とする場合について説明する。   First, the case where the water supply capacity (the constant water supply amount M) of the first water purification plant 2 is equal to or less than the total water reception amount (demand amount) P or within the fluctuation range of P will be described.

いま、第1の浄水場2で第1の水源1からの最大取水量として従来の年間変動の最大量から必要最小限の量に低減して取水した原水の供給を受けて浄水し、需要家3-1〜3-5に第1の一定給水量Mが供給されているものとする。   Now, at the first water purification plant 2, the maximum water intake from the first water source 1 is reduced from the conventional maximum annual fluctuation to the minimum required amount, and the raw water supplied is purified. It is assumed that the first constant water supply amount M is supplied to 3-1 to 3-5.

このとき各需要家3-1〜3-5では流量センサ10-1〜10-5により各々計測された受水量計測信号及び流量センサ11-1〜11-5により計測された排水量計測信号が各々監視装置9に伝送される。   At this time, in each of the consumers 3-1 to 3-5, the received water amount measurement signals respectively measured by the flow sensors 10-1 to 10-5 and the drainage amount measurement signals measured by the flow sensors 11-1 to 11-5 are respectively shown. It is transmitted to the monitoring device 9.

監視装置9においては、図3に示すように演算器9-1により各需要家の受水量の合計値を総需要量Pとして演算し、また演算器9-2により各需要家から排出される排水量の合計値を総排水量Qとして演算している。   In the monitoring device 9, as shown in FIG. 3, the total value of the amount of water received by each consumer is calculated as the total demand P by the calculator 9-1 and discharged from each consumer by the calculator 9-2. The total amount of drainage is calculated as the total drainage Q.

上記第1の演算部9-3にて総需要量Pと第1の浄水場2から需要家へ供給される一定給水流量Mとの差演算および大小比較演算を行う。この場合、演算器9-1で加算演算された総需要量Pは、時々刻々と変動しているが、これは日々の短期の変動と季節による長期の変動がある。   The first calculation unit 9-3 performs a difference calculation and a size comparison calculation between the total demand P and the constant water supply flow rate M supplied from the first water purification plant 2 to the customer. In this case, the total demand amount P added and calculated by the computing unit 9-1 fluctuates from moment to moment, which includes daily short-term fluctuations and seasonal long-term fluctuations.

この第1の演算部9-3での大小比較結果として、総需要量Pが第1の浄水場2から供給される第1の一定給水流量Mより小さい場合には、総需要量Pに対する第1の浄水場2から需要家への第1の一定給水流量Mの差演算結果である供給超過量の給水が第2の浄水場7と需要家との間に設けられた貯水槽8に貯水される。この場合、貯水槽8は第1の浄水場の給水系4より低い位置に設置されているものとすれば、その高低差による位置エネルギーにより供給超過量の給水が貯水槽8に流入し、貯水される。そして、貯水槽8は図2に示すように槽内を二室に区分する堰8aの下部が両室に跨って連通させてあるので、供給超過量の給水が貯水槽8に流入しても両室の水位レベルは常に同じレベルに調整される。   When the total demand P is smaller than the first constant water supply flow rate M supplied from the first water purification plant 2 as a result of the magnitude comparison in the first calculation unit 9-3, the first demand for the total demand P is The excess water supply, which is the difference calculation result of the first constant water supply flow rate M from the first water purification plant 2 to the customer, is stored in the water tank 8 provided between the second water purification plant 7 and the customer. Is done. In this case, if the water storage tank 8 is installed at a position lower than the water supply system 4 of the first water purification plant, the excess water supply flows into the water storage tank 8 due to the positional energy due to the height difference, and the water storage Is done. And since the lower part of the weir 8a which divides the inside of a tank into two chambers is connected across both chambers as shown in FIG. 2, even if the supply water of an excessive supply amount flows into the water storage tank 8, as shown in FIG. The water level in both rooms is always adjusted to the same level.

また、第1の演算部9-3での大小比較結果として、総需要量Pが第1の浄水場2から供給される第1の給水流量Mより大きい場合には、第2の演算部9-4により総需要量Pと第1の一定給水流量Mとの差分、つまり供給不足量が演算器9-2で求められた総排水量Qより小さいことを条件に、貯水槽8から供給不足量に見合った給水を行う。この場合、貯水槽8から給水系4への給水は監視装置9から出される指令により図示しないポンプを稼動させることにより行われる。   Moreover, as a result of the magnitude comparison in the first calculation unit 9-3, when the total demand P is larger than the first feed water flow rate M supplied from the first water purification plant 2, the second calculation unit 9 -4, the difference between the total demand P and the first constant feed water flow rate M, that is, the supply shortage from the water storage tank 8 on the condition that the supply shortage is smaller than the total drainage Q obtained by the calculator 9-2. Water supply commensurate with In this case, water supply from the water storage tank 8 to the water supply system 4 is performed by operating a pump (not shown) according to a command issued from the monitoring device 9.

そして、貯水槽8に貯水される水量だけでは供給不足量に見合った給水ができない場合には、第2の水源6に各需要家から回収された最大取水量の制限を受けない排水を第2の浄水場5で浄水(再生利用)して貯水槽8に送水し、給水系4を介して需要家3-1〜3-5に供給する。即ち、短期の需要変動に対しては主に貯水槽8への貯水及び貯水槽8からの給水にて調整し、長期的に需要が供給を上回る場合には第2の浄水場7からの供給によって不足分が賄われる。   Then, when water supply corresponding to the shortage of supply cannot be made only by the amount of water stored in the water storage tank 8, the second water source 6 is supplied with the second drainage that is not restricted by the maximum water intake amount collected from each consumer. The water is purified (recycled) at the water purification plant 5, supplied to the water storage tank 8, and supplied to the consumers 3-1 to 3-5 through the water supply system 4. That is, for short-term demand fluctuations, adjustment is mainly made by storing water in the water storage tank 8 and water supply from the water storage tank 8, and when the demand exceeds supply in the long term, supply from the second water purification plant 7 The shortfall will be covered.

この場合、監視装置9から出される指令により第2の浄水場7を運転し、給水ポンプ、或いは流路を開閉するバルブやゲートなどを制御して第2の水源6から取水された排水を浄水場7に流入させ、ここで浄化した浄水を貯水槽8に供給可能になっている。   In this case, the second water purification plant 7 is operated in accordance with a command issued from the monitoring device 9, and the water taken from the second water source 6 is controlled by controlling the water supply pump or the valve or gate for opening and closing the flow path. The purified water that has been introduced into the place 7 and purified here can be supplied to the water storage tank 8.

さらに、第2の演算部9-4により供給不足量が演算器9-2で求められた総排水量Qより大きい場合には、監視装置9からの指令により第1の浄水場2の給水量をP−M<Qとなるように調整する。 Furthermore, when the supply shortage amount is larger than the total drainage amount Q obtained by the arithmetic unit 9-2 by the second arithmetic unit 9-4, the water supply amount of the first water purification plant 2 is determined by a command from the monitoring device 9. Adjust so that P− M < Q.

このような構成の第1の実施形態では、従来のような水利権やダム容量等によって規定された第1の水源1から取水する第1の浄水場2の給水能力を年間変動需要量の最大量から必要最低限のベースロード給水量に低減し、需要量変動(日間変動)分は需要変動対応用の貯水槽8と水利権やダム容量等による制約を受けない第2の水源(排水回収水)から取水する第2の浄水場とから給水するようにしたので、第1の水源1と第1の浄水場2の設備利用率をあげることが可能となる。 In the first embodiment having such a configuration, the water supply capacity of the first water purification plant 2 taking water from the first water source 1 defined by the water rights, dam capacity, etc. as in the prior art is set to the maximum of the annual fluctuation demand. A large amount of water is reduced to the minimum required base load water supply, and the demand fluctuation (daily fluctuation) is a water tank 8 for demand fluctuation and a second water source that is not restricted by water rights or dam capacity (drainage recovery) Since the water is supplied from the second water purification plant that takes water from the water), it is possible to increase the equipment utilization rates of the first water source 1 and the first water purification plant 2.

例えば、一般に自治体の公共事業として行っている、飲料水や工業用水の供給事業を考えると、従来はその供給を水利権やダム容量等による制約を受ける水源から取水する第1の浄水場2のみで行っていたため、これに年間の最大需要量を満たすことができる供給能力を持たせる必要があり、自治体の設備投資額は大きく膨らんでいた。   For example, considering the supply business of drinking water and industrial water, which is generally carried out as a public project of local governments, only the first water treatment plant 2 that draws water from water sources that are restricted by water rights, dam capacity, etc. Therefore, it was necessary to have a supply capacity that could meet the annual maximum demand, and the amount of capital investment of the local government was greatly expanded.

これを、第1の浄水場2ではベースロードの水供給のみを行う運営をし、総需要量と供給量の不足分を調整する、水利権やダム容量等による制約を受けない水源(排水回収水)から取水する第2の浄水場を(民間で)運営することによって、自治体の負担を軽減化し、全体として効率的な運用ができる。   The first water treatment plant 2 operates only to supply base load water, adjusts the total demand and supply shortage, and is not subject to restrictions due to water rights or dam capacity (drainage recovery) By operating the second water purification plant (from the private sector) that takes water from the water, the burden on local governments can be reduced, and overall operations can be efficiently performed.

なお、上記第1の実施形態では、需要量変動(日間変動)分に対応させて貯水槽8を設置し、各需要家3-1〜3-5への給水が供給超過のときはその超過量を貯水槽8に貯水し、供給不足のときは貯水槽8から不足量に見合った給水を行うようにしたが、季節による長期の変動分にのみ対応させる場合には、貯水槽8を設置せず、各需要家3-1〜3-5の排水を回収する第2の水源6より流入する排水を第2の浄水場7で浄化し、この第2の浄水場7より長期変動による給水不足量を前述同様に給水系4を通して各需要家3-1〜3-5に供給するようにしても良い。   In the first embodiment, the water storage tank 8 is installed in response to the demand fluctuation (daily fluctuation), and when the water supply to each of the consumers 3-1 to 3-5 is excessively supplied, the excess The amount of water is stored in the water storage tank 8 and when the supply is insufficient, the water supply corresponding to the shortage is performed from the water storage tank 8, but the water storage tank 8 is installed to handle only the long-term fluctuation due to the season. Without purifying, the waste water flowing in from the second water source 6 that collects the waste water of each of the customers 3-1 to 3-5 is purified at the second water purification plant 7, and the water supply due to long-term fluctuations from the second water purification plant 7 The shortage may be supplied to each of the consumers 3-1 to 3-5 through the water supply system 4 as described above.

図4は本発明による給水システムの第2の実施形態を示す構成図であり、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 4 is a block diagram showing a second embodiment of the water supply system according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted, and different parts will be described here.

第2の実施形態では第2の水源6に海水を導入し、この海水を第2の浄水場7に設置された海水淡水化設備により淡水化して貯水槽8に供給可能にしたものである。したがって、第1の実施形態のように各需要家3-1〜3-5の排水を第2の水源に回収する排水系及び排水量を計測する流量センサは不要である。   In the second embodiment, seawater is introduced into the second water source 6, and this seawater is desalinated by a seawater desalination facility installed in the second water purification plant 7 so that it can be supplied to the water tank 8. Therefore, unlike the first embodiment, the drainage system that collects the drainage of each of the consumers 3-1 to 3-5 in the second water source and the flow rate sensor that measures the drainage amount are unnecessary.

また、監視装置9には、各需要家3-1〜3-5に設置された流量センサ10-1〜10-5により計測された受水量(需要量)計測信号が入力され、第1の浄水場2から各需要家3-1〜3-5に供給される既知の一定給水量Mをもとに監視に必要な所定の演算及び判定処理が行われる。   In addition, the monitoring device 9 receives a received water amount (demand amount) measurement signal measured by the flow rate sensors 10-1 to 10-5 installed in the respective consumers 3-1 to 3-5, and receives the first signal. Based on the known constant water supply amount M supplied from the water purification plant 2 to each of the consumers 3-1 to 3-5, predetermined calculation and determination processing necessary for monitoring is performed.

図5は監視装置9による演算処理を説明するための機能ブロック図である。   FIG. 5 is a functional block diagram for explaining the arithmetic processing by the monitoring device 9.

図5において、9-1は需要家3-1〜3-5の流量センサ10-1〜10-5により計測された受水量計測信号を加算して総需要量Pを求める演算器、9-3は演算器9-1で求めた総需要量Pと第1の浄水場2から需要家へ供給される一定給水量Mとの差演算(P−M)及び大小比較演算を行う第1の演算部である。   In FIG. 5, reference numeral 9-1 denotes an arithmetic unit that obtains the total demand amount P by adding the received water amount measurement signals measured by the flow sensors 10-1 to 10-5 of the consumers 3-1 to 3-5. 3 is a first calculation that performs a difference calculation (P−M) and a size comparison calculation between the total demand P obtained by the calculator 9-1 and the constant water supply M supplied from the first water purification plant 2 to the customer. It is a calculation part.

次に上記のように構成された水供給システムの作用について述べる。   Next, the operation of the water supply system configured as described above will be described.

いま、第1の浄水場2で第1の水源1からの最大取水量として従来の年間変動の最大量から必要最小限の量に低減して取水した原水の供給を受けて浄水し、需要家3-1〜3-5に第1の一定給水量Mが供給されているものとする。   Now, at the first water purification plant 2, the maximum water intake from the first water source 1 is reduced from the conventional maximum annual fluctuation to the minimum required amount, and the raw water supplied is purified. It is assumed that the first constant water supply amount M is supplied to 3-1 to 3-5.

このとき各需要家3-1〜3-5では流量センサ10-1〜10-5により各々計測された受水量計測信号が監視装置9に伝送される。   At this time, the received water amount measurement signals respectively measured by the flow sensors 10-1 to 10-5 are transmitted to the monitoring devices 9 in the respective consumers 3-1 to 3-5.

監視装置9においては、図5に示すように演算器9-1により各需要家の受水量の合計値を総需要量Pとして演算し、第1の演算部9-3にて総需要量Pと第1の浄水場2から需要家へ供給される一定給水流量Mとの差演算および大小比較演算を行う。この場合、演算器9-1で加算演算された総需要量Pは、時々刻々と変動しているが、これは日々の短期の変動と季節による長期の変動がある。   In the monitoring device 9, as shown in FIG. 5, a total value of water received by each consumer is calculated as a total demand P by a calculator 9-1, and the total demand P is calculated by a first calculation unit 9-3. And a difference calculation and a magnitude comparison calculation between the first water purification plant 2 and the constant water supply flow rate M supplied to the customer. In this case, the total demand amount P added and calculated by the computing unit 9-1 fluctuates from moment to moment, which includes daily short-term fluctuations and seasonal long-term fluctuations.

ここで、年間のある一日をとったときの総需要量Pの日量平均が第1の浄水場2の最大給水能力MMAX以下である場合、第1の給水流量Mが総需要量Pの日量平均値(一定値)に設定されているときの作用について述べる。 Here, when the daily average of the total demand P when a certain day of the year is taken is less than or equal to the maximum water supply capacity M MAX of the first water purification plant 2, the first water supply flow rate M is the total demand P The operation when the daily amount average value (constant value) is set will be described.

第1の演算部9-3での大小比較結果として、総需要量Pが第1の浄水場2から供給される第1の一定給水流量Mより小さい場合には、その差演算結果である超過量の供給水が第2の浄水場7と需要家との間に設けられた貯水槽8に貯水され、また第1の演算部9-3での大小比較結果として、総需要量Pが第1の浄水場2から供給される第1の給水流量Mより大きい場合には、その差演算結果である不足量が貯水槽8から給水される。   When the total demand P is smaller than the first constant water supply flow rate M supplied from the first water purification plant 2 as a result of the magnitude comparison in the first calculation unit 9-3, the difference is the excess calculation result. A large amount of water is stored in a water tank 8 provided between the second water purification plant 7 and the customer, and as a result of comparison in magnitude in the first calculation unit 9-3, the total demand P is When it is larger than the first water supply flow rate M supplied from one water purification plant 2, the deficient amount as the difference calculation result is supplied from the water storage tank 8.

次に、年間のある一日をとったときの総需要量Pの日量平均が第1の浄水場2の最大給水能力MMAXを越える場合、第1の給水流量Mが最大給水能力MMAX(一定値)に設定されているときの作用について述べる。 Next, when the daily average of the total demand P when taking a certain day of the year exceeds the maximum water supply capacity M MAX of the first water purification plant 2, the first water supply flow rate M is the maximum water supply capacity M MAX. The operation when (constant value) is set will be described.

第1の演算部9-3での大小比較結果として、総需要量Pが第1の浄水場2から需要家への第1の給水流量Mより小さい場合に、総需要量Pに対する第1の浄水場2から需要家への第1の給水流量Mの差演算結果である供給超過量の給水が第2の浄水場7と需要家との間に設けられた貯水槽8に貯水され、また第1の演算部9-3での大小比較結果として、総需要量Pが第1の浄水場2から供給される第1の一定給水流量Mより大きい場合には、その差演算結果である不足量の給水が貯水槽8から行われる。   As a result of size comparison in the first computing unit 9-3, when the total demand P is smaller than the first feed water flow rate M from the first water purification plant 2 to the customer, the first demand for the total demand P The excess water supply, which is the difference calculation result of the first water supply flow rate M from the water purification plant 2 to the customer, is stored in the water tank 8 provided between the second water purification plant 7 and the customer, and When the total demand P is larger than the first constant water supply flow rate M supplied from the first water purification plant 2 as a result of the magnitude comparison in the first calculation unit 9-3, the difference is the result of the difference calculation An amount of water is supplied from the water tank 8.

そして、貯水槽8に貯水される水量だけでは供給不足量に見合った給水ができない場合には、第2の水源6から取水された最大取水量の制限を受けない海水を第2の浄水場7に設置された海水淡水化設備により淡水化して貯水槽8に送水し、給水系4を介して需要家3-1〜3-5に供給する。   If the amount of water stored in the water storage tank 8 is not sufficient to supply water corresponding to the shortage of supply, seawater that is not restricted by the maximum water intake taken from the second water source 6 is used as the second water treatment plant 7. The water is desalinated by the seawater desalination facility installed in the water and sent to the water storage tank 8 and supplied to the consumers 3-1 to 3-5 through the water supply system 4.

このような構成の第2の実施形態では、従来のような水利権やダム容量等によって規定された第1の水源から取水する第1の浄水場の給水能力を年間変動需要量の最大量からベースロード給水量に低減し、不足分のみは水利権やダム容量等による制約を受けない海水を第2の水源6から取水して淡水化する第2の浄水場から給水するようにしたので、システム全体の設備利用率を上げることが可能になり、気候などに左右されず、渇水時にも安定した水供給が可能なシステムを構築できる。   In the second embodiment having such a configuration, the water supply capacity of the first water treatment plant that draws water from the first water source defined by the conventional water rights, dam capacity, etc. is determined from the maximum amount of annual fluctuation demand. Since the water supply is reduced to the base load, and only the shortage is supplied from the second water purification plant that takes water from the second water source 6 and is not restricted by water rights or dam capacity, The system utilization rate of the entire system can be increased, and a system that can supply water stably even during drought can be constructed regardless of the climate.

例えば、一般に自治体の公共事業として行っている、飲料水や工業用水の供給事業を考えると、従来はそのその供給を水利権やダム容量等による制約を受ける水源から取水する第1の浄水場2のみで行っていたため、これに年間の最大需要量を満たすことができる供給能力を持たせる必要があり、自治体の設備投資額は大きく膨らんでいた。   For example, when considering a drinking water and industrial water supply business that is generally conducted as a public project of a local government, the first water purification plant 2 that draws water from a water source that has been restricted by water rights, dam capacity, etc. As a result, it was necessary to have a supply capacity that could meet the annual maximum demand, and the capital investment of the local government was greatly expanded.

これを、自治体ではベースロードの水供給のみを行う浄水場2を運営し、総需要量と供給水量の不足分を調整する、枯渇することのない安定水源である海水を水源とする海水淡水化浄水場を民営化することによって、自治体の負担を軽減化し、全体として効率的な運用ができる。   The local government operates the water purification plant 2 that only supplies water for the base load, adjusts the shortage of total demand and water supply, and desalinates seawater, which is a stable water source that will not be depleted. By privatizing the water purification plant, the burden on local governments can be reduced and the operation can be efficiently performed as a whole.

また、需要量変動(日間変動)は、需要変動対応用の貯水槽や負荷応答性に優れた第2の浄水場7にて対応するため、1日の需要変動に応じて、第1の浄水場2の給水量を変動する必要がなく、水供給システム全体として運転も容易で、運転員にかかる人的負荷も低減できる。   In addition, since the demand fluctuation (daily fluctuation) is handled by the storage tank for demand fluctuation or the second water purification plant 7 having excellent load responsiveness, the first water purification according to the daily demand fluctuation. It is not necessary to change the amount of water supplied to the site 2, the operation of the entire water supply system is easy, and the human load on the operator can be reduced.

例えば、一般に自治体の公共事業として行っている、飲料水や工業用水の供給事業を考えると、従来はその供給責任を浄水場2のみで行っていたため、1日の需要変動に応じて、給水量を変動する必要があり、浄水場の運転が容易ではなく、運転員にかかる人的負荷も高かった。   For example, considering the drinking water and industrial water supply business, which is generally conducted as a public project of local governments, the water supply was handled only at the water purification plant 2 in the past. The water treatment plant was not easy to operate, and the human burden on the operators was high.

これを、自治体ではベースロードの水供給のみを行う第1の浄水場2を運営し、総需要量と供給水量の過不足分を調整する貯水槽と負荷応答性に優れた第2の浄水場7を民営化することによって、水供給システム全体として運転も容易で、運転員にかかる人的負荷も低減することができる。   The local government operates the first water purification plant 2 that only supplies water for the base load, and the second water purification plant with excellent water responsiveness and a water storage tank that adjusts the excess and deficiency of the total demand and water supply. By privatizing 7, the water supply system as a whole can be easily operated and the human load on the operator can be reduced.

なお、上記第2の実施形態では、需要量変動(日間変動)分に対応させて貯水槽8を設置し、各需要家3-1〜3-5への給水が供給超過のときはその超過量を貯水槽8に貯水し、供給不足のときは貯水槽8から不足量に見合った給水を行うようにしたが、季節による長期の変動分にのみ対応させる場合には、貯水槽8を設置せず、第2の水源6より取水した海水を第2の浄水場7で淡水化し、この第2の浄水場7より長期変動による給水の不足量を前述同様に給水系4を通して各需要家3-1〜3-5に供給するようにしても良い。   In the second embodiment, the water storage tank 8 is installed corresponding to the fluctuation in demand (daily fluctuation), and when the water supply to each of the consumers 3-1 to 3-5 is excessively supplied, the excess The amount of water is stored in the water storage tank 8 and when the supply is insufficient, the water supply corresponding to the shortage is performed from the water storage tank 8, but the water storage tank 8 is installed to handle only the long-term fluctuation due to the season. The seawater taken from the second water source 6 is desalinated at the second water purification plant 7, and the shortage of water supply due to long-term fluctuations from the second water purification plant 7 is passed through the water supply system 4 to each customer 3 as described above. -1 to 3-5 may be supplied.

次に本発明の第3の実施形態として、浄水場の給水能力(一定給水量)が長期に亘って受水量合計(総需要量)P以上の場合について述べる。   Next, as a third embodiment of the present invention, a case where the water supply capacity (constant water supply amount) of the water purification plant is equal to or greater than the total water reception amount (total demand amount) P over a long period of time will be described.

例えば、原油を輸送するタンカーにおいては、日本から産油国(現地)へ向かう場合、バラストタンク内に海水を供給することでバランスさせ、現地にて海水を排出した後、原油を積載して帰港している。   For example, in a tanker that transports crude oil, when going from Japan to the oil-producing country (local), balance is achieved by supplying seawater into the ballast tank, and after discharging the seawater locally, the crude oil is loaded and returned to the port. ing.

しかるに、2004年2月に「バラスト水管理条約」が採択され、本条約発効後は各船舶が船舶バラスト水として運用されている海水をそのままの水質で排水することができなくなる。この条約に規定された水質基準をクリアするためには、船舶に水処理装置を搭載することが検討されているが、現在その技術は存在していない。   However, the “Ballast Water Management Convention” was adopted in February 2004, and after the entry into force of this Convention, it becomes impossible for each ship to drain the seawater operated as ship ballast water with the same quality. In order to clear the water quality standards stipulated in this treaty, it is considered to install a water treatment device on the ship, but there is no technology at present.

また、必要な淡水水源を地下水と海水淡水化に限定されている中東産油国等発展途上国においては、地下水過剰汲み上げによる土壌の塩分濃度上昇と海水淡水化プラントによるCO2排出や海水塩分濃度上昇といった地球環境への影響が問題となっている。 In developing countries such as Middle Eastern oil producing countries where the necessary freshwater sources are limited to groundwater and seawater desalination, soil salinity increases due to excessive pumping of groundwater, and CO 2 emissions and seawater salinity increases due to seawater desalination plants. The impact on the global environment is a problem.

そこで、第3の実施形態では、かかる給水システムにおいて、浄水場の給水能力(一定給水量M)が長期に亘って総受水量(需要量)以上である場合、その供給超過量を船舶バラスト水として利用するようにしたものである。   Therefore, in the third embodiment, in such a water supply system, when the water supply capacity of the water purification plant (constant water supply amount M) is equal to or greater than the total water reception amount (demand amount) over a long period of time, the excess supply amount is determined as the ship ballast water. It is intended to be used as.

すなわち、図6において、1は河川、ダム貯水池、地下水等の水源、2はこの水源1より最大取水量が水利権により規定された一定流量の原水が供給される浄水場で、この浄水場2は原水を浄化し、複数の需要家3-1〜3-5に給水系4を通して一定給水量Mを供給するものである。   That is, in FIG. 6, 1 is a water source such as a river, a dam reservoir, and groundwater, and 2 is a water purification plant to which a constant flow of raw water whose maximum water intake is regulated by water rights is supplied from this water source 1. Is for purifying raw water and supplying a constant water supply amount M to the plurality of consumers 3-1 to 3-5 through the water supply system 4.

また、各需要家3-1〜3-5には供給水を使用水と未使用水とに分けるため、図7に示すような貯水タンクが設置される。   Moreover, in order to divide supply water into use water and unused water in each consumer 3-1 to 3-5, the water storage tank as shown in FIG. 7 is installed.

図7において、13は貯水タンクで、この貯水タンク13は仕切壁13aにより使用水を蓄える貯水室13bと未使用水を蓄える貯水室13cに分離され、需要家への供給水は貯水室13bに供給された後、貯水室13bから例えば工場用水として排出され、またこの貯水室13bに蓄えられた水が所定の水位を超えると仕切壁13aより溢れた水が未使用水として貯水室13cに蓄えられるように構成されている。そして、この貯水室13cに蓄えられた水は送水管を通してタンカーのタンクに供給されるようになっている。   In FIG. 7, 13 is a water storage tank. This water storage tank 13 is separated by a partition wall 13a into a water storage chamber 13b for storing used water and a water storage chamber 13c for storing unused water, and water supplied to consumers is stored in the water storage chamber 13b. After being supplied, the water is discharged from the water storage chamber 13b as, for example, factory water, and when the water stored in the water storage chamber 13b exceeds a predetermined water level, the water overflowing from the partition wall 13a is stored as unused water in the water storage chamber 13c. It is configured to be. The water stored in the water storage chamber 13c is supplied to a tanker tank through a water pipe.

このような給水システムにおいて、本実施形態では各需要家3-1〜3-5にそれぞれ設置された受水量流量センサ10-1〜10-5により受水量を計測し、その各計測信号を監視装置9にそれぞれ伝送する。   In such a water supply system, in this embodiment, the received water amount is measured by the received water amount flow sensors 10-1 to 10-5 installed in the respective consumers 3-1 to 3-5, and the respective measurement signals are monitored. Each is transmitted to the device 9.

この監視装置9は、図8に示すように需要家3-1〜3-5の流量センサ10-1〜10-5により計測された受水量計測信号を加算して総需要量Pを求める演算器9-1と、この需要量Pと浄水場2から給水系統4を通して各需要家3-1〜3-5に供給される一定給水流量Mとの差演算および大小比較演算を行う第1の演算部9-3とを備え、この第1の演算部9-3により総需要量Pが浄水場2から各需要家3-1〜3-5に供給される一定給水量Mより常に小さい場合に供給先に繋がる送水管14に設けられたバルブ15を開にして差演算結果である供給超過量を船舶バラスト水として供給する。   The monitoring device 9 calculates the total demand P by adding the received water amount measurement signals measured by the flow sensors 10-1 to 10-5 of the consumers 3-1 to 3-5 as shown in FIG. The first calculation is performed for the difference calculation and the size comparison calculation between the water supply unit 9-1 and the constant supply water flow rate M supplied to each customer 3-1 to 3-5 through the water supply system 4 from the demand amount P and the water purification plant 2. When the total demand P is always smaller than the constant water supply M supplied from the water purification plant 2 to each of the consumers 3-1 to 3-5 by the first arithmetic unit 9-3. Then, the valve 15 provided in the water supply pipe 14 connected to the supply destination is opened, and the excess supply amount as the difference calculation result is supplied as ship ballast water.

このようにすれば、従来のような水利権やダム容量等によって規定された水源から取水する浄水場の給水能力を現状のまま一定として運用しても、需要家で使用されなかった給水を船舶バラスト水として供給することによってロスを発生することなく、システム全体の設備利用率を上げることができ、安定した水供給が可能なシステムを構築できる。   In this way, even if the water supply capacity of the water purification plant that draws water from the water source specified by the conventional water rights or dam capacity, etc. is operated as it is, the water supply that was not used by the consumers can be used by the ship. By supplying it as ballast water, the equipment utilization rate of the entire system can be increased without any loss, and a system capable of stable water supply can be constructed.

なお、供給超過量を船舶バラスト水として供給する場合について述べたが、他の地球環境対策用や災害対策などの防災用といった多目的用途の新たな需要先へ供給するようにしてもよい。   In addition, although the case where excess supply was supplied as ship ballast water was described, you may make it supply to the new demand destination of multipurpose uses, such as those for disaster prevention, such as other earth environment measures and disaster measures.

また、上記各実施形態では、複数の需要家を対象に給水を行う場合について述べたが、単一の需要家であっても良い。   Moreover, in each said embodiment, although the case where water supply was performed with respect to several consumers was described, a single consumer may be sufficient.

本発明による水供給システムの第1の実施形態を示す構成図。The block diagram which shows 1st Embodiment of the water supply system by this invention. 同実施形態における貯水槽を示す概略構成図。The schematic block diagram which shows the water storage tank in the embodiment. 同実施形態における監視装置の演算処理を説明するためのブロック図。The block diagram for demonstrating the arithmetic processing of the monitoring apparatus in the embodiment. 本発明による給水システムの第2の実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the water supply system by this invention. 同実施形態における監視装置の演算処理を説明するためのブロック図。The block diagram for demonstrating the arithmetic processing of the monitoring apparatus in the embodiment. 本発明による給水システムの第3の実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the water supply system by this invention. 同実施形態において、需要家で受給水を使用水と未使用水に分けるための貯水タンクの概略構成図。In the same embodiment, the schematic block diagram of the water storage tank for dividing received water into used water and unused water by the consumer. 同実施形態における監視装置の演算処理を説明するためのブロック図。The block diagram for demonstrating the arithmetic processing of the monitoring apparatus in the embodiment.

符号の説明Explanation of symbols

1…第1の水源、2…第1の浄水場、3-1〜3-5…需要家、4…給水系、5…排水系、6…第2の水源、7…第2の浄水場、8…貯水槽、9…監視装置、9-1…総需要量Pを求める演算器、9−2…総排水量Qを求める演算器、9-3…第1の演算部、9-4…第2の演算部、10-1〜10-5…受水量を計測する流量センサ、11-1〜11-5…排水量を計測する流量センサ、13…貯水タンク、14…送水管、15…バルブ。   DESCRIPTION OF SYMBOLS 1 ... 1st water source, 2 ... 1st water purification plant, 3-1 to 3-5 ... customer, 4 ... Water supply system, 5 ... Drainage system, 6 ... 2nd water source, 7 ... 2nd water purification plant , 8 ... water storage tank, 9 ... monitoring device, 9-1 ... calculator for calculating total demand P, 9-2 ... calculator for calculating total drainage Q, 9-3 ... first calculator, 9-4 ... Second arithmetic unit, 10-1 to 10-5 ... flow rate sensor for measuring the amount of received water, 11-1 to 11-5 ... flow rate sensor for measuring the amount of drainage, 13 ... water storage tank, 14 ... water supply pipe, 15 ... valve .

Claims (4)

最大取水量が規定された第1の水源と、この第1の水源からの取水を浄化して給水系を通して単一または複数の需要家に一定量の給水を行う第1の浄水場と、最大取水量の制限を受けない第2の水源と、この第2の水源からの取水を浄化して前記給水系に給水可能に連繋された第2の浄水場と、前記需要家に設置された計測センサにより計測される受水量計測信号が入力され、前記第1の浄水場からの給水量に対する需要家の受水量を監視して前記第2の浄水場からの給水量を調整する監視装置とを備え、
前記監視装置は、前記計測センサにより計測された需要家の受水量の合計値を総需要量として演算し、この総需要量と前記第1の浄水場からの一定給水量との差演算および大小比較演算を行う演算手段を有し、この演算手段の大小比較演算結果が前記一定給水量より前記総需要量が大きいとき、この供給不足量に相当する給水量を前記第2の浄水場から給水調整することを特徴とする水供給システム。
A first water source with a maximum water intake defined, a first water purification plant that purifies water taken from the first water source and supplies a certain amount of water to a single or a plurality of customers through a water supply system; A second water source that is not limited by the amount of water intake, a second water purification plant that purifies the water taken from the second water source and is connected to the water supply system so as to be able to supply water, and a measurement installed at the consumer. A monitoring device that receives a received water amount measurement signal measured by a sensor, monitors the amount of water received by a consumer relative to the amount of water supplied from the first water purification plant, and adjusts the amount of water supplied from the second water purification plant. Prepared,
The monitoring device calculates a total value of the amount of water received by a consumer measured by the measurement sensor as a total demand amount, calculates a difference between the total demand amount and a constant water supply amount from the first water purification plant, Computation means for performing a comparison operation is provided, and when the total comparison amount is larger than the constant water supply amount when the result of comparison of the calculation means is greater than the constant water supply amount, a water supply amount corresponding to the supply shortage amount is supplied from the second water purification plant. A water supply system characterized by regulating.
最大取水量が規定された第1の水源と、この第1の水源からの取水を浄化して給水系を通して単一または複数の需要家に一定量の給水を行う第1の浄水場と、最大取水量の制限を受けない第2の水源と、この第2の水源からの取水を浄化して前記給水系に給水可能に連繋された第2の浄水場と、この第2の浄水場と前記給水系との間に前記第2の浄水場の浄水が補給可能に且つ前記給水系との間で供給水が流出入可能に設けられた貯水槽と、前記需要家に設置された計測センサにより計測される受水量計測信号が入力され前記第1の浄水場からの給水量に対する需要家の受水量を監視して前記第2の浄水場からの給水量を調整する監視装置とを備え、
前記監視装置は、前記計測センサにより計測された需要家の受水量の合計値を総需要量として演算し、この総需要量と前記第1の浄水場からの一定給水量との差演算および大小比較演算を行う演算手段を有し、この演算手段の大小比較演算結果が前記一定給水量より前記総需要量が小さいときはその差演算結果である供給超過量が前記貯水槽に貯水され、大小比較演算結果が前記一定給水量より前記総需要量が大きいときはその差演算結果である供給不足量が前記貯水槽から前記給水系に給水され、この貯水槽の貯水量が給水されても更に不足する場合には前記第2の浄水場から前記貯水槽へ供給水を補給して前記第1の浄水場の給水負荷を平準化給水調整することを特徴とする水供給システム。
A first water source with a maximum water intake defined, a first water purification plant that purifies water taken from the first water source and supplies a certain amount of water to a single or a plurality of customers through a water supply system; A second water source that is not limited in water intake, a second water purification plant that purifies the water taken from the second water source and is connected to the water supply system so as to be able to supply water, the second water purification plant, A water storage tank provided so that the purified water of the second water purification plant can be replenished between the water supply system and the supply water can flow into and out of the water supply system, and a measurement sensor installed in the consumer A monitoring device that receives a measured amount of received water and receives the amount of water received from a consumer with respect to the amount of water supplied from the first water purification plant and adjusts the amount of water supplied from the second water purification plant;
The monitoring device calculates a total value of the amount of water received by a consumer measured by the measurement sensor as a total demand amount, calculates a difference between the total demand amount and a constant water supply amount from the first water purification plant, When the total demand amount is smaller than the constant water supply amount, the excess supply amount that is the difference calculation result is stored in the water tank, When the total calculation amount is larger than the constant water supply amount when the comparison calculation result is, the supply shortage amount that is the difference calculation result is supplied from the water storage tank to the water supply system, and the water storage amount of the water storage tank is further supplied. A water supply system characterized in that, when the water supply is insufficient, the supply water is supplied from the second water purification plant to the water storage tank and the water supply load of the first water purification plant is leveled and adjusted.
請求項1又は請求項2記載の水供給システムにおいて、前記第2の水源は前記需要家から排水系を通して回収された排水であることを特徴とする給水システム。   The water supply system according to claim 1 or 2, wherein the second water source is waste water collected from the consumer through a drainage system. 請求項1又は請求項2記載の水供給システムにおいて、前記第2の水源は海水であり、第2の浄水場は水源から取水された海水を淡水化する淡水化設備を備え、この淡水化設備により浄化された淡水を供給水とすることを特徴とする給水システム。   3. The water supply system according to claim 1, wherein the second water source is seawater, and the second water purification plant includes a desalination facility for desalinating seawater taken from the water source. A water supply system characterized in that fresh water purified by water is used as supply water.
JP2005317702A 2005-10-31 2005-10-31 Water supply system Expired - Fee Related JP4439460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317702A JP4439460B2 (en) 2005-10-31 2005-10-31 Water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317702A JP4439460B2 (en) 2005-10-31 2005-10-31 Water supply system

Publications (3)

Publication Number Publication Date
JP2007120263A JP2007120263A (en) 2007-05-17
JP2007120263A5 JP2007120263A5 (en) 2008-04-17
JP4439460B2 true JP4439460B2 (en) 2010-03-24

Family

ID=38144379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317702A Expired - Fee Related JP4439460B2 (en) 2005-10-31 2005-10-31 Water supply system

Country Status (1)

Country Link
JP (1) JP4439460B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169683A (en) * 2008-01-16 2009-07-30 Toshiba Corp Method for calculating shippable amount of water and method for calculating cost of shipping in water transportation business
KR101697006B1 (en) 2015-06-02 2017-01-23 엘에스산전 주식회사 Water supplying method
WO2017122933A1 (en) * 2016-01-12 2017-07-20 박명수 Freshwater replenishing type river hydroelectric power generation system

Also Published As

Publication number Publication date
JP2007120263A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
Kelly Influence of reservoirs on solute transport: a regional‐scale approach
Rygaard et al. Increasing urban water self-sufficiency: New era, new challenges
Molden et al. Water accounting to assess use and productivity of water
Gikas et al. Sustainable use of water in the Aegean Islands
McCool et al. Feasibility of reverse osmosis desalination of brackish agricultural drainage water in the San Joaquin Valley
US20110308618A1 (en) Water recovery systems and methods
JP5606615B1 (en) Membrane separator, circulating water utilization system
US10113304B2 (en) System and method for agent-based control of sewer infrastructure
Schilling et al. Real time control of wastewater systems
Dandy et al. Optimum operation of a multiple reservoir system including salinity effects
KR101280771B1 (en) System and Method for Recycling Water Using Rainfall Forecasting
JP4439460B2 (en) Water supply system
Saeed et al. Optimization of integrated forward–reverse osmosis desalination processes for brackish water
KR20150089850A (en) A water-loop system for allocationing and supplying multy-water source using ICT
KR20150089848A (en) System for supplying water having selective withdrawal from multi sources
KR101791207B1 (en) A system for seawater desalination using water blending
CN104234171A (en) Non-point source pollution control-based arterial drainage water quality regulation and control system and arterial drainage water quality regulation and control method
Suárez et al. One-year operational experience with ultrafiltration as pretreatment of seawater reverse osmosis desalination system (Maspalomas-I Plant)
KR102178424B1 (en) Prediction Method and Apparatus for Chemical Cleaning of Membrane
Lozier et al. Evaluating traditional and innovative concentrate treatment and disposal methods for water recycling at Big Bear Valley, California
JP6155742B2 (en) Water treatment equipment
JP6574141B2 (en) Water supply equipment for taking water from existing sabo dams
Bloetscher et al. Evaluating membrane options for aquifer recharge in southeast Florida
JP5518248B1 (en) Circulating water utilization system salt concentration adjustment device, circulating water utilization system
Lazarova et al. Evaluation of economic viability and benefits of urban water reuse and its contribution to sustainable development

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees