JP4439067B2 - Method for producing iron-based double hydroxide and water treatment material using the double hydroxide - Google Patents

Method for producing iron-based double hydroxide and water treatment material using the double hydroxide Download PDF

Info

Publication number
JP4439067B2
JP4439067B2 JP2000045324A JP2000045324A JP4439067B2 JP 4439067 B2 JP4439067 B2 JP 4439067B2 JP 2000045324 A JP2000045324 A JP 2000045324A JP 2000045324 A JP2000045324 A JP 2000045324A JP 4439067 B2 JP4439067 B2 JP 4439067B2
Authority
JP
Japan
Prior art keywords
double hydroxide
aqueous solution
water treatment
layered double
treatment material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000045324A
Other languages
Japanese (ja)
Other versions
JP2001233619A (en
Inventor
佳美 清田
義夫 中野
康雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP2000045324A priority Critical patent/JP4439067B2/en
Publication of JP2001233619A publication Critical patent/JP2001233619A/en
Application granted granted Critical
Publication of JP4439067B2 publication Critical patent/JP4439067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、パイロオーライト型の構造を有する鉄系複水酸化物の製造方法に関する。更にこの複水酸化物を用いた、水処理時に水に含まれるアルカリ金属、アルカリ土類金属、鉛、亜鉛、アルミニウム、マンガン、リン等の金属、或いはフミン物質のような有機物の陰イオン等のヒトの健康上有害な物質を吸着する水処理材及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、この種の水処理材として、活性炭、水酸化鉄、イオン交換樹脂等の固体吸着材が知られている。しかし、これらの吸着材は水に溶存している金属を除去する性能が容量の点で又は速度の点で低く、高い吸着率で高速に金属を除去するには適していない。この点を解決するため、水処理材としてハイドロタルサイト型の構造を有するAl系複水酸化物(例えば、Mg6Al2(OH)16(CO3)・4H2O)などが使用されている。このAl系複水酸化物は水熱合成法で作られる。具体的にはマグネシウム塩水溶液とアルミニウム塩水溶液との混合液に層架橋アニオンとして炭酸ナトリウムのような炭酸塩を添加してpHを9〜12の状態で、60〜150℃の高温度で数時間から数十時間熟成することにより作られる。
【0003】
【発明が解決しようとする課題】
しかし、このAl系複水酸化物の製造方法は、炭酸塩の添加と、結晶化のために長時間の熟成を必要とする煩わしさがある。またこの水処理材を上水道水の処理のようなヒトの飲料水の処理に用いようとすると、この水処理材はアルツハイマー病との因果関係が懸念されているAlを含んでいるため、安全衛生上使用することが危惧されている。
【0004】
本発明の目的は、鉄系複水酸化物を炭酸塩を添加することなく、簡便に製造する方法を提供することにある。
本発明の別の目的は、水に含まれる有害物質、特に極低濃度の有害金属を高い吸着率で高速に除去する上記複水酸化物を用いた水処理材及びその製造方法を提供することにある。
本発明の更に別の目的は、飲料水処理においてヒトの健康上への懸念のない上記複水酸化物を用いた水処理材及びその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
請求項1に係る発明は、マグネシウム又はカルシウムであるアルカリ土類金属をMとするとき、Mに対するFeのモル比(M/Fe)が1から4の間になるようにアルカリ土類金属塩水溶液と三価の鉄塩水溶液を混合した原料水溶液を空気中で強く攪拌しながら、或いは空気中で上記原料水溶液に超音波を加えながらpH13以上になるまでアルカリ水溶液を徐々に添加して上記原料水溶液をゲル状態を経て結晶化することにより、パイロオーライト型の構造を有する次の式(1)で表される層状の鉄系複水酸化物を製造する方法である。
【0006】
2+ (8-x)Fe3+ x(OH)16(CO3 2-)x/2・mH2O …… (1)
但し、0<x≦6、0<m≦5である。
【0007】
請求項1に係る発明では、原料水溶液を空気中で強く攪拌するか、或いは空気中で超音波を加えながらpHを13以上にすることにより、従来のような炭酸塩を添加することなく、空気中から炭酸ガスを溶け込み、炭酸イオンを層架橋アニオンとして取込むとともに、MgイオンとFeイオンが均一に分散される。これにより従来の水熱合成法によらずに比較的短時間で簡便に結晶化した鉄系複水酸化物を合成することができる。
【0008】
請求項2に係る発明は、疎水性高分子の粉末をその良溶媒に溶解した溶液に請求項1記載の層状複水酸化物を粉砕して得られた平均粒径が1〜250μmの層状複水酸化物粒子を分散した後、この層状複水酸化物粒子が分散した溶液を攪拌しながら大気圧下、乾燥するか、或いは層状複水酸化物粒子が分散した溶液を攪拌しながら又は無攪拌で上記疎水性高分子の貧溶媒に滴下して疎水性高分子からなる多孔質体を生成するとともにこの多孔質体の内部に層状複水酸化物粒子を担持させる水処理材の製造方法である。
請求項2に係る発明では、疎水性高分子粉末の溶液に請求項1記載の複水酸化物粒子を分散し、この溶液を相転換して疎水性高分子からなる多孔質体にすることにより、この多孔質体の内部に層状複水酸化物粒子を担持させることができる。
【0009】
また請求項3に係る発明は、疎水性高分子からなる多孔質体中にパイロオーライト型の構造を有する前記式(1)で表される層状複水酸化物粒子を担持させてなる水処理材である。
請求項3に係る発明では、パイロオーライト型の構造を有する上記層状複水酸化物は、粘土鉱物の一種であって水膨潤性があり、粒子となった場合、粒子間の凝集性がある。疎水性高分子からなる多孔質体中にこの複水酸化物を担持させることにより、複水酸化物をカラムに充填して水処理した際にカラムの通水抵抗を上昇させずに、有害物質を高い吸着率で高速に吸着することができる。
【0010】
【発明の実施の形態】
次に本発明の実施の形態について説明する。
[a] 鉄系複水酸化物の製造方法
本発明の鉄系複水酸化物は、次の式(1)に表されるパイロオーライト型の構造を有する結晶化した層状複水酸化物である。
2+ (8-x)Fe3+ x(OH)16(CO3 2-)x/2・mH2O …… (1)
ここで、Mはアルカリ土類金属のうち、マグネシウム又はカルシウムである。また、0<x≦6、0<m≦5である。xを0にすると有害物質の除去性能が低下し、また6を越えると層状複水酸化物にならない。またmが0になる層状複水酸化物を調製することは極めて困難であり、5を越えると水処理材自体が湿潤し水処理材としたときに取り扱いにくくなる。好ましくは、1.6≦x≦4、0<m≦3である。この層状複水酸化物を例示すれば、Mg2+ 4Fe3+ 4(OH)16(CO3 2-)2・3H2O、Ca2+ 4Fe3+ 4(OH)16(CO3 2-)2・3H2O等が挙げられる。
【0011】
この鉄系複水酸化物は次の方法により合成される。
図1(a)に示すように、先ずMgCl2,Mg(NO3)2,CaCl2,Ca(NO3)2等のMg又はCaのアルカリ土類金属の塩の水溶液と、FeCl3,Fe(NO3)3等の三価の鉄の塩の水溶液とを混合して原料水溶液を調製し、容器10に入れる。このときマグネシウム又はカルシウムをMで表すとき、Mに対するFeのモル比(M/Fe)が1から4の間になるように、両水溶液は空気中で攪拌機11で強く攪拌して混合される。各水溶液の濃度範囲は0.01〜0.5モル/lに定められる。M/Feが1未満では結晶化した複水酸化物を合成することが困難であり、4を越えると金属の吸着性能が低下する。好ましくは1から3の間である。次いで図1(b)又は(c)に示すように、この原料水溶液を室温下の空気中で攪拌機11で強く攪拌しながら、或いは室温下の空気中でこの原料水溶液に超音波発生器12で超音波を加えながらpH13以上になるまでアルカリ水溶液を徐々に添加する。添加量は2〜10ml/分程度であって、滴下状態で添加することが好ましい。ここで「強く攪拌する」とは、例えば500〜1000rpmの回転速度で攪拌する強攪拌を意味する。アルカリ水溶液を添加することにより、原料水溶液はゲル化する。強く攪拌するか、超音波を加えることにより、空気中の炭酸ガスが液中に溶け込み、この炭酸イオンが層架橋アニオンとして取込まれるとともに、MgイオンとFeイオンが均一に分散され、原料水溶液はゲル状態を経て結晶化する。pHを13以上にすることにより、高分子化、即ち結晶化が室温でより促進する。添加するアルカリ水溶液は濃度1〜10重量%の水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物の水溶液である。
【0012】
攪拌のみで結晶化させる場合には、攪拌時間は1時間以上が好ましく、6時間以上がより好ましい。攪拌時間が長い程、結晶化が促進される。超音波を加える場合には、その印加出力は50〜300W、印加時間は10〜60分程度が好ましい。印加出力を高くすると、より短時間で結晶化が促進される。超音波を加える方が強く攪拌するよりも、結晶化が促進される。
【0013】
次に図1(d)に示すように、強攪拌又は超音波により結晶化した結晶体を水溶液から分離する。この固液分離は、ろ過、遠心分離等の方法により行われる。水溶液から分離した結晶体を蒸留水で洗浄し、大気圧下、室温〜120℃の温度、好ましくは120℃程度の温度で乾燥することにより、上記式(1)で表される層状複水酸化物が得られる。
【0014】
[b] 水処理材の製造方法
次に上記層状複水酸化物から水処理材を作製する方法について説明する。本発明の水処理材は、水に含まれるアルカリ金属、アルカリ土類金属、鉛、亜鉛、アルミニウム、マンガン、リン等の金属、或いはフミン物質のような有機物の陰イオン等のヒトの健康上有害な物質を主として除去するのに適する吸着材である。パイロオーライト型の構造を有する層状複水酸化物は、粘土鉱物の一種であって水膨潤性があり、粒子となった場合、粒子間の凝集性があるため、上記[a]の方法で合成された複水酸化物をそのまま吸着用カラムに充填して有害物質を含む水を通すと、複水酸化物が水で膨潤して凝集体となり、カラムの通水抵抗が上昇し、吸着材として適さない。
先ず上記[a]の方法で合成された複水酸化物である層状複水酸化物の平均粒径が1〜250μm、好ましくは数μm〜数十μmの粒子を用意する。具体的には上述した乾燥後の結晶体は、通常凝集しているため、粉砕機で粉砕した後、篩いを用いて粒径の揃った上記平均粒径の範囲内の層状複水酸化物粒子を用意する。平均粒径が250μmを越えると有害物質の吸着性能が低下し、1μm未満であると疎水性高分子の多孔質体に担持しても水処理時に多孔質体から容易に層状複水酸化物粒子が抜け落ちる不具合がある。
【0015】
図2(a)に示すように、次いで酢酸セルロース等のセルロース誘導体、カルボン酸、キトサン等の疎水性高分子の粉末13をアセトン、アセトニトリル等の上記疎水性高分子の良溶媒14に添加・攪拌することにより溶解して容器15に貯える。疎水性高分子の添加割合は良溶媒の5〜80重量%が好ましい。5重量%未満では担体を固定化しにくく、また80重量%を越えると吸着性能が低下するおそれがある。図2(b)に示すように、疎水性高分子が溶解した溶液16に上記平均粒径の層状複水酸化物粒子17を添加・攪拌して混合し、複水酸化物粒子を均一に分散させる。複水酸化物粒子の添加割合は上記溶液の5〜30重量%が好ましい。5重量%未満では有害物質の吸着性能が低下し、また30重量%を越えると通水抵抗が上昇する不都合がある。
次に図2(c)又は(d)に示すように、層状複水酸化物粒子が分散した溶液18を攪拌しながら大気圧下、乾燥するか、或いは層状複水酸化物粒子が分散した溶液18を攪拌しながら上記疎水性高分子の貧溶媒19に滴下する。このとき攪拌速度を調整することにより、また貧溶媒の種類を変えることにより、溶液の相転換を実現して種々の疎水性高分子からなる多孔質体20を作製することができる。疎水性高分子の貧溶媒としては、ヘキサン、エタノール、空気等が挙げられる。例えば、酢酸セルロースを用いて多孔質体を作る場合、無攪拌でヘキサン中に滴下したときには平均粒径が約2mmの球形粒子の多孔質体が形成され、攪拌しながらヘキサン中に滴下したときには平均粒径が500μm以下の微粒子状の多孔質体が形成される。また貧溶媒にエタノールを用いると、繊維状(ヘチマ状)の多孔質体が形成される。更に貧溶媒に空気を用いて、攪拌しながら空気中で平板などの上に滴下すると、平板状の多孔質体が形成される。この多孔質体の形成と同時に、本発明の鉄系複水酸化物粒子は多孔質体の内部に固定され、担持される。
【0016】
最後に図2(e)に示すように、多孔質体を蒸留水で洗浄し、乾燥する。必要により粉砕して所望の粒径の多孔質体にして本発明の水処理材20が得られる。この多孔質体からなる水処理材の拡大した断面図を図3(a)に、水処理材を模式的に表した図を図3(b)にそれぞれ示す。鉄系複水酸化物を粒子の形態で疎水性高分子からなる多孔質体の内部に固定することにより、鉄系複水酸化物粒子を多孔質体の担体中に分散できる。これにより水処理時に上記鉄系複水酸化物の膨潤による複水酸化物粒子同士の凝集が防止され、かつ担体が疎水性のある多孔質体であるため、通水抵抗は低減され、カラム内部の水圧の上昇を低減できる。
【0017】
[c] 水処理材の使用方法
本発明の水処理材の使用方法としては、従来の吸着材と同様に回分(バッチ)法とカラムを用いた通液法がある。回分法は被処理水を所定の容器又は槽に貯えておき、そこに水処理材を入れて、水処理材を被処理水に十分に接触させる方法である。処理後、水処理材と被処理水とは固液分離される。
カラムを用いた通液法は、図4(a)に示すように多孔質体からなる水処理材20をカラム21に所定の高さとなるように充填しておき、被処理水22を送液ポンプ23により通水する。図4(b)に示すように水処理材20はその上面及び下面をろ紙24とメッシュ25により挟んで固定することが好ましい。
【0018】
[d] 水処理材の有害物質吸着のメカニズム
本発明のパイロオーライト型の構造を有する結晶化した層状の鉄系複水酸化物の有害物質吸着のメカニズムを、鉛除去を例にして述べる。
本発明の鉄系複水酸化物の水処理材をカラムに充填し、pH調整によっても除去できない程度の100ppb未満の低濃度の鉛が溶存している水溶液をこのカラムに通水した場合、水処理材と鉛水溶液の接触時間が短いにもかかわらず高い除去性能を有する。このことは、図5に示すように、鉛(Pb)は吸着材20の外表面で除去されているものと考えられる。即ち、パイロオーライト型の化合物は層状骨格構造の表面に水酸基(OH)を有しており、この水酸基のプロトン(H+)と鉛イオン(Pb2+)との間のイオン交換により鉛が除去されると考えられる。この吸着様式は図5に示したような単座配位(O−Pb+)と二座配位(O−Pb−O)の2種類の形態が考えられ、いずれも鉄イオン(Fe3+)の近傍に吸着するものと考えられる。
【0019】
図6は100ppb以上の高濃度の鉛が溶存している溶液を同様にカラムに通水した場合の例を示す。パイロオーライト型化合物は、鉛水溶液中でその骨格構造の一部(Mg2+,Fe3+)が溶け出してpHを6〜9付近のアルカリ側に緩衝する機能(水処理材の微溶解機能)を有する。この際、水溶液中には鉄やマグネシウムの水酸化物(Fe(OH)3,Mg(OH)2)が生成される。pHが上昇することによって、鉛は水酸化物(Pb(OH)2)を形成し沈殿物となって除去される。同時に水溶液中に生成するMg(OH)2やFe(OH)3の凝集作用によっても鉛は除去される。凝集体はパイロオーライト型化合物の表面水酸基に吸着するものと考えられる。この凝集作用は速度が遅いことから、高速除去の場合にはその寄与は小さいと考えられる。例えば鉛給水管の使用によって水道水中に含まれる鉛濃度は数十ppbといわれているが、突発的な事故により給水管中に滞留していた鉛が高濃度に流出した場合にも、本発明の水処理材は有効に機能する。
以上のように、本発明の水処理材は▲1▼水処理材表面に鉛を捕捉する交換性のプロトン(水酸基)を有する難溶性の層状結晶化水酸化物であり、▲2▼水処理材骨格の微溶解によりアルカリ雰囲気を形成し、鉛の沈殿・凝集除去作用を発現する。
【0020】
【実施例】
次に本発明の実施例を比較例とともに述べる。
<実施例1>
100mlの蒸留水中に0.0375モルのMgCl2と0.0125モルのFeCl3を添加混合してMg/Feのモル比が3の原料水溶液を調製した。この原料水溶液を1000rpmの回転速度で強く攪拌しながら、10重量%のNaOH水溶液を原料水溶液のpHが13になるまで2ml/分の割合で滴下した。原料水溶液はNaOH水溶液の滴下によりゲル化した。このゲル化した室温の液を空気中で更に同一回転速度で10時間攪拌した。この液をNo.1のろ紙でろ過した後、ろ別した固形分を大量の蒸留水で洗浄し120℃で24時間乾燥して鉄系複水酸化物を得た。
【0021】
<実施例2>
100mlの蒸留水中に0.0125モルのMgCl2と0.0125モルのFeCl3を添加混合してMg/Feのモル比が1の原料水溶液を調製した。この原料水溶液を実施例1と同じ回転速度で強く攪拌しながら、10重量%のNaOH水溶液を原料水溶液のpHが13になるまで2ml/分の割合で滴下した。原料水溶液はNaOH水溶液の滴下によりゲル化した。このゲル化した室温の液に空気中で出力200Wで30分間超音波を印加した。超音波を印加した液を実施例1と同一のろ紙でろ過した後、ろ別した固形分を実施例1と同様に洗浄し乾燥して鉄系複水酸化物を得た。
【0022】
<比較例1>
実施例2と同じMg/Feのモル比が1の原料水溶液を実施例1と同じ回転速度で強く攪拌しながら、10重量%のNaOH水溶液を原料水溶液のpHが10になるまで2ml/分の割合で滴下した。この滴下によりゲル化した原料水溶液に実施例2と同様に30分間超音波を印加した。超音波を印加した液を実施例1と同一のろ紙でろ過した後、ろ別した固形分を実施例1と同様に洗浄し乾燥して鉄系複水酸化物を得た。
<比較例2>
原料水溶液のMg/Feのモル比を3した以外は、比較例1と同様にして鉄系複水酸化物を得た。
【0023】
<実施例3>
実施例1と同じMg/Feのモル比が3の原料水溶液を実施例1と同じ回転速度で強く攪拌しながら、10重量%のNaOH水溶液を原料水溶液のpHが13になるまで2ml/分の割合で滴下した。この滴下によりゲル化した原料水溶液に実施例2と同様に5分間超音波を印加した。超音波を印加した液を実施例1と同一のろ紙でろ過した後、ろ別した固形分を実施例1と同様に洗浄し乾燥して鉄系複水酸化物を得た。
<実施例4>
超音波の印加時間を60分間にした以外は、実施例3と同様にして鉄系複水酸化物を得た。
【0024】
<比較評価>
実施例1〜4及び比較例1,2の各鉄系複水酸化物の生成相を銅のKα線を光源とするX線回折法により調べた。その結果を図7に示す。図7の曲線のピーク値が高い程、結晶化度が高いことを示す。X線回折と元素分析の結果から各鉄系複水酸化物の生成相はMg2+ 6Fe3+ 2(OH)16(CO3 2-)・3H2O又はMg2+ 4Fe3+ 4(OH)16(CO3 2-)2・3H2Oであった。また図7から明らかなように、10時間強攪拌した実施例1の結晶化度はで5分間超音波を印加した実施例3の結晶化度とほぼ同じであった。60分間超音波を印加した実施例4の結晶化度が最も高かった。これに対してpHが10で超音波を加えた比較例1及び2の結晶化度は低かった。
【0025】
<実施例5>
原料水溶液のMg/Feのモル比を2にして調製した以外は、実施例2と同様にして鉄系複水酸化物を得た。この鉄系複水酸化物を粉砕して得られた鉄系複水酸化物粒子を、10mlのアセトン中に酢酸セルロース0.5gを溶解した溶液に添加して1時間程度攪拌し、鉄系複水酸化物粒子を均一に分散させた。この分散により高い粘性のある液となった。この溶液を攪拌しながらヘキサン中に滴下した。滴下により酢酸セルロースが相分離し、平均粒径約2mmの粒子状の多孔質の担体となって、この中に鉄系複水酸化物粒子が分散状態で固定された。この多孔質体を蒸留水で洗浄した後120℃で24時間乾燥した。乾燥した多孔質体を粉砕機で平均粒径が250μm以下になるように粉砕して水処理材を得た。
<比較例3>
蒸留水にNaOH水溶液を添加混合してpHを10に調整した液を比較例3の水処理材とした。
【0026】
<比較例4>
平均粒径250μm以下の不定形な粉砕炭からなる水処理用活性炭を比較例4の水処理材とした。
<比較例5>
高濃度の鉛吸着材として知られている、平均粒径250μm以下の不定形な試薬からなるゲータイト(FeO(OH))を比較例5の水処理材とした。
<比較例6>
平均粒径0.3〜0.6mmの球形アクリル系弱酸型の陽イオン交換樹脂(IRA-76)を比較例6の水処理材とした。
【0027】
<鉛吸着比較試験その1>
回分法により鉛の吸着試験を行った。即ち、硝酸鉛を蒸留水に溶解し鉛濃度が1ppmの試験液を調製した。この試験液を5本の試験管に入れ、実施例5及び比較例3〜6の各水処理材を各試験管の試験液にそれぞれ0.5重量%の割合で添加した後、各試験管を24時間振とうした。振とう30分、3時間、24時間毎に各試験管から試験液を採取し、鉛の溶存濃度をフレームレス原子吸光分析により求め、その値から鉛の除去率を算出した。その結果を図8に示す。
図8から明らかなように、比較例3の水処理材(pH10に調整した水)は溶存鉛が水酸化鉛となり、30分後に約70%、3時間及び24時間後に約80%鉛を除去できるが、20%程度の鉛が残存する。また比較例4の水処理材(水処理用活性炭)は24時間後に約95%鉛を除去できるが、数%の鉛が残存する。比較例5及び6の水処理材は24時間後でもそれぞれ40%及び80%の除去率しかなかった。これらに対して、実施例5の水処理材は30分後に約70%、3時間後に約95%鉛を除去でき、24時間後には100%鉛を除去できた。
【0028】
<実施例6>
原料水溶液のMg/Feのモル比を1にした以外は、実施例5と同様にして平均粒径が250μm以下の水処理材を得た。
<鉛吸着比較試験その2>
カラムを用いた通液法により鉛の吸着試験を行った。即ち、実施例5,6及び比較例4の各水処理材1.5gを内径36mmの3本のカラムにそれぞれ充填した。このときの充填層の高さはすべてのカラムで同一の約2mmであった。現在の水道水の許容鉛濃度の上限値に相当する55ppbの鉛が溶存した試験液を硝酸鉛を蒸留水に溶解することにより用意した。この試験液を送液ポンプを用いてSv(空間速度)150/分で各カラムに連続的に通した。Svは流量/カラム容量であって、150/分の場合、吸着材の150倍の体積の試験液が1分間に流れることを意味する。
カラムを流通した試験液を所定時間毎に採取し、鉛の溶存濃度をフレームレス原子吸光分析により求めた。その結果を図9に示す。図9から明らかなように比較例4の水処理材(水処理用活性炭)ではカラムの出口における鉛濃度が初期濃度の55ppbと殆ど変らない約50ppbであったのに対して、実施例5及び6の水処理材はカラムの出口における鉛濃度は5ppb以下であり、50リットル試験液を通しても出口における鉛濃度はほぼ同程度であった。
【0029】
【発明の効果】
以上述べたように、本発明の鉄系複水酸化物の製造方法によれば、原料水溶液を空気中で強く攪拌しながら、或いは空気中で超音波を加えながらpHを13以上にすることにより、従来のような炭酸塩を添加することなく、空気中から炭酸ガスを溶け込み、炭酸イオンを層架橋アニオンとして取込むとともに、MgイオンとFeイオンが均一に分散される。これにより従来の水熱合成法によらずに比較的短時間で簡便に結晶化した鉄系複水酸化物を合成することができる。
また本発明の水処理材の製造方法によれば、疎水性高分子からなる多孔質体の内部に層状複水酸化物粒子を担持させることができ、これにより複水酸化物をカラムに充填して水処理した際にカラムの通水抵抗を上昇させずに、水に含まれる有害物質を高い吸着率で高速に吸着することができる。
【図面の簡単な説明】
【図1】本発明の鉄系複水酸化物の製造工程を示す図。
【図2】本発明の水処理材の製造工程を示す図。
【図3】本発明の鉄系複水酸化物粒子が疎水性高分子の多孔質体中に担持されている状況を示す図。
【図4】カラムを用いた通液法により水処理材で有害物質を吸着する状況を示す図。
【図5】本発明の水処理材が低濃度の鉛水溶液中の鉛を捕捉する状況を示す図。
【図6】本発明の水処理材が高濃度の鉛水溶液中の鉛を捕捉する状況を示す図。
【図7】実施例1〜4及び比較例1,2の鉄系複水酸化物の結晶化度を示すX線回折図。
【図8】実施例5及び比較例3〜6の水処理材の回分法による鉛除去率を示す図。
【図9】実施例5,6及び比較例4の水処理材の通液法による鉛除去率を示す図。
【符号の説明】
11 攪拌機
12 超音波発生器
13 疎水性高分子粉末(酢酸セルロース)
14 疎水性高分子の良溶媒(アセトン)
16 疎水性高分子が溶解した溶液
17 層状複水酸化物粒子
19 疎水性高分子の貧溶媒(ヘキサン)
20 多孔質体からなる水処理材
21 カラム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an iron-based double hydroxide having a pyroolite type structure. Furthermore, using this double hydroxide, such as alkali metals, alkaline earth metals, metals such as lead, zinc, aluminum, manganese and phosphorus contained in water during water treatment, or organic anions such as humic substances, etc. The present invention relates to a water treatment material that adsorbs substances harmful to human health and a method for producing the same.
[0002]
[Prior art]
Conventionally, solid adsorbents such as activated carbon, iron hydroxide, and ion exchange resins are known as this type of water treatment material. However, these adsorbents have low performance in removing metal dissolved in water in terms of capacity or speed, and are not suitable for removing metal at high speed with a high adsorption rate. In order to solve this problem, Al-based double hydroxide (eg, Mg 6 Al 2 (OH) 16 (CO 3 ) · 4H 2 O) having a hydrotalcite structure is used as a water treatment material. Yes. This Al-based double hydroxide is made by a hydrothermal synthesis method. Specifically, carbonate such as sodium carbonate is added as a layer cross-linking anion to a mixed solution of magnesium salt aqueous solution and aluminum salt aqueous solution, and the pH is 9 to 12 at a high temperature of 60 to 150 ° C. for several hours. It is made by aging for tens of hours.
[0003]
[Problems to be solved by the invention]
However, this method for producing an Al-based double hydroxide has the inconvenience of adding a carbonate and aging for a long time for crystallization. Also, if this water treatment material is used for the treatment of human drinking water such as the treatment of tap water, this water treatment material contains Al, which is concerned about the causal relationship with Alzheimer's disease. There is a concern about using it.
[0004]
An object of the present invention is to provide a method for easily producing an iron-based double hydroxide without adding a carbonate.
Another object of the present invention is to provide a water treatment material using the above double hydroxide and a method for producing the same, which removes harmful substances contained in water, particularly harmful metals in extremely low concentration, at a high rate at a high rate. It is in.
Still another object of the present invention is to provide a water treatment material using the above-mentioned double hydroxide and a method for producing the same, which is free from concern for human health in drinking water treatment.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 is an alkaline earth metal salt aqueous solution so that the molar ratio of Fe to M (M / Fe) is between 1 and 4, where M is an alkaline earth metal that is magnesium or calcium. The aqueous raw material solution obtained by mixing the aqueous raw material solution and the trivalent iron salt aqueous solution with vigorous stirring in the air or by adding ultrasonic waves to the aqueous raw material solution in the air until the pH is 13 or higher. Is crystallized through a gel state to produce a layered iron-based double hydroxide represented by the following formula (1) having a pyroaulite type structure.
[0006]
M 2+ (8-x) Fe 3+ x (OH) 16 (CO 3 2- ) x / 2 · mH 2 O (1)
However, 0 <x ≦ 6 and 0 <m ≦ 5.
[0007]
In the invention according to claim 1, the raw material aqueous solution is vigorously stirred in the air, or the pH is set to 13 or more while applying ultrasonic waves in the air, so that the air is added without adding carbonate as in the prior art. Carbon dioxide is dissolved from the inside, and carbonate ions are taken in as layer cross-linking anions, and Mg ions and Fe ions are uniformly dispersed. This makes it possible to synthesize iron-based double hydroxides that are easily crystallized in a relatively short period of time without using the conventional hydrothermal synthesis method.
[0008]
The invention according to claim 2 is a layered composite having an average particle size of 1 to 250 μm obtained by pulverizing the layered double hydroxide according to claim 1 in a solution obtained by dissolving a hydrophobic polymer powder in a good solvent. After the hydroxide particles are dispersed, the solution in which the layered double hydroxide particles are dispersed is dried under atmospheric pressure while stirring, or the solution in which the layered double hydroxide particles are dispersed is stirred or not stirred. The method for producing a water treatment material in which a porous body composed of a hydrophobic polymer is produced by dropping it into a poor solvent for the hydrophobic polymer and lamellar double hydroxide particles are supported inside the porous body. .
In the invention according to claim 2, the double hydroxide particles according to claim 1 are dispersed in a solution of the hydrophobic polymer powder, and the solution is phase-converted to form a porous body made of the hydrophobic polymer. The layered double hydroxide particles can be supported inside the porous body.
[0009]
The invention according to claim 3 is a water treatment in which a layered double hydroxide particle represented by the formula (1) having a pyroaulite structure is supported in a porous body made of a hydrophobic polymer. It is a material.
In the invention according to claim 3, the layered double hydroxide having a pyroaulite type structure is a kind of clay mineral and has water swellability, and when particles are formed, there is cohesion between particles. . By supporting this double hydroxide in a porous body made of a hydrophobic polymer, the double hydroxide is filled in the column and treated with water, and the harmful substances are not increased without increasing the water resistance of the column. Can be adsorbed at high speed with a high adsorption rate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[a] Method for producing iron-based double hydroxide The iron-based double hydroxide of the present invention is a crystallized layered double hydroxide having a pyroaulite structure represented by the following formula (1). is there.
M 2+ (8-x) Fe 3+ x (OH) 16 (CO 3 2- ) x / 2 · mH 2 O (1)
Here, M is magnesium or calcium among alkaline earth metals. Further, 0 <x ≦ 6 and 0 <m ≦ 5. When x is set to 0, the harmful substance removal performance decreases, and when x exceeds 6, the layered double hydroxide is not formed. Moreover, it is very difficult to prepare a layered double hydroxide in which m is 0, and if it exceeds 5, the water treatment material itself becomes wet and becomes difficult to handle when used as a water treatment material. Preferably, 1.6 ≦ x ≦ 4 and 0 <m ≦ 3. As an example of this layered double hydroxide, Mg 2+ 4 Fe 3+ 4 (OH) 16 (CO 3 2- ) 2 .3H 2 O, Ca 2+ 4 Fe 3+ 4 (OH) 16 (CO 3 2-) 2 · 3H 2 O, and the like.
[0011]
This iron-based double hydroxide is synthesized by the following method.
As shown in FIG. 1A, first, an aqueous solution of an alkaline earth metal salt of Mg or Ca, such as MgCl 2 , Mg (NO 3 ) 2 , CaCl 2 , Ca (NO 3 ) 2 , FeCl 3 , Fe A raw material aqueous solution is prepared by mixing with an aqueous solution of a trivalent iron salt such as (NO 3 ) 3 and put into the container 10. At this time, when magnesium or calcium is represented by M, both aqueous solutions are vigorously stirred and mixed with the stirrer 11 in the air so that the molar ratio of Fe to M (M / Fe) is between 1 and 4. The concentration range of each aqueous solution is set to 0.01 to 0.5 mol / l. If M / Fe is less than 1, it is difficult to synthesize a crystallized double hydroxide. If M / Fe exceeds 4, the metal adsorption performance decreases. Preferably it is between 1 and 3. Next, as shown in FIG. 1 (b) or (c), the raw material aqueous solution is vigorously stirred with a stirrer 11 in air at room temperature, or the raw material aqueous solution is mixed with the ultrasonic generator 12 in air at room temperature. While adding ultrasonic waves, the alkaline aqueous solution is gradually added until the pH is 13 or more. The addition amount is about 2 to 10 ml / min, and it is preferable to add in a dropwise state. Here, “strongly stirring” means strong stirring that stirs at a rotational speed of 500 to 1000 rpm, for example. By adding the alkaline aqueous solution, the raw material aqueous solution is gelled. By vigorously stirring or applying ultrasonic waves, carbon dioxide in the air dissolves in the liquid, and this carbonate ion is taken in as a layer cross-linking anion, and Mg ions and Fe ions are uniformly dispersed. It crystallizes through a gel state. By setting the pH to 13 or more, polymerization, that is, crystallization is further promoted at room temperature. The alkaline aqueous solution to be added is an aqueous solution of an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or lithium hydroxide having a concentration of 1 to 10% by weight.
[0012]
In the case of crystallization only by stirring, the stirring time is preferably 1 hour or longer, and more preferably 6 hours or longer. The longer the stirring time, the more crystallization is promoted. When applying ultrasonic waves, the applied output is preferably 50 to 300 W, and the applied time is preferably about 10 to 60 minutes. When the applied output is increased, crystallization is promoted in a shorter time. Crystallization is promoted by applying ultrasonic waves rather than by vigorous stirring.
[0013]
Next, as shown in FIG. 1D, the crystallized crystallized by strong stirring or ultrasonic waves is separated from the aqueous solution. This solid-liquid separation is performed by a method such as filtration or centrifugation. The crystal separated from the aqueous solution is washed with distilled water and dried at a temperature of room temperature to 120 ° C., preferably about 120 ° C. under atmospheric pressure, to thereby form a layered double hydroxide represented by the above formula (1). Things are obtained.
[0014]
[b] Method for Producing Water Treatment Material Next, a method for producing a water treatment material from the layered double hydroxide will be described. The water treatment material of the present invention is harmful to human health such as alkali metals, alkaline earth metals, metals such as lead, zinc, aluminum, manganese, and phosphorus contained in water, or organic anions such as humic substances. It is an adsorbent that is suitable for mainly removing unnecessary substances. The layered double hydroxide having a pyroolite type structure is a kind of clay mineral and has water swellability. When the synthesized double hydroxide is filled into the adsorption column as it is and water containing harmful substances is passed through, the double hydroxide swells with water to form aggregates, increasing the water flow resistance of the column, and the adsorbent. Not suitable as.
First, particles having an average particle diameter of 1 to 250 μm, preferably several μm to several tens of μm, are prepared for the layered double hydroxide, which is a double hydroxide synthesized by the method [a]. Specifically, since the above-mentioned dried crystals are usually agglomerated, the layered double hydroxide particles within the above average particle diameter range having a uniform particle diameter using a sieve after pulverization with a pulverizer Prepare. When the average particle size exceeds 250 μm, the adsorption performance of harmful substances decreases, and when it is less than 1 μm, the layered double hydroxide particles can be easily formed from the porous material during the water treatment even if supported on the porous material of the hydrophobic polymer. There is a problem that falls off.
[0015]
As shown in FIG. 2 (a), a cellulose derivative such as cellulose acetate, and a hydrophobic polymer powder 13 such as carboxylic acid and chitosan are then added to and stirred in the hydrophobic polymer good solvent 14 such as acetone and acetonitrile. To dissolve and store in the container 15. The addition ratio of the hydrophobic polymer is preferably 5 to 80% by weight of the good solvent. If it is less than 5% by weight, it is difficult to immobilize the carrier, and if it exceeds 80% by weight, the adsorption performance may be lowered. As shown in FIG. 2 (b), the layered double hydroxide particles 17 having the above average particle diameter are added to the solution 16 in which the hydrophobic polymer is dissolved and mixed by stirring to uniformly disperse the double hydroxide particles. Let The addition ratio of the double hydroxide particles is preferably 5 to 30% by weight of the above solution. If it is less than 5% by weight, the adsorbing performance of harmful substances is lowered, and if it exceeds 30% by weight, there is a disadvantage that the water flow resistance increases.
Next, as shown in FIG. 2 (c) or (d), the solution 18 in which the layered double hydroxide particles are dispersed is dried under atmospheric pressure while stirring, or the solution in which the layered double hydroxide particles are dispersed. 18 is added dropwise to the poor solvent 19 of the hydrophobic polymer while stirring. At this time, the porous body 20 made of various hydrophobic polymers can be produced by adjusting the stirring speed and changing the kind of the poor solvent to realize phase change of the solution. Examples of the poor solvent for the hydrophobic polymer include hexane, ethanol, air, and the like. For example, when making a porous body using cellulose acetate, a porous body of spherical particles having an average particle diameter of about 2 mm is formed when dropped into hexane without stirring, and an average when dropping into hexane with stirring. A particulate porous body having a particle size of 500 μm or less is formed. Further, when ethanol is used as the poor solvent, a fibrous (loofer) porous body is formed. Further, when air is used as a poor solvent and is dropped onto a flat plate or the like in the air with stirring, a flat porous body is formed. Simultaneously with the formation of the porous body, the iron-based double hydroxide particles of the present invention are fixed and supported inside the porous body.
[0016]
Finally, as shown in FIG. 2 (e), the porous body is washed with distilled water and dried. If necessary, the water treatment material 20 of the present invention can be obtained by pulverizing into a porous body having a desired particle size. FIG. 3A shows an enlarged cross-sectional view of the water treatment material made of this porous body, and FIG. 3B shows a diagram schematically showing the water treatment material. By fixing the iron-based double hydroxide inside the porous body made of a hydrophobic polymer in the form of particles, the iron-based double hydroxide particles can be dispersed in the support of the porous body. This prevents aggregation of the double hydroxide particles due to swelling of the iron-based double hydroxide during water treatment, and the carrier is a hydrophobic porous body. The increase in water pressure can be reduced.
[0017]
[c] Method for Using Water Treatment Material As a method for using the water treatment material of the present invention, there are a batch (batch) method and a liquid flow method using a column as in the case of a conventional adsorbent. The batch method is a method in which water to be treated is stored in a predetermined container or tank, a water treatment material is put therein, and the water treatment material is sufficiently brought into contact with the water to be treated. After the treatment, the water treatment material and the water to be treated are separated into solid and liquid.
In the liquid flow method using a column, as shown in FIG. 4A, a water treatment material 20 made of a porous material is filled in a column 21 so as to have a predetermined height, and the water to be treated 22 is fed. Water is passed through the pump 23. As shown in FIG. 4B, the water treatment material 20 is preferably fixed by sandwiching the upper surface and the lower surface between the filter paper 24 and the mesh 25.
[0018]
[d] Mechanism of Adsorption of Hazardous Substances by Water Treatment Material The mechanism of adsorption of harmful substances by the crystallized layered iron-based double hydroxide having the pyroolite structure of the present invention will be described by taking lead removal as an example.
When the column is packed with the iron-based double hydroxide water treatment material of the present invention and an aqueous solution containing a low concentration of lead of less than 100 ppb, which cannot be removed even by pH adjustment, is passed through the column, High removal performance despite the short contact time between the treatment material and the aqueous lead solution. This is considered that lead (Pb) is removed on the outer surface of the adsorbent 20 as shown in FIG. That is, the pyroolite type compound has a hydroxyl group (OH) on the surface of the layered skeleton structure, and lead is exchanged by proton exchange (H + ) and lead ion (Pb 2+ ) of this hydroxyl group. It is considered to be removed. There are two types of adsorption modes, monodentate (O—Pb + ) and bidentate (O—Pb—O), as shown in FIG. 5, both of which are iron ions (Fe 3+ ). It is thought that it adsorbs in the vicinity of.
[0019]
FIG. 6 shows an example in which a solution in which high concentration lead of 100 ppb or more is dissolved is similarly passed through the column. Pyroaurite type compound has a function to dissolve a part of its skeletal structure (Mg 2+ , Fe 3+ ) in an aqueous lead solution and buffer the pH on the alkali side near 6-9 (fine dissolution of water treatment material) Function). At this time, hydroxides of iron and magnesium (Fe (OH) 3 , Mg (OH) 2 ) are generated in the aqueous solution. As the pH rises, lead forms hydroxide (Pb (OH) 2 ) and is removed as a precipitate. At the same time, lead is also removed by the aggregating action of Mg (OH) 2 and Fe (OH) 3 produced in the aqueous solution. Aggregates are considered to be adsorbed on the surface hydroxyl groups of the pyroolite type compound. Since this aggregating action is slow, its contribution is considered to be small in the case of high-speed removal. For example, the concentration of lead contained in tap water is said to be several tens of ppb due to the use of a lead water pipe, but the present invention is also applicable to a case where lead that has accumulated in a water pipe due to a sudden accident flows out to a high concentration. The water treatment material functions effectively.
As described above, the water treatment material of the present invention is (1) a hardly soluble layered crystallized hydroxide having exchangeable protons (hydroxyl groups) that trap lead on the surface of the water treatment material, and (2) water treatment. An alkaline atmosphere is formed by slightly dissolving the material skeleton, and the effect of precipitation and aggregation of lead is expressed.
[0020]
【Example】
Next, examples of the present invention will be described together with comparative examples.
<Example 1>
0.0375 mol of MgCl 2 and 0.0125 mol of FeCl 3 were added and mixed in 100 ml of distilled water to prepare a raw material aqueous solution having a Mg / Fe molar ratio of 3. While this raw material aqueous solution was vigorously stirred at a rotational speed of 1000 rpm, a 10 wt% aqueous NaOH solution was added dropwise at a rate of 2 ml / min until the pH of the raw aqueous solution reached 13. The raw material aqueous solution was gelled by dropwise addition of NaOH aqueous solution. This gelled room temperature liquid was further stirred in air at the same rotational speed for 10 hours. After filtering this liquid with No. 1 filter paper, the solid content separated by filtration was washed with a large amount of distilled water and dried at 120 ° C. for 24 hours to obtain an iron-based double hydroxide.
[0021]
<Example 2>
A starting aqueous solution having a Mg / Fe molar ratio of 1 was prepared by adding and mixing 0.0125 mol of MgCl 2 and 0.0125 mol of FeCl 3 in 100 ml of distilled water. While this raw material aqueous solution was vigorously stirred at the same rotational speed as in Example 1, a 10 wt% NaOH aqueous solution was added dropwise at a rate of 2 ml / min until the pH of the raw aqueous solution reached 13. The raw material aqueous solution was gelled by dropwise addition of NaOH aqueous solution. Ultrasonic waves were applied to the gelled room temperature liquid in air at an output of 200 W for 30 minutes. The liquid to which the ultrasonic wave was applied was filtered with the same filter paper as in Example 1, and the solid content after filtration was washed and dried in the same manner as in Example 1 to obtain an iron-based double hydroxide.
[0022]
<Comparative Example 1>
While stirring the raw material aqueous solution having the same Mg / Fe molar ratio of 1 as in Example 2 at the same rotational speed as in Example 1, 10% by weight NaOH aqueous solution was adjusted to 2 ml / min until the pH of the aqueous raw material solution reached 10. It was dripped at a rate. In the same manner as in Example 2, ultrasonic waves were applied to the raw material aqueous solution gelled by this dropping for 30 minutes. The liquid to which the ultrasonic wave was applied was filtered with the same filter paper as in Example 1, and the solid content after filtration was washed and dried in the same manner as in Example 1 to obtain an iron-based double hydroxide.
<Comparative example 2>
An iron-based double hydroxide was obtained in the same manner as in Comparative Example 1 except that the molar ratio of Mg / Fe in the raw material aqueous solution was 3.
[0023]
<Example 3>
While stirring the raw material aqueous solution having the same Mg / Fe molar ratio of 3 as in Example 1 at the same rotational speed as in Example 1, 10% by weight NaOH aqueous solution was adjusted to 2 ml / min until the pH of the raw material aqueous solution reached 13. It was dripped at a rate. In the same manner as in Example 2, ultrasonic waves were applied to the raw material aqueous solution gelled by this dropping. The liquid to which the ultrasonic wave was applied was filtered with the same filter paper as in Example 1, and the solid content after filtration was washed and dried in the same manner as in Example 1 to obtain an iron-based double hydroxide.
<Example 4>
An iron-based double hydroxide was obtained in the same manner as in Example 3 except that the ultrasonic wave was applied for 60 minutes.
[0024]
<Comparison evaluation>
The production phases of the iron-based double hydroxides of Examples 1 to 4 and Comparative Examples 1 and 2 were examined by an X-ray diffraction method using copper Kα rays as a light source. The result is shown in FIG. The higher the peak value of the curve in FIG. 7, the higher the crystallinity. From the results of X-ray diffraction and elemental analysis, the formation phase of each iron-based double hydroxide is Mg 2+ 6 Fe 3+ 2 (OH) 16 (CO 3 2- ) · 3H 2 O or Mg 2+ 4 Fe 3+ It was 4 (OH) 16 (CO 3 2− ) 2 · 3H 2 O. Further, as apparent from FIG. 7, the crystallinity of Example 1 which was vigorously stirred for 10 hours was almost the same as that of Example 3 in which ultrasonic waves were applied for 5 minutes. The crystallinity of Example 4 where ultrasonic waves were applied for 60 minutes was the highest. On the other hand, the crystallinity of Comparative Examples 1 and 2 where the pH was 10 and ultrasonic waves were applied was low.
[0025]
<Example 5>
An iron-based double hydroxide was obtained in the same manner as in Example 2 except that the raw material aqueous solution was prepared with a Mg / Fe molar ratio of 2. The iron- based double hydroxide particles obtained by pulverizing the iron-based double hydroxide were added to a solution of 0.5 g of cellulose acetate in 10 ml of acetone and stirred for about 1 hour. Hydroxide particles were uniformly dispersed. This dispersion resulted in a highly viscous liquid. This solution was dropped into hexane with stirring. Cellulose acetate was phase-separated by dropping to form a particulate porous carrier having an average particle diameter of about 2 mm, and iron-based double hydroxide particles were fixed in a dispersed state therein. The porous body was washed with distilled water and then dried at 120 ° C. for 24 hours. The dried porous body was pulverized with a pulverizer so that the average particle size was 250 μm or less to obtain a water treatment material.
<Comparative Example 3>
A solution obtained by adding and mixing an aqueous NaOH solution to distilled water to adjust the pH to 10 was used as the water treatment material of Comparative Example 3.
[0026]
<Comparative example 4>
The activated carbon for water treatment made of irregular pulverized coal having an average particle size of 250 μm or less was used as the water treatment material of Comparative Example 4.
<Comparative Example 5>
The goethite (FeO (OH)), which is known as a high concentration lead adsorbent and made of an irregular reagent having an average particle size of 250 μm or less, was used as the water treatment material of Comparative Example 5.
<Comparative Example 6>
A spherical acrylic weak acid type cation exchange resin (IRA-76) having an average particle size of 0.3 to 0.6 mm was used as the water treatment material of Comparative Example 6.
[0027]
<Lead adsorption comparison test 1>
A lead adsorption test was conducted by a batch method. That is, lead nitrate was dissolved in distilled water to prepare a test solution having a lead concentration of 1 ppm. This test solution was put into five test tubes, and each water treatment material of Example 5 and Comparative Examples 3 to 6 was added to the test solution of each test tube at a ratio of 0.5% by weight. Was shaken for 24 hours. A test solution was sampled from each test tube every 30 minutes, 3 hours, and 24 hours with shaking, the dissolved concentration of lead was determined by flameless atomic absorption spectrometry, and the lead removal rate was calculated from the value. The result is shown in FIG.
As is apparent from FIG. 8, in the water treatment material of Comparative Example 3 (water adjusted to pH 10), the dissolved lead becomes lead hydroxide, which removes about 70% after 30 minutes, and about 80% after 3 hours and 24 hours. Although about 20% of lead remains. Further, the water treatment material of Comparative Example 4 (activated carbon for water treatment) can remove about 95% lead after 24 hours, but several percent of lead remains. The water treatment materials of Comparative Examples 5 and 6 had only a removal rate of 40% and 80%, respectively, even after 24 hours. In contrast, the water treatment material of Example 5 was able to remove about 70% after 30 minutes, about 95% lead after 3 hours, and 100% lead after 24 hours.
[0028]
<Example 6>
A water treatment material having an average particle size of 250 μm or less was obtained in the same manner as in Example 5 except that the molar ratio of Mg / Fe in the raw material aqueous solution was set to 1.
<Lead adsorption comparison test 2>
A lead adsorption test was conducted by a liquid flow method using a column. That is, 1.5 g of each water treatment material of Examples 5 and 6 and Comparative Example 4 was packed in three columns each having an inner diameter of 36 mm. The height of the packed bed at this time was about 2 mm, which is the same for all columns. A test solution in which 55 ppb of lead, which corresponds to the upper limit of the allowable lead concentration of tap water at present, was dissolved was prepared by dissolving lead nitrate in distilled water. This test solution was continuously passed through each column at a Sv (space velocity) of 150 / min using a liquid feed pump. Sv is a flow rate / column capacity, and when 150 / min, it means that a test solution having a volume 150 times that of the adsorbent flows in one minute.
The test solution flowing through the column was collected every predetermined time, and the dissolved concentration of lead was determined by flameless atomic absorption spectrometry. The result is shown in FIG. As is clear from FIG. 9, in the water treatment material of Comparative Example 4 (activated carbon for water treatment), the lead concentration at the outlet of the column was about 50 ppb, which was almost the same as the initial concentration of 55 ppb. In the water treatment material No. 6, the lead concentration at the outlet of the column was 5 ppb or less, and the lead concentration at the outlet was almost the same even through the 50 liter test solution.
[0029]
【The invention's effect】
As described above, according to the method for producing an iron-based double hydroxide of the present invention, the pH of the aqueous raw material solution is adjusted to 13 or more while stirring the raw material aqueous solution in the air or applying ultrasonic waves in the air. Without adding a carbonate as in the prior art, carbon dioxide is dissolved from the air, and carbonate ions are taken in as layer cross-linking anions, and Mg ions and Fe ions are uniformly dispersed. This makes it possible to synthesize iron-based double hydroxides that are easily crystallized in a relatively short period of time without using the conventional hydrothermal synthesis method.
In addition, according to the method for producing a water treatment material of the present invention, layered double hydroxide particles can be supported inside a porous body made of a hydrophobic polymer, whereby the double hydroxide is packed in a column. Thus, when water treatment is performed, harmful substances contained in water can be adsorbed at a high speed at a high rate without increasing the water flow resistance of the column.
[Brief description of the drawings]
FIG. 1 is a diagram showing a production process of an iron-based double hydroxide according to the present invention.
FIG. 2 is a view showing a manufacturing process of the water treatment material of the present invention.
FIG. 3 is a view showing a situation where iron-based double hydroxide particles of the present invention are supported in a porous body of a hydrophobic polymer.
FIG. 4 is a view showing a state in which harmful substances are adsorbed by a water treatment material by a liquid passing method using a column.
FIG. 5 is a diagram showing a situation where the water treatment material of the present invention captures lead in a low concentration aqueous lead solution.
FIG. 6 is a diagram showing a situation in which the water treatment material of the present invention captures lead in a high concentration aqueous lead solution.
7 is an X-ray diffraction diagram showing the crystallinity of iron-based double hydroxides of Examples 1 to 4 and Comparative Examples 1 and 2. FIG.
FIG. 8 is a graph showing the lead removal rate of the water treatment material of Example 5 and Comparative Examples 3 to 6 by a batch method.
9 is a graph showing the lead removal rate of the water treatment materials of Examples 5 and 6 and Comparative Example 4 by a liquid passing method. FIG.
[Explanation of symbols]
11 Stirrer 12 Ultrasonic generator 13 Hydrophobic polymer powder (cellulose acetate)
14 Good solvent for hydrophobic polymers (acetone)
16 Solution 17 in which hydrophobic polymer is dissolved 17 Layered double hydroxide particle 19 Poor solvent for hydrophobic polymer (hexane)
20 Water treatment material 21 column made of porous material

Claims (3)

マグネシウム又はカルシウムであるアルカリ土類金属をMとするとき、Mに対するFeのモル比(M/Fe)が1から4の間になるようにアルカリ土類金属塩水溶液と三価の鉄塩水溶液を混合した原料水溶液を空気中で強く攪拌しながら、或いは空気中で前記原料水溶液に超音波を加えながらpH13以上になるまでアルカリ水溶液を徐々に添加して前記原料水溶液をゲル状態を経て結晶化することにより、パイロオーライト型の構造を有する次の式(1)で表される層状複水酸化物を得ることを特徴とする鉄系複水酸化物の製造方法。
2+ (8-x)Fe3+ x(OH)16(CO3 2-)x/2・mH2O …… (1)
但し、0<x≦6、0<m≦5である。
When the alkaline earth metal that is magnesium or calcium is M, the alkaline earth metal salt aqueous solution and the trivalent iron salt aqueous solution are adjusted so that the molar ratio of Fe to M (M / Fe) is between 1 and 4. While mixing the raw material aqueous solution strongly in the air, or applying ultrasonic waves to the raw material aqueous solution in the air, gradually adding the alkaline aqueous solution until the pH becomes 13 or more, and crystallizing the raw material aqueous solution through a gel state. Thus, a layered double hydroxide represented by the following formula (1) having a pyroolite type structure is obtained.
M 2+ (8-x) Fe 3+ x (OH) 16 (CO 3 2- ) x / 2 · mH 2 O (1)
However, 0 <x ≦ 6 and 0 <m ≦ 5.
疎水性高分子の粉末をその良溶媒に溶解した溶液に請求項1記載の層状複水酸化物を粉砕して得られた平均粒径が1〜250μmの層状複水酸化物粒子を分散した後、
前記層状複水酸化物粒子が分散した溶液を攪拌しながら大気圧下、乾燥するか、或いは前記層状複水酸化物粒子が分散した溶液を攪拌しながら又は無攪拌で前記疎水性高分子の貧溶媒に滴下して前記疎水性高分子からなる多孔質体を生成するとともに前記多孔質体の内部に前記層状複水酸化物粒子を担持させることを特徴とする水処理材の製造方法。
After dispersing the layered double hydroxide particles having an average particle size of 1 to 250 μm obtained by pulverizing the layered double hydroxide according to claim 1 in a solution of hydrophobic polymer powder in a good solvent ,
The solution in which the layered double hydroxide particles are dispersed is dried under atmospheric pressure while stirring, or the solution in which the layered double hydroxide particles are dispersed is poor in the hydrophobic polymer while stirring or without stirring. A method for producing a water treatment material, characterized in that a porous body composed of the hydrophobic polymer is produced by dropping into a solvent, and the layered double hydroxide particles are supported inside the porous body.
疎水性高分子からなる多孔質体の内部にパイロオーライト型の構造を有する次の式(1)で表される層状複水酸化物粒子を担持させてなる水処理材。
2+ (8-x)Fe3+ x(OH)16(CO3 2-)x/2・mH2O …… (1)
但し、MはMg又はCaであり、0<x≦6、0<m≦5である。
A water treatment material in which layered double hydroxide particles represented by the following formula (1) having a pyroaulite structure are supported inside a porous body made of a hydrophobic polymer.
M 2+ (8-x) Fe 3+ x (OH) 16 (CO 3 2- ) x / 2 · mH 2 O (1)
However, M is Mg or Ca, and 0 <x ≦ 6 and 0 <m ≦ 5.
JP2000045324A 2000-02-23 2000-02-23 Method for producing iron-based double hydroxide and water treatment material using the double hydroxide Expired - Fee Related JP4439067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045324A JP4439067B2 (en) 2000-02-23 2000-02-23 Method for producing iron-based double hydroxide and water treatment material using the double hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045324A JP4439067B2 (en) 2000-02-23 2000-02-23 Method for producing iron-based double hydroxide and water treatment material using the double hydroxide

Publications (2)

Publication Number Publication Date
JP2001233619A JP2001233619A (en) 2001-08-28
JP4439067B2 true JP4439067B2 (en) 2010-03-24

Family

ID=18567928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045324A Expired - Fee Related JP4439067B2 (en) 2000-02-23 2000-02-23 Method for producing iron-based double hydroxide and water treatment material using the double hydroxide

Country Status (1)

Country Link
JP (1) JP4439067B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138051A (en) * 2003-11-07 2005-06-02 Kurita Water Ind Ltd Removal material production method and removal material
MY157620A (en) 2006-01-31 2016-06-30 Cytochroma Dev Inc A granular material of a solid water-soluble mixed metal compound capable of binding phosphate
GB0913525D0 (en) * 2009-08-03 2009-09-16 Ineos Healthcare Ltd Method
GB201001779D0 (en) 2010-02-04 2010-03-24 Ineos Healthcare Ltd Composition
JP6180235B2 (en) * 2013-08-23 2017-08-16 国立大学法人 岡山大学 Hydrogen peroxide and ozone decomposition catalyst, hydrogen peroxide and ozone decomposition method
CN106115790B (en) * 2016-06-24 2017-11-07 中国科学院地球化学研究所 A kind of method for preparing pistomesite at high temperature under high pressure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049181A (en) * 1973-08-31 1975-05-01
JP3713077B2 (en) * 1995-09-16 2005-11-02 触媒化成工業株式会社 Method for producing metal oxide or hydroxide sol
JP4732198B2 (en) * 2006-03-10 2011-07-27 住友電気工業株式会社 Optical connecting component manufacturing method and optical connecting component

Also Published As

Publication number Publication date
JP2001233619A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
AU2019201715B2 (en) Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof
Sounthararajah et al. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns
Salah et al. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment
Wang et al. Highly selective and sustainable clean-up of phosphate from aqueous phase by eco-friendly lanthanum cross-linked polyvinyl alcohol/alginate/palygorskite composite hydrogel beads
US7473369B2 (en) Methods of preparing a surface-activated titanium oxide product and of using same in water treatment processes
Zong et al. Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes
CN1466548B (en) Contacting and adsorbent granules
US7497952B2 (en) Methods of preparing a surface-activated titanium oxide product and of using same in water treatment processes
JP7028931B2 (en) Radionuclide adsorbent, its production method and method for removing radionuclides using it
CN109414676A (en) The method for preparing the method for adsorbent material and extracting lithium from salting liquid with the material
Zeng et al. Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability
US11420186B2 (en) Ca-Y-carbonate nanosheets, their use, and synthesis
CN105008285A (en) Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same
JP5363817B2 (en) Liquid processing apparatus and liquid processing method using hydrotalcite-like granular material
JP5201680B2 (en) Hydrotalcite-like granular material and method for producing the same
JP4439067B2 (en) Method for producing iron-based double hydroxide and water treatment material using the double hydroxide
JP5637708B2 (en) Fluorine ion-containing wastewater treatment method with fluorine adsorbent
CN103303996B (en) Application of activated aluminum oxide defluorination adsorbing material with different surface features
JP7274207B2 (en) Column filler containing corolla-shaped aggregated particles of layered double hydroxide and separation device filled with the same
CN109415219B (en) Method for preparing adsorption material and method for extracting lithium by using same
TWI615360B (en) Adsorbent particles and granulating adsorbent
US4515756A (en) Process for extracting tungsten or molybdenum from solution
JP2013248555A (en) Cesium adsorbing material, and method for manufacturing the same
Bao et al. Multi-Metal Modified Layered Double Hydroxides for Cr (VI) and Fluoride Ion Adsorption in Single and Competitive Systems: Experimental and Mechanism Studies
EP0105873A1 (en) Hydrous iron adsorbent, process for preparing the same and process for using the same in the extraction of tungsten and/or molybdenum from solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees