JP2009169683A - Method for calculating shippable amount of water and method for calculating cost of shipping in water transportation business - Google Patents

Method for calculating shippable amount of water and method for calculating cost of shipping in water transportation business Download PDF

Info

Publication number
JP2009169683A
JP2009169683A JP2008007186A JP2008007186A JP2009169683A JP 2009169683 A JP2009169683 A JP 2009169683A JP 2008007186 A JP2008007186 A JP 2008007186A JP 2008007186 A JP2008007186 A JP 2008007186A JP 2009169683 A JP2009169683 A JP 2009169683A
Authority
JP
Japan
Prior art keywords
water
amount
cost
facility
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008007186A
Other languages
Japanese (ja)
Inventor
Toshihiro Murashita
俊宏 村下
Atsushi Yugawa
敦司 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008007186A priority Critical patent/JP2009169683A/en
Publication of JP2009169683A publication Critical patent/JP2009169683A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide methods for calculating a shippable amount of water and for calculating costs of shipping in water transportation business that can calculate a shippable amount of water and costs as a pricing index in water transportation business. <P>SOLUTION: In water transportation business that transports and sells surplus water in industrial water business capable of supplying an amount of water exceeding consumers' usage to other regions by ship, industrial water intake, purification and distribution equipment capacities on a date specified by a purchaser are determined, the smallest amount of water is selected from the determined equipment capacities, and the consumers' total usage is subtracted from the selected smallest amount of water to provide a shippable amount of water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、使用量を上回る供給可能水量をもつ工業用水事業において余った水を船舶により他の地域に輸送して販売する水輸送ビジネスに関する。   TECHNICAL FIELD The present invention relates to a water transportation business in which surplus water in an industrial water business having a suppliable amount of water that exceeds the amount used is transported and sold to other areas by ship.

水輸送ビジネスを工業用水事業に関連させる概念について図1を用いて説明する。工業用水は、ダム21、河川22などの水源において、決められた取水権の範囲内で取水施設2を用いて取水された後、浄水場31で浄水し、管路41などの送配水施設4を利用して需要者5である各工場51〜59に送配水される。   The concept relating the water transportation business to the industrial water business will be described with reference to FIG. Industrial water is taken from water sources such as dams 21 and rivers 22 using the water intake facility 2 within the scope of the water intake right determined, and then purified at the water purification plant 31, and the water distribution facility 4 such as the pipe 41. The water is sent and distributed to each factory 51-59 which is the consumer 5.

浄水場31および管路41は、工場51〜59の進出に伴う需要見込みに基づいて計画された施設能力で建設され、その施設能力の範囲内で運転される。   The water purification plant 31 and the pipeline 41 are constructed with the facility capacity planned based on the expected demand accompanying the advance of the factories 51 to 59, and are operated within the range of the facility capacity.

工業用水事業1では、常時定量での利用が前提となっており、工業用水を利用する工場51〜59は、単位時間あたりの使用量を、工業用水を供給する工業用水事業1を行う事業者との間で契約し、その契約水量を原則的な上限として、生産に必要な工業用水を受水している。   The industrial water business 1 is based on the premise that it is always used in a fixed quantity, and the factories 51 to 59 that use industrial water use the industrial water business 1 that supplies industrial water for the amount used per unit time. Contracted with the company, and receives the industrial water necessary for production with the contracted water volume as the upper limit in principle.

各工場51〜59は、生産の拡大に伴って工業用水の使用量が増加した場合、あるいは災害や事故等により工業用水事業者の供給能力が低下した場合などにも、必要な水量を確保できるように、余裕を持って契約水量を設定していることが多い。   Each factory 51-59 can secure the necessary amount of water even when the amount of industrial water used increases with the expansion of production, or when the supply capacity of an industrial water company decreases due to a disaster or accident. As such, the contracted water volume is often set with a margin.

このため、工場51〜59が安定的に操業している通常期において、全ての需要者5の契約水量の合計量と実際に工場で消費される実使用量の合計量とは大きく乖離しており、多量の余剰水が発生していることが多い。   For this reason, in the normal period when the factories 51 to 59 are stably operated, the total amount of contracted water of all the consumers 5 and the total amount of actual usage actually consumed in the plant are greatly different. In many cases, a large amount of surplus water is generated.

従来、工場51〜59で受水した水は、その工場における生産活動の中でのみ使用が認められていた。しかし、工業用水の効果的な利用の観点から、地球環境対策や災害対策を目的として、余剰水を工場51〜59の外部で利用することが認められるようになってきている。このような事情から例えば特許文献1に記載されているように、販売者5aが余剰水を一括で引き取り、船舶6により水を輸送して販売する水輸送ビジネスが検討されている。   Conventionally, the water received in the factories 51 to 59 has been approved for use only in production activities in the factories. However, from the viewpoint of effective use of industrial water, it has been recognized that surplus water is used outside the factories 51 to 59 for the purpose of global environmental countermeasures and disaster countermeasures. Under such circumstances, as described in Patent Document 1, for example, a water transportation business in which the seller 5a collects surplus water in a lump and transports and sells water by the ship 6 is being studied.

原油、LNG、鉄鉱石、石炭等の鉱物資源産出国は、人口一人当たりの水資源量の少ない水ストレス地域が多い。水輸送ビジネスは、資源産出国に貨物を積載せずに向かう資源輸送船を利用して淡水を輸送し、販売するビジネスである。貨物を積載していない船は、重量バランスを保つために海水を船内のバラストタンクに取り込んで航行する。現在資源輸送船は、資源産出国に向けた往航便において海水を輸送しているのが実態であり、海水に含まれた海洋微生物の異動に伴う環境破壊が問題になっている。水輸送ビジネスは、海水に代わって淡水を輸送するもので、淡水をバラストタンクに積み込む方法と、輸送用容器に入れてコンテナとして積み込む方法がある。
特開2005−87817号公報
Mineral resource producing countries such as crude oil, LNG, iron ore, and coal have many water stress areas where the amount of water resources per capita is small. The water transport business is a business that transports and sells fresh water using a resource transport ship that does not carry cargo to the resource producing country. Ships that are not loaded with cargo carry seawater into the ballast tanks in the ship to maintain weight balance. Currently, resource transport ships actually transport seawater on outbound flights to resource-producing countries, and environmental destruction due to changes in marine microorganisms contained in seawater has become a problem. The water transportation business transports fresh water instead of seawater. There are two methods: loading fresh water into a ballast tank and loading it into a container for transportation.
Japanese Patent Laid-Open No. 2005-87817

水輸送ビジネス8では、販売者5aは、いつ、どれだけの量の水を、いくらで販売できるかを購入者7に示す必要がある。   In the water transportation business 8, the seller 5a needs to indicate to the purchaser 7 when and how much water can be sold.

工業用水事業者は、浄水の処理量を調整するために配水池から出る水量を計測したり、使用量が契約水量を超過していないかを確認するために各工場51〜59の使用水量を計測したりしているが、逐次施設能力と使用水量の差を確認し、契約需要者以外の第三者に供給可能な水量を示す仕組みは存在しない。   The industrial water company measures the amount of water coming out of the distribution reservoir to adjust the amount of water treated, and determines the amount of water used by each factory 51 to 59 to check whether the amount used exceeds the contracted amount of water. Although there is a measurement, there is no mechanism that shows the amount of water that can be supplied to third parties other than contract consumers by confirming the difference between the facility capacity and the amount of water used.

また、工業用水事業1は、契約水量に基づいて料金を決定しているため、契約期間内で単価及び料金は一定である。   Moreover, since the industrial water business 1 determines the fee based on the contracted water volume, the unit price and the fee are constant within the contract period.

一方、水輸送ビジネス8は、船舶6が寄港する間隔で販売者5aが水を供給するため、需要水量は常時定量にはならない。従って、需要が発生する毎に、余剰水の発生状況に応じて単価及び料金を決定する必要があるが、逐次供給コストを算出する仕組みは存在しない。   On the other hand, in the water transport business 8, the seller 5 a supplies water at intervals at which the ship 6 calls, so the demand water amount is not always fixed. Therefore, every time demand is generated, it is necessary to determine the unit price and fee according to the surplus water generation status, but there is no mechanism for calculating the supply cost sequentially.

本発明は上記の課題を解決するためになされたものであり、水輸送ビジネスにおいて積出可能水量の算出方法および積出までに掛かるコストの算出方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for calculating the amount of water that can be loaded in the water transportation business and a method for calculating the cost required for loading.

本発明に係る水輸送ビジネスにおける積出可能水量の算出方法は、需要者の使用量を上回る供給可能水量をもつ工業用水事業において余った水を船舶により他の地域に輸送して販売する水輸送ビジネスにおいて、購入者の指定日時での工業用水の取水施設能力、浄水施設能力、送配水施設能力をそれぞれ把握し、把握した施設能力のなかから最低の水量となるものを選択し、その選択した最低の水量値から全需要者の使用量の総和を差し引くことにより、船舶に積込可能な水の量を算出することを特徴とする。   The method for calculating the amount of water that can be shipped in the water transportation business according to the present invention is the water transportation in which the surplus water in the industrial water business that has a supplyable water amount that exceeds the consumption amount of the consumer is transported and sold to other areas by ship. In the business, grasp the industrial water intake facility capacity, water purification facility capacity, transmission / distribution facility capacity at the date and time specified by the purchaser, and select the one with the lowest amount of water from the grasped facility capacity. The amount of water that can be loaded into the ship is calculated by subtracting the sum of the usage amounts of all consumers from the lowest water amount value.

本発明に係る水輸送ビジネスにおける積出までに掛かるコストの算出方法は、需要者の使用量を上回る供給可能水量をもつ工業用水事業において余った水を船舶により他の地域に輸送して販売する水輸送ビジネスにおいて、購入者の指定日時での工業用水の取水施設能力、浄水施設能力、送配水施設能力をそれぞれ把握し、把握した施設能力のなかから最低の水量となるものを選択し、その選択した最低の水量値に基づいて購入者の指定日時での取水プロセスにおける取水コスト、浄水プロセスにおける浄水コスト、送配水プロセスにおける送配水コストをそれぞれ算出し、これらの算出したコストを合算することにより船舶に積み込むまでにかかるコストを算出することを特徴とする。   In the water transportation business according to the present invention, the method for calculating the cost for shipping is to sell and sell surplus water to other areas by ship in the industrial water business that has a supplyable amount of water that exceeds the consumption of consumers. In the water transport business, grasp the industrial water intake facility capacity, water purification facility capacity, and transmission / distribution facility capacity at the date and time specified by the purchaser, and select the facility with the lowest water volume from the grasped facility capacity. By calculating the water intake cost in the water intake process at the purchaser's designated date and time, the water purification cost in the water purification process, the water supply / distribution cost in the water supply / distribution process based on the selected minimum water volume value, and adding these calculated costs together It is characterized by calculating the cost required for loading on a ship.

本発明によれば、水の購入希望者は、いつ、どこの港において、どれだけの水量を、いくらで購入することができるかを把握できるため、購入先の選択、選択した購入先への船の運航計画を立案することができる。   According to the present invention, since a person who wants to purchase water can grasp how much and how much water can be purchased at which port and at what port, the purchaser can select the purchaser, and to the selected purchaser. A ship operation plan can be made.

また、本発明によれば、工業用水事業者は需要が少ない時間に水を販売することができるため、浄水生産量の平滑化による施設の運転効率の向上と容易な運転が可能になるとともに、総生産量の増加により施設稼働率が向上する。   In addition, according to the present invention, since the industrial water business can sell water at a time when demand is low, it is possible to improve the operation efficiency of the facility by smoothing the purified water production amount and easy operation, Facility operating rate will improve due to the increase in total production.

以下、添付の図面を参照して本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

積出可能な水量と積出までにかかるコストには多くの変動パラメータが関与していることから、これらを一律に算出することは通常困難であるが、これらに影響を及ぼす変動パラメータのうちのいくつか重要なものに着目すると、かなり蓋然性の高い値を算出することが可能になる。すなわち、積出可能な水量と積出までにかかるコストは取水→浄水→送配水の一連のプロセスを行う施設2,3,4の制約と全需要者5の使用状況とにより影響を受けて変動することから、購入者7の要求日時における施設2,3,4の制約条件および全需要者5の使用状況を把握し、それらの条件を用いて積出可能な水量と積出までにかかるコストを算出することができる。   Since many variable parameters are involved in the amount of water that can be loaded and the cost to be loaded, it is usually difficult to calculate them uniformly. Focusing on some important things, it is possible to calculate a value with a very high probability. In other words, the amount of water that can be loaded and the cost to be loaded fluctuate depending on the restrictions of facilities 2, 3, and 4 that perform a series of water intake → water purification → water transmission and distribution and the usage situation of all consumers 5 Therefore, the restriction conditions of the facilities 2, 3 and 4 at the request date and time of the purchaser 7 and the usage status of all the consumers 5 are ascertained, and the amount of water that can be loaded using these conditions and the cost required for loading. Can be calculated.

本発明では、以下の手順により、水輸送ビジネスにおける積出可能な水の量と積出までにかかるコストをそれぞれ算出する。   In the present invention, according to the following procedure, the amount of water that can be loaded in the water transportation business and the cost required for loading are calculated.

[積出可能な水量の算出方法]
図2を参照して水輸送ビジネスにおける積出可能な水量の算出手順を説明する。
[Calculation method of the amount of water that can be shipped]
A procedure for calculating the amount of water that can be loaded in the water transportation business will be described with reference to FIG.

積出可能な水量は、購入者7の要求日時における施設2,3,4の制約条件と全需要者5の使用状況とを把握し、これらの把握した条件値を下式(1)にそれぞれ代入することにより得られる。すなわち、購入者7は指定した日時における取水、浄水、送配水の各プロセスにおける施設2,3,4の処理能力の中から最低の水量を選択し、その選択した最低の水量値から全需要者の使用量の総和を差し引くことにより、販売者5aが販売可能な水量(余剰水量)が求まる。   The amount of water that can be loaded is ascertained by the restriction conditions of the facilities 2, 3 and 4 at the request date and time of the purchaser 7 and the usage status of all the consumers 5, and these grasped condition values are expressed in the following formula (1), respectively. Obtained by substitution. That is, the purchaser 7 selects the minimum amount of water from the treatment capacities of the facilities 2, 3 and 4 in each process of water intake, water purification and transmission / distribution at the designated date and time, and all consumers are selected from the selected minimum water amount value. The amount of water that can be sold by the seller 5a (the amount of surplus water) is obtained by subtracting the total amount used.

Q=min.(S,J,H)−Σ(U1〜Un) …(1)
但し、Q:積出可能な水量、S:取水量、J:浄水量、H:送配水量、U1〜Un:各工場の使用量である。
Q = min. (S, J, H) −Σ (U 1 to U n ) (1)
However, Q: Sekide possible water, S: water intake, J: purified water amount, H: transmission and distribution water, U 1 ~U n: an amount of each plant.

次に、プロセス毎に生じる積出可能水量の制約条件と変動要因をそれぞれ説明する。   Next, the constraint conditions and fluctuation factors of the amount of water that can be loaded that occur for each process will be described.

「取水」プロセスでは、「水利権」が積出可能な水量の制約条件となる。「水利権」には、豊水水利権と呼ばれる河川の流量が一定流量を超える場合に限り取水できる権利があり、取水可能な量は気象条件や季節により変動する。例えば図2に示すように、非渇水期には10の水量を取水する同じ取水施設2において、渇水時には3の水量しか取水できないという状況が生じる。このように取水量Sは変動するものである。このため、工業用水事業者は、水供給の安定化を図るために、複数の取水施設(水源)21,22から取水するのが一般的である。   In the “intake” process, “water right” is a constraint on the amount of water that can be loaded. “Water right” has the right to take water only when the flow rate of the river called the “Hosui Water Rights” exceeds a certain flow rate, and the amount of water that can be taken varies depending on the weather conditions and season. For example, as shown in FIG. 2, in the same intake facility 2 that takes 10 water during the non-dry season, a situation occurs where only 3 water can be taken during drought. In this way, the water intake S varies. For this reason, it is common for an industrial water company to take water from a plurality of water intake facilities (water sources) 21 and 22 in order to stabilize the water supply.

「浄水」プロセスでは、「浄水場の処理能力」が積出可能な水量の制約条件となる。「浄水場の処理能力」は、建設時に最大需要等をもとに施設諸元として決定された施設能力が基準になり、浄水施設が改修中であるか否かにより変動する。例えば図2に示すように、非改修時には9の水量を浄水する同じ浄水施設3において、改修時には6の水量しか浄水できないという状況が生じる。このように浄水量Jは変動するものである。   In the “water purification” process, the “treatment capacity of the water purification plant” is a constraint on the amount of water that can be loaded. The “treatment capacity of the water purification plant” is based on the facility capacity determined as the facility specifications based on the maximum demand at the time of construction, and varies depending on whether or not the water purification facility is being renovated. For example, as shown in FIG. 2, in the same water purification facility 3 that purifies 9 water at the time of non-renovation, a situation occurs where only 6 water can be purified at the time of refurbishment. Thus, the purified water amount J fluctuates.

「送配水」プロセスでは、「管路の供給能力」が積出可能な水量の制約条件となる。「管路の供給能力」は、敷設時に最大需要等をもとに施設諸元として決定された施設能力が基準になり、管路施設が工事中であるか否か、管の閉塞状況等により変動する。例えば図2に示すように、通常時には8の水量を送配水する同じ送配水施設4において、管路施設が工事中には4の水量しか送配水できないという状況が生じる。このように送配水量Hは変動するものである。このため、工業用水事業者は、水供給の安定化を図るために、管路をネットワーク状にしたり、バイパス管を敷設したりするのが一般的である。   In the “transmission and distribution” process, the “supply capacity of the pipeline” is a constraint on the amount of water that can be loaded. “Supplying capacity of pipes” is based on the facility capacity determined based on the facility specifications based on the maximum demand at the time of laying. It depends on whether the pipes are under construction or not, fluctuate. For example, as shown in FIG. 2, in the same transmission / distribution facility 4 that normally supplies / distributes 8 water, there is a situation where the pipeline facility can only transmit / distribute 4 during the construction. In this way, the water supply / distribution amount H fluctuates. For this reason, in order to stabilize the water supply, an industrial water company generally forms a pipeline in a network or lays a bypass pipe.

「需要者の使用量」は、工場の生産計画によって変動し、工場の稼働時間に伴う「日変動」と、天候・気温の変化に伴う「季節変動」と、景気の波に伴う変動がある。これらの使用量の変動は工場ごとに異なるので、それらの変動状況を個別に把握する必要がある。例えば図2に示すように、設備稼働率100%のときに5の水量を使用する同じ工場において、稼働率を80%に下げると4の水量を使用し、稼働率を50%に下げると3の水量を使用し、さらに稼働率を30%に下げると2の水量を使用するという状況が生じる。このように各工場における水の使用量U1〜Unは様々に変動するものである。 “Consumer consumption” varies depending on the production plan of the factory, and there are “daily fluctuations” due to factory operating hours, “seasonal fluctuations” due to changes in weather and temperature, and fluctuations due to economic waves. . Since these fluctuations in usage vary from factory to factory, it is necessary to grasp the fluctuation status individually. For example, as shown in FIG. 2, in the same factory that uses 5 water when the equipment operation rate is 100%, if the operation rate is lowered to 80%, 4 water is used, and if the operation rate is reduced to 50%, 3 If the amount of water is used and the operating rate is further lowered to 30%, a situation in which the amount of water of 2 is used will occur. The amount U 1 ~U n of the water in this way each plant is to change variously.

販売者は、購入者が指定した日時における上記プロセス毎に生じる積出可能水量の制約条件を把握すると、それを情報として専用通信回線やインターネット等を介して購入者に提供する。これにより、購入者は、いつ、どこの港において、どれだけの水量を購入することができるかを把握できるため、購入先の選択、選択した購入先への船舶の運航計画を立案することができる。   When the seller grasps the constraint condition of the amount of water that can be loaded for each process at the date and time specified by the purchaser, the seller provides it to the purchaser as information through a dedicated communication line or the Internet. As a result, the purchaser can grasp when and in what port the amount of water can be purchased, so that the purchaser can select the purchaser and plan the operation of the ship to the selected purchaser. it can.

また、工業用水事業者においては、需要が少ない時間に水を販売することができるため、浄水生産量の平滑化により施設の運転効率が向上し、容易な運転が可能になるとともに、総生産量の増加により施設稼働率が向上する。   In addition, since industrial water companies can sell water when demand is low, smooth operation of the purified water production improves facility operation efficiency and enables easy operation. The facility utilization rate improves due to the increase in the number of facilities.

[積出までにかかるコストの算出方法]
次に、図3を参照して水輸送ビジネスにおける積出までにかかるコストの算出手順を説明する。
[Calculation method for the cost of shipping]
Next, with reference to FIG. 3, a procedure for calculating the cost required for shipping in the water transportation business will be described.

積出までにかかるコストは、購入者7が指定した日時における工業用水の取水施設能力、浄水施設能力、送配水施設能力をそれぞれ把握し、把握した施設能力のなかから最低の水量となるものを選択し、その選択した最低の水量値に基づいて購入者7が指定する指定日時の各プロセスにおけるコストをそれぞれ算出し、算出した各コスト値を下式(2)に代入することにより算出される。すなわち、指定日時での取水プロセスにおける取水コストSC、浄水プロセスにおける浄水コストJC、送配水プロセスにおける送配水コストHCをそれぞれ算出し、これらの算出したコストを合算することにより積出までにかかるコストTCが求まる。   The cost required for shipping is the minimum amount of water from the facility capacity obtained by grasping the industrial water intake facility capacity, water purification facility capacity, and transmission / distribution facility capacity at the date and time designated by the purchaser 7, respectively. It is calculated by selecting, calculating the cost in each process at the designated date and time designated by the purchaser 7 based on the selected minimum water amount value, and substituting each calculated cost value into the following equation (2) . That is, the cost TC required for loading by calculating the water intake cost SC in the water intake process at the specified date, the water purification cost JC in the water purification process, the water supply / distribution cost HC in the water supply / distribution process, and adding these calculated costs together. Is obtained.

TC=Σ(SC,JC,HC) …(2)
但し、TC:積出までにかかるコスト、SC:取水コスト、JC:浄水コスト、HC:送配水コストである。
TC = Σ (SC, JC, HC) (2)
However, TC: cost to be shipped, SC: water intake cost, JC: water purification cost, HC: water supply / distribution cost.

次に、プロセス毎に生じるコストの制約条件と変動要因をそれぞれ説明する。   Next, cost constraint conditions and fluctuation factors that occur in each process will be described.

「取水」プロセスでは、「原水費」がコストの制約条件となる。「原水費」はダム建設などの水源開発費をもとに決定され、新たな水源開発を行わない限りは固定的である。例えば、表1に示すように、水質が優良で水量が豊富だが水の単価が高い水源Aと、水質と水量は並だが水の単価が安い水源Bを組み合わせて取水している工業用水事業を考える。水源Aは山間部のダム、水源Bは河川の下流側を利用する場合に相当する。非渇水期は、河川から安定的に取水できるため、安価な水源Bの取水比率を高め、水源Aを30%、水源Bを70%利用する。渇水期は、水供給の安定化を図るために、水源Aの取水比率を高め、水源Aを50%、水源Bを50%利用する。このように渇水期は高価格の水源Aからの取水比率を増加させ、低価格の水源Bからの取水比率を減少させるため、取水コスト(原水費)が上昇する。図3では、このコスト上昇をポイント差「3」で示している。

Figure 2009169683
In the “water intake” process, “raw water cost” is a cost constraint. “Raw Water Cost” is determined based on water source development costs such as dam construction, and is fixed unless new water source development is conducted. For example, as shown in Table 1, an industrial water business that takes water by combining water source A, which has excellent water quality and abundant water volume, but has a high unit price of water, and water source B, which has the same water quality and quantity but low unit price. Think. Water source A corresponds to a case where a dam in a mountainous area is used, and water source B corresponds to a case where a downstream side of a river is used. During the non-drought season, water can be stably taken from the river. Therefore, the water intake ratio of the inexpensive water source B is increased, and 30% of the water source A and 70% of the water source B are used. In the drought period, in order to stabilize the water supply, the water intake ratio of the water source A is increased, and the water source A is 50% and the water source B is 50%. In this way, during the drought period, the water intake ratio from the high-priced water source A is increased and the water intake ratio from the low-priced water source B is decreased, so that the water intake cost (raw water cost) increases. In FIG. 3, this cost increase is indicated by a point difference “3”.
Figure 2009169683

他の取水コストの制約条件と変動要因について説明する。   Explain other intake cost constraints and factors of fluctuation.

取水に複数台のポンプを利用するとき、需要量80%以下の場合は2台のポンプを用いれば必要量を取水できるが、需要量80%を超える場合は3台のポンプを用いなければ必要量を取水できない場合を考える。この場合、需要量が増大すると取水コスト(原水費)が増大する。図3では、需要量が80%を超えた場合と80%以下の場合の原水費の相違をポイント差「1」で示している。   When using multiple pumps for water intake, if the demand is 80% or less, the required amount can be taken if two pumps are used, but if the demand exceeds 80%, it is necessary if three pumps are not used. Consider the case where the amount cannot be taken. In this case, when the demand increases, the water intake cost (raw water cost) increases. In FIG. 3, the difference in raw water costs when the demand amount exceeds 80% and when it is 80% or less is indicated by a point difference “1”.

「浄水」プロセスでは、「浄水費」がコストの制約条件となる。「浄水費」は、気象状況や取水施設よりも上流の地域における水の利用状況に伴って変化する原水の水質により変動する。水質は、濁度、色度、生物化学的酸素要求量(BOD)、一般細菌の数、重金属・無機物(カドミウム、水銀、六価クロム等)の含有量、有機物(トリクロロエチレン、ベンゼン等)の含有量、消毒副生成物(クロロ酢酸、クロロホルム等)の含有量など多くの基準が定められており、基準を満足するように化学薬品等を使用した水処理が行われる。   In the “water purification” process, “water purification cost” is a cost constraint. “Water purification costs” fluctuate depending on the quality of the raw water, which changes with the weather conditions and the water usage in the area upstream of the water intake facility. Water quality includes turbidity, chromaticity, biochemical oxygen demand (BOD), number of general bacteria, content of heavy metals and inorganics (cadmium, mercury, hexavalent chromium, etc.), organic matter (trichloroethylene, benzene, etc.) Many standards such as the amount and content of disinfection by-products (chloroacetic acid, chloroform, etc.) are established, and water treatment using chemicals or the like is performed so as to satisfy the standards.

浄水コストの変動要因を説明する。取水した水の「濁度」に応じて薬剤を投入して水の濁度を下げるため、その薬剤量の増加分だけコストが増大する。図3では、水質が優良な水源Aを非渇水期は30%利用し、渇水期は50%利用するため、水質の相違に伴う浄水コストの相違をポイント差「2」で示している。また、渇水期、非渇水期いずれの場合も、濁水の発生によって浄水コストは増大する。図3では、濁水発生に伴う浄水コストの増大をポイント差「1」で示している。   Explain the causes of fluctuations in water purification costs. Since the chemical is introduced in accordance with the “turbidity” of the collected water to lower the turbidity of the water, the cost increases by the increase in the amount of the chemical. In FIG. 3, since the water source A having excellent water quality is used 30% in the non-drought period and 50% in the drought period, the difference in water purification costs due to the difference in water quality is indicated by a point difference “2”. In both drought and non-drought periods, the cost of water purification increases due to the generation of muddy water. In FIG. 3, an increase in water purification cost due to turbid water generation is indicated by a point difference “1”.

他の浄水コストの制約条件と変動要因について説明する。   Other constraints on water purification costs and fluctuation factors will be described.

浄水に複数台のポンプを利用するとき、需要量80%以下の場合は2台のポンプを用いれば必要量を浄水できるが、需要量80%超える場合は3台のポンプを用いなければ必要量を浄水できない場合を考える。この場合、需要量が増大すると浄水費が増大する。図3では、需要量が80%を超えた場合と80%以下の場合の浄水費の相違をポイント差「1」で示している。   When using multiple pumps for water purification, if the demand is 80% or less, the required amount can be purified if two pumps are used, but if the demand exceeds 80%, the required amount is required unless three pumps are used. Consider the case where water cannot be purified. In this case, when the demand increases, the water purification cost increases. In FIG. 3, the difference in water purification costs when the demand amount exceeds 80% and when it is 80% or less is indicated by a point difference “1”.

「送配水」プロセスでは、「管路の償却費・維持費」がコストの制約条件となる。「管路の償却費・維持費」は、バイパス管の敷設工事、更生工事や更新工事の実施状況により変動する。図3では、これらの工事費用を送配水プロセスにおけるランニングコストとして回収することとし、工事前後のコストの相違をポイント差「2」で示している。   In the “transmission and distribution” process, “pipe depreciation / maintenance costs” is a cost constraint. “Amortization / maintenance costs for pipelines” will vary depending on the status of bypass pipe laying, rehabilitation and renewal construction. In FIG. 3, these construction costs are collected as running costs in the transmission and distribution process, and the difference in costs before and after the construction is indicated by a point difference “2”.

他の送配水コストの制約条件と変動要因について説明する。   Explain the constraints and factors of other water transmission and distribution costs.

送配水に複数台のポンプを利用するとき、需要量80%以下の場合は2台のポンプを用いれば必要量を送配水できるが、需要量80%超える場合は3台のポンプを用いなければ必要量を送配水できない場合を考える。この場合、需要量が増大すると送配水費が増大する。図3では、需要量が80%を超えた場合と80%以下の場合の送配水費の相違をポイント差「1」で示している。   When using two or more pumps for water supply and distribution, if the demand is 80% or less, two pumps can be used for water supply and distribution, but if the demand exceeds 80%, three pumps must be used. Consider the case where the required amount cannot be transferred. In this case, transmission and distribution costs increase as the demand increases. In FIG. 3, the difference in water transmission and distribution costs when the demand exceeds 80% and when it is 80% or less is indicated by a point difference “1”.

以上のように余剰水の積出までにかかる取水コスト、浄水コスト、送配水コストは様々に変動する。これらの取水コスト、浄水コスト、送配水コストを合算すると、購入者が指定日時に水を購入するときの価格を予め知ることができる。   As described above, the water intake cost, water purification cost, and water supply / distribution cost required for the surplus water to be loaded vary. When these water intake costs, water purification costs, and water supply / distribution costs are added together, the price at which the purchaser purchases water at the designated date and time can be known in advance.

販売者は、購入者が指定した日時での上記プロセス毎に生じるコストの制約条件を把握した後コストを合算し、価格を専用通信回線やインターネット等を介して購入者に提供する。これにより、購入者は、いつ、どこの港において、どれだけの水量を、いくらで購入することができるかを把握できるため、購入先の選択、選択した購入先への船舶の運航計画を立案することができる。   The seller, after grasping the cost constraint conditions generated for each process at the date and time specified by the purchaser, adds the costs and provides the purchaser with the price via a dedicated communication line, the Internet, or the like. As a result, the purchaser can grasp how much and how much water can be purchased at what port and at what port. Therefore, the purchaser can select the purchaser and make a ship operation plan to the selected purchaser. can do.

また、工業用水事業者においては、需要が少ない時間に水を販売することができるため、浄水生産量の平滑化により施設の運転効率が向上し、容易な運転が可能になるとともに、総生産量の増加により施設稼働率が向上する。   In addition, since industrial water companies can sell water when demand is low, smooth operation of the purified water production improves facility operation efficiency and enables easy operation. The facility utilization rate improves due to the increase in the number of facilities.

以上のようにして算出された積出可能な余剰水を実際に積み出す際には、次に述べる水積出設備が利用される。   When the surplus water that can be loaded calculated as described above is actually loaded, the water loading facility described below is used.

水積出設備は、水を積み込む工場に設置される。工業用水をバラスト水として輸送する場合には、例えば工業用水を工場の受水池から汲み上げるポンプ、濾過装置、殺菌装置および水配管がある。濾過装置は、工業用水から浮遊物質を除去する膜濾過装置で、殺菌装置は病原性微生物などを除去する装置である。   The water loading facility will be installed in the factory where water is loaded. In the case of transporting industrial water as ballast water, for example, there are pumps, filtration devices, sterilizers, and water pipes that pump industrial water from a receiving pond in a factory. The filtration device is a membrane filtration device that removes suspended substances from industrial water, and the sterilization device is a device that removes pathogenic microorganisms and the like.

濾過装置では、工業用水中に存在する所定径以上の大きさの浮遊物質が濾過膜に捕捉され、所定径未満の大きさの浮遊物質や溶解性液体を含む水のみが膜を通過する。   In the filtration apparatus, suspended substances having a size larger than a predetermined diameter existing in industrial water are captured by the filtration membrane, and only water containing suspended substances or soluble liquids having a size smaller than the predetermined diameter passes through the membrane.

通過した水は、殺菌装置を利用して殺菌される。殺菌装置としては、紫外線照射殺菌装置、電気処理装置、オゾン処理装置、OHラジカル処理装置などを用いることができる。紫外線照射殺菌装置は、紫外線を照射して処理対象水に含まれる微生物や細菌を殺菌するものである。紫外線照射殺菌装置は、薬品注入処理に比べて安全性が高い水が生成できる利点がある。電気処理装置は、水中に正負一対の電極を浸漬させ、両極間に電圧を印加して電気的に殺菌処理を行うものである。電気処理装置は、装置のメンテナンスが容易であるという利点がある。なお、電気処理装置は、プラズマ放電処理装置や高電圧処理装置を含むものである。オゾン処理装置は、オゾンガスを水中に注入してオゾンの酸化力により殺菌処理するものである。オゾン処理装置は、単に殺菌処理のみに限られず、処理対象水から臭気物質や着色物質を除去する機能も兼ね備えている。OHラジカル処理装置は、二酸化チタンのような光触媒と紫外線、オゾンと紫外線、オゾンと過酸化水素、あるいはオゾン、紫外線及び過酸化水素の組合せによる併用処理によって、強力な酸化剤であるOHラジカルを生成して殺菌処理するものである。OHラジカル処理装置は、殺菌処理のみならず、有機性の汚濁物質も除去することができるという利点を有する。   The passed water is sterilized using a sterilizer. As the sterilization apparatus, an ultraviolet irradiation sterilization apparatus, an electric processing apparatus, an ozone processing apparatus, an OH radical processing apparatus, or the like can be used. The ultraviolet irradiation sterilization apparatus irradiates ultraviolet rays and sterilizes microorganisms and bacteria contained in water to be treated. The ultraviolet irradiation sterilization apparatus has an advantage that water with higher safety can be generated compared to the chemical injection process. An electric processing apparatus immerses a pair of positive and negative electrodes in water and applies a voltage between both electrodes to electrically sterilize the electrode. The electric processing apparatus has an advantage that the maintenance of the apparatus is easy. The electric processing apparatus includes a plasma discharge processing apparatus and a high voltage processing apparatus. An ozone treatment apparatus injects ozone gas into water and sterilizes it by the oxidizing power of ozone. The ozone treatment apparatus is not limited to just sterilization treatment, but also has a function of removing odorous substances and colored substances from the water to be treated. OH radical treatment equipment generates OH radicals, which are powerful oxidants, by combined treatment using photocatalysts such as titanium dioxide and ultraviolet rays, ozone and ultraviolet rays, ozone and hydrogen peroxide, or a combination of ozone, ultraviolet rays and hydrogen peroxide. And then sterilized. The OH radical treatment apparatus has an advantage that not only sterilization treatment but also organic pollutants can be removed.

殺菌された水は、水配管を通して、船舶のバラストタンク内に供給される。   The sterilized water is supplied into the ballast tank of the ship through the water pipe.

工業用水事業と水輸送ビジネスの位置づけを説明するための概念図。The conceptual diagram for demonstrating the positioning of industrial water business and water transport business. 本発明の実施の形態に係る水輸送ビジネスにおける積出可能水量の算出方法を模式的に示すグラフ図。The graph figure which shows typically the calculation method of the amount of water which can be shipped in the water transport business which concerns on embodiment of this invention. 本発明の実施の形態に係る水輸送ビジネスにおける積出までにかかるコストの算出方法を模式的に示すグラフ図。The graph figure which shows typically the calculation method of the cost concerning the shipment in the water transportation business which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…工業用水事業、2…取水施設、3…浄水施設、4…送排水施設、5…需要者、
6…船舶、7…購入者、
8…水輸送ビジネス、21…ダム、22…河川、31…浄水場、41…管路、
51〜59…工場、71…他地域。
1 ... Industrial water business, 2 ... Water intake facilities, 3 ... Water purification facilities, 4 ... Water supply / drainage facilities, 5 ... Consumers,
6 ... ship, 7 ... buyer,
8 ... Water transportation business, 21 ... Dam, 22 ... River, 31 ... Water purification plant, 41 ... Pipeline,
51-59 ... factory, 71 ... other areas.

Claims (2)

需要者の使用量を上回る供給可能水量をもつ工業用水事業において余った水を船舶により他の地域に輸送して販売する水輸送ビジネスにおいて、購入者の指定日時での工業用水の取水施設能力、浄水施設能力、送配水施設能力をそれぞれ把握し、把握した施設能力のなかから最低の水量となるものを選択し、その選択した最低の水量値から全需要者の使用量の総和を差し引くことにより、船舶に積込可能な水の量を算出することを特徴とする水輸送ビジネスにおける積出可能水量の算出方法。 In the water transportation business where the surplus water in the industrial water business that has a supply water volume that exceeds the usage of the consumer is transported to other areas by ship and sold, the capacity of the industrial water intake facility at the date specified by the purchaser, By grasping the water purification facility capacity and the transmission / distribution facility capacity, respectively, select the one with the lowest amount of water from the grasped facility capacity, and subtract the sum of the usage of all consumers from the selected minimum amount of water A method for calculating the amount of water that can be loaded in a water transportation business, wherein the amount of water that can be loaded into a ship is calculated. 需要者の使用量を上回る供給可能水量をもつ工業用水事業において余った水を船舶により他の地域に輸送して販売する水輸送ビジネスにおいて、購入者の指定日時での工業用水の取水施設能力、浄水施設能力、送配水施設能力をそれぞれ把握し、把握した施設能力のなかから最低の水量となるものを選択し、その選択した最低の水量値に基づいて購入者の指定日時での取水プロセスにおける取水コスト、浄水プロセスにおける浄水コスト、送配水プロセスにおける送配水コストをそれぞれ算出し、これらの算出したコストを合算することにより船舶に積み込むまでにかかるコストを算出することを特徴とする水輸送ビジネスにおける積出までに掛かるコストの算出方法。 In the water transportation business where the surplus water in the industrial water business that has a supply water volume that exceeds the usage of the consumer is transported to other areas by ship and sold, the capacity of the industrial water intake facility at the date specified by the purchaser, In the water intake process at the designated date and time of the purchaser based on the selected minimum water volume value, the water capacity of the water purification facility and the capacity of the transmission / distribution facility are determined, and the minimum water volume is selected from the determined facility capacity. In the water transportation business characterized by calculating the cost of loading water into the ship by calculating the water intake cost, the water purification cost in the water purification process, and the water transmission / distribution cost in the water transmission / distribution process, respectively. A method for calculating the cost of shipping.
JP2008007186A 2008-01-16 2008-01-16 Method for calculating shippable amount of water and method for calculating cost of shipping in water transportation business Pending JP2009169683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007186A JP2009169683A (en) 2008-01-16 2008-01-16 Method for calculating shippable amount of water and method for calculating cost of shipping in water transportation business

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007186A JP2009169683A (en) 2008-01-16 2008-01-16 Method for calculating shippable amount of water and method for calculating cost of shipping in water transportation business

Publications (1)

Publication Number Publication Date
JP2009169683A true JP2009169683A (en) 2009-07-30

Family

ID=40970774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007186A Pending JP2009169683A (en) 2008-01-16 2008-01-16 Method for calculating shippable amount of water and method for calculating cost of shipping in water transportation business

Country Status (1)

Country Link
JP (1) JP2009169683A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108835A (en) * 1973-02-09 1974-10-16
JP2005087817A (en) * 2003-09-16 2005-04-07 Hitachi Ltd Freshwater feed system
WO2005091192A1 (en) * 2004-03-19 2005-09-29 Hitachi, Ltd. System for assisting trade of domestic treated water, method for assisting trade of domestic treated water, and medium recording that program
JP2007120263A (en) * 2005-10-31 2007-05-17 Toshiba Corp Water supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108835A (en) * 1973-02-09 1974-10-16
JP2005087817A (en) * 2003-09-16 2005-04-07 Hitachi Ltd Freshwater feed system
WO2005091192A1 (en) * 2004-03-19 2005-09-29 Hitachi, Ltd. System for assisting trade of domestic treated water, method for assisting trade of domestic treated water, and medium recording that program
JP2007120263A (en) * 2005-10-31 2007-05-17 Toshiba Corp Water supply system

Similar Documents

Publication Publication Date Title
Plumlee et al. Costs of advanced treatment in water reclamation
Capocelli et al. A technical-economical approach to promote the water treatment & reuse processes
Rakness Ozone in drinking water treatment: process design, operation, and optimization
Shahabadi et al. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants
Olsson Water and energy nexus
AU2008287397B2 (en) Method and system for treating ballast water
Boguniewicz-Zablocka et al. Water quality and resource management in the dairy industry
Nakhate et al. Case study on sustainability of textile wastewater treatment plant based on lifecycle assessment approach
Bai et al. Long-term performance and economic evaluation of full-scale MF and RO process–A case study of the changi NEWater Project Phase 2 in Singapore
Baresel et al. Municipal wastewater reclamation for non-potable reuse–environmental assessments based on pilot-plant studies and system modelling
JP6277048B2 (en) Water disinfection injection control system
Singh et al. Environmental sustainability assessment of a fixed media based and package type integrated fixed-film activated sludge reactor in India: A damage-oriented approach
Mannina et al. Aeration control in membrane bioreactor for sustainable environmental footprint
Primin Clean water of Russia: problems and solutions
Carrera et al. Increasing the energy production in an urban wastewater treatment plant using a high-rate activated sludge: Pilot plant demonstration and energy balance
Yang et al. Assessment of upgrading WWTP in southwest China: Towards a cleaner production
Verma et al. Effects of physico‐chemical pre‐treatment on the performance of an upflow anaerobic sludge blanket (UASB) reactor treating textile wastewater: application of full factorial central composite design
JP2009169683A (en) Method for calculating shippable amount of water and method for calculating cost of shipping in water transportation business
Torre et al. A multi-criteria decision framework for circular wastewater systems in emerging megacities of the Global South
Rice et al. Ozone treatment of small water systems
Winter Power outages and their impact on South Africa's water and wastewater sectors
Mackey et al. UV-Chlorine AOP in Potable Reuse: A Guidance Manual to Assessment and Implementation
JP4780997B2 (en) Waterworks operation planning method and apparatus
Sari et al. Water-reuse risk assessment program (WRAP): a refinery case study
Cardenes et al. Quantifying the energy consumption and greenhouse gas emissions of changing wastewater quality standards

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221