JP2001233619A - Method for producing iron-based complex hydroxide and water-treating material using the same complex hydroxide - Google Patents

Method for producing iron-based complex hydroxide and water-treating material using the same complex hydroxide

Info

Publication number
JP2001233619A
JP2001233619A JP2000045324A JP2000045324A JP2001233619A JP 2001233619 A JP2001233619 A JP 2001233619A JP 2000045324 A JP2000045324 A JP 2000045324A JP 2000045324 A JP2000045324 A JP 2000045324A JP 2001233619 A JP2001233619 A JP 2001233619A
Authority
JP
Japan
Prior art keywords
aqueous solution
double hydroxide
raw material
water treatment
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000045324A
Other languages
Japanese (ja)
Other versions
JP4439067B2 (en
Inventor
Yoshimi Kiyota
佳美 清田
Yoshio Nakano
義夫 中野
Yasuo Nakamura
康雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP2000045324A priority Critical patent/JP4439067B2/en
Publication of JP2001233619A publication Critical patent/JP2001233619A/en
Application granted granted Critical
Publication of JP4439067B2 publication Critical patent/JP4439067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply producing an iron-based complex hydroxide without adding any carbonate and provide a water-treating material by using the above complex hydroxide capable of removing harmful substances contained in water in high surface coverage at a high speed and free from anxiety on human health in drinking water treatment. SOLUTION: An aqueous solution of an alkali is gradually added to an aqueous solution of a raw material obtained by mixing an aqueous solution of an alkaline earth metal salt with an aqueous solution of a trivalent iron salt so that a molar ratio of Fe to M becomes 1 to 4 when the alkaline earth metal is defined as M, until pH of the mixed solution becomes >=13 while strongly stirring the aqueous solution of raw material or while applying ultrasonic wave to the above aqueous solution of raw material in the air and the above aqueous solution of raw material is crystallized through gel state to produce the objective layered iron-based complex hydroxide having pyrooolite type structure and represented by the formula M2+(8-x)Fe3+x(OH)16(CO32-)x/2.mH2O (wherein M is Mg or Ca and 0<x<=6 and 0<m<=5).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パイロオーライト
型の構造を有する鉄系複水酸化物の製造方法に関する。
更にこの複水酸化物を用いた、水処理時に水に含まれる
アルカリ金属、アルカリ土類金属、鉛、亜鉛、アルミニ
ウム、マンガン、リン等の金属、或いはフミン物質のよ
うな有機物の陰イオン等のヒトの健康上有害な物質を吸
着する水処理材及びその製造方法に関するものである。
[0001] The present invention relates to a method for producing an iron-based double hydroxide having a pyroaurite-type structure.
Further, using this double hydroxide, alkali metals, alkaline earth metals, metals such as lead, zinc, aluminum, manganese and phosphorus contained in water at the time of water treatment, or organic anions such as humic substances, etc. The present invention relates to a water treatment material that adsorbs substances harmful to human health and a method for producing the same.

【0002】[0002]

【従来の技術】従来、この種の水処理材として、活性
炭、水酸化鉄、イオン交換樹脂等の固体吸着材が知られ
ている。しかし、これらの吸着材は水に溶存している金
属を除去する性能が容量の点で又は速度の点で低く、高
い吸着率で高速に金属を除去するには適していない。こ
の点を解決するため、水処理材としてハイドロタルサイ
ト型の構造を有するAl系複水酸化物(例えば、Mg6
Al2(OH)16(CO3)・4H2O)などが使用されてい
る。このAl系複水酸化物は水熱合成法で作られる。具
体的にはマグネシウム塩水溶液とアルミニウム塩水溶液
との混合液に層架橋アニオンとして炭酸ナトリウムのよ
うな炭酸塩を添加してpHを9〜12の状態で、60〜
150℃の高温度で数時間から数十時間熟成することに
より作られる。
2. Description of the Related Art Heretofore, solid adsorbents such as activated carbon, iron hydroxide and ion exchange resins have been known as this type of water treatment material. However, these adsorbents have low capacity to remove metals dissolved in water in terms of capacity or speed, and are not suitable for high-rate removal of metals at high adsorption rates. In order to solve this problem, an Al-based double hydroxide having a hydrotalcite-type structure (for example, Mg 6
Al 2 (OH) 16 (CO 3 ) .4H 2 O) is used. This Al double hydroxide is produced by a hydrothermal synthesis method. Specifically, a carbonate such as sodium carbonate is added as a layer-crosslinking anion to a mixed solution of an aqueous solution of a magnesium salt and an aqueous solution of an aluminum salt, and the pH is 9 to 12;
It is made by aging at a high temperature of 150 ° C. for several hours to several tens of hours.

【0003】[0003]

【発明が解決しようとする課題】しかし、このAl系複
水酸化物の製造方法は、炭酸塩の添加と、結晶化のため
に長時間の熟成を必要とする煩わしさがある。またこの
水処理材を上水道水の処理のようなヒトの飲料水の処理
に用いようとすると、この水処理材はアルツハイマー病
との因果関係が懸念されているAlを含んでいるため、
安全衛生上使用することが危惧されている。
However, this method for producing an Al-based double hydroxide has the inconvenience of adding a carbonate and requiring a long time ripening for crystallization. Also, if this water treatment material is used for the treatment of drinking water for humans, such as the treatment of tap water, the water treatment material contains Al, whose causal relationship with Alzheimer's disease is concerned,
It is feared that it is used for safety and health.

【0004】本発明の目的は、鉄系複水酸化物を炭酸塩
を添加することなく、簡便に製造する方法を提供するこ
とにある。本発明の別の目的は、水に含まれる有害物
質、特に極低濃度の有害金属を高い吸着率で高速に除去
する上記複水酸化物を用いた水処理材及びその製造方法
を提供することにある。本発明の更に別の目的は、飲料
水処理においてヒトの健康上への懸念のない上記複水酸
化物を用いた水処理材及びその製造方法を提供すること
にある。
An object of the present invention is to provide a method for easily producing an iron-based double hydroxide without adding a carbonate. Another object of the present invention is to provide a water treatment material using the above-mentioned double hydroxide, which removes harmful substances contained in water, in particular, harmful metals of extremely low concentration at a high adsorption rate and at high speed, and a method for producing the same. It is in. Still another object of the present invention is to provide a water treatment material using the above-mentioned double hydroxide, which does not pose a concern to human health in drinking water treatment, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
マグネシウム又はカルシウムであるアルカリ土類金属を
Mとするとき、Mに対するFeのモル比(M/Fe)が
1から4の間になるようにアルカリ土類金属塩水溶液と
三価の鉄塩水溶液を混合した原料水溶液を空気中で強く
攪拌しながら、或いは空気中で上記原料水溶液に超音波
を加えながらpH13以上になるまでアルカリ水溶液を
徐々に添加して上記原料水溶液をゲル状態を経て結晶化
することにより、パイロオーライト型の構造を有する次
の式(1)で表される層状の鉄系複水酸化物を製造する
方法である。
The invention according to claim 1 is
When an alkaline earth metal that is magnesium or calcium is M, an aqueous solution of an alkaline earth metal salt and an aqueous solution of a trivalent iron salt are mixed so that the molar ratio of Fe to M (M / Fe) is 1 to 4. The raw material aqueous solution is crystallized through a gel state by gradually adding an alkaline aqueous solution until the pH becomes 13 or more while vigorously stirring the mixed raw material aqueous solution in the air or applying ultrasonic waves to the raw material aqueous solution in the air. This is a method for producing a layered iron-based double hydroxide represented by the following formula (1) having a pyroaurite-type structure.

【0006】 M2+ (8-x)Fe3+ x(OH)16(CO3 2-)x/2・mH2O …… (1) 但し、0<x≦6、0<m≦5である。M 2+ (8-x) Fe 3+ x (OH) 16 (CO 3 2 ) x / 2 · mH 2 O (1) where 0 <x ≦ 6, 0 <m ≦ 5 It is.

【0007】請求項1に係る発明では、原料水溶液を空
気中で強く攪拌するか、或いは空気中で超音波を加えな
がらpHを13以上にすることにより、従来のような炭
酸塩を添加することなく、空気中から炭酸ガスを溶け込
み、炭酸イオンを層架橋アニオンとして取込むととも
に、MgイオンとFeイオンが均一に分散される。これ
により従来の水熱合成法によらずに比較的短時間で簡便
に結晶化した鉄系複水酸化物を合成することができる。
According to the first aspect of the present invention, the conventional carbonate is added by vigorously stirring the raw material aqueous solution in the air or by adjusting the pH to 13 or more while applying ultrasonic waves in the air. In addition, carbon dioxide gas is dissolved from the air, and carbonate ions are taken in as layer-crosslinking anions, and Mg ions and Fe ions are uniformly dispersed. Thus, the crystallized iron-based double hydroxide can be synthesized easily in a relatively short time without using the conventional hydrothermal synthesis method.

【0008】請求項2に係る発明は、疎水性高分子の粉
末をその良溶媒に溶解した溶液に請求項1記載の平均粒
径が1〜250μmの層状複水酸化物粒子を分散した
後、この層状複水酸化物粒子が分散した溶液を攪拌しな
がら大気圧下、乾燥するか、或いは層状複水酸化物粒子
が分散した溶液を攪拌しながら又は無攪拌で上記疎水性
高分子の貧溶媒に滴下して疎水性高分子からなる多孔質
体を生成するとともにこの多孔質体の内部に層状複水酸
化物粒子を担持させる水処理材の製造方法である。請求
項2に係る発明では、疎水性高分子粉末の溶液に請求項
1記載の複水酸化物粒子を分散し、この溶液を相転換し
て疎水性高分子からなる多孔質体にすることにより、こ
の多孔質体の内部に層状複水酸化物粒子を担持させるこ
とができる。
According to a second aspect of the present invention, after dispersing the layered double hydroxide particles having an average particle size of 1 to 250 μm in a solution obtained by dissolving a powder of a hydrophobic polymer in a good solvent, The solution in which the layered double hydroxide particles are dispersed is dried under atmospheric pressure while stirring, or the solution in which the layered double hydroxide particles are dispersed is stirred or with or without stirring. The method is a method for producing a water treatment material in which a porous body made of a hydrophobic polymer is produced by dropping into a porous body and a layered double hydroxide particle is supported inside the porous body. In the invention according to claim 2, the double hydroxide particles according to claim 1 are dispersed in a solution of a hydrophobic polymer powder, and the solution is subjected to phase inversion to form a porous body made of a hydrophobic polymer. The layered double hydroxide particles can be supported inside the porous body.

【0009】また請求項3に係る発明は、疎水性高分子
からなる多孔質体中にパイロオーライト型の構造を有す
る前記式(1)で表される層状複水酸化物粒子を担持さ
せてなる水処理材である。請求項3に係る発明では、パ
イロオーライト型の構造を有する上記層状複水酸化物
は、粘土鉱物の一種であって水膨潤性があり、粒子とな
った場合、粒子間の凝集性がある。疎水性高分子からな
る多孔質体中にこの複水酸化物を担持させることによ
り、複水酸化物をカラムに充填して水処理した際にカラ
ムの通水抵抗を上昇させずに、有害物質を高い吸着率で
高速に吸着することができる。
According to a third aspect of the present invention, a layered double hydroxide particle represented by the formula (1) having a pyroaulite structure is supported on a porous body made of a hydrophobic polymer. Water treatment material. In the invention according to claim 3, the layered double hydroxide having a pyroaurite-type structure is a kind of clay mineral and has water swelling properties. . By supporting this double hydroxide in a porous body made of a hydrophobic polymer, harmful substances can be maintained without increasing the water flow resistance of the column when the double hydroxide is packed in a column and treated with water. At a high adsorption rate and at high speed.

【0010】[0010]

【発明の実施の形態】次に本発明の実施の形態について
説明する。 [a] 鉄系複水酸化物の製造方法 本発明の鉄系複水酸化物は、次の式(1)に表されるパ
イロオーライト型の構造を有する結晶化した層状複水酸
化物である。 M2+ (8-x)Fe3+ x(OH)16(CO3 2-)x/2・mH2O …… (1) ここで、Mはアルカリ土類金属のうち、マグネシウム又
はカルシウムである。また、0<x≦6、0<m≦5で
ある。xを0にすると有害物質の除去性能が低下し、ま
た6を越えると層状複水酸化物にならない。またmが0
になる層状複水酸化物を調製することは極めて困難であ
り、5を越えると水処理材自体が湿潤し水処理材とした
ときに取り扱いにくくなる。好ましくは、1.6≦x≦
4、0<m≦3である。この層状複水酸化物を例示すれ
ば、Mg2+ 4Fe3+ 4(OH)16(CO3 2-)2・3H2O、C
2+ 4Fe3+ 4(OH)16(CO3 2-)2・3H2O等が挙げら
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described.
explain. [a] Method for Producing Iron-Based Double Hydroxide The iron-based double hydroxide of the present invention comprises a powder represented by the following formula (1):
Crystallized layered double hydroxide with iroaurite-type structure
Is a monster. M2+ (8-x)Fe3+ x(OH)16(COThree 2-)x / 2・ MHTwoO (1) Here, M is magnesium or alkaline earth metal.
Is calcium. Also, when 0 <x ≦ 6 and 0 <m ≦ 5,
is there. When x is set to 0, the performance of removing harmful substances is reduced.
If it exceeds 6, it does not become a layered double hydroxide. Also, m is 0
It is extremely difficult to prepare a layered double hydroxide
If it exceeds 5, the water treatment material itself becomes wet and used as a water treatment material.
Sometimes it becomes difficult to handle. Preferably, 1.6 ≦ x ≦
4, 0 <m ≦ 3. Illustrate this layered double hydroxide
If2+ FourFe3+ Four(OH)16(COThree 2-)Two・ 3HTwoO, C
a2+ FourFe3+ Four(OH)16(COThree 2-)Two・ 3HTwoO etc.
It is.

【0011】この鉄系複水酸化物は次の方法により合成
される。図1(a)に示すように、先ずMgCl2,M
g(NO3)2,CaCl2,Ca(NO3)2等のMg又はC
aのアルカリ土類金属の塩の水溶液と、FeCl3,F
e(NO3)3等の三価の鉄の塩の水溶液とを混合して原料
水溶液を調製し、容器10に入れる。このときマグネシ
ウム又はカルシウムをMで表すとき、Mに対するFeの
モル比(M/Fe)が1から4の間になるように、両水
溶液は空気中で攪拌機11で強く攪拌して混合される。
各水溶液の濃度範囲は0.01〜0.5モル/lに定め
られる。M/Feが1未満では結晶化した複水酸化物を
合成することが困難であり、4を越えると金属の吸着性
能が低下する。好ましくは1から3の間である。次いで
図1(b)又は(c)に示すように、この原料水溶液を
室温下の空気中で攪拌機11で強く攪拌しながら、或い
は室温下の空気中でこの原料水溶液に超音波発生器12
で超音波を加えながらpH13以上になるまでアルカリ
水溶液を徐々に添加する。添加量は2〜10ml/分程
度であって、滴下状態で添加することが好ましい。ここ
で「強く攪拌する」とは、例えば500〜1000rp
mの回転速度で攪拌する強攪拌を意味する。アルカリ水
溶液を添加することにより、原料水溶液はゲル化する。
強く攪拌するか、超音波を加えることにより、空気中の
炭酸ガスが液中に溶け込み、この炭酸イオンが層架橋ア
ニオンとして取込まれるとともに、MgイオンとFeイ
オンが均一に分散され、原料水溶液はゲル状態を経て結
晶化する。pHを13以上にすることにより、高分子
化、即ち結晶化が室温でより促進する。添加するアルカ
リ水溶液は濃度1〜10重量%の水酸化ナトリウム、水
酸化カリウム、水酸化リチウム等のアルカリ金属水酸化
物の水溶液である。
This iron-based double hydroxide is synthesized by the following method. As shown in FIG. 1A, first, MgCl 2 , M
Mg or C such as g (NO 3 ) 2 , CaCl 2 , Ca (NO 3 ) 2
an aqueous solution of an alkaline earth metal salt of a, FeCl 3 , F
A raw material aqueous solution is prepared by mixing with an aqueous solution of a trivalent iron salt such as e (NO 3 ) 3 , and the mixture is placed in the container 10. At this time, when magnesium or calcium is represented by M, the two aqueous solutions are mixed by being strongly stirred by the stirrer 11 in the air so that the molar ratio of Fe to M (M / Fe) is between 1 and 4.
The concentration range of each aqueous solution is set to 0.01 to 0.5 mol / l. If M / Fe is less than 1, it is difficult to synthesize a crystallized double hydroxide, and if it exceeds 4, the metal adsorption performance is reduced. Preferably it is between 1 and 3. Next, as shown in FIG. 1 (b) or (c), the raw material aqueous solution is vigorously stirred with an agitator 11 in air at room temperature, or an ultrasonic generator 12 is added to the raw material aqueous solution in air at room temperature.
While adding ultrasonic waves, an aqueous alkali solution is gradually added until the pH becomes 13 or more. The addition amount is about 2 to 10 ml / min, and it is preferable to add in a dropwise state. Here, "strong stirring" means, for example, 500 to 1000 rpm
It means strong stirring with stirring at a rotation speed of m. By adding the alkaline aqueous solution, the raw material aqueous solution gels.
By vigorously stirring or applying ultrasonic waves, carbon dioxide gas in the air dissolves into the liquid, and this carbonate ion is taken in as a layer cross-linking anion, and Mg ions and Fe ions are uniformly dispersed. Crystallizes through a gel state. By setting the pH to 13 or more, polymerization, that is, crystallization, is further promoted at room temperature. The alkali aqueous solution to be added is an aqueous solution of an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide, lithium hydroxide or the like having a concentration of 1 to 10% by weight.

【0012】攪拌のみで結晶化させる場合には、攪拌時
間は1時間以上が好ましく、6時間以上がより好まし
い。攪拌時間が長い程、結晶化が促進される。超音波を
加える場合には、その印加出力は50〜300W、印加
時間は10〜60分程度が好ましい。印加出力を高くす
ると、より短時間で結晶化が促進される。超音波を加え
る方が強く攪拌するよりも、結晶化が促進される。
When the crystallization is carried out only by stirring, the stirring time is preferably 1 hour or more, more preferably 6 hours or more. The longer the stirring time, the more the crystallization is promoted. When applying ultrasonic waves, the applied output is preferably 50 to 300 W, and the applied time is preferably about 10 to 60 minutes. The higher the applied output, the faster the crystallization is accelerated. Crystallization is promoted by the application of ultrasonic waves rather than by vigorous stirring.

【0013】次に図1(d)に示すように、強攪拌又は
超音波により結晶化した結晶体を水溶液から分離する。
この固液分離は、ろ過、遠心分離等の方法により行われ
る。水溶液から分離した結晶体を蒸留水で洗浄し、大気
圧下、室温〜120℃の温度、好ましくは120℃程度
の温度で乾燥することにより、上記式(1)で表される
層状複水酸化物が得られる。
Next, as shown in FIG. 1 (d), the crystallized crystal is separated from the aqueous solution by vigorous stirring or ultrasonic waves.
This solid-liquid separation is performed by a method such as filtration and centrifugation. The crystals separated from the aqueous solution are washed with distilled water and dried at atmospheric pressure at a temperature of room temperature to 120 ° C., preferably at a temperature of about 120 ° C., thereby forming a layered double hydroxide represented by the above formula (1). Things are obtained.

【0014】[b] 水処理材の製造方法 次に上記層状複水酸化物から水処理材を作製する方法に
ついて説明する。本発明の水処理材は、水に含まれるア
ルカリ金属、アルカリ土類金属、鉛、亜鉛、アルミニウ
ム、マンガン、リン等の金属、或いはフミン物質のよう
な有機物の陰イオン等のヒトの健康上有害な物質を主と
して除去するのに適する吸着材である。パイロオーライ
ト型の構造を有する層状複水酸化物は、粘土鉱物の一種
であって水膨潤性があり、粒子となった場合、粒子間の
凝集性があるため、上記[a]の方法で合成された複水酸
化物をそのまま吸着用カラムに充填して有害物質を含む
水を通すと、複水酸化物が水で膨潤して凝集体となり、
カラムの通水抵抗が上昇し、吸着材として適さない。先
ず上記[a]の方法で合成された複水酸化物である層状複
水酸化物の平均粒径が1〜250μm、好ましくは数μ
m〜数十μmの粒子を用意する。具体的には上述した乾
燥後の結晶体は、通常凝集しているため、粉砕機で粉砕
した後、篩いを用いて粒径の揃った上記平均粒径の範囲
内の層状複水酸化物粒子を用意する。平均粒径が250
μmを越えると有害物質の吸着性能が低下し、1μm未
満であると疎水性高分子の多孔質体に担持しても水処理
時に多孔質体から容易に層状複水酸化物粒子が抜け落ち
る不具合がある。
[B] Method for Producing a Water Treatment Material Next, a method for producing a water treatment material from the layered double hydroxide will be described. The water treatment material of the present invention is harmful to human health such as alkali metals, alkaline earth metals, metals such as lead, zinc, aluminum, manganese, and phosphorus contained in water, or organic anions such as humic substances. It is an adsorbent suitable for mainly removing important substances. The layered double hydroxide having a pyroaurite-type structure is a kind of clay mineral and has water swelling properties. When the synthesized double hydroxide is packed directly into the adsorption column and water containing harmful substances is passed, the double hydroxide swells with water to form aggregates,
The water flow resistance of the column increases, making it unsuitable as an adsorbent. First, the layered double hydroxide which is a double hydroxide synthesized by the method [a] has an average particle size of 1 to 250 μm, preferably several μm.
Prepare particles of m to several tens of μm. Specifically, the above-mentioned dried crystal is usually agglomerated, and after being pulverized by a pulverizer, layered double hydroxide particles within the range of the average particle diameter uniformed using a sieve. Prepare Average particle size 250
Above μm, the ability to adsorb harmful substances is reduced. If it is less than 1 μm, the layered double hydroxide particles easily fall off from the porous body during water treatment even if it is carried on a porous body of a hydrophobic polymer. is there.

【0015】図2(a)に示すように、次いで酢酸セル
ロース等のセルロース誘導体、カルボン酸、キトサン等
の疎水性高分子の粉末13をアセトン、アセトニトリル
等の上記疎水性高分子の良溶媒14に添加・攪拌するこ
とにより溶解して容器15に貯える。疎水性高分子の添
加割合は良溶媒の5〜80重量%が好ましい。5重量%
未満では担体を固定化しにくく、また80重量%を越え
ると吸着性能が低下するおそれがある。図2(b)に示
すように、疎水性高分子が溶解した溶液16に上記平均
粒径の層状複水酸化物粒子17を添加・攪拌して混合
し、複水酸化物粒子を均一に分散させる。複水酸化物粒
子の添加割合は上記溶液の5〜30重量%が好ましい。
5重量%未満では有害物質の吸着性能が低下し、また3
0重量%を越えると通水抵抗が上昇する不都合がある。
次に図2(c)又は(d)に示すように、層状複水酸化
物粒子が分散した溶液18を攪拌しながら大気圧下、乾
燥するか、或いは層状複水酸化物粒子が分散した溶液1
8を攪拌しながら上記疎水性高分子の貧溶媒19に滴下
する。このとき攪拌速度を調整することにより、また貧
溶媒の種類を変えることにより、溶液の相転換を実現し
て種々の疎水性高分子からなる多孔質体20を作製する
ことができる。疎水性高分子の貧溶媒としては、ヘキサ
ン、エタノール、空気等が挙げられる。例えば、酢酸セ
ルロースを用いて多孔質体を作る場合、無攪拌でヘキサ
ン中に滴下したときには平均粒径が約2mmの球形粒子
の多孔質体が形成され、攪拌しながらヘキサン中に滴下
したときには平均粒径が500μm以下の微粒子状の多
孔質体が形成される。また貧溶媒にエタノールを用いる
と、繊維状(ヘチマ状)の多孔質体が形成される。更に
貧溶媒に空気を用いて、攪拌しながら空気中で平板など
の上に滴下すると、平板状の多孔質体が形成される。こ
の多孔質体の形成と同時に、本発明の鉄系複水酸化物粒
子は多孔質体の内部に固定され、担持される。
As shown in FIG. 2 (a), a powder 13 of a hydrophobic polymer such as a cellulose derivative such as cellulose acetate, carboxylic acid or chitosan is then added to a good solvent 14 of the hydrophobic polymer such as acetone or acetonitrile. It is dissolved by addition and stirring and stored in the container 15. The proportion of the hydrophobic polymer added is preferably 5 to 80% by weight of the good solvent. 5% by weight
If the amount is less than the above, it is difficult to immobilize the carrier, and if it exceeds 80% by weight, the adsorption performance may decrease. As shown in FIG. 2 (b), the layered double hydroxide particles 17 having the above average particle size are added to a solution 16 in which a hydrophobic polymer is dissolved and mixed by stirring, so that the double hydroxide particles are uniformly dispersed. Let it. The addition ratio of double hydroxide particles is preferably 5 to 30% by weight of the above solution.
If the content is less than 5% by weight, the adsorption performance of harmful substances decreases, and
If it exceeds 0% by weight, there is a disadvantage that water flow resistance increases.
Next, as shown in FIG. 2C or 2D, the solution 18 in which the layered double hydroxide particles are dispersed is dried under atmospheric pressure while stirring, or the solution in which the layered double hydroxide particles are dispersed. 1
8 is added dropwise to the poor solvent 19 of the hydrophobic polymer while stirring. At this time, the phase change of the solution is realized by adjusting the stirring speed and by changing the kind of the poor solvent, whereby the porous body 20 made of various hydrophobic polymers can be produced. Hexane, ethanol, air and the like can be mentioned as poor solvents for hydrophobic polymers. For example, when making a porous body using cellulose acetate, when dropped into hexane without stirring, a porous body of spherical particles having an average particle size of about 2 mm is formed, and when dropped into hexane with stirring, an average A fine-particle porous body having a particle size of 500 μm or less is formed. When ethanol is used as the poor solvent, a fibrous (loofah) porous body is formed. Further, when air is used as a poor solvent and the mixture is dropped on a flat plate or the like in the air with stirring, a flat porous body is formed. Simultaneously with the formation of the porous body, the iron-based double hydroxide particles of the present invention are fixed and supported inside the porous body.

【0016】最後に図2(e)に示すように、多孔質体
を蒸留水で洗浄し、乾燥する。必要により粉砕して所望
の粒径の多孔質体にして本発明の水処理材20が得られ
る。この多孔質体からなる水処理材の拡大した断面図を
図3(a)に、水処理材を模式的に表した図を図3
(b)にそれぞれ示す。鉄系複水酸化物を粒子の形態で
疎水性高分子からなる多孔質体の内部に固定することに
より、鉄系複水酸化物粒子を多孔質体の担体中に分散で
きる。これにより水処理時に上記鉄系複水酸化物の膨潤
による複水酸化物粒子同士の凝集が防止され、かつ担体
が疎水性のある多孔質体であるため、通水抵抗は低減さ
れ、カラム内部の水圧の上昇を低減できる。
Finally, as shown in FIG. 2E, the porous body is washed with distilled water and dried. If necessary, the water treatment material 20 of the present invention can be obtained by pulverizing the mixture into a porous body having a desired particle size. FIG. 3A is an enlarged cross-sectional view of the water treatment material made of the porous body, and FIG. 3 is a diagram schematically showing the water treatment material.
(B) shows each. By fixing the iron-based double hydroxide in the form of particles inside a porous body made of a hydrophobic polymer, the iron-based double hydroxide particles can be dispersed in a porous carrier. This prevents aggregation of the double hydroxide particles due to swelling of the iron-based double hydroxide during water treatment, and reduces the water flow resistance because the carrier is a hydrophobic porous body. Water pressure rise can be reduced.

【0017】[c] 水処理材の使用方法 本発明の水処理材の使用方法としては、従来の吸着材と
同様に回分(バッチ)法とカラムを用いた通液法があ
る。回分法は被処理水を所定の容器又は槽に貯えてお
き、そこに水処理材を入れて、水処理材を被処理水に十
分に接触させる方法である。処理後、水処理材と被処理
水とは固液分離される。カラムを用いた通液法は、図4
(a)に示すように多孔質体からなる水処理材20をカ
ラム21に所定の高さとなるように充填しておき、被処
理水22を送液ポンプ23により通水する。図4(b)
に示すように水処理材20はその上面及び下面をろ紙2
4とメッシュ25により挟んで固定することが好まし
い。
[C] Method of Using Water Treatment Material As a method of using the water treatment material of the present invention, there are a batch (batch) method and a flow-through method using a column as in the case of the conventional adsorbent. The batch method is a method in which water to be treated is stored in a predetermined container or tank, a water treatment material is put in the container, and the water treatment material is sufficiently brought into contact with the water to be treated. After the treatment, the water treatment material and the water to be treated are solid-liquid separated. The flow-through method using a column is shown in FIG.
As shown in (a), a water treatment material 20 made of a porous material is packed in a column 21 so as to have a predetermined height, and water to be treated 22 is passed by a liquid feed pump 23. FIG. 4 (b)
As shown in FIG.
It is preferable to fix it by sandwiching between 4 and mesh 25.

【0018】[d] 水処理材の有害物質吸着のメカニズム 本発明のパイロオーライト型の構造を有する結晶化した
層状の鉄系複水酸化物の有害物質吸着のメカニズムを、
鉛除去を例にして述べる。本発明の鉄系複水酸化物の水
処理材をカラムに充填し、pH調整によっても除去でき
ない程度の100ppb未満の低濃度の鉛が溶存してい
る水溶液をこのカラムに通水した場合、水処理材と鉛水
溶液の接触時間が短いにもかかわらず高い除去性能を有
する。このことは、図5に示すように、鉛(Pb)は吸
着材20の外表面で除去されているものと考えられる。
即ち、パイロオーライト型の化合物は層状骨格構造の表
面に水酸基(OH)を有しており、この水酸基のプロト
ン(H+)と鉛イオン(Pb2+)との間のイオン交換に
より鉛が除去されると考えられる。この吸着様式は図5
に示したような単座配位(O−Pb+)と二座配位(O
−Pb−O)の2種類の形態が考えられ、いずれも鉄イ
オン(Fe3+)の近傍に吸着するものと考えられる。
[D] Mechanism of Adsorption of Hazardous Substances by Water Treatment Material The mechanism of harmful substance adsorption of the crystallized layered iron-based double hydroxide having a pyroaurite structure of the present invention is as follows.
The removal of lead will be described as an example. When the column is filled with the iron-based double hydroxide water treating material of the present invention, and an aqueous solution containing a low concentration of lead of less than 100 ppb that cannot be removed even by pH adjustment is passed through this column, High removal performance despite the short contact time between the treatment material and the aqueous lead solution. This is considered that lead (Pb) is removed on the outer surface of the adsorbent 20, as shown in FIG.
That is, the pyroaulite type compound has a hydroxyl group (OH) on the surface of the layered skeletal structure, and lead is exchanged between a proton (H + ) of the hydroxyl group and a lead ion (Pb 2+ ) by ion exchange. It is thought to be removed. This adsorption mode is shown in FIG.
Monodentate (O-Pb + ) and bidentate (O
-Pb-O) are considered, both of which are considered to be adsorbed in the vicinity of iron ions (Fe 3+ ).

【0019】図6は100ppb以上の高濃度の鉛が溶
存している溶液を同様にカラムに通水した場合の例を示
す。パイロオーライト型化合物は、鉛水溶液中でその骨
格構造の一部(Mg2+,Fe3+)が溶け出してpHを6
〜9付近のアルカリ側に緩衝する機能(水処理材の微溶
解機能)を有する。この際、水溶液中には鉄やマグネシ
ウムの水酸化物(Fe(OH)3,Mg(OH)2)が生成さ
れる。pHが上昇することによって、鉛は水酸化物(P
b(OH)2)を形成し沈殿物となって除去される。同時
に水溶液中に生成するMg(OH)2やFe(OH)3の凝集
作用によっても鉛は除去される。凝集体はパイロオーラ
イト型化合物の表面水酸基に吸着するものと考えられ
る。この凝集作用は速度が遅いことから、高速除去の場
合にはその寄与は小さいと考えられる。例えば鉛給水管
の使用によって水道水中に含まれる鉛濃度は数十ppb
といわれているが、突発的な事故により給水管中に滞留
していた鉛が高濃度に流出した場合にも、本発明の水処
理材は有効に機能する。以上のように、本発明の水処理
材は水処理材表面に鉛を捕捉する交換性のプロトン
(水酸基)を有する難溶性の層状結晶化水酸化物であ
り、水処理材骨格の微溶解によりアルカリ雰囲気を形
成し、鉛の沈殿・凝集除去作用を発現する。
FIG. 6 shows an example in which a solution containing a high concentration of lead of 100 ppb or more is similarly passed through a column. Pyroaulite-type compounds have a pH of 6 when a part of their skeleton structure (Mg 2+ , Fe 3+ ) is dissolved in an aqueous lead solution.
It has a function of buffering the alkali side near to 9 (a function of finely dissolving the water treatment material). At this time, hydroxides of iron and magnesium (Fe (OH) 3 , Mg (OH) 2 ) are generated in the aqueous solution. As the pH rises, lead becomes hydroxide (P
b (OH) 2 ) is formed and removed as a precipitate. At the same time, lead is also removed by the cohesive action of Mg (OH) 2 and Fe (OH) 3 generated in the aqueous solution. It is considered that the aggregate adsorbs to the surface hydroxyl groups of the pyroaulite type compound. Since this coagulation action is slow, it is considered that its contribution is small in the case of high-speed removal. For example, the concentration of lead contained in tap water is several tens of ppb
It is said that the water treatment material of the present invention functions effectively even when lead retained in a water supply pipe flows out at a high concentration due to a sudden accident. As described above, the water treatment material of the present invention is a sparingly soluble layered crystallized hydroxide having an exchangeable proton (hydroxyl group) that traps lead on the surface of the water treatment material. It forms an alkaline atmosphere and exhibits the effect of removing and coagulating lead.

【0020】[0020]

【実施例】次に本発明の実施例を比較例とともに述べ
る。 <実施例1>100mlの蒸留水中に0.0375モル
のMgCl2と0.0125モルのFeCl3を添加混合
してMg/Feのモル比が3の原料水溶液を調製した。
この原料水溶液を1000rpmの回転速度で強く攪拌
しながら、10重量%のNaOH水溶液を原料水溶液の
pHが13になるまで2ml/分の割合で滴下した。原
料水溶液はNaOH水溶液の滴下によりゲル化した。こ
のゲル化した室温の液を空気中で更に同一回転速度で1
0時間攪拌した。この液をNo.1のろ紙でろ過した後、ろ
別した固形分を大量の蒸留水で洗浄し120℃で24時
間乾燥して鉄系複水酸化物を得た。
Next, examples of the present invention will be described together with comparative examples. Example 1 0.0375 mol of MgCl 2 and 0.0125 mol of FeCl 3 were added to 100 ml of distilled water and mixed to prepare a raw material aqueous solution having a Mg / Fe molar ratio of 3.
While strongly stirring the raw material aqueous solution at a rotation speed of 1000 rpm, a 10% by weight NaOH aqueous solution was dropped at a rate of 2 ml / min until the pH of the raw material aqueous solution became 13. The raw material aqueous solution was gelled by dropping the NaOH aqueous solution. The gelled room temperature liquid is further dried in air at the same rotation speed for 1 hour.
Stirred for 0 hours. After this liquid was filtered through No. 1 filter paper, the solids separated by filtration were washed with a large amount of distilled water and dried at 120 ° C. for 24 hours to obtain an iron-based double hydroxide.

【0021】<実施例2>100mlの蒸留水中に0.
0125モルのMgCl2と0.0125モルのFeC
3を添加混合してMg/Feのモル比が1の原料水溶
液を調製した。この原料水溶液を実施例1と同じ回転速
度で強く攪拌しながら、10重量%のNaOH水溶液を
原料水溶液のpHが13になるまで2ml/分の割合で
滴下した。原料水溶液はNaOH水溶液の滴下によりゲ
ル化した。このゲル化した室温の液に空気中で出力20
0Wで30分間超音波を印加した。超音波を印加した液
を実施例1と同一のろ紙でろ過した後、ろ別した固形分
を実施例1と同様に洗浄し乾燥して鉄系複水酸化物を得
た。
<Example 2> 0.2 ml of distilled water was added in 100 ml of distilled water.
0125 mol MgCl 2 and 0.0125 mol FeC
l 3 was added and mixed to prepare a raw material aqueous solution having a Mg / Fe molar ratio of 1. While strongly stirring this raw material aqueous solution at the same rotation speed as in Example 1, a 10% by weight aqueous NaOH solution was dropped at a rate of 2 ml / min until the pH of the raw material aqueous solution became 13. The raw material aqueous solution was gelled by dropping the NaOH aqueous solution. The gelled room temperature liquid has an output of 20 in air.
Ultrasonic waves were applied at 0 W for 30 minutes. After the liquid to which the ultrasonic wave was applied was filtered through the same filter paper as in Example 1, the solids filtered off were washed and dried in the same manner as in Example 1 to obtain an iron-based double hydroxide.

【0022】<比較例1>実施例2と同じMg/Feの
モル比が1の原料水溶液を実施例1と同じ回転速度で強
く攪拌しながら、10重量%のNaOH水溶液を原料水
溶液のpHが10になるまで2ml/分の割合で滴下し
た。この滴下によりゲル化した原料水溶液に実施例2と
同様に30分間超音波を印加した。超音波を印加した液
を実施例1と同一のろ紙でろ過した後、ろ別した固形分
を実施例1と同様に洗浄し乾燥して鉄系複水酸化物を得
た。 <比較例2>原料水溶液のMg/Feのモル比を3した
以外は、比較例1と同様にして鉄系複水酸化物を得た。
<Comparative Example 1> A 10 wt% NaOH aqueous solution was added to a raw material aqueous solution having a pH of 1 while stirring the raw material aqueous solution having the same Mg / Fe molar ratio as in Example 2 at the same rotation speed as in Example 1. The solution was dropped at a rate of 2 ml / min until it reached 10. Ultrasonic waves were applied to the aqueous solution of the raw material gelled by the dropping in the same manner as in Example 2 for 30 minutes. After the liquid to which the ultrasonic wave was applied was filtered through the same filter paper as in Example 1, the solids filtered off were washed and dried in the same manner as in Example 1 to obtain an iron-based double hydroxide. <Comparative Example 2> An iron-based double hydroxide was obtained in the same manner as in Comparative Example 1, except that the molar ratio of Mg / Fe in the aqueous material solution was changed to 3.

【0023】<実施例3>実施例1と同じMg/Feの
モル比が3の原料水溶液を実施例1と同じ回転速度で強
く攪拌しながら、10重量%のNaOH水溶液を原料水
溶液のpHが13になるまで2ml/分の割合で滴下し
た。この滴下によりゲル化した原料水溶液に実施例2と
同様に5分間超音波を印加した。超音波を印加した液を
実施例1と同一のろ紙でろ過した後、ろ別した固形分を
実施例1と同様に洗浄し乾燥して鉄系複水酸化物を得
た。 <実施例4>超音波の印加時間を60分間にした以外
は、実施例3と同様にして鉄系複水酸化物を得た。
<Example 3> A 10 wt% NaOH aqueous solution was added to a raw material aqueous solution having the same pH as in Example 1 while strongly stirring the raw material aqueous solution having a molar ratio of Mg / Fe of 3 at the same rotation speed as in Example 1. The solution was dropped at a rate of 2 ml / min until it became 13. Ultrasonic waves were applied to the aqueous solution of the raw material gelled by the dropping for 5 minutes in the same manner as in Example 2. After the liquid to which the ultrasonic wave was applied was filtered through the same filter paper as in Example 1, the solids filtered off were washed and dried in the same manner as in Example 1 to obtain an iron-based double hydroxide. Example 4 An iron-based double hydroxide was obtained in the same manner as in Example 3, except that the application time of the ultrasonic wave was changed to 60 minutes.

【0024】<比較評価>実施例1〜4及び比較例1,
2の各鉄系複水酸化物の生成相を銅のKα線を光源とす
るX線回折法により調べた。その結果を図7に示す。図
7の曲線のピーク値が高い程、結晶化度が高いことを示
す。X線回折と元素分析の結果から各鉄系複水酸化物の
生成相はMg2+ 6Fe3+ 2(OH)16(CO3 2-)・3H2O又
はMg2+ 4Fe3+ 4(OH)16(CO3 2-)2・3H2Oであっ
た。また図7から明らかなように、10時間強攪拌した
実施例1の結晶化度はで5分間超音波を印加した実施例
3の結晶化度とほぼ同じであった。60分間超音波を印
加した実施例4の結晶化度が最も高かった。これに対し
てpHが10で超音波を加えた比較例1及び2の結晶化
度は低かった。
<Comparative Evaluation> Examples 1 to 4 and Comparative Examples 1 and 2
The formation phase of each iron-based double hydroxide of No. 2 was examined by X-ray diffraction using Kα radiation of copper as a light source. FIG. 7 shows the result. The higher the peak value of the curve in FIG. 7, the higher the crystallinity. From the results of X-ray diffraction and elemental analysis, the formation phase of each iron-based double hydroxide was Mg 2+ 6 Fe 3+ 2 (OH) 16 (CO 3 2- ) .3H 2 O or Mg 2+ 4 Fe 3+ 4 (OH) 16 (CO 3 2-) was 2 · 3H 2 O. In addition, as apparent from FIG. 7, the crystallinity of Example 1 in which stirring was performed for 10 hours was almost the same as that of Example 3 in which ultrasonic waves were applied for 5 minutes. The crystallinity of Example 4 in which ultrasonic waves were applied for 60 minutes was the highest. On the other hand, the crystallinity of Comparative Examples 1 and 2 where the ultrasonic wave was applied at pH 10 was low.

【0025】<実施例5>原料水溶液のMg/Feのモ
ル比を2にした以外は、実施例2と同様にして鉄系複水
酸化物を得た。得られた鉄系複水酸化物粒子を、10m
lのアセトン中に酢酸セルロース0.5gを溶解した溶
液に添加して1時間程度攪拌し、鉄系複水酸化物粒子を
均一に分散させた。この分散により高い粘性のある液と
なった。この溶液を攪拌しながらヘキサン中に滴下し
た。滴下により酢酸セルロースが相分離し、平均粒径約
2mmの粒子状の多孔質の担体となって、この中に鉄系
複水酸化物粒子が分散状態で固定された。この多孔質体
を蒸留水で洗浄した後120℃で24時間乾燥した。乾
燥した多孔質体を粉砕機で平均粒径が250μm以下に
なるように粉砕して水処理材を得た。 <比較例3>蒸留水にNaOH水溶液を添加混合してp
Hを10に調整した液を比較例3の水処理材とした。
Example 5 An iron-based double hydroxide was obtained in the same manner as in Example 2 except that the molar ratio of Mg / Fe in the raw material aqueous solution was set to 2. The obtained iron-based double hydroxide particles were
The solution was added to a solution prepared by dissolving 0.5 g of cellulose acetate in 1 l of acetone, and stirred for about 1 hour to uniformly disperse the iron-based double hydroxide particles. This dispersion resulted in a highly viscous liquid. This solution was dropped into hexane with stirring. Cellulose acetate was phase-separated by dropping, and became a particulate porous carrier having an average particle diameter of about 2 mm, in which iron-based double hydroxide particles were fixed in a dispersed state. The porous body was washed with distilled water and dried at 120 ° C. for 24 hours. The dried porous material was pulverized with a pulverizer so that the average particle size became 250 μm or less, to obtain a water treatment material. <Comparative Example 3> An aqueous NaOH solution was added to distilled water and mixed.
The liquid whose H was adjusted to 10 was used as the water treatment material of Comparative Example 3.

【0026】<比較例4>平均粒径250μm以下の不
定形な粉砕炭からなる水処理用活性炭を比較例4の水処
理材とした。 <比較例5>高濃度の鉛吸着材として知られている、平
均粒径250μm以下の不定形な試薬からなるゲータイ
ト(FeO(OH))を比較例5の水処理材とした。 <比較例6>平均粒径0.3〜0.6mmの球形アクリ
ル系弱酸型の陽イオン交換樹脂(IRA-76)を比較例6の
水処理材とした。
<Comparative Example 4> Activated carbon for water treatment consisting of amorphous pulverized carbon having an average particle size of 250 μm or less was used as the water treatment material of Comparative Example 4. <Comparative Example 5> Goethite (FeO (OH)), which is an amorphous reagent having an average particle size of 250 μm or less, which is known as a high-concentration lead adsorbent, was used as the water treatment material of Comparative Example 5. Comparative Example 6 A spherical acrylic weak acid type cation exchange resin (IRA-76) having an average particle diameter of 0.3 to 0.6 mm was used as the water treatment material of Comparative Example 6.

【0027】<鉛吸着比較試験その1>回分法により鉛
の吸着試験を行った。即ち、硝酸鉛を蒸留水に溶解し鉛
濃度が1ppmの試験液を調製した。この試験液を5本
の試験管に入れ、実施例5及び比較例3〜6の各水処理
材を各試験管の試験液にそれぞれ0.5重量%の割合で
添加した後、各試験管を24時間振とうした。振とう3
0分、3時間、24時間毎に各試験管から試験液を採取
し、鉛の溶存濃度をフレームレス原子吸光分析により求
め、その値から鉛の除去率を算出した。その結果を図8
に示す。図8から明らかなように、比較例3の水処理材
(pH10に調整した水)は溶存鉛が水酸化鉛となり、
30分後に約70%、3時間及び24時間後に約80%
鉛を除去できるが、20%程度の鉛が残存する。また比
較例4の水処理材(水処理用活性炭)は24時間後に約
95%鉛を除去できるが、数%の鉛が残存する。比較例
5及び6の水処理材は24時間後でもそれぞれ40%及
び80%の除去率しかなかった。これらに対して、実施
例5の水処理材は30分後に約70%、3時間後に約9
5%鉛を除去でき、24時間後には100%鉛を除去で
きた。
<Lead adsorption comparative test # 1> A lead adsorption test was conducted by a batch method. That is, lead nitrate was dissolved in distilled water to prepare a test solution having a lead concentration of 1 ppm. This test solution was put into five test tubes, and each of the water treatment materials of Example 5 and Comparative Examples 3 to 6 was added to the test solution in each test tube at a ratio of 0.5% by weight. Was shaken for 24 hours. Shaking 3
A test solution was collected from each test tube every 0 minutes, 3 hours, and 24 hours, the dissolved concentration of lead was determined by flameless atomic absorption spectrometry, and the lead removal rate was calculated from the value. The result is shown in FIG.
Shown in As is clear from FIG. 8, in the water treatment material of Comparative Example 3 (water adjusted to pH 10), the dissolved lead becomes lead hydroxide,
About 70% after 30 minutes, about 80% after 3 hours and 24 hours
Lead can be removed, but about 20% of the lead remains. In the water treatment material of Comparative Example 4 (activated carbon for water treatment), about 95% of lead can be removed after 24 hours, but several percent of lead remains. The water treatment materials of Comparative Examples 5 and 6 had removal rates of only 40% and 80%, respectively, even after 24 hours. On the other hand, the water treatment material of Example 5 was about 70% after 30 minutes and about 9% after 3 hours.
5% lead was removed, and 100% lead was removed 24 hours later.

【0028】<実施例6>原料水溶液のMg/Feのモ
ル比を1にした以外は、実施例5と同様にして平均粒径
が250μm以下の水処理材を得た。 <鉛吸着比較試験その2>カラムを用いた通液法により
鉛の吸着試験を行った。即ち、実施例5,6及び比較例
4の各水処理材1.5gを内径36mmの3本のカラム
にそれぞれ充填した。このときの充填層の高さはすべて
のカラムで同一の約2mmであった。現在の水道水の許
容鉛濃度の上限値に相当する55ppbの鉛が溶存した
試験液を硝酸鉛を蒸留水に溶解することにより用意し
た。この試験液を送液ポンプを用いてSv(空間速度)
150/分で各カラムに連続的に通した。Svは流量/
カラム容量であって、150/分の場合、吸着材の15
0倍の体積の試験液が1分間に流れることを意味する。
カラムを流通した試験液を所定時間毎に採取し、鉛の溶
存濃度をフレームレス原子吸光分析により求めた。その
結果を図9に示す。図9から明らかなように比較例4の
水処理材(水処理用活性炭)ではカラムの出口における
鉛濃度が初期濃度の55ppbと殆ど変らない約50p
pbであったのに対して、実施例5及び6の水処理材は
カラムの出口における鉛濃度は5ppb以下であり、5
0リットル試験液を通しても出口における鉛濃度はほぼ
同程度であった。
<Example 6> A water treatment material having an average particle size of 250 µm or less was obtained in the same manner as in Example 5, except that the molar ratio of Mg / Fe in the raw material aqueous solution was set to 1. <Lead adsorption comparative test 2> A lead adsorption test was performed by a liquid passing method using a column. That is, 1.5 g of each of the water treatment materials of Examples 5, 6 and Comparative Example 4 were packed in three columns having an inner diameter of 36 mm. The height of the packed bed at this time was about 2 mm, which was the same in all columns. A test solution in which 55 ppb of lead corresponding to the current upper limit of the allowable lead concentration of tap water was dissolved was prepared by dissolving lead nitrate in distilled water. Sv (space velocity) of this test solution using a liquid sending pump
Each column was passed continuously at 150 / min. Sv is flow rate /
When the column capacity is 150 / min, 15
This means that 0 times the volume of the test liquid flows in one minute.
The test liquid flowing through the column was collected at predetermined intervals, and the dissolved concentration of lead was determined by flameless atomic absorption spectrometry. FIG. 9 shows the result. As is clear from FIG. 9, in the water treatment material of Comparative Example 4 (activated carbon for water treatment), the lead concentration at the outlet of the column was about 50 p, which was almost the same as the initial concentration of 55 ppb.
pb, the water treatment materials of Examples 5 and 6 had a lead concentration of 5 ppb or less at the outlet of the column,
The lead concentration at the outlet was almost the same even through the 0 liter test solution.

【0029】[0029]

【発明の効果】以上述べたように、本発明の鉄系複水酸
化物の製造方法によれば、原料水溶液を空気中で強く攪
拌しながら、或いは空気中で超音波を加えながらpHを
13以上にすることにより、従来のような炭酸塩を添加
することなく、空気中から炭酸ガスを溶け込み、炭酸イ
オンを層架橋アニオンとして取込むとともに、Mgイオ
ンとFeイオンが均一に分散される。これにより従来の
水熱合成法によらずに比較的短時間で簡便に結晶化した
鉄系複水酸化物を合成することができる。また本発明の
水処理材の製造方法によれば、疎水性高分子からなる多
孔質体の内部に層状複水酸化物粒子を担持させることが
でき、これにより複水酸化物をカラムに充填して水処理
した際にカラムの通水抵抗を上昇させずに、水に含まれ
る有害物質を高い吸着率で高速に吸着することができ
る。
As described above, according to the method for producing an iron-based double hydroxide of the present invention, the pH of a raw material aqueous solution is adjusted to 13 while stirring vigorously in air or applying ultrasonic waves in air. As described above, the carbon dioxide gas is dissolved from the air and the carbonate ion is taken in as the layer cross-linking anion without adding the carbonate as in the related art, and the Mg ion and the Fe ion are uniformly dispersed. Thus, the crystallized iron-based double hydroxide can be synthesized easily in a relatively short time without using the conventional hydrothermal synthesis method. Further, according to the method for producing a water treatment material of the present invention, layered double hydroxide particles can be supported inside a porous body made of a hydrophobic polymer, whereby the double hydroxide is filled in a column. The harmful substances contained in the water can be quickly adsorbed at a high adsorption rate without increasing the water flow resistance of the column when the water treatment is performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鉄系複水酸化物の製造工程を示す図。FIG. 1 is a view showing a production process of an iron-based double hydroxide of the present invention.

【図2】本発明の水処理材の製造工程を示す図。FIG. 2 is a view showing a manufacturing process of the water treatment material of the present invention.

【図3】本発明の鉄系複水酸化物粒子が疎水性高分子の
多孔質体中に担持されている状況を示す図。
FIG. 3 is a view showing a state where the iron-based double hydroxide particles of the present invention are supported in a porous body of a hydrophobic polymer.

【図4】カラムを用いた通液法により水処理材で有害物
質を吸着する状況を示す図。
FIG. 4 is a diagram showing a situation in which harmful substances are adsorbed by a water treatment material by a liquid passing method using a column.

【図5】本発明の水処理材が低濃度の鉛水溶液中の鉛を
捕捉する状況を示す図。
FIG. 5 is a diagram showing a situation in which the water treatment material of the present invention captures lead in a low-concentration aqueous lead solution.

【図6】本発明の水処理材が高濃度の鉛水溶液中の鉛を
捕捉する状況を示す図。
FIG. 6 is a view showing a situation in which the water treatment material of the present invention captures lead in a high-concentration aqueous lead solution.

【図7】実施例1〜4及び比較例1,2の鉄系複水酸化
物の結晶化度を示すX線回折図。
FIG. 7 is an X-ray diffraction diagram showing the crystallinity of the iron-based double hydroxides of Examples 1 to 4 and Comparative Examples 1 and 2.

【図8】実施例5及び比較例3〜6の水処理材の回分法
による鉛除去率を示す図。
FIG. 8 is a view showing a lead removal rate of the water treatment materials of Example 5 and Comparative Examples 3 to 6 by a batch method.

【図9】実施例5,6及び比較例4の水処理材の通液法
による鉛除去率を示す図。
FIG. 9 is a view showing the lead removal rates of the water treatment materials of Examples 5 and 6 and Comparative Example 4 by a liquid passing method.

【符号の説明】[Explanation of symbols]

11 攪拌機 12 超音波発生器 13 疎水性高分子粉末(酢酸セルロース) 14 疎水性高分子の良溶媒(アセトン) 16 疎水性高分子が溶解した溶液 17 層状複水酸化物粒子 19 疎水性高分子の貧溶媒(ヘキサン) 20 多孔質体からなる水処理材 21 カラム Reference Signs List 11 Stirrer 12 Ultrasonic generator 13 Hydrophobic polymer powder (cellulose acetate) 14 Good solvent for hydrophobic polymer (acetone) 16 Solution in which hydrophobic polymer is dissolved 17 Layered double hydroxide particles 19 Hydrophobic polymer Poor solvent (hexane) 20 Water treatment material composed of porous material 21 Column

フロントページの続き Fターム(参考) 4D024 AA04 AB04 AB12 AB15 AB17 BA11 BA12 BA14 BB08 4G002 AA06 AA08 AB04 AD02 AE05 4G066 AA13D AA16A AA16B AA17B AA27B AA37A AA43B AC02C AE02A AE19C BA09 BA22 CA41 CA46 DA08 FA05 FA31 FA37 Continued on front page F-term (reference) 4D024 AA04 AB04 AB12 AB15 AB17 BA11 BA12 BA14 BB08 4G002 AA06 AA08 AB04 AD02 AE05 4G066 AA13D AA16A AA16B AA17B AA27B AA37A AA43B AC02C AE02A AE19C BA09 FA22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム又はカルシウムであるアル
カリ土類金属をMとするとき、Mに対するFeのモル比
(M/Fe)が1から4の間になるようにアルカリ土類
金属塩水溶液と三価の鉄塩水溶液を混合した原料水溶液
を空気中で強く攪拌しながら、或いは空気中で前記原料
水溶液に超音波を加えながらpH13以上になるまでア
ルカリ水溶液を徐々に添加して前記原料水溶液をゲル状
態を経て結晶化することにより、パイロオーライト型の
構造を有する次の式(1)で表される層状複水酸化物を
得ることを特徴とする鉄系複水酸化物の製造方法。 M2+ (8-x)Fe3+ x(OH)16(CO3 2-)x/2・mH2O …… (1) 但し、0<x≦6、0<m≦5である。
When an alkaline earth metal, which is magnesium or calcium, is M, an aqueous solution of an alkaline earth metal salt and a trivalent metal are used such that the molar ratio of Fe to M (M / Fe) is between 1 and 4. The raw material aqueous solution obtained by mixing the raw material aqueous solution mixed with the iron salt aqueous solution is strongly added in the air, or while the ultrasonic wave is applied to the raw material aqueous solution in the air until the pH becomes 13 or more, the raw material aqueous solution is gelled. And obtaining a layered double hydroxide represented by the following formula (1) having a pyroaurite structure by crystallizing through: M 2+ (8-x) Fe 3+ x (OH) 16 (CO 3 2-) x / 2 · mH 2 O ...... (1) where a 0 <x ≦ 6,0 <m ≦ 5.
【請求項2】 疎水性高分子の粉末をその良溶媒に溶解
した溶液に請求項1記載の平均粒径が1〜250μmの
層状複水酸化物粒子を分散した後、 前記層状複水酸化物粒子が分散した溶液を攪拌しながら
大気圧下、乾燥するか、或いは前記層状複水酸化物粒子
が分散した溶液を攪拌しながら又は無攪拌で前記疎水性
高分子の貧溶媒に滴下して前記疎水性高分子からなる多
孔質体を生成するとともに前記多孔質体の内部に前記層
状複水酸化物粒子を担持させることを特徴とする水処理
材の製造方法。
2. The layered double hydroxide according to claim 1, wherein said layered double hydroxide particles having an average particle diameter of 1 to 250 μm are dispersed in a solution of a hydrophobic polymer powder dissolved in a good solvent. The solution in which the particles are dispersed is dried under atmospheric pressure while stirring, or the solution in which the layered double hydroxide particles are dispersed is stirred or stirred and dropped into the hydrophobic polymer poor solvent with stirring. A method for producing a water treatment material, comprising: producing a porous body made of a hydrophobic polymer; and supporting the layered double hydroxide particles inside the porous body.
【請求項3】 疎水性高分子からなる多孔質体の内部に
パイロオーライト型の構造を有する次の式(1)で表さ
れる層状複水酸化物粒子を担持させてなる水処理材。 M2+ (8-x)Fe3+ x(OH)16(CO3 2-)x/2・mH2O …… (1) 但し、MはMg又はCaであり、0<x≦6、0<m≦
5である。
3. A water treatment material comprising layered double hydroxide particles having a pyroaurite structure and represented by the following formula (1) inside a porous body made of a hydrophobic polymer. M 2+ (8-x) Fe 3+ x (OH) 16 (CO 3 2 ) x / 2 · mH 2 O (1) where M is Mg or Ca, and 0 <x ≦ 6, 0 <m ≦
5
JP2000045324A 2000-02-23 2000-02-23 Method for producing iron-based double hydroxide and water treatment material using the double hydroxide Expired - Fee Related JP4439067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045324A JP4439067B2 (en) 2000-02-23 2000-02-23 Method for producing iron-based double hydroxide and water treatment material using the double hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045324A JP4439067B2 (en) 2000-02-23 2000-02-23 Method for producing iron-based double hydroxide and water treatment material using the double hydroxide

Publications (2)

Publication Number Publication Date
JP2001233619A true JP2001233619A (en) 2001-08-28
JP4439067B2 JP4439067B2 (en) 2010-03-24

Family

ID=18567928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045324A Expired - Fee Related JP4439067B2 (en) 2000-02-23 2000-02-23 Method for producing iron-based double hydroxide and water treatment material using the double hydroxide

Country Status (1)

Country Link
JP (1) JP4439067B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044443A1 (en) * 2003-11-07 2005-05-19 Kurita Water Industries Ltd. Process for producing remover and remover
JP2013500933A (en) * 2009-08-03 2013-01-10 サイトクローマ・デベロップメント・インコーポレイテッド Method
JP2015039684A (en) * 2013-08-23 2015-03-02 国立大学法人 岡山大学 Decomposition catalyst of hydrogen peroxide and ozone and method for producing the same, and decomposition method of hydrogen peroxide and ozone
CN106115790A (en) * 2016-06-24 2016-11-16 中国科学院地球化学研究所 A kind of method preparing pistomesite at high temperature under high pressure
US9566302B2 (en) 2010-02-04 2017-02-14 Opko Ireland Global Holdings, Ltd. Composition comprising mixed metal compounds and xanthan gum
US9907816B2 (en) 2006-01-31 2018-03-06 Opko Ireland Global Holdings, Ltd. Water-insoluble, iron-containing mixed metal, granular material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049181A (en) * 1973-08-31 1975-05-01
JPH0977503A (en) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd Production of metal oxide or hydroxide sol
JP4732198B2 (en) * 2006-03-10 2011-07-27 住友電気工業株式会社 Optical connecting component manufacturing method and optical connecting component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049181A (en) * 1973-08-31 1975-05-01
JPH0977503A (en) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd Production of metal oxide or hydroxide sol
JP4732198B2 (en) * 2006-03-10 2011-07-27 住友電気工業株式会社 Optical connecting component manufacturing method and optical connecting component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044443A1 (en) * 2003-11-07 2005-05-19 Kurita Water Industries Ltd. Process for producing remover and remover
JP2005138051A (en) * 2003-11-07 2005-06-02 Kurita Water Ind Ltd Removal material production method and removal material
US9907816B2 (en) 2006-01-31 2018-03-06 Opko Ireland Global Holdings, Ltd. Water-insoluble, iron-containing mixed metal, granular material
JP2013500933A (en) * 2009-08-03 2013-01-10 サイトクローマ・デベロップメント・インコーポレイテッド Method
US9566302B2 (en) 2010-02-04 2017-02-14 Opko Ireland Global Holdings, Ltd. Composition comprising mixed metal compounds and xanthan gum
JP2015039684A (en) * 2013-08-23 2015-03-02 国立大学法人 岡山大学 Decomposition catalyst of hydrogen peroxide and ozone and method for producing the same, and decomposition method of hydrogen peroxide and ozone
CN106115790A (en) * 2016-06-24 2016-11-16 中国科学院地球化学研究所 A kind of method preparing pistomesite at high temperature under high pressure

Also Published As

Publication number Publication date
JP4439067B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
AU2019201715B2 (en) Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof
Song et al. Porous vaterite and cubic calcite aggregated calcium carbonate obtained from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process
Husnain et al. Recent trends of MnO 2-derived adsorbents for water treatment: a review
Salah et al. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment
US7473369B2 (en) Methods of preparing a surface-activated titanium oxide product and of using same in water treatment processes
Yang et al. Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: kinetics, isotherms and mechanisms
JP5712131B2 (en) Zirconium phosphate particles with improved adsorption capacity and method for synthesizing the zirconium phosphate particles
Zong et al. Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes
Salehi et al. Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal
CN106458633B (en) Layered double-hydroxide for purified water
US7497952B2 (en) Methods of preparing a surface-activated titanium oxide product and of using same in water treatment processes
Zhou et al. Adsorption of Cd (II) from aqueous solutions by a novel layered double hydroxide FeMnMg-LDH
CN109414676A (en) The method for preparing the method for adsorbent material and extracting lithium from salting liquid with the material
Li et al. A composite adsorbent of ZnS nanoclusters grown in zeolite NaA synthesized from fly ash with a high mercury ion removal efficiency in solution
Kumar et al. A facile synthesis of magnetic particles sprayed gelatin embedded hydrotalcite composite for effective phosphate sorption
JP5201680B2 (en) Hydrotalcite-like granular material and method for producing the same
JP5363817B2 (en) Liquid processing apparatus and liquid processing method using hydrotalcite-like granular material
CN105008285A (en) Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same
Wu et al. Adsorptive removal of fluoride from water by granular zirconium–aluminum hybrid adsorbent: performance and mechanisms
Alnasrawi et al. Synthesis, characterization and adsorptive performance of CuMgAl-layered double hydroxides/montmorillonite nanocomposite for the removal of Zn (II) ions
JP4439067B2 (en) Method for producing iron-based double hydroxide and water treatment material using the double hydroxide
CN103303996A (en) Application of activated aluminum oxide defluorination adsorbing material with different surface features
JP6644804B2 (en) Adsorbent particles and granulated adsorbent
US4515756A (en) Process for extracting tungsten or molybdenum from solution
JP2013248555A (en) Cesium adsorbing material, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees