JP4435591B2 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
JP4435591B2
JP4435591B2 JP2004024175A JP2004024175A JP4435591B2 JP 4435591 B2 JP4435591 B2 JP 4435591B2 JP 2004024175 A JP2004024175 A JP 2004024175A JP 2004024175 A JP2004024175 A JP 2004024175A JP 4435591 B2 JP4435591 B2 JP 4435591B2
Authority
JP
Japan
Prior art keywords
group
polymer
reactive silicon
organic polymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004024175A
Other languages
Japanese (ja)
Other versions
JP2005213446A (en
Inventor
良行 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004024175A priority Critical patent/JP4435591B2/en
Publication of JP2005213446A publication Critical patent/JP2005213446A/en
Application granted granted Critical
Publication of JP4435591B2 publication Critical patent/JP4435591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Description

本発明は湿分で硬化する室温硬化性組成物に関するものである。より詳しくは、シロキサン結合を形成することによって架橋しうる反応性ケイ素含有官能基を有する有機重合体を含有する硬化性組成物に関する。   The present invention relates to a room temperature curable composition that cures with moisture. More specifically, the present invention relates to a curable composition containing an organic polymer having a reactive silicon-containing functional group that can be crosslinked by forming a siloxane bond.

反応性ケイ素基(加水分解、縮合反応することによりシロキサン結合を形成し架橋しうる反応性ケイ素含有官能基)を有する有機重合体を硬化させてシーリング材、接着剤等に使用する方法はこれまでによく知られており工業的に有用な方法である。   A method of curing an organic polymer having a reactive silicon group (reactive silicon-containing functional group capable of forming a siloxane bond by crosslinking through hydrolysis and condensation) and using it as a sealant, adhesive, etc. It is a well-known and industrially useful method.

このような化合物のうち、特に主鎖がオキシアルキレン系重合体、ポリイソブチレン系重合体、(メタ)アクリル系重合体は、室温で液状であり、かつ硬化物が低モジュラスで高伸び特性があることから、シーリング材や接着剤等へ利用されている。   Among such compounds, oxyalkylene polymers, polyisobutylene polymers, and (meth) acrylic polymers having a main chain in particular are liquid at room temperature, and cured products have low modulus and high elongation characteristics. Therefore, it is used for sealing materials and adhesives.

末端に反応性ケイ素基を有する湿分硬化性の樹脂としては、オキシアルキレン系重合体の不飽和末端基にヒドロシリル化反応により反応性ケイ素基含有化合物を導入した樹脂(特許文献1参照)、オキシアルキレン系重合体の末端水酸基と反応性ケイ素基含有イソシアネート化合物とを反応させた樹脂(特許文献2参照)等がある。   Examples of moisture curable resins having a reactive silicon group at the terminal include a resin in which a reactive silicon group-containing compound is introduced into an unsaturated terminal group of an oxyalkylene polymer by a hydrosilylation reaction (see Patent Document 1), oxy Examples thereof include a resin obtained by reacting a terminal hydroxyl group of an alkylene polymer with a reactive silicon group-containing isocyanate compound (see Patent Document 2).

これらの反応性ケイ素基含有重合体を含む組成物には、柔軟性の付与と低粘度化による良好な作業性の確保を目的に一般に各種の可塑剤や希釈溶剤が配合されるが、可塑剤は移行性があるためシーリング材に使用した場合、シーリング材表面へのブリードやシーリング目地周辺の汚染を引き起こすという問題があった。また、シーリング材表面に塗料を塗布した場合、可塑剤が塗料を汚染するという問題があった。   In general, various plasticizers and diluting solvents are blended in the composition containing these reactive silicon group-containing polymers for the purpose of imparting flexibility and ensuring good workability by reducing the viscosity. Therefore, when used as a sealing material, there is a problem that it causes bleeding on the surface of the sealing material and contamination around the sealing joint. Further, when a paint is applied to the surface of the sealing material, there is a problem that the plasticizer contaminates the paint.

同様に接着剤へ使用した場合、近年ではシックハウス問題、TVOCといった可塑剤、希釈溶剤の揮発、飛散が大きな問題となっている。   Similarly, when used for adhesives, in recent years, the sick house problem, the plasticizer such as TVOC, and the volatilization and scattering of the diluent solvent have become major problems.

これらの問題を解決する方法として、可塑剤の代わりに、直鎖状分子鎖の一方の片末端が有機基で封鎖されかつ他方の片末端が反応性ケイ素基を有するポリエーテルを用いる方法(特許文献3参照)、高分子量でかつ1分子あたりの反応性ケイ素基含有量が多いポリエーテルに、低分子量でかつ1分子あたりの反応性ケイ素基含有量が少ないポリエーテルを併せ用いる方法(特許文献4参照)、高分子量でかつ末端基あたりの反応性ケイ素基含有割合が50%以上のポリエーテルに、末端基あたりの反応性ケイ素基含有割合が50%未満のポリエーテルを併せ用いる方法(特許文献5参照)等が提案されている。   As a method for solving these problems, instead of a plasticizer, a method using a polyether having one end of a linear molecular chain blocked with an organic group and the other end having a reactive silicon group (patented) Reference 3), a method of using a polyether having a high molecular weight and a high reactive silicon group content per molecule together with a polyether having a low molecular weight and a low reactive silicon group content per molecule (Patent Literature) 4), a method of using a polyether having a high molecular weight and a reactive silicon group content of 50% or more per terminal group together with a polyether having a reactive silicon group content of less than 50% per terminal group (patent) Reference 5) has been proposed.

しかし、これらの方法においても、直鎖状分子鎖の一方の片末端が有機基で封鎖されかつ他方の片末端が反応性ケイ素基を有するポリエーテルや低分子量でかつ1分子あたりの反応性ケイ素基含有量が少ないポリエーテルを使用することにより、硬化物の架橋密度が低下し、大幅にモジュラスが低下してしまう問題が発生する。   However, even in these methods, a polyether having one end of a linear molecular chain blocked with an organic group and the other end having a reactive silicon group, or a low molecular weight reactive silicon per molecule By using a polyether having a small group content, the crosslink density of the cured product is lowered, resulting in a problem that the modulus is greatly lowered.

一方、ケイ素上に3つの加水分解性基を有する反応性ケイ素基を多く有する有機重合体単独からなる硬化物は、非常に脆くなりやすく、低伸びとなる傾向がある。また、伸びを確保するために高分子量とした場合には粘度が高くなる問題がある。
特開平3−72527号公報 特開平3−47825号公報 特開平4−57850号公報 特開平5−59267号公報 特開平9−95609号公報
On the other hand, a cured product composed of an organic polymer alone having many reactive silicon groups having three hydrolyzable groups on silicon tends to be very fragile and tends to have low elongation. In addition, when the molecular weight is set to ensure elongation, there is a problem that the viscosity increases.
JP-A-3-72527 Japanese Patent Laid-Open No. 3-47825 JP-A-4-57850 JP-A-5-59267 JP-A-9-95609

本発明の課題は、上記問題に鑑み、組成物の粘度が低く作業性が良好であって、その硬化物が柔軟性を有し、かつ、シーリング剤、接着剤等に使用した場合に、未硬化物の流出や揮発、シーリング目地周辺の汚染、シーリング剤表面に塗料が塗られた場合に塗料汚染が少なく、更に硬化物の復元性、耐久性および耐クリープ性が良好な反応性ケイ素基を有する室温硬化性組成物を提供することである。   In view of the above problems, the problem of the present invention is that when the viscosity of the composition is low and the workability is good, the cured product has flexibility, and when it is used for a sealing agent, an adhesive, etc. Reactive silicon group with less spillage and volatilization of the cured product, contamination around the sealing joints, and less paint contamination when the coating is applied to the surface of the sealant. Furthermore, the cured product has good recovery, durability and creep resistance. It is to provide a room temperature curable composition.

本発明者は、上記問題点について鋭意研究を重ねた結果、以下の方法により上記の課題を達成するに至った。すなわち、
1)下記一般式(1)で表される反応性ケイ素基を含有する有機重合体(A)と、下記一般式(2)で表される反応性ケイ素基を一分子当たり平均0.5個〜1.5個含有する有機重合体(B)からなる硬化性組成物に関する。
−Si(R1)X2 (1)
(式中、R1は、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基または(R’)3SiO−で示されるトリオルガノシロキシ基を示し、R1が2個以上存在する時、それらは同一であってもよく、異なっていてもよい。ここでR’は炭素数1〜20の1価の炭化水素基であり、3個のR’は同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、それらは同一であってもよく、異なっていてもよい。)
−SiX3 (2)
(式中、Xは一般式(1)のそれと同じ)
2)有機重合体(B)が、一般式(2)で表される反応性ケイ素基および有機重合体中の反応性基と反応可能な官能基を有する反応性ケイ素基含有化合物を、有機重合体1モルに対し0.5モル以上1.5モル以下反応して得られる重合体であることを特徴とする1)に記載の硬化性組成物に関する。
3)有機重合体(A)および(B)の主鎖骨格がともにオキシアルキレン系重合体であることを特徴とする1)または2)に記載の硬化性組成物に関する。
4)有機重合体(B)が、実質的に1個の一般式(2)で表される反応性ケイ素基を有するをことを特徴とする1)〜3)のいずれかに記載の硬化性組成物に関する。
5)有機重合体(B)の分子量が8000以下であることを特徴とする1)〜4)のいずれかに記載の硬化性組成物に関する。
As a result of intensive studies on the above problems, the present inventor has achieved the above-described problem by the following method. That is,
1) An organic polymer (A) containing a reactive silicon group represented by the following general formula (1) and an average of 0.5 reactive silicon groups represented by the following general formula (2) per molecule It relates to a curable composition comprising an organic polymer (B) containing ˜1.5.
-Si (R 1 ) X 2 (1)
(In the formula, R 1 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by (R ′) 3 SiO—. And when two or more R 1 are present, they may be the same or different, wherein R ′ is a monovalent hydrocarbon group having 1 to 20 carbon atoms, R ′ may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and they may be the same or different.
-SiX 3 (2)
(Wherein X is the same as that of general formula (1))
2) A reactive silicon group-containing compound in which the organic polymer (B) has a reactive silicon group represented by the general formula (2) and a functional group capable of reacting with the reactive group in the organic polymer, The curable composition according to 1), which is a polymer obtained by reacting 0.5 mol to 1.5 mol with respect to 1 mol of the polymer.
3) The curable composition according to 1) or 2), wherein the main chain skeletons of the organic polymers (A) and (B) are both oxyalkylene polymers.
4) The curable composition according to any one of 1) to 3), wherein the organic polymer (B) has substantially one reactive silicon group represented by the general formula (2). Relates to the composition.
5) It relates to the curable composition according to any one of 1) to 4), wherein the molecular weight of the organic polymer (B) is 8000 or less.

本発明の硬化性組成物は、組成物の粘度が低く作業性が良好であって、その硬化物が柔軟性を有し、かつ、シーリング剤、接着剤等に使用した場合に、未硬化物の流出や揮発、シーリング目地周辺の汚染、シーリング剤表面に塗料が塗られた場合に塗料汚染が少なく、更に硬化物の復元性、耐久性および耐クリープ性が良好な反応性ケイ素基を有する室温硬化性組成物である。   The curable composition of the present invention has an uncured product when the viscosity of the composition is low and the workability is good, and the cured product has flexibility and is used as a sealing agent, an adhesive or the like. Room temperature with reactive silicon group that has less paint contamination when paint is applied to the surface of the sealing agent, and the surface around the sealing joint, and the cured product has good resilience, durability and creep resistance. It is a curable composition.

本発明の成分(A)が含有する反応性ケイ素基は特に限定されるものではなく、代表的なものを示すと、例えば、一般式(1)で表される基があげられる。
−Si(R1)X2 (1)
(式中、R1は、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基または(R’)3SiO−で示されるトリオルガノシロキシ基を示し、R1が2個以上存在する時、それらは同一であってもよく、異なっていてもよい。ここでR’は炭素数1〜20の1価の炭化水素基であり、3個のR’は同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、それらは同一であってもよく、異なっていてもよい。)
上記Xで示される加水分解性基は特に限定されず、従来公知の加水分解性基であれば好適に使用できる。具体的には、例えば、水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましいが、加水分解性が穏やかで取り扱い易いという点から、メトキシ基、エトキシ基などのアルコキシ基が特に好ましい。
The reactive silicon group contained in the component (A) of the present invention is not particularly limited, and representative examples thereof include a group represented by the general formula (1).
-Si (R 1 ) X 2 (1)
(In the formula, R 1 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by (R ′) 3 SiO—. And when two or more R 1 are present, they may be the same or different, wherein R ′ is a monovalent hydrocarbon group having 1 to 20 carbon atoms, R ′ may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and they may be the same or different.
The hydrolyzable group represented by X is not particularly limited, and any conventionally known hydrolyzable group can be suitably used. Specifically, for example, a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable. Alkoxy groups such as a methoxy group and an ethoxy group are particularly preferable because they are gentle and easy to handle.

反応性ケイ素基としては、特に制限されないが、加水分解活性の高い点と加水分解性が穏やかで取り扱い易い点から、アルコキシ基が好ましく、具体的な官能基としてはメチルジメトキシシリル基、メチルジエトキシシリル基、メチルジイソプロペニルオキシシリル基、エチルジメトキシ基、エチルジエトキシシリル基、エチルジイソプロペニルオキシシリル基等からなる群から選択される少なくとも1種であることが好ましい。中でもメチルジメトキシシリル基、メチルジエトキシシリル基、エチルジエトキシシリル基が反応性、得られる硬化物の柔軟性の点から特に好ましい。   The reactive silicon group is not particularly limited, but is preferably an alkoxy group because of its high hydrolytic activity and mild hydrolyzability and ease of handling. Specific functional groups include methyldimethoxysilyl group and methyldiethoxy group. It is preferably at least one selected from the group consisting of a silyl group, a methyldiisopropenyloxysilyl group, an ethyldimethoxy group, an ethyldiethoxysilyl group, an ethyldiisopropenyloxysilyl group, and the like. Of these, a methyldimethoxysilyl group, a methyldiethoxysilyl group, and an ethyldiethoxysilyl group are particularly preferable from the viewpoint of reactivity and the flexibility of the resulting cured product.

有機重合体(A)の反応性ケイ素基は1分子あたり平均して少なくとも1個存在するのが好ましく、より好ましくは1.1〜5個、さらに好ましくは1.5〜5個存在する。有機重合体(A)1分子中に含まれる反応性ケイ素基の数が1個未満になると、硬化性が不十分になり、良好なゴム弾性が出難く、その硬化物の復元性、耐久性、耐クリープ性も発現しにくくなる。反応性ケイ素基は有機重合体(A)分子鎖の末端に存在してもよく、内部に存在してもよい。反応性ケイ素基が分子鎖の末端に存在すると、最終的に形成される硬化物に含まれる有機重合体(A)成分の有効網目鎖量が多くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。   The average number of reactive silicon groups in the organic polymer (A) is preferably at least one per molecule, more preferably 1.1 to 5, and even more preferably 1.5 to 5. When the number of reactive silicon groups contained in one molecule of the organic polymer (A) is less than one, the curability becomes insufficient and good rubber elasticity is difficult to be obtained, and the restorability and durability of the cured product. In addition, the creep resistance is hardly exhibited. The reactive silicon group may exist at the end of the molecular chain of the organic polymer (A) or may exist inside. When the reactive silicon group is present at the end of the molecular chain, the effective network chain amount of the organic polymer (A) component contained in the finally formed cured product increases, so that it has high strength, high elongation, and low elasticity. It becomes easy to obtain a rubber-like cured product showing a rate.

(反応性ケイ素基の導入)
反応性ケイ素基を重合体に導入する方法としては、特に限定されず、種々の方法を用いることができる。例えば、イ)アルケニル基等の不飽和基を有する有機重合体と反応性ケイ素基含有ヒドロシラン化合物とを8族遷移金属触媒の存在下で反応させるヒドロシリル化方法、ロ)水酸基、エポキシ基、イソシアネート基を有する有機重合体に、それら官能基と反応性を有する基と反応性ケイ素基とをともに有する化合物を反応させる方法(例えば、水酸基を有する有機重合体とイソシアネートシランとの反応)、ハ)アルケニル基等の不飽和基を有する有機重合体と反応性ケイ素基とメルカプト基をともに有する化合物を反応させる方法が挙げられる。
(Introduction of reactive silicon groups)
The method for introducing the reactive silicon group into the polymer is not particularly limited, and various methods can be used. For example, a) a hydrosilylation method in which an organic polymer having an unsaturated group such as an alkenyl group is reacted with a reactive silicon group-containing hydrosilane compound in the presence of a group 8 transition metal catalyst, b) a hydroxyl group, an epoxy group, an isocyanate group A method in which a compound having both a functional group-reactive group and a reactive silicon group is reacted with an organic polymer having a functional group (for example, a reaction between an organic polymer having a hydroxyl group and an isocyanate silane), c) alkenyl And a method of reacting an organic polymer having an unsaturated group such as a group with a compound having both a reactive silicon group and a mercapto group.

中でもイ)の方法が、残留原料の除去性、反応性等の点から好ましい。   Among these, the method (i) is preferable from the viewpoints of removability of residual raw materials, reactivity, and the like.

例えばアルケニル基等の不飽和基を末端に有する有機重合体の製造法としては、従来公知の方法を用いればよく、例えば水酸基末端の有機重合体にアルケニル基を有する化合物を反応させて、エーテル結合、エステル結合、ウレタン結合、カーボネート結合等により結合させる方法等が挙げられる。例えば、エーテル結合によりアルケニル基を導入する場合は、有機重合体の水酸基末端を−ONaや−OKなどのオキシメタル基にした後、一般式(3):
CH2=CH−R2−Y 一般式(3)
または一般式(4):
CH2=C(R3)−R2−Y 一般式(4)
(式中、R2は炭素数1から20の2価の有機基、R3は炭素数10以下の炭化水素基、Yはハロゲン原子。)で示される不飽和基含有化合物を反応させる方法が挙げられる。
For example, as a method for producing an organic polymer having an unsaturated group such as an alkenyl group at the terminal, a conventionally known method may be used. For example, a compound having an alkenyl group is reacted with a hydroxyl-terminated organic polymer to form an ether bond. , An ester bond, a urethane bond, a carbonate bond, and the like. For example, when an alkenyl group is introduced by an ether bond, the hydroxyl group end of the organic polymer is changed to an oxymetal group such as -ONa or -OK, and then the general formula (3):
CH 2 = CH-R 2 -Y general formula (3)
Or general formula (4):
CH 2 = C (R 3) -R 2 -Y general formula (4)
(Wherein R 2 is a divalent organic group having 1 to 20 carbon atoms, R 3 is a hydrocarbon group having 10 or less carbon atoms, and Y is a halogen atom). Can be mentioned.

末端水酸基をオキシメタル基にする方法としては、Na、Kのごときアルカリ金属;NaHのごとき金属水素化物;NaOCH3のごとき金属アルコキシド;NaOH、KOHなどのアルカリ水酸化物などと反応させる方法があげられる。 Examples of the method for converting the terminal hydroxyl group into an oxymetal group include a method of reacting with an alkali metal such as Na and K; a metal hydride such as NaH; a metal alkoxide such as NaOCH 3 ; and an alkali hydroxide such as NaOH and KOH. It is done.

一般式(2)または(3)で示される不飽和基含有化合物の具体例としては、例えばCH2=CH−CH2−Cl、CH2=CH−CH2−Br、CH2=CH−C24−Cl、CH2=CH−C24−Br、CH2=CH−C36−Cl、CH2=CH−C36−Br、CH2=C(CH3)−CH2−Cl、CH2=C(CH3)−CH2−Br、CH2=C(CH2CH3)−CH2−Cl、CH2=C(CH2CH3)−CH2−Br、CH2=C(CH2CH(CH32)−CH2−Cl、CH2=C(CH2CH(CH32)−CH2−Br、等が挙げられ、特に反応性の点から、CH2=CH−CH2−Cl、CH2=C(CH3)−CH2−Clが好ましい。 Specific examples of the general formula (2) or unsaturated group-containing compound represented by (3), for example, CH 2 = CH-CH 2 -Cl , CH 2 = CH-CH 2 -Br, CH 2 = CH-C 2 H 4 -Cl, CH 2 = CH-C 2 H 4 -Br, CH 2 = CH-C 3 H 6 -Cl, CH 2 = CH-C 3 H 6 -Br, CH 2 = C (CH 3) -CH 2 -Cl, CH 2 = C (CH 3) -CH 2 -Br, CH 2 = C (CH 2 CH 3) -CH 2 -Cl, CH 2 = C (CH 2 CH 3) -CH 2 - br, CH 2 = C (CH 2 CH (CH 3) 2) -CH 2 -Cl, CH 2 = C (CH 2 CH (CH 3) 2) -CH 2 -Br, and the like. particularly reactive in terms of, CH 2 = CH-CH 2 -Cl, CH 2 = C (CH 3) -CH 2 -Cl is preferred.

不飽和基の導入方法としては、これ以外にCH2=CH−CH2−基やCH2=C(CH3)−CH2−基等を有するイソシアネート化合物、カルボン酸化合物、エポキシ化合物等を用いることもできる。 As a method for introducing an unsaturated group, addition to CH 2 = CH-CH 2 - using isocyanate compounds having a group such as a carboxylic acid compound, an epoxy compound or the like - group and CH 2 = C (CH 3) -CH 2 You can also.

上記化合物によりアルケニル基が導入された有機重合体には、さらにヒドロシリル化反応により反応性ケイ素基が導入される。その際に用いられる8族遷移金属触媒としては、白金、ロジウム、コバルト、パラジウム及びニッケル等の8族遷移金属元素から選ばれた金属錯体触媒等が使用される。例えば、H2PtCl6・6H2O、白金−ビニルシロキサン錯体、白金−オレフィン錯体、Ptメタル、RhCl(PPh33、RhCl3、Rh/Al23、RuCl3、IrCl3、FeCl3、PdCl2・2H2O、NiCl2等のような化合物が使用できるが、ヒドロシリル化の反応性の点から、H2PtCl6・6H2O、白金−ビニルシロキサン錯体、白金−オレフィン錯体のいずれかであることが特に好ましい。 A reactive silicon group is further introduced into the organic polymer into which the alkenyl group has been introduced by the above compound by a hydrosilylation reaction. As the group 8 transition metal catalyst used at that time, a metal complex catalyst selected from group 8 transition metal elements such as platinum, rhodium, cobalt, palladium and nickel is used. For example, H 2 PtCl 6 .6H 2 O, platinum-vinylsiloxane complex, platinum-olefin complex, Pt metal, RhCl (PPh 3 ) 3 , RhCl 3 , Rh / Al 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , PdCl 2 .2H 2 O, NiCl 2 and the like can be used, but any of H 2 PtCl 6 .6H 2 O, platinum-vinylsiloxane complex, and platinum-olefin complex can be used from the viewpoint of hydrosilylation reactivity. It is particularly preferable.

この様な製造法は、例えば、特許公報第1396791号、特許公報第1727750号、特許公報第2135751号、特開平3−72527号公報に示されている。   Such manufacturing methods are disclosed in, for example, Japanese Patent No. 1396791, Japanese Patent No. 1727750, Japanese Patent No. 2135575, and Japanese Patent Laid-Open No. 3-72527.

上記ヒドロシリル化反応で用いるヒドロシラン化合物としては、一般的には、トリクロロシラン、メチルジクロロシランのようなハロゲン化シラン類;トリメトキシシラン、トリエトキシシランのようなトリアルコキシシラン類;メチルジメトキシシラン、エチルジエトキシシランのようなアルキルジアルコキシシラン類などが挙げられるが、一般式(1)で表される反応性ケイ素を有する重合体(A)を製造する場合に用いるヒドロシラン化合物としては、たとえば、メチルジクロロシラン、メチルジメトキシシラン、エチルジエトキシシランのようなアルキルジアルコキシシラン類などがあり、これらに限定されるものではない。これらのうちではとくにアルキルジアルコキシシラン類が、加水分解性と反応のマイルドさ、貯蔵性等の点から好ましい。   As the hydrosilane compound used in the hydrosilylation reaction, generally, halogenated silanes such as trichlorosilane and methyldichlorosilane; trialkoxysilanes such as trimethoxysilane and triethoxysilane; methyldimethoxysilane and ethyl Examples of the hydrosilane compound used for producing the polymer (A) having reactive silicon represented by the general formula (1) include alkyl dialkoxysilanes such as diethoxysilane. Examples include, but are not limited to, alkyl dialkoxysilanes such as dichlorosilane, methyldimethoxysilane, and ethyldiethoxysilane. Of these, alkyldialkoxysilanes are particularly preferred from the viewpoints of hydrolyzability, mildness of reaction, storage properties, and the like.

ロ)としては、例えば末端に水酸基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法としては、特開平3−47825号公報に示される方法等が挙げられるが、特に限定されるものではない。前記イソシアネート基および反応性ケイ素基を有する化合物の具体例としては、一般的には、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシランなどがあげられるが、一般式(1)で表される反応性ケイ素を有する重合体(A)を製造する場合に用いる化合物としては、たとえば、γ−イソシアネートプロピルメチルジメトキシシラン、γ−イソシアネートプロピルメチルジエトキシシランなどが、これらに限定されるものではない。   Examples of (b) include, for example, a method of reacting a polymer having a hydroxyl group at the terminal with a compound having an isocyanate group and a reactive silicon group, such as the method disclosed in JP-A-3-47825. Is not to be done. Specific examples of the compound having an isocyanate group and a reactive silicon group generally include γ-isocyanatepropyltrimethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatepropyltriethoxysilane, and γ-isocyanatepropyl. Examples of the compound used for producing the polymer (A) having reactive silicon represented by the general formula (1) include γ-isocyanatopropylmethyldimethoxysilane, γ, and the like. -Isocyanatopropylmethyldiethoxysilane and the like are not limited thereto.

ハ)の方法としては、たとえば、メルカプト基および反応性ケイ素基を有する化合物を、ラジカル開始剤および/またはラジカル発生源存在下でのラジカル付加反応によって、有機重合体の不飽和結合部位に導入する方法等が挙げられるが、特に限定されるものではない。前記メルカプト基および反応性ケイ素基を有する化合物の具体例としては、一般的には、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシランなどがあげられるが、一般式(1)で表される反応性ケイ素を有する重合体(A)を製造する場合に用いる化合物としては、たとえば、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシランなどがあり、これらに限定されるものではない。   As a method of c), for example, a compound having a mercapto group and a reactive silicon group is introduced into an unsaturated bond site of an organic polymer by a radical addition reaction in the presence of a radical initiator and / or a radical source. Examples of the method include, but are not limited to. Specific examples of the compound having a mercapto group and a reactive silicon group generally include γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, and γ-mercaptopropyl. Examples of the compound used for producing the polymer (A) having reactive silicon represented by the general formula (1) include γ-mercaptopropylmethyldimethoxysilane, γ, and the like. -Mercaptopropylmethyldiethoxysilane and the like, but not limited thereto.

反応性ケイ素基は、有機重合体分子鎖の末端あるいは内部にあってもよいし、また、両方にあってもよい。とくに、反応性ケイ素基が分子末端にあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目鎖量が多くなるため、高強度で高伸びのゴム状硬化物が得られやすくなるなどの点から好ましい。   The reactive silicon group may be at the end or inside of the organic polymer molecular chain or at both. In particular, when the reactive silicon group is at the molecular end, the effective network chain amount of the organic polymer component contained in the finally formed cured product increases, so that a rubber-like cured product having high strength and high elongation is obtained. It is preferable from the viewpoint of being easily obtained.

本発明の反応性ケイ素基を有する有機重合体(A)および有機重合体(B)の主鎖骨格には特に限定はなく、例えばその主鎖骨格は一般に知られているオキシアルキレン系重合体、ビニル系重合体、飽和炭化水素系重合体、ポリエステル系重合体、ポリウレタン等の有機重合体を使用することができる。   The main chain skeleton of the organic polymer (A) and organic polymer (B) having a reactive silicon group of the present invention is not particularly limited. For example, the main chain skeleton is a generally known oxyalkylene polymer, Organic polymers such as vinyl polymers, saturated hydrocarbon polymers, polyester polymers, and polyurethanes can be used.

本発明の有機重合体(A)の主鎖骨格は、室温で液状で低温特性が良好で、粘度が低く、かつ良好な相溶性を有することから、オキシアルキレン系重合体であることが好ましい。   The main chain skeleton of the organic polymer (A) of the present invention is preferably an oxyalkylene polymer because it is liquid at room temperature, has good low-temperature characteristics, has low viscosity, and has good compatibility.

有機重合体(A)の主鎖骨格がオキシアルキレン系重合体で有る場合の重合体主鎖を構成する単位としては、一般式(5):
−R4−O− (5)
(式中、R4は炭素数1〜4の2価のアルキレン基)で表わされるものが使用できるが、入手性が容易な点から、オキシプロピレン系重合体がより好ましい。
As a unit constituting the polymer main chain when the main chain skeleton of the organic polymer (A) is an oxyalkylene polymer, the general formula (5):
-R 4 -O- (5)
(Wherein, R 4 is a divalent alkylene group having 1 to 4 carbon atoms) can be used, but an oxypropylene polymer is more preferred from the viewpoint of easy availability.

オキシアルキレン系重合体は、直鎖状であっても分枝状であってもよく、あるいは、これらの混合物であってもよい。また、他の単量体単位等が含まれていてもよいが、適度に低粘度である点や適度な柔軟性を有する硬化物を与える点から、上記式で表わされる構成単位が、オキシアルキレン系重合体中に50重量%以上、好ましくは80重量%以上存在することが好ましい。   The oxyalkylene polymer may be linear or branched, or a mixture thereof. In addition, other monomer units and the like may be contained, but the structural unit represented by the above formula is an oxyalkylene from the viewpoint of moderately low viscosity and a cured product having appropriate flexibility. It is preferable that the polymer is present in an amount of 50% by weight or more, preferably 80% by weight or more.

オキシアルキレン系重合体の分子量には特に制限はないが、GPC測定におけるポリスチレン換算での数平均分子量が500〜100,000であることが好ましい。更には取り扱いの容易さ等から1,000〜70,000であることが好ましい。数平均分子量が500未満であると硬化物が脆くなるため好ましくなく、100,000を越えると重合体の粘度が高くなりすぎるため好ましくない。   Although there is no restriction | limiting in particular in the molecular weight of an oxyalkylene type polymer, It is preferable that the number average molecular weights by polystyrene conversion in GPC measurement are 500-100,000. Furthermore, it is preferable that it is 1,000-70,000 from the ease of handling etc. When the number average molecular weight is less than 500, the cured product becomes brittle, and when the number average molecular weight exceeds 100,000, the viscosity of the polymer becomes too high.

さらに、このオキシプロピレン重合体においては、重量平均分子量と数平均分子量との比(Mw /Mn )が1.6以下であるのが好ましく、より好ましくは1.5以下であり、さらに好ましくは1.4以下である。分子量分布は各種の方法で測定可能であるが通常ゲル浸透クロマトグラフィー(GPC)法での測定が一般的である。上記Mw /Mn が1.6以下の反応性ケイ素基を有するオキシプロピレン重合体を用いた組成物は低粘度であり、良好な作業性を示す。   Furthermore, in this oxypropylene polymer, the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is preferably 1.6 or less, more preferably 1.5 or less, and even more preferably 1 .4 or less. The molecular weight distribution can be measured by various methods, but is usually measured by a gel permeation chromatography (GPC) method. The composition using the oxypropylene polymer having a reactive silicon group having an Mw / Mn of 1.6 or less has a low viscosity and exhibits good workability.

オキシアルキレン系重合体における重合体主鎖の製造方法は特に限定されることはなく、開始剤と触媒の存在下、モノエポキシドを開環重合することによって得る方法が例示できる。具体的には、例えば、KOHのようなアルカリ触媒による重合法、例えば,特開昭61−215623号公報に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体に代表される遷移金属化合物−ポルフィリン錯体触媒による重合法、例えば、特公昭46−27250号、特公昭59−15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号各公報に示される複合金属シアン化物錯体触媒による重合法、例えば、特開平11−60723号公報に示されるフォスファゼンを用いた重合法等があげられる。中でも複合金属シアン化物錯体触媒による重合法、フォスファゼンを用いた重合法は、着色が殆どなく、また、高分子量であっても分子量分布が狭いポリオキシアルキレン系重合体を得ることができるために高分子量ながら低粘度のオキシアルキレン系重合体が得られる特徴があるので好ましい。   The method for producing the polymer main chain in the oxyalkylene polymer is not particularly limited, and examples thereof include a method obtained by ring-opening polymerization of a monoepoxide in the presence of an initiator and a catalyst. Specifically, for example, a transition metal compound represented by a complex obtained by reacting an organoaluminum compound and a porphyrin shown in JP-A-61-215623, for example, by a polymerization method using an alkali catalyst such as KOH -Polyphyrin complex-catalyzed polymerization methods, for example, Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, US Pat. Examples thereof include a polymerization method using a double metal cyanide complex catalyst disclosed in Japanese Patent No. 3427335, for example, a polymerization method using phosphazene disclosed in Japanese Patent Application Laid-Open No. 11-60723. Among them, the polymerization method using a double metal cyanide complex catalyst and the polymerization method using phosphazene are high in color because they are hardly colored, and a polyoxyalkylene polymer having a narrow molecular weight distribution can be obtained even with a high molecular weight. The molecular weight is preferable because an oxyalkylene polymer having a low viscosity is obtained.

この他にも、オキシアルキレン系重合体の重合体主鎖は、水酸基末端ポリオキシアルキレン系重合体を塩基性化合物、例えばKOH、NaOH、KOCH3、NaOCH3等の存在下、2官能以上のハロゲン化アルキル、例えばCH2Cl2、CH2Br2等による鎖延長等によっても得ることができる。また、2官能や3官能のイソシアネート化合物によって水酸基末端ポリオキシアルキレン系重合体を鎖延長する方法等もあげられる。 In addition to this, the polymer main chain of the oxyalkylene polymer is a hydroxyl group-terminated polyoxyalkylene polymer in the presence of a basic compound such as KOH, NaOH, KOCH 3 , NaOCH 3, or the like. It can also be obtained by chain extension with alkyl halides such as CH 2 Cl 2 and CH 2 Br 2 . In addition, a method of chain-extending a hydroxyl group-terminated polyoxyalkylene polymer with a bifunctional or trifunctional isocyanate compound is also exemplified.

本発明の有機重合体(A)の主鎖骨格は、上記オキシアルキレン系重合体の他、反応性ケイ素基を有するビニル系重合体を使用することができる。ビニル系重合体の主鎖は、制御ラジカル重合あるいはフリーラジカル重合により得ることができる。   As the main chain skeleton of the organic polymer (A) of the present invention, a vinyl polymer having a reactive silicon group can be used in addition to the oxyalkylene polymer. The main chain of the vinyl polymer can be obtained by controlled radical polymerization or free radical polymerization.

まず制御ラジカル重合の場合について説明する。   First, the case of controlled radical polymerization will be described.

発明者らは、これまでに様々な架橋性官能基を重合体末端に有するビニル系重合体、その製造法、硬化性組成物、及び用途に関して数々の発明を行ってきた(特開平11−080249、特開平11−080250、特開平11−005815、特開平11−116617、特開平11−116606、特開平11−080571、特開平11−080570、特開平11−130931、特開平11−100433、特開平11−116763、特開平9−272714号、特開平9−272715号等を参照)。ビニル系重合体としては特に限定されないが、上に例示した発明で開示される重合体をすべて好適に用いることができる。   The inventors have so far made numerous inventions relating to vinyl polymers having various crosslinkable functional groups at the ends of the polymer, methods for producing the same, curable compositions, and uses (JP-A-11-080249). JP-A-11-080250, JP-A-11-005815, JP-A-11-116617, JP-A-11-116606, JP-A-11-080571, JP-A-11-080570, JP-A-11-130931, JP-A-11-1000043, Special (See Kaihei 11-116763, JP-A-9-272714, JP-A-9-272715, etc.). Although it does not specifically limit as a vinyl polymer, All the polymers disclosed by the invention illustrated above can be used suitably.

ビニル系重合体の主鎖を構成するビニル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−tert−ブチル、(メタ)アクリル酸−n−ペンチル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−n−ヘプチル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−3−メトキシブチル、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等の(メタ)アクリル系モノマー;スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等の芳香族ビニル系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニル系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のアクリロニトリル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは、単独で用いても良いし、複数を共重合させても構わない。   It does not specifically limit as a vinyl-type monomer which comprises the principal chain of a vinyl-type polymer, Various things can be used. For example, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid-n- Butyl, isobutyl (meth) acrylate, (tert-butyl) (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acryl Acid-n-heptyl, (meth) acrylic acid-n-octyl, (meth) acrylic acid-2-ethylhexyl, (meth) acrylic acid nonyl, (meth) acrylic acid decyl, (meth) acrylic acid dodecyl, (meth) Phenyl acrylate, toluyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate (Meth) acrylic acid-3-methoxybutyl, (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid-2-hydroxypropyl, (meth) acrylic acid stearyl, (meth) acrylic acid glycidyl, (meth) 2-aminoethyl acrylate, γ- (methacryloyloxypropyl) trimethoxysilane, ethylene oxide adduct of (meth) acrylic acid, trifluoromethylmethyl (meth) acrylate, 2-trifluoromethylethyl (meth) acrylate , 2-perfluoroethylethyl (meth) acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth) acrylate, 2-perfluoroethyl (meth) acrylate, perfluoromethyl (meth) acrylate , (Perfluoromethylmethyl) (meth) acrylate, (me T) 2-perfluoromethyl-2-perfluoroethylmethyl acrylate, 2-perfluorohexylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, 2-perfluoro (meth) acrylate (Meth) acrylic monomers such as hexadecylethyl; aromatic vinyl monomers such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene, styrenesulfonic acid and their salts; perfluoroethylene, perfluoropropylene, vinylidene fluoride Fluorine-containing vinyl monomers such as vinyl trimethoxysilane, vinyl triethoxysilane and other silicon-containing vinyl monomers; maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl of fumaric acid Beauty treatment And maleic monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, cyclohexylmaleimide; and acrylonitriles such as acrylonitrile and methacrylonitrile Monomers; Amide group-containing vinyl monomers such as acrylamide and methacrylamide; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate and vinyl cinnamate; Alkenes such as ethylene and propylene; Butadiene and isoprene Conjugated dienes such as vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol and the like. These may be used alone or a plurality of these may be copolymerized.

ビニル系重合体の主鎖が、(メタ)アクリル系モノマー、アクリロニトリル系モノマー、芳香族ビニル系モノマー、フッ素含有ビニル系モノマー及びケイ素含有ビニル系モノマーからなる群より選ばれる少なくとも1つのモノマーを主として重合して製造されるものであることが好ましい。ここで「主として」とは、ビニル系重合体を構成するモノマー単位のうち50モル%以上、好ましくは70%以上が、上記モノマーであることを意味する。   The main chain of the vinyl polymer is mainly polymerized with at least one monomer selected from the group consisting of (meth) acrylic monomers, acrylonitrile monomers, aromatic vinyl monomers, fluorine-containing vinyl monomers, and silicon-containing vinyl monomers. It is preferable that it is manufactured. Here, “mainly” means that 50 mol% or more, preferably 70% or more of the monomer units constituting the vinyl polymer are the above monomers.

なかでも、生成物の物性等から、スチレン系モノマー及び(メタ)アクリル酸系モノマーが好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーであり、特に好ましくはアクリル酸エステルモノマーであり、更に好ましくは、アクリル酸ブチルである。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。   Of these, a styrene monomer and a (meth) acrylic acid monomer are preferable from the physical properties of the product. More preferred are acrylate monomers and methacrylate monomers, particularly preferred are acrylate monomers, and even more preferred is butyl acrylate. In the present invention, these preferred monomers may be copolymerized with other monomers, and further block copolymerized, and in that case, these preferred monomers are preferably contained in a weight ratio of 40% or more. . In the above expression format, for example, (meth) acrylic acid represents acrylic acid and / or methacrylic acid.

なお、限定はされないが、ゴム弾性を要求する用途にはビニル系重合体のガラス転移温度が室温ないしは使用温度よりも低いことが好ましい。   Although not limited, it is preferable that the glass transition temperature of the vinyl polymer is lower than room temperature or use temperature for applications requiring rubber elasticity.

ビニル系重合体の分子量分布、すなわち、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、特に限定されないが、好ましくは1.8未満であり、より好ましくは1.7以下であり、さらに好ましくは1.6以下であり、なお好ましくは1.5以下であり、特に好ましくは1.4以下であり、最も好ましくは1.3以下である。本発明でのGPC測定においては、通常、移動相としてクロロホルムを用い、測定はポリスチレンゲルカラムにておこない、数平均分子量等はポリスチレン換算で求めることができる。   The molecular weight distribution of the vinyl polymer, that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography is not particularly limited, but preferably 1. Is less than 8, more preferably 1.7 or less, even more preferably 1.6 or less, still more preferably 1.5 or less, particularly preferably 1.4 or less, and most preferably 1. 3 or less. In the GPC measurement in the present invention, chloroform is usually used as the mobile phase, the measurement is performed with a polystyrene gel column, and the number average molecular weight and the like can be determined in terms of polystyrene.

ビニル系重合体の数平均分子量は特に制限はないが、ゲルパーミエーションクロマトグラフィーで測定した場合、500〜1,000,000の範囲が好ましく、1,000〜100,000がより好ましく、5,000〜50,000がさらに好ましい。   The number average molecular weight of the vinyl polymer is not particularly limited, but is preferably in the range of 500 to 1,000,000, more preferably 1,000 to 100,000, when measured by gel permeation chromatography. 000 to 50,000 is more preferable.

ビニル系重合体の合成法は、制御ラジカル重合の中でもリビングラジカル重合が好ましく、その中でも原子移動ラジカル重合が好ましい。   As a method for synthesizing a vinyl polymer, living radical polymerization is preferable among controlled radical polymerizations, and among them, atom transfer radical polymerization is preferable.

原子移動ラジカル重合では、有機ハロゲン化物、特に反応性の高い炭素−ハロゲン結合を有する有機ハロゲン化物(例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物)、あるいはハロゲン化スルホニル化合物等が開始剤として用いられる。   In atom transfer radical polymerization, an organic halide, particularly an organic halide having a highly reactive carbon-halogen bond (for example, a carbonyl compound having a halogen at the α-position or a compound having a halogen at the benzyl-position), or a sulfonyl halide. A compound or the like is used as an initiator.

次にフリーラジカル重合法により製造されたビニル系重合体について説明する。   Next, the vinyl polymer produced by the free radical polymerization method will be described.

ビニル系モノマーとしては特に限定されず、各種のものを用いることができ、上述の制御ラジカル重合で使用したモノマーをすべて好適に用いることができる。   It does not specifically limit as a vinyl-type monomer, Various things can be used and all the monomers used by the above-mentioned controlled radical polymerization can be used suitably.

限定はされないが、ビニル系重合体の主鎖が、(メタ)アクリル系モノマー、アクリロニトリル系モノマー、芳香族ビニル系モノマー、フッ素含有ビニル系モノマー及びケイ素含有ビニル系モノマーからなる群より選ばれる少なくとも1つのモノマーを主として重合して製造されるものであることが好ましい。ここで「主として」とは、ビニル系重合体を構成するモノマー単位のうち50モル%以上、好ましくは70%以上が、上記モノマーであることを意味する。   Although not limited, at least one main chain of the vinyl polymer is selected from the group consisting of (meth) acrylic monomers, acrylonitrile monomers, aromatic vinyl monomers, fluorine-containing vinyl monomers, and silicon-containing vinyl monomers. It is preferable that it is produced mainly by polymerizing two monomers. Here, “mainly” means that 50 mol% or more, preferably 70% or more of the monomer units constituting the vinyl polymer are the above monomers.

なかでも、生成物の物性等から、スチレン系モノマー及び(メタ)アクリル酸系モノマーが好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーである。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。これらは、単独で用いても良いし、複数を共重合させても構わない。   Of these, a styrene monomer and a (meth) acrylic acid monomer are preferable from the physical properties of the product. More preferred are acrylate monomers and methacrylate monomers. In the present invention, these preferred monomers may be copolymerized with other monomers, and further block copolymerized, and in that case, these preferred monomers are preferably contained in a weight ratio of 40% or more. . In the above expression format, for example, (meth) acrylic acid represents acrylic acid and / or methacrylic acid. These may be used alone or a plurality of these may be copolymerized.

なお、このビニル系重合体中には(メタ)アクリル酸エステルモノマー等上記モノマー単位のほかに、これらと共重合性を有する単量体単位が含有されていてもよい。例えば、(メタ)アクリル酸等のカルボン酸基、(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド等のアミド基、グリシジル(メタ)アクリレート等のエポキシ基、ジエチルアミノエチル(メタ)アクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体等は、湿分硬化性、内部硬化性の点で共重合効果が期待できる。その他アクリロニトリル、スチレン、α−メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位などがあげられる。   In addition to the above monomer units such as a (meth) acrylic acid ester monomer, the vinyl polymer may contain a monomer unit having copolymerizability with these. For example, carboxylic acid groups such as (meth) acrylic acid, amide groups such as (meth) acrylamide and N-methylol (meth) acrylamide, epoxy groups such as glycidyl (meth) acrylate, diethylaminoethyl (meth) acrylate, aminoethyl vinyl ether A monomer containing an amino group such as can be expected to have a copolymerization effect in terms of moisture curability and internal curability. Other examples include monomer units derived from acrylonitrile, styrene, α-methylstyrene, alkyl vinyl ether, vinyl chloride, vinyl acetate, vinyl propionate, ethylene, and the like.

この場合のビニル系重合体の数平均分子量は特に制限はないが、ゲルパーミエーションクロマトグラフィーで測定した場合、500〜100,000のものが取り扱いの容易さの点から好ましい。さらに5,000〜30,000のものが硬化物の耐候性、作業性が良好であることからより好ましい。   The number average molecular weight of the vinyl polymer in this case is not particularly limited, but when measured by gel permeation chromatography, those having a molecular weight of 500 to 100,000 are preferred from the viewpoint of ease of handling. Furthermore, the thing of 5,000-30,000 is more preferable from the weather resistance of a hardened | cured material, and workability | operativity being favorable.

フリーラジカル重合でビニル系重合体の主鎖を合成する方法は、通常のビニル重合の方法、例えば、ラジカル反応による溶液重合法により得ることができる。重合は、通常、前記の単量体およびラジカル開始剤や連鎖移動剤等を加えて50〜150℃で反応させることにより行われる。   A method of synthesizing the main chain of the vinyl polymer by free radical polymerization can be obtained by a usual vinyl polymerization method, for example, a solution polymerization method by radical reaction. The polymerization is usually carried out by adding the above-mentioned monomer, a radical initiator, a chain transfer agent and the like and reacting at 50 to 150 ° C.

前記ラジカル開始剤の例としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、4,4’−アゾビス(4−シアノバレリック)アシッド、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)、アゾビスイソ酪酸アミジン塩酸塩 、2,2’−アゾビス(2,4−ジメチルバレロニトリル)などのアゾ系開始剤、過酸化ベンゾイル、過酸化ジ−tert−ブチルなどの有機過酸化物系開始剤があげられるが、重合に使用する溶媒の影響を受けない、爆発等の危険性が低いなどの点から、アゾ系開始剤の使用が好ましい。   Examples of the radical initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 4,4′-azobis (4-cyanovaleric) acid. , 1,1′-azobis (1-cyclohexanecarbonitrile), azobisisobutyric acid amidine hydrochloride, 2,2′-azobis (2,4-dimethylvaleronitrile) and other azo initiators, benzoyl peroxide, diperoxide Organic peroxide-based initiators such as -tert-butyl are exemplified, but use of azo-based initiators is preferable in that they are not affected by the solvent used for polymerization and have a low risk of explosion and the like.

連鎖移動剤の例としては、n−ドデシルメルカプタン、tert−ドデシルメルカプタン、ラウリルメルカプタン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプタン類や含ハロゲン化合物等があげられる。   Examples of chain transfer agents include n-dodecyl mercaptan, tert-dodecyl mercaptan, lauryl mercaptan, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyl Examples include mercaptans such as diethoxysilane and halogen-containing compounds.

重合は溶剤中で行なってもよい。溶剤の例としては、エーテル類、炭化水素類、エステル類などの非反応性の溶剤が好ましい。   The polymerization may be performed in a solvent. Examples of the solvent are preferably nonreactive solvents such as ethers, hydrocarbons, and esters.

ビニル系重合体の反応性ケイ素基としては、前述の一般式(1)で示される反応性ケイ素基が同様に使用できる。   As the reactive silicon group of the vinyl polymer, the reactive silicon group represented by the aforementioned general formula (1) can be used in the same manner.

ビニル系重合体の中に反応性ケイ素基を導入する方法としては、前述のイ)、ロ)、ハ)の方法に加え、例えば、重合性不飽和結合と反応性ケイ素素基とを併せ持つ化合物を(メタ)アクリル酸エステル単量体単位と共重合させる方法があげられる。重合性不飽和結合と反応性ケイ素素基とを併せ持つ化合物としては、一般式(6):
CH2=C(R5)COOR6−Si(R1 3-a)Xa (6)
(式中、R5は水素原子またはメチル基。R6は炭素数1〜6の2価のアルキレン基を示す。R1,Xは前記一般式(1)のものと同じ,aは1,2,3である。)
または一般式(7):
CH2=C(R5)−Si(R1 3-a)Xa (7)
(式中、R5,R1,X,aは前記と同じ。)
で表される単量体、例えば、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等のγ−メタクリロキシプロピルポリアルコキシシラン;γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン等のγ−アクリロキシプロピルポリアルコキシシラン;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン等のビニルアルキルポリアルコキシシランなどが一般的にはあげられるが、aが2である反応性ケイ素基を導入する単量体としては、γ−メタクリロキシプロピルメチルジメトキシシラン等のγ−メタクリロキシプロピルアルキルジアルコキシシラン;γ−アクリロキシプロピルメチルジメトキシシラン等のγ−アクリロキシプロピルアルキルジアルコキシシラン;ビニルメチルジメトキシシラン等のビニルアルキルアルキルジアルコキシシランなどが挙げられる。
As a method for introducing a reactive silicon group into a vinyl polymer, in addition to the methods a), b) and c) described above, for example, a compound having both a polymerizable unsaturated bond and a reactive silicon group. Can be copolymerized with (meth) acrylic acid ester monomer units. As a compound having both a polymerizable unsaturated bond and a reactive silicon group, the general formula (6):
CH 2 = C (R 5) COOR 6 -Si (R 1 3-a) X a (6)
(Wherein R 5 represents a hydrogen atom or a methyl group, R 6 represents a divalent alkylene group having 1 to 6 carbon atoms, R 1 and X are the same as those in formula (1), a represents 1, 2 and 3.)
Or general formula (7):
CH 2 = C (R 5) -Si (R 1 3-a) X a (7)
(In the formula, R 5 , R 1 , X and a are the same as above.)
Γ-methacryloxypropyl polyalkoxysilane such as γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltriethoxysilane; Γ-acryloxypropyl polyalkoxysilanes such as loxypropyltrimethoxysilane, γ-acryloxypropylmethyldimethoxysilane, γ-acryloxypropyltriethoxysilane; vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, etc. Vinylalkylpolyalkoxysilanes and the like are generally mentioned. As a monomer for introducing a reactive silicon group in which a is 2, γ-methacryloxy such as γ-methacryloxypropylmethyldimethoxysilane is used. B pills alkyl dialkoxy silane; .gamma.-acryloxypropyl .gamma. acryloxypropyl alkyl dialkoxy silane such as methyl dimethoxysilane; vinyl alkyl alkyl dialkoxy silane such as vinyl methyl dimethoxy silane.

次に有機重合体(A)の主鎖骨格が飽和炭化水素系重合体である場合について説明する。反応性ケイ素基を有する飽和炭化水素系重合体は、芳香環以外の炭素ー炭素不飽和結合を実質的に含有しない重合体であり、たとえば、ポリエチレン、ポリプロピレン、ポリイソブチレン、水素添加ポリブタジエン、水素添加ポリイソプレンなどがあげられる。   Next, the case where the main chain skeleton of the organic polymer (A) is a saturated hydrocarbon polymer will be described. The saturated hydrocarbon polymer having a reactive silicon group is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring. For example, polyethylene, polypropylene, polyisobutylene, hydrogenated polybutadiene, hydrogenated And polyisoprene.

また、これら反応性ケイ素基を有する飽和炭化水素系重合体は単独あるいは2種以上併用することができる。   These saturated hydrocarbon polymers having a reactive silicon group can be used alone or in combination of two or more.

本発明に用いる反応性ケイ素基を有する飽和炭化水素系重合体の骨格をなす重合体は、(1)エチレン、プロピレン、1ーブテン、イソブチレンなどのような炭素数1〜6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、上記オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましい。   The polymer constituting the skeleton of the saturated hydrocarbon polymer having a reactive silicon group used in the present invention is mainly composed of (1) an olefin compound having 1 to 6 carbon atoms such as ethylene, propylene, 1-butene, and isobutylene. It can be obtained by a method of polymerizing as a monomer, (2) homopolymerizing a diene compound such as butadiene or isoprene, or copolymerizing with the olefin compound and then hydrogenating. An isobutylene polymer or a hydrogenated polybutadiene polymer is preferable because it is easy to introduce a functional group at the terminal, easily control the molecular weight, and increase the number of terminal functional groups.

イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、イソブチレンと共重合可能な単量体単位をイソブチレン系重合体中の好ましくは50%以下(重量%、以下同じ)、さらに好ましくは30%以下、とくに好ましくは10%以下の範囲で含有してもよい。   In the isobutylene polymer, all of the monomer units may be formed from isobutylene units, and the monomer units copolymerizable with isobutylene are preferably 50% or less (% by weight, in the isobutylene polymer). The same shall apply hereinafter), more preferably 30% or less, particularly preferably 10% or less.

このような単量体成分としては、たとえば、炭素数4〜12のオレフィン、ビニルエーテル、芳香族ビニル化合物、ビニルシラン類、アリルシラン類などがあげられる。このような共重合体成分としては、たとえば1ーブテン、2ーブテン、2ーメチルー1ーブテン、3ーメチルー1ーブテン、ペンテン、4ーメチルー1ーペンテン、ヘキセン、ビニルシクロヘキセン、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル、スチレン、αーメチルスチレン、ジメチルスチレン、モノクロロスチレン、ジクロロスチレン、βーピネン、インデン、ビニルトリクロロシラン、ビニルメチルジクロロシラン、ビニルジメチルクロロシラン、ビニルジメチルメトキシシラン、ビニルトリメチルシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジメチルシラン、1,3−ジビニルー1,1,3,3−テトラメチルジシロキサン、トリビニルメチルシラン、テトラビニルシラン、アリルトリクロロシラン、アリルメチルジクロロシラン、アリルジメチルクロロシラン、アリルジメチルメトキシシラン、アリルトリメチルシラン、ジアリルジクロロシラン、ジアリルジメトキシシラン、ジアリルジメチルシラン、γーメタクリロイルオキシプロピルトリメトキシシラン、γーメタクリロイルオキシプロピルメチルジメトキシシランなどがあげられる。   Examples of such monomer components include olefins having 4 to 12 carbon atoms, vinyl ethers, aromatic vinyl compounds, vinyl silanes, and allyl silanes. Examples of such copolymer components include 1-butene, 2-butene, 2-methyl-1-butene, 3-methyl-1-butene, pentene, 4-methyl-1-pentene, hexene, vinylcyclohexene, methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, styrene, α-methylstyrene, dimethylstyrene, monochlorostyrene, dichlorostyrene, β-pinene, indene, vinyltrichlorosilane, vinylmethyldichlorosilane, vinyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, divinyldichlorosilane, divinyldimethoxysilane, divinyldimethylsilane 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, trivinylmethylsilane, tetravinylsilane Allyltrichlorosilane, allylmethyldichlorosilane, allyldimethylchlorosilane, allyldimethylmethoxysilane, allyltrimethylsilane, diallyldichlorosilane, diallyldimethoxysilane, diallyldimethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropylmethyl Examples include dimethoxysilane.

また、イソブチレンと共重合性を有する単量体として、ビニルシラン類やアリルシラン類を使用すると、ケイ素含有量が増加しシランカップリング剤として作用しうる基が多くなり、得られるプライマー組成物の接着性が向上する。   In addition, when vinyl silanes or allyl silanes are used as monomers that are copolymerizable with isobutylene, the silicon content increases and the number of groups that can act as a silane coupling agent increases. Will improve.

水添ポリブタジエン系重合体や他の飽和炭化水素系重合体においても、上記イソブチレン系重合体のばあいと同様に、主成分となる単量体単位の他に他の単量体単位を含有させてもよい。   In the hydrogenated polybutadiene polymer and other saturated hydrocarbon polymers, as in the case of the isobutylene polymer, other monomer units are contained in addition to the main monomer unit. May be.

また、本発明に用いる反応性ケイ素基を有する飽和炭化水素系重合体には、本発明の目的が達成される範囲で、ブタジエン、イソプレンなどのポリエン化合物のような重合後2重結合の残るような単量体単位を少量、好ましくは10重量%以下、さらには5重量%以下、とくには1重量%以下の範囲で含有させてもよい。   In addition, in the saturated hydrocarbon polymer having a reactive silicon group used in the present invention, double bonds such as polyene compounds such as butadiene and isoprene remain after polymerization within the range in which the object of the present invention is achieved. Such monomer units may be contained in a small amount, preferably 10% by weight or less, more preferably 5% by weight or less, and particularly 1% by weight or less.

飽和炭化水素系重合体、好ましくはイソブチレン系重合体または水添ポリブタジエン系重合体の数平均分子量は500〜50,000程度であるのが好ましく、とくに1,000〜20,000程度の液状ないし流動性を有するものが取扱いやすいなどの点から好ましい。   The number average molecular weight of the saturated hydrocarbon polymer, preferably isobutylene polymer or hydrogenated polybutadiene polymer, is preferably about 500 to 50,000, particularly about 1,000 to 20,000. It is preferable from the viewpoint of easy handling.

つぎに反応性ケイ素基を有する飽和炭化水素系重合体の製法について説明する。   Next, a method for producing a saturated hydrocarbon polymer having a reactive silicon group will be described.

反応性ケイ素基を有するイソブチレン系重合体のうち、分子鎖末端に反応性ケイ素基を有するイソブチレン系重合体は、イニファー法と呼ばれる重合法(イニファーと呼ばれる開始剤と連鎖移動剤を兼用する特定の化合物を用いるカチオン重合法)で得られた末端官能型、好ましくは、全末端官能型イソブチレン系重合体を用いて製造することができる。例えば、この重合体の脱ハロゲン化水素反応や特開昭63−105005号公報に記載されているような重合体への不飽和基導入反応等により末端に不飽和基を有するポリイソブチレンを得た後、前述の反応性シリル基含有オキシアルキレン重合体やビニル系重合体の場合と同様にヒドロシラン化合物を白金触媒を用いてヒドロシリル化反応と呼ばれる付加反応をさせることにより反応性ケイ素基を重合体に導入する方法があげられる。ヒドロシラン化合物としては、前述の化合物が好適に使用できる。   Among isobutylene polymers having a reactive silicon group, an isobutylene polymer having a reactive silicon group at the molecular chain end is a polymerization method called an inifer method (a specific method using both an initiator called an inifer and a chain transfer agent). It can be produced using a terminal functional type, preferably an all terminal functional type isobutylene polymer obtained by a cationic polymerization method using a compound. For example, polyisobutylene having an unsaturated group at the terminal was obtained by dehydrohalogenation reaction of this polymer or unsaturated group introduction reaction to the polymer as described in JP-A-63-105005. Thereafter, as in the case of the above-mentioned reactive silyl group-containing oxyalkylene polymer and vinyl polymer, the hydrosilane compound is subjected to an addition reaction called a hydrosilylation reaction using a platinum catalyst to convert the reactive silicon group into a polymer. The method of introduction is given. As the hydrosilane compound, the aforementioned compounds can be preferably used.

このような製造法は、たとえば、特公平4−69659号、特公平7−108928号、特許公報第2512468号、特開昭64−22904号、特許公報第2539445号の各明細書などに記載されている。   Such a production method is described in, for example, each specification of Japanese Patent Publication No. 4-69659, Japanese Patent Publication No. 7-108928, Japanese Patent Publication No. 2512468, Japanese Patent Application Laid-Open No. 64-22904, and Japanese Patent Publication No. 2539445. ing.

また、分子鎖内部に反応性ケイ素基を有するイソブチレン系重合体は、イソブチレンを主体とするモノマー中に反応性ケイ素基を有するビニルシラン類やアリルシラン類を添加し、共重合せしめることにより製造される。   An isobutylene polymer having a reactive silicon group in the molecular chain is produced by adding vinylsilanes or allylsilanes having a reactive silicon group to a monomer mainly composed of isobutylene and copolymerizing them.

さらに、分子鎖末端に反応性ケイ素基を有するイソブチレン系重合体を製造する際の重合に際して、主成分であるイソブチレンモノマー以外に反応性ケイ素基を有するビニルシラン類やアリルシラン類などを共重合せしめたのち末端に反応性ケイ素基を導入することにより、末端および分子鎖内部に反応性ケイ素基を有するイソブチレン系重合体が製造される。   Furthermore, in the production of an isobutylene polymer having a reactive silicon group at the molecular chain terminal, after copolymerizing vinylsilanes or allylsilanes having a reactive silicon group in addition to the main component isobutylene monomer. By introducing a reactive silicon group at the terminal, an isobutylene polymer having a reactive silicon group at the terminal and inside the molecular chain is produced.

前記水添ポリブタジエン系重合体は、たとえば、まず、末端ヒドロキシ水添ポリブタジエン系重合体の水酸基を−ONaや−OKなどのオキシメタル基にした後、一般式(3)、一般式(4)で示される有機ハロゲン化合物を反応させることにより、末端オレフィン基を有する水添ポリブタジエン系重合体(以下、末端オレフィン水添ポリブタジエン系重合体ともいう)が製造される。   In the hydrogenated polybutadiene polymer, for example, first, the hydroxyl group of the terminal hydroxy hydrogenated polybutadiene polymer is changed to an oxymetal group such as -ONa or -OK, and then the general formulas (3) and (4) are used. A hydrogenated polybutadiene polymer having a terminal olefin group (hereinafter also referred to as a terminal olefin hydrogenated polybutadiene polymer) is produced by reacting the organic halogen compound shown.

末端ヒドロキシ水添ポリブタジエン系重合体の末端水酸基をオキシメタル基にする方法としては、Na、Kのごときアルカリ金属;NaHのごとき金属水素化物;NaOCH3のごとき金属アルコキシド;NaOH、KOHなどのアルカリ水酸化物などと反応させる方法があげられる。   Examples of the method for converting the terminal hydroxyl group of the terminal hydroxy-hydrogenated polybutadiene polymer into an oxymetal group include alkali metals such as Na and K; metal hydrides such as NaH; metal alkoxides such as NaOCH 3; and alkali hydroxides such as NaOH and KOH. The method of reacting with a thing etc. is mention | raise | lifted.

前記方法では、出発原料として使用した末端ヒドロキシ水添ポリブタジエン系重合体とほぼ同じ分子量をもつ末端オレフィン水添ポリブタジエン系重合体が得られるが、より高分子量の重合体を得たい場合には、一般式(3)、一般式(4)の有機ハロゲン化合物を反応させる前に、塩化メチレン、ビス(クロロメチル)ベンゼン、ビス(クロロメチル)エーテルなどのごとき、1分子中にハロゲンを2個以上含む多価有機ハロゲン化合物と反応させれば分子量を増大させることができ、その後一般式(3)、一般式(4)で示される有機ハロゲン化合物と反応させれば、より高分子量でかつ末端にオレフィン基を有する水添ポリブタジエン系重合体をうることができる。   In the above method, a terminal olefin hydrogenated polybutadiene polymer having almost the same molecular weight as that of the terminal hydroxy hydrogenated polybutadiene polymer used as a starting material is obtained. Before reacting the organic halogen compound of formula (3) or general formula (4), two or more halogens are contained in one molecule such as methylene chloride, bis (chloromethyl) benzene, bis (chloromethyl) ether, etc. When reacted with a polyvalent organic halogen compound, the molecular weight can be increased, and then reacted with an organic halogen compound represented by general formula (3) or general formula (4) to provide a higher molecular weight and an olefin at the end. A hydrogenated polybutadiene polymer having a group can be obtained.

前記末端オレフィン水添ポリブタジエン系重合体への反応性ケイ素基の導入は、分子鎖末端に反応性ケイ素基を有するイソブチレン系重合体の場合と同様にヒドロシラン化合物を白金系触媒を用いて付加反応をさせることにより製造される。   Introducing a reactive silicon group into the terminal olefin-hydrogenated polybutadiene polymer is performed by adding a hydrosilane compound using a platinum catalyst in the same manner as in the case of an isobutylene polymer having a reactive silicon group at the molecular chain end. Manufactured.

前記のように反応性ケイ素基を有する飽和炭化水素系重合体が、芳香環でない不飽和結合を分子中に実質的に含有しない場合には、不飽和結合を有する有機系重合体やオキシアルキレン系重合体のような従来のゴム系重合体より形成される被膜とくらべて耐候性がよい。また、該重合体は炭化水素系重合体であるので湿気遮断性や耐水性がよく、ガラス、アルミなどの各種無機質基材に対して優れた接着性能を有するとともに、湿気遮断性の高い被膜を形成する。   When the saturated hydrocarbon polymer having a reactive silicon group as described above does not substantially contain an unsaturated bond that is not an aromatic ring in the molecule, an organic polymer or an oxyalkylene type having an unsaturated bond The weather resistance is better than a film formed from a conventional rubber polymer such as a polymer. In addition, since the polymer is a hydrocarbon-based polymer, it has good moisture barrier properties and water resistance, has excellent adhesion performance to various inorganic substrates such as glass and aluminum, and has a coating with high moisture barrier properties. Form.

また(A)成分の主鎖骨格がオキシアルキレン系重合体の場合は、本発明の硬化性組成物およびそれを含む硬化物に優れた低温特性、可とう性、他成分との優れた相溶性等を付与することができる。   In the case where the main chain skeleton of the component (A) is an oxyalkylene polymer, the curable composition of the present invention and the cured product containing the same have excellent low temperature characteristics, flexibility, and excellent compatibility with other components. Etc. can be given.

また(A)成分の主鎖骨格がビニル系重合体、特に(メタ)アクリル系の場合は、そのモノマー種の調整により本発明の硬化性組成物およびそれを含む硬化物に優れた耐候性、可とう性、他成分との優れた相溶性等を付与することができる。   Further, when the main chain skeleton of the component (A) is a vinyl polymer, in particular, a (meth) acrylic system, the weather resistance excellent in the curable composition of the present invention and the cured product containing the same by adjusting the monomer species, Flexibility, excellent compatibility with other components, and the like can be imparted.

これら(A)成分の主鎖骨格は、単一であっても良く、2種以上を組み合わせることで上記の特徴を併せ持つ硬化性組成物およびそれを含む硬化物を得ることが可能である。例えば、オキシアルキレン系重合体と(メタ)アクリル系重合体を組み合わせた場合には、オキシアルキレン系重合体の優れた低温特性、可とう性、他成分との優れた相溶性等に加え、(メタ)アクリル系重合体の優れた耐候性を付与することができる。   The main chain skeleton of the component (A) may be single, and by combining two or more kinds, it is possible to obtain a curable composition having the above characteristics and a cured product containing the same. For example, when an oxyalkylene polymer and a (meth) acrylic polymer are combined, in addition to the excellent low temperature characteristics, flexibility, and excellent compatibility with other components of the oxyalkylene polymer, Excellent weather resistance of the (meth) acrylic polymer can be imparted.

本発明における下記一般式(2)で表される反応性ケイ素基を一分子当たり平均0.5個〜1.5個含有する有機重合体(B)は、前記有機重合体(A)成分中の反応性シリル基と架橋構造を形成する。また低分子量の有機重合体(B)を使用することで反応性の可塑剤あるいは希釈剤として機能を発現し、低粘度化することが可能である。
−SiX3 (2)
(式中、Xは前記一般式(1)とそれと同じ)
反応性ケイ素基含有有機重合体(B)の反応性ケイ素基は特に限定されるものではなく、前述の一般式(2)で表される反応性ケイ素基が問題なく使用できる。具体的には、トリクロロシリル基、トリアルコキシシリル基等が挙げられ、なかでも加水分解活性の高い点と加水分解性が穏やかで取り扱い易い点からアルコキシシリル基が好ましい。具体的にはトリメトキシシリル基、トリエトキシシリル基、トリイソプロペニルオキシシリル基からなる群から選択される少なくとも1種であることが好ましい。
The organic polymer (B) containing an average of 0.5 to 1.5 reactive silicon groups represented by the following general formula (2) in the present invention is in the organic polymer (A) component. This forms a crosslinked structure with the reactive silyl group. Further, by using the low molecular weight organic polymer (B), it can function as a reactive plasticizer or diluent, and can be reduced in viscosity.
-SiX 3 (2)
(Wherein X is the same as the general formula (1))
The reactive silicon group of the reactive silicon group-containing organic polymer (B) is not particularly limited, and the reactive silicon group represented by the general formula (2) can be used without any problem. Specific examples include a trichlorosilyl group, a trialkoxysilyl group, and the like. Among these, an alkoxysilyl group is preferable because it has a high hydrolysis activity and has a mild hydrolyzability and is easy to handle. Specifically, it is preferably at least one selected from the group consisting of a trimethoxysilyl group, a triethoxysilyl group, and a triisopropenyloxysilyl group.

本発明の反応性ケイ素基を有する有機重合体(B)の主鎖骨格には特に限定はなく、例えばその主鎖骨格は一般に知られているオキシアルキレン系重合体、ビニル系重合体、飽和炭化水素系重合体、ポリエステル系重合体、ポリウレタン等の有機重合体を使用することができ、具体的には前述の有機重合体(A)での例示のものが好適に使用できる。   The main chain skeleton of the organic polymer (B) having a reactive silicon group of the present invention is not particularly limited. For example, the main chain skeleton is a generally known oxyalkylene polymer, vinyl polymer, saturated carbonization. Organic polymers such as hydrogen polymers, polyester polymers, and polyurethanes can be used. Specifically, those exemplified for the above-mentioned organic polymer (A) can be preferably used.

その他、低分子量化合物で不飽和基を有する、1−ブテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、その他炭素数20以上のα−オレフィン化合物、1,5−ヘキサジエン、1,9−デカジエン、1,17−オクタデカジエン等に反応性ケイ素基を導入した飽和炭化水素系化合物(B)も好適に使用できる。このような低分子量化合物、特に炭素数20以下の飽和炭化水素系化合物に反応性ケイ素基を導入した飽和炭化水素系化合物(B)を使用した場合には、相溶性も良好であり、少量の使用で有機重合体(A)の低粘度化が可能である。 Other low molecular weight compounds having an unsaturated group such as 1-butene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and others having 20 or more carbon atoms A saturated hydrocarbon compound (B) in which a reactive silicon group is introduced into an α-olefin compound, 1,5-hexadiene, 1,9-decadiene, 1,17-octadecadiene or the like can also be suitably used. When such a low molecular weight compound , particularly a saturated hydrocarbon compound (B) in which a reactive silicon group is introduced into a saturated hydrocarbon compound having 20 or less carbon atoms, the compatibility is good and a small amount It is possible to reduce the viscosity of the organic polymer (A) by use.

中でも、1−ブテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセンなどの一方の末端に不飽和基を有するものが、原料の入手性、反応性の点より好ましい。   Among them, one having an unsaturated group at one end such as 1-butene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, etc. It is preferable from the point of property and reactivity.

以上の主鎖骨格をもつ有機重合体の中でも室温で液状で低温特性が良好で、粘度が低く、かつ良好な相溶性を有することから、オキシアルキレン系重合体であることが好ましい。   Among the organic polymers having the above main chain skeleton, an oxyalkylene polymer is preferable because it is liquid at room temperature, has good low-temperature characteristics, has a low viscosity, and has good compatibility.

反応性ケイ素基を本発明の有機重合体(B)に導入する方法としては、前記有機重合体(A)への導入方法と同様の方法イ)、ロ)、ハ)が適用でき、例えば一般式(1)で表される反応性ケイ素基および有機重合体中の反応性基と反応可能な官能基を有する反応性ケイ素基含有化合物を、該有機重合体1モルに対し0.5モル以上1.5モル以下反応させることで導入することができる。   As a method for introducing a reactive silicon group into the organic polymer (B) of the present invention, the same methods a), b) and c) as the method for introducing the organic polymer (A) can be applied. 0.5 mol or more of the reactive silicon group-containing compound having a reactive silicon group represented by the formula (1) and a functional group capable of reacting with the reactive group in the organic polymer with respect to 1 mol of the organic polymer. It can introduce | transduce by making it react 1.5 mol or less.

具体的的にイ)の方法では、両末端にアリル基を有する有機重合体に対し、ヒドロシラン化合物を0.5当量から1.5当量反応させる方法、ロ)の方法では両末端が水酸基の有機重合体に対し、イソシアネートシラン化合物を0.5当量から1.5当量反応させる方法が挙げられる。   Specifically, in the method (a), the organic polymer having allyl groups at both ends is reacted with a hydrosilane compound in an amount of 0.5 to 1.5 equivalents. A method of reacting an isocyanate silane compound with 0.5 to 1.5 equivalents with respect to the polymer may be mentioned.

イ)の方法では、前記トリアルコキシシラン類の中でも、トリメトキシシランなどの炭素数が1のアルコキシ基(メトキシ基)を有するトリアルコキシシランは、不均化反応が速く進行する場合があり、不均化反応が進むと、ジメトキシシランのようなかなり危険な化合物が生じる。取り扱い上の安全性の観点から、炭素数が2以上のアルコキシ基を有するトリアルコキシシランを用いることが好ましい。入手性、取り扱い上の安全性、得られる硬化性組成物の復元性、耐久性、耐クリープ性、の観点から、トリエトキシシランが最も好ましい。   In the method (a), among the trialkoxysilanes, trialkoxysilanes having a C 1 alkoxy group (methoxy group) such as trimethoxysilane may cause the disproportionation reaction to proceed rapidly, As the leveling reaction proceeds, a rather dangerous compound such as dimethoxysilane is formed. From the viewpoint of safety in handling, trialkoxysilane having an alkoxy group having 2 or more carbon atoms is preferably used. Triethoxysilane is the most preferable from the viewpoints of availability, safety in handling, restoration properties of the resulting curable composition, durability, and creep resistance.

しかし、γ−メルカプトプロピルトリメトキシシランやγ−イソシアネートプロピルトリメトキシシランでは、このような不均化反応は進行しない。このため、ケイ素含有基としてトリメトキシシリル基などのメトキシ基を有するトリアルコキシシリル基を用いる場合には、ロ)またはハ)の合成法を用いることが好ましい。   However, such disproportionation reaction does not proceed with γ-mercaptopropyltrimethoxysilane or γ-isocyanatopropyltrimethoxysilane. Therefore, when a trialkoxysilyl group having a methoxy group such as a trimethoxysilyl group is used as the silicon-containing group, it is preferable to use the synthesis method b) or c).

イ)の方法でも、例えばトリエトキシシランを有機重合体に導入した後に、そのエトキシ基をメタノールおよびエステル交換反応触媒を用いエステル交換することにより、トリメトキシシリル基を変換することが可能である。   In the method (b), for example, after introducing triethoxysilane into an organic polymer, the trimethoxysilyl group can be converted by transesterifying the ethoxy group with methanol and a transesterification catalyst.

反応性ケイ素基の導入率が、一分子当たり0.5モル未満では有機重合体(A)との反応性が十分でなく、良好な硬化物物性が得られない。また1.5モルより多い場合は、有機重合体(A)と混合した場合の硬化物物性が脆くなる。   If the introduction rate of the reactive silicon group is less than 0.5 mol per molecule, the reactivity with the organic polymer (A) is not sufficient, and good cured product properties cannot be obtained. Moreover, when more than 1.5 mol, the cured | curing material physical property at the time of mixing with an organic polymer (A) will become weak.

上記方法で反応性ケイ素基を導入した場合、確率的に一分子中に反応性ケイ素基が平均して複数個導入されたもの、1個導入されたもの、全く導入されなかったものが同時に生成する。一分子中に反応性ケイ素基が平均して複数個導入されたものには、本発明の硬化物の脆さを改善する効果は少なく、有機重合体(A)単独の硬化物の機械的物性においてモジュラスを維持あるいは向上させる。1個導入されたものあるいは全く導入されていないものは本発明の硬化物に柔軟性を付与でき、有機重合体(A)単独の硬化物の機械的物性においてモジュラスを低下させる。しかし、全く反応性ケイ素基が導入されていないものは、反応性がなく、本発明の硬化性組成物を用いた硬化物から経時的に流出し、リーリング材、接着剤の用途ではブリード、塗膜汚染等の問題を引き起こす可能性がある。   When a reactive silicon group is introduced by the above method, an average of a plurality of reactive silicon groups introduced in one molecule, one introduced, one not introduced at all are generated simultaneously. To do. In the case where a plurality of reactive silicon groups are introduced on average in one molecule, the effect of improving the brittleness of the cured product of the present invention is small, and the mechanical properties of the cured product of the organic polymer (A) alone are small. Maintain or improve the modulus. Those introduced by one or those not introduced at all can impart flexibility to the cured product of the present invention and lower the modulus in the mechanical properties of the cured product of the organic polymer (A) alone. However, those in which no reactive silicon group has been introduced are not reactive, and flow out from the cured product using the curable composition of the present invention over time, bleeding in the use of reeling materials and adhesives, May cause problems such as coating contamination.

そこで有機重合体(B)は、実質的に1個の一般式(2)で表される反応性ケイ素基を有するものが好ましく、すなわち重合体の反応基1個と、一般式(2)で表される反応性ケイ素基含有化合物1個とを選択的に反応させることにより得られることが好ましい。それらの方法としては、例えば前述の反応性シリル基の導入方法イ)、ロ)、ハ)において、該前駆重合体中に反応性ケイ素基含有化合物と反応可能な官能基を1個のみ有するものを使用することにより、選択的に一つの反応性ケイ素基を有する有機重合体(B)を得ることができる。   Therefore, it is preferable that the organic polymer (B) has substantially one reactive silicon group represented by the general formula (2), that is, one reactive group of the polymer and the general formula (2) It is preferably obtained by selectively reacting one represented reactive silicon group-containing compound. As these methods, for example, in the above-mentioned method of introducing reactive silyl groups a), b) and c), the precursor polymer has only one functional group capable of reacting with a reactive silicon group-containing compound. Can be used to selectively obtain an organic polymer (B) having one reactive silicon group.

前記反応性基が1個の前駆重合体の重合は、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノールなどの1価の1級、2級、3級アルコール、あるいはアリルアルコール、メタリルアルコール、プロペニルアルコールなどの1価の不飽和基含有アルコール類を開始剤としてオキシアルキレン系重合体とし、片方の末端のみに水酸基を有する重合体を重合したもの、更にその水酸基を前述のように不飽和基に変換したもの、また1価の有機ハロゲン化物等を開始剤とし、遷移金属錯体を触媒とする原子移動ラジカル重合により得られた末端を水酸基や不飽和基に変換したもの等が挙げられる。   Polymerization of the precursor polymer having one reactive group is, for example, monovalent primary, secondary, tertiary alcohol such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, etc. Or an oxyalkylene polymer using a monovalent unsaturated group-containing alcohol such as allyl alcohol, methallyl alcohol, propenyl alcohol or the like as an initiator, and a polymer having a hydroxyl group only at one end, A group obtained by converting a hydroxyl group to an unsaturated group as described above, or a monovalent organic halide or the like as an initiator, and a terminal obtained by atom transfer radical polymerization using a transition metal complex as a catalyst is converted into a hydroxyl group or an unsaturated group. What was converted is mentioned.

また、別々の末端に不飽和基および水酸基をそれぞれ有する重合体においても、例えばイソシアネートシランであれば水酸基へ、ヒドロシラン化合物ではわずかな水酸基への導入もあるもののほぼ定量的に不飽和基へ、それぞれ反応性ケイ素基を導入することが可能である。   In addition, even in polymers having unsaturated groups and hydroxyl groups at different terminals, for example, if it is an isocyanate silane, it is introduced into the hydroxyl group. It is possible to introduce reactive silicon groups.

その他、1−ブテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、その他炭素数20以上のα‐オレフィン化合物も片方の末端に不飽和基を有する重合体として好適に使用できる。   In addition, 1-butene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and other α-olefin compounds having 20 or more carbon atoms are not present at one end. It can be suitably used as a polymer having a saturated group.

(B)成分の分子量には制限はないが、好ましくは8,000以下、さらに好ましくは5,000以下が(A)成分へ混合した後の作業性等の点から好ましい。分子量が8,000以上の場合は、有機重合体(A)の低粘度化への効果が少なくなる。   Although there is no restriction | limiting in the molecular weight of (B) component, Preferably it is 8,000 or less, More preferably, 5,000 or less is preferable from points, such as workability | operativity after mixing with (A) component. When the molecular weight is 8,000 or more, the effect of reducing the viscosity of the organic polymer (A) is reduced.

本発明の反応性ケイ素基含有有機重合体(B)の使用量については特に限定はないが、反応性ケイ素基を有する有機重合体(A)100重量部に対し、0.1重量部から200重量部の範囲で使用することが好ましく、1重量部から100重量部の範囲がより好ましい。使用量が0.1重量部より少ない場合は、本発明の効果が得られない場合があり、200重量部より多い場合は組成物中に加水分解性基が多くなり、硬化性を損なうことがある。   Although there is no limitation in particular about the usage-amount of the reactive silicon group containing organic polymer (B) of this invention, it is 0.1 weight part-200 with respect to 100 weight part of organic polymer (A) which has a reactive silicon group. It is preferably used in the range of parts by weight, more preferably in the range of 1 to 100 parts by weight. When the amount used is less than 0.1 parts by weight, the effects of the present invention may not be obtained. When the amount used is more than 200 parts by weight, the composition may have more hydrolyzable groups and may impair curability. is there.

有機重合体(B)は有機重合体と反応性を有し、架橋構造を形成することが可能なため、低分子量の有機重合体(B)を使用した場合は、従来の可塑剤を多く使用する場合に比べシーリング材の可塑剤汚染性を改善する効果が期待できる。また、硬化物表面のタックを低減し、表面に埃や塵が付着しにくい効果が期待できる。   Since the organic polymer (B) is reactive with the organic polymer and can form a crosslinked structure, when a low molecular weight organic polymer (B) is used, many conventional plasticizers are used. Compared to the case, the effect of improving the plasticizer contamination of the sealant can be expected. In addition, it can be expected to reduce the tack of the surface of the cured product and prevent dust and dust from being attached to the surface.

本発明では、有機重合体(A)および有機重合体(B)の反応性ケイ素基と反応しうる反応性ケイ素基を有するビニル系重合体(C)を併用することができ、それにより良好な耐候性や粘着性、接着性を更に付与することが可能となる。   In the present invention, the vinyl polymer (C) having a reactive silicon group capable of reacting with the reactive silicon group of the organic polymer (A) and the organic polymer (B) can be used in combination. It becomes possible to further provide weather resistance, tackiness, and adhesiveness.

ビニル系重合体(C)の反応性ケイ素基は、前述の一般式(1)、一般式(2)で表せるものが好適に使用でき、具体的には前述の有機重合体(A)および有機重合体(B)で挙げたものが同様に使用できる。   As the reactive silicon group of the vinyl polymer (C), those represented by the above general formula (1) and general formula (2) can be preferably used. Specifically, the above organic polymer (A) and organic polymer can be used. What was mentioned by the polymer (B) can be used similarly.

ビニル系重合体(C)の主鎖骨格の重合方法は、前述のビニル系重合体の重合方法、例えば制御ラジカル重合、フリーラジカル重合などが同様に適用できる。   As the polymerization method of the main chain skeleton of the vinyl polymer (C), the above-described polymerization method of the vinyl polymer, for example, controlled radical polymerization, free radical polymerization, and the like can be similarly applied.

ビニル系重合体(C)は、数平均分子量で500〜100,000のものが取り扱いの容易さの点から好ましい。さらに1,000〜30,000のもの、2,000〜20,000のものが硬化物の伸び物性が改善されかつ耐候性、作業性が良好であることからより好ましい。ビニル系重合体(C)の数平均分子量はGPCによるポリスチレン換算分子量として測定する。   A vinyl polymer (C) having a number average molecular weight of 500 to 100,000 is preferred from the viewpoint of ease of handling. Furthermore, the thing of 1,000-30,000 and the thing of 2,000-20,000 are more preferable from the extended physical property of hardened | cured material being improved, and a weather resistance and workability | operativity being favorable. The number average molecular weight of the vinyl polymer (C) is measured as a polystyrene equivalent molecular weight by GPC.

ビニル系重合体(C)1分子当りの反応性ケイ素基の個数は1.1〜5個が好ましい。   The number of reactive silicon groups per molecule of the vinyl polymer (C) is preferably 1.1-5.

ビニル系重合体(C)の使用量については特に限定はないが、反応性ケイ素基を有する有機重合体(A)+(B)100重量部に対し、0.1重量部から200重量部の範囲で使用することが好ましく、1重量部から100重量部の範囲がより好ましい。使用量が0.1重量部より少ない場合は、耐候性や粘着性、接着性の効果が得られない場合があり、200重量部より多い場合は作業性、埃付着性等を損なうことがある。   Although there is no limitation in particular about the usage-amount of a vinyl type polymer (C), it is 0.1 to 200 weight part with respect to 100 weight part of organic polymer (A) + (B) which has a reactive silicon group. It is preferable to use in a range, and a range of 1 to 100 parts by weight is more preferable. When the amount used is less than 0.1 parts by weight, the effects of weather resistance, tackiness and adhesiveness may not be obtained. When it is more than 200 parts by weight, workability, dust adhesion, etc. may be impaired. .

本発明の組成物では、公知の種々の硬化触媒、充填剤、各種添加剤を含むことができる。さらに必要ならば可塑剤等を含むことができる。   The composition of the present invention can contain various known curing catalysts, fillers, and various additives. Further, if necessary, a plasticizer or the like can be contained.

硬化触媒には、従来公知のものを広く使用することができる。その具体例としては、テトラブチルチタネート、テトラプロピルチタネート、チタンテトラアセチルアセトナートなどのチタン化合物;ジブチルスズジラウレート、ジブチルスズマレエート、ジブチルスズフタレート、ジブチルスズジオクテート、ジブチルスズジエチルヘキサノレート、ジブチルスズジメチルマレエート、ジブチルスズジエチルマレエート、ジブチルスズジブチルマレエート、ジブチルスズジオクチルマレエート、ジブチルスズジトリデシルマレエート、ジブチルスズジベンジルマレエート、ジブチルスズジアセテート、ジオクチルスズジエチルマレエート、ジオクチルスズジオクチルマレエート、ジブチルスズジメトキサイド、ジブチルスズジノニルフェノキサイド、ジブテニルスズオキサイド、ジブチルスズジアセチルアセトナート、ジブチルスズジエチルアセトアセトナート、ジブチルスズオキサイドとフタル酸エステルとの反応物等の4価のスズ化合物;オクチル酸スズ、ナフテン酸スズ、ステアリン酸スズ、バーサチック酸スズなどの2価のスズ化合物;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテートなどの有機アルミニウム化合物類;ジルコニウムテトラアセチルアセトナートなどのジルコニウム化合物類;オクチル酸鉛;ブチルアミン、オクチルアミン、ジブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6−トリス(ジメチルアミノメチル)フェノール、モルホリン、N−メチルモルホリン、2−エチル−4−メチルイミダゾール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU)などのアミン系化合物、あるいはこれらアミン系化合物のカルボン酸などとの塩;過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂;過剰のポリアミンとエポキシ化合物との反応生成物;γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジメトキシシランなどのアミノ基を有するシランカップリング剤;などのシラノール縮合触媒、さらには他の酸性触媒、塩基性触媒などの公知のシラノール縮合触媒等が挙げられる。これらの触媒は単独で使用してもよく、2種類以上併用してもよい。   A conventionally well-known thing can be widely used for a curing catalyst. Specific examples thereof include titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, titanium tetraacetylacetonate; dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctate, dibutyltin diethylhexanolate, dibutyltin dimethyl maleate, dibutyltin Diethyl maleate, dibutyltin dibutyl maleate, dibutyltin dioctyl maleate, dibutyltin ditridecyl maleate, dibutyltin dibenzyl maleate, dibutyltin diacetate, dioctyltin diethyl maleate, dioctyltin dioctyl maleate, dibutyltin dimethoxide, dibutyltin dinonyl Phenoxide, dibutenyl tin oxide, dibutyltin diacetyl Tetravalent tin compounds such as setonate, dibutyltin diethyl acetoacetonate, reaction product of dibutyltin oxide and phthalate; divalent tin compounds such as tin octylate, tin naphthenate, tin stearate, tin versatate; aluminum Organoaluminum compounds such as trisacetylacetonate, aluminum trisethylacetoacetate, diisopropoxyaluminum ethylacetoacetate; zirconium compounds such as zirconium tetraacetylacetonate; lead octylate; butylamine, octylamine, dibutylamine, monoethanol Amine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, cyclohexylamine, benzylamine , Diethylaminopropylamine, xylylenediamine, triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, morpholine, N-methylmorpholine, 2-ethyl-4-methylimidazole, 1, Amine compounds such as 8-diazabicyclo (5,4,0) undecene-7 (DBU), or salts of these amine compounds with carboxylic acids, etc .; low molecular weight polyamide resins obtained from excess polyamines and polybasic acids Reaction product of excess polyamine and epoxy compound; silane coupling agent having amino group such as γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) aminopropylmethyldimethoxysilane; silanol condensation catalyst such as And even other acidic touches , Known silanol condensation catalysts such as basic catalyst, and the like. These catalysts may be used alone or in combination of two or more.

これらの硬化触媒の使用量は、反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して、0.1〜20重量部程度が好ましい。硬化触媒の使用量が少なすぎると、硬化速度が遅くなり、また硬化反応が充分に進行しにくくなるので、好ましくない。一方、硬化触媒の使用量が多すぎると、硬化時に局部的な発熱や発泡が生じ、良好な硬化物が得られにくくなるので、好ましくない。   These curing catalysts are used in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). The degree is preferred. If the amount of the curing catalyst used is too small, the curing rate is slow, and the curing reaction is not sufficiently progressed. On the other hand, if the amount of the curing catalyst used is too large, local heat generation and foaming occur during curing, and it becomes difficult to obtain a good cured product, which is not preferable.

本発明の硬化性組成物においては、縮合触媒の活性をより高めるために、一般式R1 4-aSi(OR1a(式中、R1、aは前記に同じ。)で示されるケイ素化合物を添加しても構わない。前記ケイ素化合物としては、限定はされないが、フェニルトリメトキシシラン、フェニルメチルジメトキシシラン、フェニルジメチルメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフェニルメトキシシラン等の一般式中のSi原子に直結するR1の少なくとも1個が、炭素数6〜20のアリール基であるものが、組成物の硬化反応を加速する効果が大きいために好ましい。特に、ジフェニルジメトキシシランやジフェニルジエトキシシランは、低コストであり、入手が容易であるために特に好ましい。このケイ素化合物の配合量は反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して0.01〜20重量部程度が好ましく、0.1〜10重量部が更に好ましい。ケイ素化合物の配合量がこの範囲を下回ると硬化反応を加速する効果が小さくなる場合がある。一方、ケイ素化合物の配合量がこの範囲を上回ると、硬化物の硬度や引張強度が低下することがある。 In the curable composition of the present invention, shown in order to enhance the activity of the condensation catalyst, the general formula R 1 4-a Si (OR 1) a ( wherein, R 1, a is as defined above.) A silicon compound may be added. The silicon compound is not limited, but is directly connected to the Si atom in the general formula such as phenyltrimethoxysilane, phenylmethyldimethoxysilane, phenyldimethylmethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, triphenylmethoxysilane and the like. It is preferable that at least one R 1 is an aryl group having 6 to 20 carbon atoms because the effect of accelerating the curing reaction of the composition is great. In particular, diphenyldimethoxysilane and diphenyldiethoxysilane are particularly preferable because of low cost and easy availability. The compounding amount of the silicon compound is preferably about 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). 0.1 to 10 parts by weight is more preferable. When the compounding amount of the silicon compound is below this range, the effect of accelerating the curing reaction may be reduced. On the other hand, when the compounding amount of the silicon compound exceeds this range, the hardness and tensile strength of the cured product may decrease.

本発明の組成物には、シランカップリング剤、シランカップリング剤の反応物、またはシランカップリング剤以外の化合物を接着性付与剤として添加することができる。シランカップリング剤の具体例としては、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン等のイソシアネート基含有シラン類;γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−ウレイドプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン等のアミノ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプト基含有シラン類;γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;β−カルボキシエチルトリエトキシシラン、β−カルボキシエチルフェニルビス(2−メトキシエトキシ)シラン、N−β−(カルボキシメチル)アミノエチル−γ−アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等もシランカップリング剤として用いることができる。本発明に用いるシランカップリング剤は、通常、反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して、0.1〜20重量部の範囲で使用される。特に、0.5〜10重量部の範囲で使用するのが好ましい。   To the composition of the present invention, a silane coupling agent, a reaction product of the silane coupling agent, or a compound other than the silane coupling agent can be added as an adhesion promoter. Specific examples of the silane coupling agent include isocyanate group-containing silanes such as γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, and γ-isocyanatopropylmethyldimethoxysilane; γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- ( 2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropylmethyldiethoxysilane, γ-ureido Amino group-containing silanes such as propyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane; mercapto group-containing silanes such as γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane; γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane Epoxy group-containing silanes such as lan; β-carboxyethyltriethoxysilane, β-carboxyethylphenylbis (2-methoxyethoxy) silane, N-β- (carboxymethyl) aminoethyl-γ-aminopropyltrimethoxysilane, etc. Carboxysilanes; vinyl-type unsaturated group-containing silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyltriethoxysilane; γ-chloropropyltrimethoxy Examples include halogen-containing silanes such as silane; isocyanurate silanes such as tris (trimethoxysilyl) isocyanurate. In addition, amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, and the like, which are derivatives of these, can also be used as silane coupling agents. . The silane coupling agent used in the present invention is usually 0.1 to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). It is used in the range of 20 parts by weight. In particular, it is preferably used in the range of 0.5 to 10 parts by weight.

本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩ビ、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。シランカップリング剤以外の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。   The effects of the silane coupling agent added to the curable composition of the present invention are various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, mortar, vinyl chloride, acrylic, polyester, When used for organic base materials such as polyethylene, polypropylene, polycarbonate, etc., it exhibits a remarkable adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable. Specific examples other than the silane coupling agent are not particularly limited, and examples thereof include epoxy resins, phenol resins, sulfur, alkyl titanates, and aromatic polyisocyanates. The adhesiveness-imparting agent may be used alone or in combination of two or more. By adding these adhesion-imparting agents, the adhesion to the adherend can be improved.

本発明の組成物は、種々の充填剤を配合することができる。充填剤としては、フュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックの如き補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーンやPVC粉末やPMMA粉末などの樹脂粉末、の如き充填剤;石綿、ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。充填剤を使用する場合、その使用量は反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して1〜300重量部、好ましくは10〜200重量部である。   The composition of the present invention can contain various fillers. Fillers include reinforcing silica such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate Diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass microballoon, phenolic resin and vinylidene chloride Examples thereof include fillers such as resin organic microballoons and resin powders such as PVC powder and PMMA powder; and fibrous fillers such as asbestos, glass fibers and filaments. When the filler is used, the amount used is 1 to 300 parts by weight with respect to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B), Preferably it is 10-200 weight part.

これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤が好ましく、反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計100重量部に対し、1〜200重量部の範囲で使用すれば好ましい結果が得られる。また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計100重量部に対して5〜200重量部の範囲で使用すれば好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。脂肪酸表面処理膠質炭酸カルシウムと表面処理がされていない重質炭酸カルシウムなど粒径が1μm以上の炭酸カルシウムを併用して用いることができる。   When you want to obtain a hardened product with high strength by using these fillers, mainly fume silica, precipitated silica, crystalline silica, fused silica, dolomite, silicic anhydride, hydrous silicic acid and carbon black, surface treatment fine A filler selected from calcium carbonate, calcined clay, clay, activated zinc white and the like is preferable, and a total of 100 parts by weight of an organic polymer (A) having a reactive silicon group and an organic polymer (B) containing a reactive silicon group On the other hand, if it is used in the range of 1 to 200 parts by weight, preferable results can be obtained. In addition, when it is desired to obtain a cured product having a low strength and a large elongation at break, a filler mainly selected from titanium oxide, calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide, shirasu balloon, etc. Is preferably used in an amount of 5 to 200 parts by weight based on 100 parts by weight of the total of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). In general, calcium carbonate has a greater effect of improving the breaking strength, breaking elongation, and adhesiveness of the cured product as the value of the specific surface area increases. Of course, these fillers may be used alone or in combination of two or more. Fatty acid surface-treated colloidal calcium carbonate can be used in combination with calcium carbonate having a particle size of 1 μm or more, such as heavy calcium carbonate that has not been surface-treated.

組成物の作業性(キレなど)向上や硬化物表面を艶消し状にするために、有機バルーン、無機バルーンの添加が好ましい。これらの充填剤は表面処理することもでき、1種類のみで使用しても良いし、2種類以上混合使用することもできる。作業性(キレなど)向上には、バルーンの粒径は0.1mm以下が好ましい。硬化物表面を艶消し状にするためには、5〜300μmが好ましい。   In order to improve the workability (such as sharpness) of the composition and to make the surface of the cured product matt, it is preferable to add an organic balloon or an inorganic balloon. These fillers can be surface-treated, and may be used alone or in combination of two or more. In order to improve workability (such as sharpness), the balloon particle size is preferably 0.1 mm or less. In order to make the surface of the cured product matt, 5-300 μm is preferable.

本発明の組成物は、サイジングボード、特に窯業系サイジングボードなど住宅の外壁の目地に好適に用いられるが、外壁の意匠とシーリング材の意匠が調和することが望ましい。特に、外壁としてスパッタ塗装、着色骨材などの混入により高級感のある外壁が用いられるようになっている。本発明の組成物が直径が0.1mm以上、好ましくは0.1〜5.0mm程度の鱗片状または粒状の物質が配合されていると、硬化物はこのような高級感のある外壁と調和し、耐候性がすぐれるためこの硬化物の外観は長期にわたって持続するすぐれた組成物となる。粒状の物質を用いると砂まき調あるいは砂岩調のざらつき感がある表面となり、鱗片状物質を用いると鱗片状に起因する凹凸状の表面となる。   The composition of the present invention is suitably used for joints on the outer wall of a house such as a sizing board, particularly a ceramic sizing board, but it is desirable that the design of the outer wall and the design of the sealing material are harmonized. In particular, high-quality outer walls are used as outer walls due to the mixture of spatter coating, colored aggregates, and the like. When the composition of the present invention contains a scaly or granular substance having a diameter of 0.1 mm or more, preferably about 0.1 to 5.0 mm, the cured product is in harmony with such a high-quality outer wall. However, since the weather resistance is excellent, the appearance of the cured product is an excellent composition that lasts for a long time. When a granular material is used, the surface becomes sandy or sandstone-like rough, and when a scaly material is used, the surface becomes uneven.

本発明の組成物がシーリング材硬化物粒子を含むと硬化物は表面に凹凸を形成し意匠性を向上させることができる。シーリング材硬化物粒子の好ましい直径、配合量、材料などは特開2001−115142号公報に記載されているように次の通りである。直径は0.1mm〜1mm、さらには0.2〜0.5mm程度が好ましい。配合量は硬化性組成物中に5〜100重量%、さらには20〜50重量%が好ましい。材料は、ウレタン樹脂、シリコーン、変成シリコーン、多硫化ゴム等を挙げることができシーリング材に用いられるものであれば限定されないが、変成シリコーン系のシーリング材が好ましい。   When the composition of this invention contains sealing material hardened | cured material particle | grains, hardened | cured material can form an unevenness | corrugation on the surface and can improve the designability. The preferable diameter, blending amount, material and the like of the cured sealant particles are as follows as described in JP-A-2001-115142. The diameter is preferably about 0.1 mm to 1 mm, more preferably about 0.2 to 0.5 mm. The blending amount is preferably 5 to 100% by weight, more preferably 20 to 50% by weight in the curable composition. Examples of the material include urethane resin, silicone, modified silicone, polysulfide rubber and the like, and are not limited as long as they are used for the sealing material, but a modified silicone-based sealing material is preferable.

本発明の組成物は、必要に応じて可塑剤成分を添加することができるが、必ずしも必要とするものではない。可塑剤としては特に限定されないが、目的により、例えば、ジブチルフタレート、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類;ポリエステル系可塑剤類等;アクリル酸エステルやアクリルアミドなどのアクリル系単量体の重合体などのアクリル成分を有する可塑剤;ポリオキシプロピレングリコール、ポリオキシプロピレントリオール、その末端アルキルエーテル誘導体等のポリエーテル系重合体、を単独、または2種以上混合して使用することができる。   Although the plasticizer component can be added to the composition of the present invention as necessary, it is not always necessary. Although it does not specifically limit as a plasticizer, According to the objective, phthalic acid esters, such as dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, butyl benzyl phthalate, etc .; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, Non-aromatic dibasic acid esters such as isodecyl succinate; Aliphatic esters such as butyl oleate and methyl acetylricinoleate; Phosphate esters such as tricresyl phosphate and tributyl phosphate; Trimellitic acid esters; Chlorinated paraffins; Hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; Process oils; Epoxy plasticizers such as epoxidized soybean oil and epoxy benzyl stearate; Polyester plasticizers; Acrylic acid Beauty treatment A plasticizer having an acrylic component such as a polymer of an acrylic monomer such as acrylamide or acrylamide; a polyether polymer such as polyoxypropylene glycol, polyoxypropylene triol, or a terminal alkyl ether derivative thereof alone or in combination They can be used in combination.

これらの中では、アクリル系単量体の重合体、ポリエーテル系重合体が好ましい。アクリル系単量体の重合体、ポリエーテル系重合体の分子量は3000以上が使用されるが、5000以上が好ましく、10000以上が更に好ましい。なおこれら可塑剤は、重合体製造時に配合することも可能である。   Among these, acrylic monomer polymers and polyether polymers are preferred. The molecular weight of the acrylic monomer polymer and the polyether polymer is 3000 or more, preferably 5000 or more, and more preferably 10,000 or more. These plasticizers can also be blended at the time of polymer production.

本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n−プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ−グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。   You may add the physical property modifier which adjusts the tensile characteristic of the hardened | cured material produced | generated as needed to the curable composition of this invention. Although it does not specifically limit as a physical property regulator, For example, alkyl alkoxysilanes, such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, n-propyltrimethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropenoxy Silanes, alkyl isopropenoxy silanes such as γ-glycidoxypropylmethyldiisopropenoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethylmethoxy Silane, γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) aminopropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxy Alkoxysilanes having a functional group such as a silane; silicone varnishes; polysiloxanes and the like. By using the physical property modifier, it is possible to increase the hardness when the composition of the present invention is cured, or to decrease the hardness and break elongation. The said physical property modifier may be used independently and may be used together 2 or more types.

物性調整剤は反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して、0.1〜20重量部、好ましくは0.5〜10重量部の範囲で使用される。   The physical property modifier is 0.1 to 20 parts by weight, preferably 0. 0 parts by weight based on 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). It is used in the range of 5 to 10 parts by weight.

本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。また、垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。チクソ性付与剤は反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して、0.1〜20重量部の範囲で使用される。   A thixotropic agent (anti-sagging agent) may be added to the curable composition of the present invention as necessary to prevent sagging and improve workability. The sagging preventing agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These thixotropic agents (anti-sagging agents) may be used alone or in combination of two or more. The thixotropic agent is used in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). Is done.

本発明の組成物においては1分子中にエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物及びそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ジ−(2−エチルヘキシル)4,5−エポキシシクロヘキサン−1,2−ジカーボキシレート(E−PS)、エポキシオクチルステアレ−ト、エポキシブチルステアレ−ト等があげられる。これらのなかではE−PSが特に好ましい。硬化物の復元性を高める目的には分子中にエポキシ基を1個有する化合物を用いるのが好ましい。エポキシ化合物は反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して0.5〜50重量部の範囲で使用するのがよい。   In the composition of the present invention, a compound containing an epoxy group in one molecule can be used. When a compound having an epoxy group is used, the restorability of the cured product can be improved. Examples of the compound having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, di- (2-ethylhexyl) 4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxy octyl stearate And epoxybutyl stearate. Of these, E-PS is particularly preferred. For the purpose of enhancing the restorability of the cured product, it is preferable to use a compound having one epoxy group in the molecule. The epoxy compound is used in the range of 0.5 to 50 parts by weight with respect to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). Good.

本発明の組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。光硬化性物質とは、光の作用によってかなり短時間に分子構造が化学変化をおこし硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、市販の任意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。不飽和アクリル系化合物としては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物であって、プロピレン(又はブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)ジメタクリレート等の単量体又は分子量10,000以下のオリゴエステルが例示される。具体的には、例えば特殊アクリレート(2官能)のアロニックスM−210,アロニックスM−215,アロニックスM−220,アロニックスM−233,アロニックスM−240,アロニックスM−245;(3官能)のアロニックスM−305,アロニックスM−309,アロニックスM−310,アロニックスM−315,アロニックスM−320,アロニックスM−325,及び(多官能)のアロニックスM−400などが例示できるが、特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい。(以上アロニックスはいずれも東亜合成化学工業株式会社の製品である。)
ポリケイ皮酸ビニル類としては、シンナモイル基を感光基とする感光性樹脂でありポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル誘導体が例示される。アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁〜、第106頁〜、第117頁〜)に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤やアミン類などの促進剤を添加すると、効果が高められる場合がある。
A photocurable material can be used in the composition of the present invention. When a photocurable material is used, a film of the photocurable material is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved. A photocurable substance is a substance in which the molecular structure undergoes a chemical change in a very short time due to the action of light, resulting in a change in physical properties such as curing. Many compounds such as organic monomers, oligomers, resins or compositions containing them are known as this type of compound, and any commercially available compound can be adopted. Representative examples include unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, and the like. Unsaturated acrylic compounds include monomers, oligomers or mixtures thereof having one or several acrylic or methacrylic unsaturated groups, including propylene (or butylene, ethylene) glycol di (meth) acrylate, neopentyl Examples thereof include monomers such as glycol di (meth) dimethacrylate and oligoesters having a molecular weight of 10,000 or less. Specifically, for example, special acrylate (bifunctional) Aronix M-210, Aronix M-215, Aronix M-220, Aronix M-233, Aronix M-240, Aronix M-245; (Trifunctional) Aronix M -305, Aronix M-309, Aronix M-310, Aronix M-315, Aronix M-320, Aronix M-325, and (Multifunctional) Aronix M-400, etc., but especially contain acrylic functional groups The compound which contains 3 or more same functional groups on average in 1 molecule is preferable. (All Aronix is a product of Toa Gosei Chemical Co., Ltd.)
Examples of the polyvinyl cinnamates include photosensitive resins having a cinnamoyl group as a photosensitive group, and those obtained by esterifying polyvinyl alcohol with cinnamic acid, as well as many polyvinyl cinnamate derivatives. The azide resin is known as a photosensitive resin having an azide group as a photosensitive group. Usually, in addition to a rubber photosensitive solution in which a diazide compound is added as a photosensitive agent, “photosensitive resin” (March 17, 1972). There are detailed examples in Publishing, Publishing Society of Printing Press, page 93-, page 106-, page 117-), these may be used alone or in combination, and a sensitizer may be added as necessary. Can do. Note that the addition of a sensitizer such as ketones or nitro compounds or an accelerator such as amines may enhance the effect.

光硬化性物質の使用量は、反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して0.01〜20重量部が好ましく、さらには0.5〜10重量部範囲が好ましい。0.01重量部以下では耐候性を高める効果が小さく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じるため好ましくない。   The amount of the photocurable substance used is 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). The range of 0.5 to 10 parts by weight is more preferable. If it is 0.01 parts by weight or less, the effect of increasing the weather resistance is small, and if it is 20 parts by weight or more, the cured product becomes too hard and cracks occur, which is not preferable.

本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3−ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2−ポリブタジエン、1,4−ポリブタジエン、C5〜C8ジエンの重合体などの液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させてえられるNBR、SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。これらのうちではキリ油や液状ジエン系重合体がとくに好ましい。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩や、アミン化合物等が例示される。酸素硬化性物質の使用量は、反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して0.1〜20重量部の範囲で使用するのがよく、さらに好ましくは1〜10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3−160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。   An oxygen curable substance can be used in the composition of the present invention. Examples of the oxygen curable substance include unsaturated compounds that can react with oxygen in the air. The oxygen curable substance reacts with oxygen in the air to form a cured film near the surface of the cured product. And prevents dust from adhering. Specific examples of the oxygen curable substance include drying oils typified by drill oil and linseed oil, various alkyd resins obtained by modifying the compounds; acrylic polymers and epoxy resins modified with drying oils , Silicone resin; 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymer obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc. Liquid polymers, liquid copolymers such as NBR and SBR obtained by copolymerizing monomers such as acrylonitrile and styrene copolymerizable with these diene compounds so that the main component is a diene compound, Further, various modified products thereof (maleinized modified products, boiled oil modified products, etc.) and the like can be mentioned. These may be used alone or in combination of two or more. Of these, drill oil and liquid diene polymers are particularly preferable. Moreover, the effect may be enhanced if a catalyst for promoting the oxidative curing reaction or a metal dryer is used in combination. Examples of these catalysts and metal dryers include metal salts such as cobalt naphthenate, lead naphthenate, zirconium naphthenate, cobalt octylate, zirconium octylate, and amine compounds. The amount of the oxygen curable substance used is 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). It is good to use in the range, and more preferably 1-10 parts by weight. If the amount used is less than 0.1 parts by weight, the improvement of the contamination is not sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired. As described in JP-A-3-160053, the oxygen curable substance is preferably used in combination with a photocurable substance.

本発明の組成物には酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、ヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例は特開平4−283259号公報や特開平9−194731号公報にも記載されている。酸化防止剤の使用量は、反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。   An antioxidant (antiaging agent) can be used in the composition of the present invention. If an antioxidant is used, the weather resistance of the cured product can be increased. Examples of the antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred. Similarly, hindered amine light stabilizers can also be used. Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731. The usage-amount of antioxidant is the range of 0.1-10 weight part with respect to 100 weight part of total amounts of the organic polymer (A) which has a reactive silicon group, and a reactive silicon group containing organic polymer (B). The amount is preferably 0.2 to 5 parts by weight.

本発明の組成物には光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。光安定剤の使用量は、反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。光安定剤の具体例は特開平9−194731号公報にも記載されている。   A light stabilizer can be used in the composition of the present invention. Use of a light stabilizer can prevent photooxidation degradation of the cured product. Examples of the light stabilizer include benzotriazole, hindered amine, and benzoate compounds, with hindered amines being particularly preferred. The amount of the light stabilizer used is in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). The amount is preferably 0.2 to 5 parts by weight. Specific examples of the light stabilizer are also described in JP-A-9-194731.

本発明の組成物に光硬化性物質を併用する場合、特に不飽和アクリル系化合物を用いる場合、特開平5−70531号公報に記載されているようにヒンダードアミン系光安定剤として3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。   When a photocurable substance is used in combination with the composition of the present invention, particularly when an unsaturated acrylic compound is used, a tertiary amine-containing hindered amine is used as a hindered amine light stabilizer as described in JP-A-5-70531. The use of a light stabilizer is preferred for improving the storage stability of the composition.

本発明の組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。紫外線吸収剤の使用量は、反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。   An ultraviolet absorber can be used in the composition of the present invention. When the ultraviolet absorber is used, the surface weather resistance of the cured product can be enhanced. Examples of ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds, and benzotriazole-based compounds are particularly preferable. The amount of the ultraviolet absorber used is in the range of 0.1 to 10 parts by weight relative to 100 parts by weight of the total amount of the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B). The amount is preferably 0.2 to 5 parts by weight. It is preferable to use a phenolic or hindered phenolic antioxidant, a hindered amine light stabilizer and a benzotriazole ultraviolet absorber in combination.

本発明の組成物には、エポキシ樹脂を添加し、弾性接着剤などとして用いることもできる。エポキシ樹脂としては、エピクロルヒドリン−ビスフェノールA型エポキシ樹脂、エピクロルヒドリン−ビスフェノールF型エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、p−オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m−アミノフェノール系エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンなどのごとき多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ樹脂、石油樹脂などのごとき不飽和重合体のエポキシ化物などが例示されるが、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用されうる。エポキシ基を少なくとも分子中に2個含有するものが、硬化に際し反応性が高く、また硬化物が3次元的網目をつくりやすいなどの点から好ましい。さらに好ましいものとしてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などがあげられる。これらのエポキシ樹脂と反応性ケイ素基を有する有機重合体(A)と反応性ケイ素基含有有機重合体(B)の合計量の使用割合は、重量比で((A)+(B))/エポキシ樹脂=100/1〜1/100の範囲である。((A)+(B))/エポキシ樹脂の割合が1/100未満になると、エポキシ樹脂硬化物の((A)+(B))成分による衝撃強度や強靱性の改良効果がえられがたくなり、((A)+(B))/エポキシ樹脂の割合が100/1をこえると、((A)+(B))成分硬化物のエポキシ樹脂による強度向上が不十分となる。好ましい使用割合は、硬化性樹脂組成物の用途などにより異なるため一概には決められないが、たとえばエポキシ樹脂硬化物の耐衝撃性、可撓性、強靱性、剥離強度などを改善する場合には、エポキシ樹脂100重量部に対して成分(A)成分+(B)成分を1〜100重量部、さらに好ましくは5〜100重量部使用するのがよい。一方、(A)成分+(B)成分の硬化物の強度を改善する場合には、(A)成分+(B)成分100重量部に対してエポキシ樹脂を1〜200重量部、さらに好ましくは5〜100重量部使用するのがよい。   An epoxy resin can be added to the composition of the present invention and used as an elastic adhesive or the like. Epoxy resins include epichlorohydrin-bisphenol A type epoxy resin, epichlorohydrin-bisphenol F type epoxy resin, flame retardant type epoxy resin such as glycidyl ether of tetrabromobisphenol A, novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol A glycidyl ether type epoxy resin of propylene oxide adduct, p-oxybenzoic acid glycidyl ether ester type epoxy resin, m-aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin, urethane modified epoxy resin, various alicyclic epoxy resins, N, N-diglycidylaniline, N, N-diglycidyl-o-toluidine, triglycidyl isocyanurate, polyalkylene glycol diglycidyl ether Examples include glycidyl ethers of polyhydric alcohols such as glycerin, epoxidized products of unsaturated polymers such as hydantoin type epoxy resins, petroleum resins, etc., but are not limited to these and are generally used. Epoxy resins can be used. Those containing at least two epoxy groups in the molecule are preferred because they are highly reactive during curing and the cured product easily forms a three-dimensional network. More preferred are bisphenol A type epoxy resins or novolac type epoxy resins. The use ratio of the total amount of these epoxy resins, the organic polymer (A) having a reactive silicon group and the reactive silicon group-containing organic polymer (B) is ((A) + (B)) / Epoxy resin = 100/1 to 1/100. When the ratio of ((A) + (B)) / epoxy resin is less than 1/100, the effect of improving the impact strength and toughness of the ((A) + (B)) component of the cured epoxy resin can be obtained. When the ratio of ((A) + (B)) / epoxy resin exceeds 100/1, the strength improvement by the epoxy resin of the ((A) + (B)) component cured product becomes insufficient. The preferred use ratio varies depending on the use of the curable resin composition and cannot be determined unconditionally. For example, when improving the impact resistance, flexibility, toughness, peel strength, etc. of the cured epoxy resin The component (A) component + (B) component is used in an amount of 1 to 100 parts by weight, more preferably 5 to 100 parts by weight, based on 100 parts by weight of the epoxy resin. On the other hand, when improving the strength of the cured product of component (A) + component (B), 1 to 200 parts by weight of epoxy resin, more preferably 100 parts by weight of component (A) + component (B), more preferably It is good to use 5 to 100 parts by weight.

エポキシ樹脂を用いる場合、エポキシ樹脂を硬化させる硬化剤を併用できる。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。具体的には、例えば、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N−アミノエチルピペリジン、m−キシリレンジアミン、m−フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、イソホロンジアミン、アミン末端ポリエーテル等の一級、二級アミン類;2,4,6−トリス(ジメチルアミノメチル)フェノール、トリプロピルアミンのような三級アミン類、及び、これら三級アミン類の塩類;ポリアミド樹脂類;イミダゾール類;ジシアンジアミド類;三弗化硼素錯化合物類、無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデシニル無水琥珀酸、無水ピロメリット酸、無水クロレン酸等のような無水カルボン酸類;アルコール類;フェノール類;カルボン酸類;アルミニウム又はジルコニウムのジケトン錯化合物等の化合物を例示することができるが、これらに限定されるものではない。また、硬化剤も単独でも2種以上併用してもよい。   When an epoxy resin is used, a curing agent that cures the epoxy resin can be used in combination. There is no restriction | limiting in particular as an epoxy resin hardening | curing agent which can be used, The epoxy resin hardening | curing agent generally used can be used. Specifically, for example, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperidine, m-xylylenediamine, m-phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, isophoronediamine, amine-terminated poly Primary and secondary amines such as ether; tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol and tripropylamine, and salts of these tertiary amines; polyamide resins; imidazole Dicyandiamides; boron trifluoride complex compounds, phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, dodecynyl succinic anhydride, pyromellitic anhydride, chlorenic anhydride, etc .; alcohols ; Fe Lumpur acids; carboxylic acids; but the compound of diketone complex compounds of aluminum or zirconium, or the like can be exemplified, but the invention is not limited thereto. Further, the curing agents may be used alone or in combination of two or more.

エポキシ樹脂の硬化剤を使用する場合、その使用量はエポキシ樹脂100重量部に対し、0.1〜300重量部の範囲である。   When the epoxy resin curing agent is used, the amount used is in the range of 0.1 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin.

エポキシ樹脂の硬化剤としてケチミンを用いることができる。ケチミンは、水分のない状態では安定に存在し、水分によって一級アミンとケトンに分解され、生じた一級アミンがエポキシ樹脂の室温硬化性の硬化剤となる。ケチミンを用いると1液型の組成物を得ることができる。このようなケチミンとしては、アミン化合物とカルボニル化合物との縮合反応により得ることができる。   Ketimine can be used as a curing agent for the epoxy resin. Ketimine is stably present in the absence of moisture, and is decomposed into primary amines and ketones by moisture, and the resulting primary amine becomes a room temperature curable curing agent for the epoxy resin. When ketimine is used, a one-component composition can be obtained. Such a ketimine can be obtained by a condensation reaction between an amine compound and a carbonyl compound.

ケチミンの合成には公知のアミン化合物、カルボニル化合物を用いればよいが、たとえばアミン化合物としてはエチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、1,3−ジアミノブタン、2,3−ジアミノブタン、ペンタメチレンジアミン、2,4−ジアミノペンタン、ヘキサメチレンジアミン、p−フェニレンジアミン、p,p′−ビフェニレンジアミンなどのジアミン;1,2,3−トリアミノプロパン、トリアミノベンゼン、トリス(2−アミノエチル)アミン、テトラ(アミノメチル)メタンなどの多価アミン;ジエチレントリアミン、トリエチレントリアミン、テトラエチレンペンタミンなどのポリアルキレンポリアミン;ポリオキシアルキレン系ポリアミン;γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシランなどのアミノシラン;などが使用されうる。また、カルボニル化合物としてはアセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、ジエチルアセトアルデヒド、グリオキサール、ベンズアルデヒド等のアルデヒド類;シクロペンタノン、トリメチルシクロペンタノン、シクロヘキサノン、トリメチルシクロヘキサノン等の環状ケトン類;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、ジエチルケトン、ジプロピルケトン、ジイソプロピルケトン、ジブチルケトン、ジイソブチルケトン等の脂肪族ケトン類;アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジメチル、マロン酸ジエチル、マロン酸メチルエチル、ジベンゾイルメタン等のβ−ジカルボニル化合物;などが使用できる。   For the synthesis of ketimine, known amine compounds and carbonyl compounds may be used. For example, as amine compounds, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, 1,3-diaminobutane, 2,3-diaminobutane, Diamines such as pentamethylenediamine, 2,4-diaminopentane, hexamethylenediamine, p-phenylenediamine, p, p'-biphenylenediamine; 1,2,3-triaminopropane, triaminobenzene, tris (2-amino Polyvalent amines such as ethyl) amine and tetra (aminomethyl) methane; polyalkylene polyamines such as diethylenetriamine, triethylenetriamine and tetraethylenepentamine; polyoxyalkylene-based polyamines; γ-aminopropyltri Tokishishiran, N-(beta-aminoethyl)-.gamma.-aminopropyltrimethoxysilane, aminosilanes such as N-(beta-aminoethyl)-.gamma.-aminopropyl methyl dimethoxy silane; and it may be used. Examples of the carbonyl compound include aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, diethylacetaldehyde, glyoxal and benzaldehyde; cyclic ketones such as cyclopentanone, trimethylcyclopentanone, cyclohexanone and trimethylcyclohexanone; acetone , Aliphatic ketones such as methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, diethyl ketone, dipropyl ketone, diisopropyl ketone, dibutyl ketone, diisobutyl ketone; acetylacetone, methyl acetoacetate, ethyl acetoacetate, dimethyl malonate , Β-dicarbonyl compounds such as diethyl malonate, methyl ethyl malonate, dibenzoylmethane And the like can be used.

ケチミン中にイミノ基が存在する場合には、イミノ基をスチレンオキサイド;ブチルグリシジルエーテル、アリルグリシジルエーテルなどのグリシジルエーテル;グリシジルエステルなどと反応させてもよい。これらのケチミンは、単独で用いてもよく、二種類以上を併用して用いてもよく、エポキシ樹脂100重量部に対し、1〜100重量部使用され、その使用量はエポキシ樹脂およびケチミンの種類によって異なる。   When an imino group is present in the ketimine, the imino group may be reacted with styrene oxide; glycidyl ether such as butyl glycidyl ether or allyl glycidyl ether; glycidyl ester or the like. These ketimines may be used alone or in combination of two or more, and are used in an amount of 1 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin, and the amount used is the kind of epoxy resin and ketimine It depends on.

本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、難燃剤、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、溶剤、防かび剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書にあげた添加物の具体例以外の具体例は、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特開2001−72854号の各公報などに記載されている。   Various additives may be added to the curable composition of the present invention as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product. Examples of such additives include, for example, flame retardants, curability modifiers, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, Examples include solvents and fungicides. These various additives may be used alone or in combination of two or more. Specific examples other than the specific examples of the additives listed in the present specification include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-62-2904, It is described in Japanese Laid-Open Patent Publication No. 2001-72854.

本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調製することもできる。   The curable composition of the present invention can also be prepared as a one-component type in which all the blended components are pre-blended and sealed and cured by moisture in the air after construction. It is also possible to prepare a two-component type in which components such as a plasticizer and water are blended and the compounding material and the polymer composition are mixed before use.

前記硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。前記硬化性組成物が2成分型の場合、反応性ケイ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので配合剤中には若干の水分が含有されていてもゲル化の心配は少ないが、長期間の貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水、乾燥方法としては粉状などの固状物の場合は加熱乾燥法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲルなどを使用した脱水法が好適である。また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。かかる脱水乾燥法に加えてメタノール、エタノールなどの低級アルコール;n−プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性は向上する。   When the curable composition is of a one-component type, all the ingredients are pre-blended, so the water-containing ingredients are dehydrated and dried before use, or dehydrated during decompression or the like during compounding and kneading. Is preferred. When the curable composition is a two-component type, it is not necessary to add a curing catalyst to the main component containing a polymer having a reactive silicon group, so gelation is possible even if some moisture is contained in the compounding agent. However, when long-term storage stability is required, dehydration and drying are preferable. As the dehydration and drying method, a heat drying method is preferable in the case of a solid substance such as a powder, and a dehydration method using a reduced pressure dehydration method or a synthetic zeolite, activated alumina, silica gel or the like is preferable in the case of a liquid material. Alternatively, a small amount of an isocyanate compound may be blended to react with an isocyanate group and water for dehydration. In addition to the dehydration drying method, lower alcohols such as methanol and ethanol; n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ -Storage stability is further improved by adding an alkoxysilane compound such as glycidoxypropyltrimethoxysilane.

脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は反応性ケイ素基を有する有機重合体(A)+反応性ケイ素基含有有機重合体(B)の合計量100重量部に対して、0.1〜20重量部、好ましくは0.5〜10重量部の範囲が好ましい。   The amount of the silicon compound capable of reacting with water, such as dehydrating agent, especially vinyltrimethoxysilane, is the total amount of organic polymer (A) having a reactive silicon group + reactive silicon group-containing organic polymer (B) of 100 weight. The range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, is preferred with respect to parts.

本発明の硬化性組成物は弾性シーラントや接着剤として特に有用であり、建造物、船舶、自動車、道路などの密封剤、接着剤として使用しうる。特に表面に塗料を塗布した場合の塗料非汚染性や目地周辺の非汚染性を要求され建築用シーラントに有用である。とりわけ、サイジングボード目地用シーラントや石材目地用シーラントとして特に有用である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの接着組成物としても使用可能である。接着剤として通常の接着剤の他、コンタクト接着剤用原料としても使用できる。更に、食品包装材料、注型ゴム材料、型取り用材料、塗料としても有用である。   The curable composition of the present invention is particularly useful as an elastic sealant or adhesive, and can be used as a sealant or adhesive for buildings, ships, automobiles, roads and the like. In particular, it is useful for architectural sealants because it requires non-contamination of paint and non-contamination around joints when coating is applied to the surface. In particular, it is particularly useful as a sealant for sizing board joints and a sealant for stone joints. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal, and resin moldings alone or with the help of a primer, it can be used as various types of adhesive compositions. It can be used as a raw material for contact adhesives as well as ordinary adhesives. Furthermore, it is also useful as a food packaging material, cast rubber material, molding material, and paint.

以下に本発明を実施例により説明するが、本発明はこれらに限定されるものではない。なお、水酸基含有オキシアルキレン重合体の場合、数平均分子量を以下のように求める。末端構造を水酸基と不飽和基であると仮定し、水酸基量をJIS K1557に準拠した方法で、不飽和基量をJISK0070に準拠した方法により求め、イニシエータの末端数を考慮して求めた分子量を数平均分子量と定義する。GPC(ゲルパーミュエーションクロマトグラフィー)ピークトップ分子量(以下、GPCMp)、及び分子量分布(Mw/Mn)はGPC分析装置により溶媒としてテトラヒドロフランを用いて測定したポリスチレン換算の値として求めた。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the case of a hydroxyl group-containing oxyalkylene polymer, the number average molecular weight is determined as follows. Assuming that the terminal structure is a hydroxyl group and an unsaturated group, the amount of hydroxyl group is determined by a method based on JIS K1557, the amount of unsaturated group is determined by a method based on JIS K0070, and the molecular weight determined in consideration of the number of terminal ends of the initiator is calculated. It is defined as the number average molecular weight. GPC (gel permeation chromatography) peak top molecular weight (hereinafter referred to as GPCMp) and molecular weight distribution (Mw / Mn) were determined as polystyrene-equivalent values measured with a GPC analyzer using tetrahydrofuran as a solvent.

ポリマー粘度はB型粘度計を用いて23℃で測定し、配合物粘度はBS型粘度計を用いて23℃で測定した。   The polymer viscosity was measured at 23 ° C. using a B-type viscometer, and the blend viscosity was measured at 23 ° C. using a BS-type viscometer.

末端がアリル基であるポリオキシプロピレンへのヒドロシラン化合物導入の際、反応の進行は、1H−NMRにより末端アリル基のピーク(4.97ppm:=CH2、5.79ppm:−CH=C)の減少、消滅および滴下したヒドロシラン化合物のヒドロシリル基(Si−H)のピーク(4.6ppm付近)の減少により確認した。 When the hydrosilane compound is introduced into the polyoxypropylene having an allyl group at the end, the reaction proceeds by 1 H-NMR with the peak of the terminal allyl group (4.97 ppm: = CH 2 , 5.79 ppm: -CH = C). It was confirmed by decrease, disappearance, and decrease in the hydrosilyl group (Si—H) peak (around 4.6 ppm) of the dropped hydrosilane compound.

(合成例1)反応性ケイ素基含有ポリオキシプロピレン(A1)の合成
攪拌機付耐圧ガラス製反応容器に、主鎖骨格が複合金属シアン化物錯体触媒を用いて得られたものであり、末端がアリル基である数平均分子量10,000の直鎖状ポリプロピレンオキシド500g、ヘキサン10gを加えて90℃で共沸脱水を行った。ヘキサンを減圧下留去した後、窒素置換し、これに対して塩化白金酸触媒20μl(白金換算で5重量%のイソプロパノール溶液)を加え、撹拌しながらDMS(ジメトキシメチルシラン)12.0gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のDMSを減圧下留去して、1分子あたり平均1.6個のジメトキシシリル基を有するポリマー(A1)を得た。粘度(23℃:B型粘度計)は6.4Pa・sであった。
(Synthesis Example 1) Synthesis of Reactive Silicon Group-Containing Polyoxypropylene (A1) In a pressure-resistant glass reaction vessel equipped with a stirrer, the main chain skeleton was obtained using a double metal cyanide complex catalyst, and the terminal was allyl. A linear polypropylene oxide having a number average molecular weight of 10,000 (500 g) and 10 g of hexane were added and azeotropic dehydration was performed at 90 ° C. Hexane was distilled off under reduced pressure and then purged with nitrogen. To this, 20 μl of chloroplatinic acid catalyst (5% by weight isopropanol solution in terms of platinum) was added, and 12.0 g of DMS (dimethoxymethylsilane) was slowly added while stirring. And dripped. The mixed solution was reacted at 90 ° C. for 2 hours, and then unreacted DMS was distilled off under reduced pressure to obtain a polymer (A1) having an average of 1.6 dimethoxysilyl groups per molecule. The viscosity (23 ° C .: B-type viscometer) was 6.4 Pa · s.

(合成例2)低官能化反応性ケイ素基含ポリオキシプロピレン(B1)の合成
オートクレーブに、エポキシド重合触媒としてヘキサシアノコバルト酸亜鉛グライム錯体0.16g、重合開始剤として一分子中にアルコキシ基末端と水酸基とを有するポリオキシプロピレン(三洋化成(株)製:ニューポールLB285)420g、触媒活性化のためのプロピレンオキシド50gを仕込み、100℃に加熱することにより重合反応をおこなった。誘導期を経た後、反応成分温度は急激に上昇し、その後に降下した。反応成分温の降下を確認した後、追加のプロピレンオキシド524gを約3時間かけて滴下し、内温を100〜110℃に保った。滴下終了後さらに1時間加熱を続け、続いて減圧脱揮により微量の未反応モノマーを除去した。これにより一分子中にアルコキシ基末端と水酸基を有するポリオキシプロピレン系重合体を得た。得られた重合体の数平均分子量は、GPC測定(ポリスチレン換算)により4300であった。
(Synthesis Example 2) Synthesis of low functionalized reactive silicon group-containing polyoxypropylene (B1) In an autoclave, 0.16 g of zinc hexacyanocobaltate glyme complex as an epoxide polymerization catalyst and an alkoxy group terminal in one molecule as a polymerization initiator Polymerization reaction was carried out by charging 420 g of polyoxypropylene having a hydroxyl group (manufactured by Sanyo Chemical Co., Ltd .: Newpol LB285) and 50 g of propylene oxide for catalyst activation and heating to 100 ° C. After the induction period, the reaction component temperature increased rapidly and then decreased. After confirming the drop in the reaction component temperature, an additional 524 g of propylene oxide was added dropwise over about 3 hours to keep the internal temperature at 100-110 ° C. After completion of the dropwise addition, heating was continued for an additional hour, followed by removal of a trace amount of unreacted monomer by vacuum devolatilization. As a result, a polyoxypropylene polymer having an alkoxy group terminal and a hydroxyl group in one molecule was obtained. The number average molecular weight of the obtained polymer was 4300 by GPC measurement (polystyrene conversion).

続いて上記で得られたポリオキシプロピレン系重合体100重量部に対し、ナトリウムメトキシド(30%メタノール溶液)7.8重量部を加え、130℃で2時間減圧下でメタノールを除去した。引き続きアリルクロライド4.1重量部を追加し同温度で2時間反応させた。その後、未反応アリルクロライドを減圧下で除去した。   Subsequently, 7.8 parts by weight of sodium methoxide (30% methanol solution) was added to 100 parts by weight of the polyoxypropylene polymer obtained above, and methanol was removed under reduced pressure at 130 ° C. for 2 hours. Subsequently, 4.1 parts by weight of allyl chloride was added and reacted at the same temperature for 2 hours. Thereafter, unreacted allyl chloride was removed under reduced pressure.

得られたポリマーを冷却後、ヘキサンで希釈し、水で十分洗浄し、ナトリウムクロライドを除去した。その後、ヘキサンを除去し、末端にアルコキシ基末端とアリル基を有するポリオキシプロピレン系重合体を得た。   The obtained polymer was cooled, diluted with hexane, and washed thoroughly with water to remove sodium chloride. Thereafter, hexane was removed to obtain a polyoxypropylene polymer having an alkoxy group terminal and an allyl group at the terminal.

得られた重合体のヨウ素価滴定で求めた不飽和基当量は0.415mmol/gであった。   The unsaturated group equivalent determined by iodine titration of the obtained polymer was 0.415 mmol / g.

上記で得られた一分子中にアルコキシ基末端とアリル基を含有するポリオキシプロピレン系重合体100重量部に、ヘキサン2gを加えて90℃で共沸脱水を行った。ヘキサンを減圧下留去した後、窒素置換し、これに対して塩化白金酸触媒20μl(白金換算で5重量%のイソプロパノール溶液)を加え、撹拌しながらTES(トリエトキシシラン)6.9gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のTESを減圧下留去して、実質的に1分子あたり1個のトリエトキシシリル基を有するポリマー(B1)を得た。粘度(23℃:B型粘度計)は0.6Pa・sであった。   2 g of hexane was added to 100 parts by weight of a polyoxypropylene polymer containing an alkoxy group terminal and an allyl group in one molecule obtained above, and azeotropic dehydration was performed at 90 ° C. Hexane was distilled off under reduced pressure, and the atmosphere was replaced with nitrogen. To this, 20 μl of chloroplatinic acid catalyst (5% by weight isopropanol solution in terms of platinum) was added, and 6.9 g of TES (triethoxysilane) was slowly added while stirring. And dripped. The mixed solution was reacted at 90 ° C. for 2 hours, and then unreacted TES was distilled off under reduced pressure to obtain a polymer (B1) having substantially one triethoxysilyl group per molecule. The viscosity (23 ° C .: B-type viscometer) was 0.6 Pa · s.

(合成例3)低官能化反応性ケイ素基含ポリオキシプロピレン(B2)の合成
合成例2で得られた末端にアルコキシ基末端とアリル基を有するポリオキシプロピレン系重合体100重量部に、合成例2と同様の方法で下記式(8)で表されるトリメトキシシリル基含有シラン化合物11.7gを反応させ、実質的に1分子あたり1個のトリメトキシシリル基を有するポリマー(B2)を得た。粘度(23℃:B型粘度計)は0.6Pa・sであった。
(Synthesis Example 3) Synthesis of low functionalized reactive silicon group-containing polyoxypropylene (B2) Synthesis was performed on 100 parts by weight of a polyoxypropylene polymer having an alkoxy group terminal and an allyl group at the terminal obtained in Synthesis Example 2. In the same manner as in Example 2, 11.7 g of a trimethoxysilyl group-containing silane compound represented by the following formula (8) is reacted to obtain a polymer (B2) having substantially one trimethoxysilyl group per molecule. Obtained. The viscosity (23 ° C .: B-type viscometer) was 0.6 Pa · s.

Figure 0004435591
Figure 0004435591

(合成例4)低官能化反応性ケイ素基含ポリオキシプロピレン(B3)の合成
攪拌機付耐圧ガラス製反応容器に、末端がアリル基である数平均分子量3,000の直鎖状ポリプロピレンオキシド500g、ヘキサン10gを加えて90℃で共沸脱水を行った。ヘキサンを減圧下留去した後、窒素置換し、これに対して塩化白金酸触媒20μl(白金換算で5重量%のイソプロパノール溶液)を加え、撹拌しながらTES(トリエトキシシラン)29.4gをゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のTESを減圧下留去して、1分子あたり平均1.0個のトリエトキシシリル基を有するポリマー(B3)を得た。粘度(23℃:B型粘度計)は0.5Pa・sであった。
(Synthesis Example 4) Synthesis of low functionalized reactive silicon group-containing polyoxypropylene (B3) In a pressure-resistant glass reaction vessel equipped with a stirrer, 500 g of linear polypropylene oxide having a number average molecular weight of 3,000 whose terminal is an allyl group, 10 g of hexane was added and azeotropic dehydration was performed at 90 ° C. Hexane was distilled off under reduced pressure, and the atmosphere was replaced with nitrogen. To this, 20 μl of chloroplatinic acid catalyst (5% by weight isopropanol solution in terms of platinum) was added, and 29.4 g of TES (triethoxysilane) was slowly added with stirring. And dripped. The mixed solution was reacted at 90 ° C. for 2 hours, and then unreacted TES was distilled off under reduced pressure to obtain a polymer (B3) having an average of 1.0 triethoxysilyl groups per molecule. The viscosity (23 ° C .: B-type viscometer) was 0.5 Pa · s.

(合成例5)反応性ケイ素基含有炭化水素化合物(B4)の合成
1−オクタデセン100gとヘキサン4gを500mlの三ツ口フラスコに計量し、真空シール付き攪拌機、三方コックおよび玉栓を取り付け、80℃にて減圧して共沸脱水した後、ジオキサン20gおよび白金−1,1,3,3−テトラメチル−1,3−ジビニルジシロキサン錯体(白金換算で3重量%のトルエン溶液)12.7μl滴下し、よく攪拌した。続いてTES(トリエトキシシラン)65.3gを窒素雰囲気下ゆっくりと滴下し、その後末端の不飽和基が消滅するまで攪拌した。反応の進行は、1H−NMRにより末端不飽和基(4.9ppm付近:=CH2、5.8ppm付近:−CH=C)の減少、消滅および滴下したヒドロシランのヒドロシリル基(Si−H)(4.6ppm付近)の減少により確認した。
(Synthesis Example 5) Synthesis of Reactive Silicon Group-Containing Hydrocarbon Compound (B4) 100 g of 1-octadecene and 4 g of hexane were weighed into a 500 ml three-necked flask, and equipped with a stirrer equipped with a vacuum seal, a three-way cock and a ball plug, and heated to 80 ° C. After azeotropic dehydration under reduced pressure, 12.7 μl of 20 g of dioxane and platinum-1,1,3,3-tetramethyl-1,3-divinyldisiloxane complex (3 wt% toluene solution in terms of platinum) were added dropwise. Stir well. Subsequently, 65.3 g of TES (triethoxysilane) was slowly added dropwise under a nitrogen atmosphere, and then stirred until the terminal unsaturated group disappeared. The progress of the reaction was determined by the decrease or disappearance of terminal unsaturated groups (near 4.9 ppm: = CH 2 , near 5.8 ppm: -CH = C) by 1 H-NMR, and the hydrosilyl group (Si-H) of hydrosilane dropped. This was confirmed by a decrease in (around 4.6 ppm).

得られた反応物の1H−NMRを測定したところ、初期末端不飽和基含有化合物に対し、上記記載の不飽和基を示すピークおよびヒドロシランを示すピークが十分に消滅しており、またケイ素基横のメチレン基のピーク(0.6ppm付近:−CH2−Si)が確認でき、末端にトリエトキシシリル基を有するオクタデカン(B4)が得られた。トリエトキシシリル基の導入率をピークの増減より計算したところ、約90%の導入率であった。 When the 1 H-NMR of the obtained reaction product was measured, the peak showing the unsaturated group and the peak showing hydrosilane described above were sufficiently disappeared with respect to the initial terminal unsaturated group-containing compound. A peak of a horizontal methylene group (around 0.6 ppm: —CH 2 —Si) was confirmed, and octadecane (B4) having a triethoxysilyl group at the terminal was obtained. When the introduction rate of the triethoxysilyl group was calculated from the increase or decrease of the peak, the introduction rate was about 90%.

(合成例6)低官能化反応性ケイ素基含ポリオキシプロピレン(P1)の合成
合成例2で得られた末端にアルコキシ基末端とアリル基を有するポリオキシプロピレン系重合体100重量部に、合成例2と同様の方法でDMS(メチルジメトキシシラン)4.4gを反応させ、実質的に1分子あたり1個のメチルジメトキシシリル基を有するポリマー(P1)を得た。粘度(23℃:B型粘度計)は0.6Pa・sであった。
(Synthesis Example 6) Synthesis of low functionalized reactive silicon group-containing polyoxypropylene (P1) Synthesis was performed on 100 parts by weight of a polyoxypropylene polymer having an alkoxy group terminal and an allyl group at the terminal obtained in Synthesis Example 2. In the same manner as in Example 2, 4.4 g of DMS (methyldimethoxysilane) was reacted to obtain a polymer (P1) having substantially one methyldimethoxysilyl group per molecule. The viscosity (23 ° C .: B-type viscometer) was 0.6 Pa · s.

(合成例7)反応性ケイ素基含有炭化水素化合物(P2)の合成
1−オクタデセン100gとヘキサン4gを500mlの三ツ口フラスコに計量し、真空シール付き攪拌機、三方コックおよび玉栓を取り付け、80℃にて減圧して共沸脱水した後、ジオキサン20gおよび白金−1,1,3,3−テトラメチル−1,3−ジビニルジシロキサン錯体(白金換算で3重量%のトルエン溶液)12.7μl滴下し、よく攪拌した。続いてメチルジメトキシシラン42.2gを窒素雰囲気下ゆっくりと滴下し、その後末端の不飽和基が消滅するまで攪拌した。反応の進行は、1H−NMRにより末端不飽和基(4.9ppm付近:=CH2、5.8ppm付近:−CH=C)の減少、消滅および滴下したヒドロシランのヒドロシリル基(Si−H)(4.6ppm付近)の減少により確認した。
(Synthesis Example 7) Synthesis of Reactive Silicon Group-Containing Hydrocarbon Compound (P2) 100 g of 1-octadecene and 4 g of hexane were weighed into a 500 ml three-necked flask, and equipped with a stirrer with a vacuum seal, a three-way cock, and a ball plug. After depressurizing and azeotropic dehydration, 12.7 μl of dioxane (20 g) and platinum-1,1,3,3-tetramethyl-1,3-divinyldisiloxane complex (3 wt% toluene solution in terms of platinum) were added dropwise. Stir well. Subsequently, 42.2 g of methyldimethoxysilane was slowly added dropwise under a nitrogen atmosphere, and then the mixture was stirred until the terminal unsaturated group disappeared. The progress of the reaction is determined by 1 H-NMR to decrease or disappear the terminal unsaturated group (near 4.9 ppm: = CH 2 , near 5.8 ppm: —CH═C), and the hydrosilyl group (Si—H) of the dropped hydrosilane. This was confirmed by a decrease in (around 4.6 ppm).

得られた反応物の1H−NMRを測定したところ、初期末端不飽和基含有化合物に対し、上記記載の不飽和基を示すピークおよびヒドロシランを示すピークが十分に消滅しており、またケイ素基横のメチレン基のピーク(0.6ppm付近:−CH2−Si)が確認でき、末端にメチルジメトキシシリル基を有するオクタデカン(B3)が得られた。メチルジメトキシシリル基の導入率をピークの増減より計算したところ、約90%の導入率であった。 When the 1 H-NMR of the obtained reaction product was measured, the peak showing the unsaturated group and the peak showing hydrosilane described above were sufficiently disappeared with respect to the initial terminal unsaturated group-containing compound. A peak of the horizontal methylene group (around 0.6 ppm: —CH 2 —Si) was confirmed, and octadecane (B3) having a methyldimethoxysilyl group at the terminal was obtained. When the introduction rate of the methyldimethoxysilyl group was calculated from the increase or decrease of the peak, the introduction rate was about 90%.

混合組成物の粘度および硬化性(ゲル分率)の測定
(実施例1)
表1に示すように合成例1で得られた反応性ケイ素基含有ポリオキシプロピレン重合体(A1)70重量部に対し、合成例2で得られた低官能化反応性ケイ素基含ポリオキシプロピレン(B1)30重量部を混合した。この混合物の粘度は3.2Pa・sであった。これに、反応性ケイ素基の硬化剤(U−220:日東化成(株)製)を0.5重量部混合し、十分に攪拌した。
Measurement of viscosity and curability (gel fraction) of mixed composition
(Example 1)
As shown in Table 1, the low functionalized reactive silicon group-containing polyoxypropylene obtained in Synthesis Example 2 with respect to 70 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A1) obtained in Synthesis Example 1 (B1) 30 parts by weight were mixed. The viscosity of this mixture was 3.2 Pa · s. To this, 0.5 part by weight of a reactive silicon-based curing agent (U-220: manufactured by Nitto Kasei Co., Ltd.) was mixed and sufficiently stirred.

この混合物を、ポリエチレンシート上に厚さ3mmの型枠に流し込み、3mm厚のシート状硬化物を作製した。このシートを23℃で4日間養生した。得られた硬化物約1cm平方の試験片を200メッシュ金網に計量し、不溶分が流出しないよう包み込んだ。これらを十分量のヘキサンに15時間浸漬し、溶出分を抽出し、その後80℃2時間乾燥した。その時の不溶分の初期重量に対する割合をもってゲル分率(%)とした(表1)。   This mixture was poured onto a polyethylene sheet into a 3 mm thick mold to produce a 3 mm thick sheet-like cured product. This sheet was cured at 23 ° C. for 4 days. The obtained cured product of about 1 cm square test piece was weighed on a 200 mesh wire net and wrapped so that insoluble matter would not flow out. These were immersed in a sufficient amount of hexane for 15 hours to extract the eluate, and then dried at 80 ° C. for 2 hours. The ratio with respect to the initial weight of the insoluble part at that time was made into the gel fraction (%) (Table 1).

(実施例2〜4および比較例1〜4)
実施例1と同様に表1に示す割合で各成分を混合し、実施例1と同様に混合物の粘度、硬化物のゲル分率を測定した(表1)。
(Examples 2 to 4 and Comparative Examples 1 to 4)
Each component was mixed in the ratio shown in Table 1 in the same manner as in Example 1, and the viscosity of the mixture and the gel fraction of the cured product were measured in the same manner as in Example 1 (Table 1).

Figure 0004435591
Figure 0004435591

表1の結果より、(B)成分として反応性ケイ素基を有するものを混合した場合は、その硬化物のゲル分率が高く、未反応成分の流出が少ないことが期待でき、その中でも実施例1〜4のトリアルコキシ基を有するものは比較例1のメチルジメトキシ基を有するものに比べより高いゲル分率を示している。また、(A)成分に対し低分子量成分を使用しているため、良好な粘度低下が得られている。   From the results shown in Table 1, when a component having a reactive silicon group is mixed as the component (B), it can be expected that the cured product has a high gel fraction and little unreacted component flows out. Those having 1 to 4 trialkoxy groups exhibit higher gel fractions than those having the methyldimethoxy group of Comparative Example 1. Moreover, since the low molecular weight component is used with respect to (A) component, favorable viscosity reduction is obtained.

配合物の各種物性
(実施例5)
表2に示す割合でA1成分/B1成分=70/30の混合ポリマー155重量部に対して、炭酸カルシウム(白石工業(株)製、商品名:CCR)120重量部、酸化チタン(石原産業(株)製、商品名:R−820)20重量部、チクソ性付与剤(楠本化成(株)製、商品名:D−6500)2重量部、ベンゾトリアゾール系紫外線吸収剤(チバ・スペシャルティ・ケミカルズ(株)製、商品名:チヌビン327)1重量部、ヒンダードアミン系光安定剤(三共(株)製、商品名:サノールLS770)1重量部を計量、混合して充分混練りした後、小型3本ペイントロールに3回通した。この後、ビニルトリメトキシシラン2重量部、アミノシラン化合物(日本ユニカー(株)製、商品名:A−1120)3重量部、硬化促進剤(日東化成(株)製、商品名:U−220)2重量部を加えて混練した。
Various physical properties of the compound (Example 5)
With respect to 155 parts by weight of the mixed polymer of A1 component / B1 component = 70/30 at a ratio shown in Table 2, 120 parts by weight of calcium carbonate (product name: CCR, manufactured by Shiroishi Kogyo Co., Ltd.), titanium oxide (Ishihara Sangyo ( Co., Ltd., trade name: R-820) 20 parts by weight, thixotropic agent (Enomoto Kasei Co., Ltd., trade name: D-6500) 2 parts by weight, benzotriazole UV absorber (Ciba Specialty Chemicals) Co., Ltd., trade name: Tinuvin 327) 1 part by weight, hindered amine light stabilizer (Sankyo Co., Ltd., trade name: Sanol LS770) 1 part by weight was weighed, mixed and kneaded well, then 3 The paint roll was passed 3 times. Thereafter, 2 parts by weight of vinyltrimethoxysilane, 3 parts by weight of an aminosilane compound (manufactured by Nippon Unicar Co., Ltd., trade name: A-1120), a curing accelerator (manufactured by Nitto Kasei Co., Ltd., trade name: U-220) 2 parts by weight were added and kneaded.

実質的に水分の存在しない状態で混練した後、防湿性の容器に密閉し、1液型硬化性組成物を得た。   After kneading in a substantially moisture-free state, the mixture was sealed in a moisture-proof container to obtain a one-component curable composition.

得られた配合物の粘度(23℃:BS型粘度計1rpm、2rpm、10rpm)を測定するとともに、ダンベル(JIS3号形)引張試験用に厚さ3mmのシートを作製し、23℃3日+50℃4日間養生して、硬化後の物性(50%モジュラス、破断強度、伸び)を測定した。引張りせん断試験を、アルミニウム基材(100mm×25mm×2mm:JIS A1050P)へ上記硬化性組成物を25mm平方で塗布した後、2枚の基材を張り合わせ、23℃3日+50℃4日間養生して、引張り速度50mm/分、23℃、55%R.H.条件下で引張り試験を実施した。   While measuring the viscosity (23 ° C: BS viscometer 1 rpm, 2 rpm, 10 rpm) of the resulting blend, a 3 mm thick sheet was prepared for a dumbbell (JIS No. 3 type) tensile test. After curing at 50 ° C. for 4 days, physical properties after curing (50% modulus, breaking strength, elongation) were measured. In the tensile shear test, the curable composition was applied to an aluminum base material (100 mm × 25 mm × 2 mm: JIS A1050P) at a square of 25 mm, and then the two base materials were bonded together and cured at 23 ° C. for 3 days + 50 ° C. for 4 days. And a pulling speed of 50 mm / min, 23 ° C., 55% R.D. H. A tensile test was performed under the conditions.

更に、23℃、55%R.H.条件下において、厚さ約3mmのシート状試験体を作製し、1日後、7日後に硬化した表面を指で触り、べたつきを評価した。>◎は全くべたつきがない状態であり、◎、○、○△、△、△×、×の順にサンプル表面のべたつきが大きくなることを示す。   Further, 23 ° C., 55% R.D. H. Under the conditions, a sheet-like test body having a thickness of about 3 mm was prepared, and after 1 day and 7 days, the cured surface was touched with a finger to evaluate stickiness. > ◎ indicates that there is no stickiness at all, and the stickiness of the sample surface increases in the order of ◎, ○, ○ △, Δ, Δ ×, ×.

また、塗料汚染性の評価方法として、作製した厚さ3mmのシートを23℃3日間養生後に市販の7種類の塗料をシート表面に塗布した。その3日後の塗料の汚染状態を、火山灰をかけ、その付着状態を観察することによって評価した(良好:汚れがほとんど目立たない、やや不良:汚れがやや目立つ、不良:汚れ付着が多く、汚れが目立つ)。さらに、大理石目地に施工し2ヶ月経過後の目地周辺大理石の汚染状態を観察し、汚染部分の幅を測定した。結果を表2に示す。   Further, as an evaluation method of paint stain resistance, seven types of commercially available paints were applied to the sheet surface after curing the prepared 3 mm thick sheet at 23 ° C. for 3 days. After 3 days, the contamination of the paint was evaluated by applying volcanic ash and observing its adhesion (good: dirt is almost inconspicuous, slightly bad: dirt is slightly noticeable, bad: dirt is often attached, dirt is dirty stand out). Furthermore, the construction was performed on the marble joint, and the contamination state of the marble around the joint after 2 months was observed, and the width of the contaminated portion was measured. The results are shown in Table 2.

(実施例6、7、比較例5〜8)
実施例5同様に、表2に示す割合で各ポリマー成分および可塑剤成分を混合し、実施例5と同様の方法で1液配合物を作成した。
(Examples 6 and 7, Comparative Examples 5 to 8)
Similarly to Example 5, each polymer component and plasticizer component were mixed in the proportions shown in Table 2, and a one-component formulation was prepared in the same manner as in Example 5.

得られた配合物の粘度、硬化物の引張り物性、せん断試験、残留タック、汚染性を実施例5と同様の方法で測定した。結果を表2に示す。   The viscosity, tensile properties of the cured product, shear test, residual tack, and contamination were measured in the same manner as in Example 5. The results are shown in Table 2.

Figure 0004435591
Figure 0004435591

表2において、トリアルコキシシリル基を有する(B)成分を使用した実施例5、6、7はメチルジメトキシシリル基を有する(B)成分を使用する比較例5に比べ硬化物のモジュラスが高く維持され、また初期の残留タックも良好な結果である。また反応基を持たないPPGやDIDPを使用した比較例6,7に比べても塗料汚染性、目地周辺への汚染性が良好である。更に、(A)成分より低分子量の(B)成分を使用することで比較例8に対して低い粘度を示し、良好な作業性が確保される。   In Table 2, Examples 5, 6, and 7 using the component (B) having a trialkoxysilyl group maintain a higher modulus of the cured product than Comparative Example 5 using the component (B) having a methyldimethoxysilyl group. The initial residual tack is also a good result. Also, compared to Comparative Examples 6 and 7 using PPG or DIDP having no reactive group, the paint contamination and the contamination around the joints are good. Further, by using the component (B) having a lower molecular weight than the component (A), the viscosity is lower than that of Comparative Example 8, and good workability is ensured.

(実施例8、比較例9)
実施例5同様に、表3に示す割合で各ポリマー成分を混合し、実施例5と同様の方法で1液配合物を作成した。
(Example 8, Comparative Example 9)
Similarly to Example 5, each polymer component was mixed in the ratio shown in Table 3, and a one-component formulation was prepared in the same manner as in Example 5.

得られた配合物の粘度、硬化物の引張り物性、せん断試験、残留タック、汚染性を実施例5と同様の方法で測定した。結果を表3に示す。   The viscosity, tensile properties of the cured product, shear test, residual tack, and contamination were measured in the same manner as in Example 5. The results are shown in Table 3.

Figure 0004435591
Figure 0004435591

表3において、トリエトキシシリル基末端オクタデカンを使用した実施例8は、メチルジメトキシシリル基末端オクタデカンを使用した比較例9に比べ、反応性を共に有する点から汚染性の物性は同等であるが、引張り物性は実施例8が高モジュラスと維持し、同等の破断強度を有している。特に比較例8と比べると、A1成分にB4成分を配合することで大幅に低粘度化でき、かつ引張り物性は同等の値となった。   In Table 3, Example 8 using triethoxysilyl group-terminated octadecane is equivalent in terms of soiling physical properties from the viewpoint of having both reactivity compared to Comparative Example 9 using methyldimethoxysilyl group-terminated octadecane. The tensile properties of Example 8 are maintained at a high modulus and have the same breaking strength. In particular, as compared with Comparative Example 8, the viscosity could be greatly reduced by blending the B4 component with the A1 component, and the tensile properties were equivalent.

以上、表1、表2、表3よりジアルコキシ基含有有機重合体と低官能化トリアルコキシ基含有有機重合体の混合組成物は、ジアルコキシ基含有有機重合体と低官能化ジアルコキシ基含有有機重合体の混合組成物に比べ、硬化初期より高いゲル分率が得られ、硬化物の引張り特性を高モジュラスに維持することが可能であることがわかる。また、低分子量の低官能化トリアルコキシ基含有有機重合体を使用することで低粘度化が可能である。   As mentioned above, the mixed composition of a dialkoxy group-containing organic polymer and a low-functionalized trialkoxy group-containing organic polymer from Tables 1, 2 and 3 contains a dialkoxy-group-containing organic polymer and a low-functionalized dialkoxy group. It can be seen that a gel fraction higher than the initial stage of curing can be obtained as compared with a mixed composition of organic polymers, and the tensile properties of the cured product can be maintained at a high modulus. Moreover, the viscosity can be lowered by using a low functionalized trialkoxy group-containing organic polymer having a low molecular weight.

よって、本発明の硬化性組成物は、低粘度化の際にモジュラスが低下し過ぎず、低粘度化と物性バランスの調整がコントロールし易く、比較的モジュラスが高い用途、例えば接着剤、工業用シール材等に使用可能である。さらに、トリアルコキシシリル基が架橋点に組込まれる事から、硬化物の復元性、耐クリープ性、耐久性の向上が期待できる。   Therefore, the curable composition of the present invention has a modulus that does not decrease too much when the viscosity is lowered, it is easy to control the adjustment of the viscosity and the balance of physical properties, and the application having a relatively high modulus, such as an adhesive or an industrial product. It can be used for sealing materials. Furthermore, since the trialkoxysilyl group is incorporated at the cross-linking point, it can be expected to improve the restoration property, creep resistance and durability of the cured product.

Claims (4)

下記一般式(1)で表される反応性ケイ素基を含有する主鎖骨格がオキシアルキレン系重合体である有機重合体(A)と、下記一般式(2)で表される反応性ケイ素基を一分子当たり平均0.5個〜1.5個含有する主鎖骨格がオキシアルキレン系重合体である、数平均分子量が8000以下の有機重合体、または、下記一般式(2)で表される反応性ケイ素基を一分子当たり1個含有する炭素数20以下の飽和炭化水素化合物(B)からなる硬化性組成物であって、
有機重合体(A)100重量部に対し、有機重合体または飽和炭化水素化合物(B)を1〜100重量部含有する硬化性組成物
−Si(R)X (1)
(式中、Rは、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基または(R’)SiO−で示されるトリオルガノシロキシ基を示し、Rが2個以上存在する時、それらは同一であってもよく、異なっていてもよい。ここでR’は炭素数1〜20の1価の炭化水素基であり、3個のR’は同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、それらは同一であってもよく、異なっていてもよい。)
−SiX (2)
(式中、Xは一般式(1)のそれと同じ)
An organic polymer (A) in which the main chain skeleton containing a reactive silicon group represented by the following general formula (1) is an oxyalkylene polymer, and a reactive silicon group represented by the following general formula (2) Is represented by the following general formula (2), or an organic polymer having a number average molecular weight of 8000 or less, wherein the main chain skeleton containing 0.5 to 1.5 per molecule is an oxyalkylene polymer. A curable composition comprising a saturated hydrocarbon compound (B) having 20 or less carbon atoms containing one reactive silicon group per molecule ,
A curable composition containing 1 to 100 parts by weight of an organic polymer or a saturated hydrocarbon compound (B) with respect to 100 parts by weight of the organic polymer (A) .
-Si (R 1 ) X 2 (1)
(In the formula, R 1 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by (R ′) 3 SiO—. And when two or more R 1 are present, they may be the same or different, wherein R ′ is a monovalent hydrocarbon group having 1 to 20 carbon atoms, R ′ may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and they may be the same or different.
-SiX 3 (2)
(Wherein X is the same as that of general formula (1))
有機重合体(B)が、一般式(2)で表される反応性ケイ素基および有機重合体中の反応性基と反応可能な官能基を有する反応性ケイ素基含有化合物を、有機重合体1モルに対し0.5モル以上1.5モル以下反応して得られる重合体であることを特徴とする請求項1に記載の硬化性組成物。 The organic polymer (B) is a reactive silicon group-containing compound having a reactive silicon group represented by the general formula (2) and a functional group capable of reacting with the reactive group in the organic polymer. The curable composition according to claim 1, wherein the curable composition is a polymer obtained by reacting 0.5 mol to 1.5 mol with respect to mol. 有機重合体(B)が、実質的に1個の一般式(2)で表される反応性ケイ素基を有することを特徴とする請求項1または2に記載の硬化性組成物。 The organic polymer (B) The curable composition according to claim 1 or 2, characterized in a Turkey that having a reactive silicon group represented by substantially one formula (2). (B)成分が、前記一般式(2)で表される反応性ケイ素基を一分子当たり1個含有する炭素数20以下の飽和炭化水素化合物である請求項1に記載の硬化性組成物。The curable composition according to claim 1, wherein the component (B) is a saturated hydrocarbon compound having 20 or less carbon atoms containing one reactive silicon group represented by the general formula (2) per molecule.
JP2004024175A 2004-01-30 2004-01-30 Curable composition Expired - Lifetime JP4435591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024175A JP4435591B2 (en) 2004-01-30 2004-01-30 Curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024175A JP4435591B2 (en) 2004-01-30 2004-01-30 Curable composition

Publications (2)

Publication Number Publication Date
JP2005213446A JP2005213446A (en) 2005-08-11
JP4435591B2 true JP4435591B2 (en) 2010-03-17

Family

ID=34906940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024175A Expired - Lifetime JP4435591B2 (en) 2004-01-30 2004-01-30 Curable composition

Country Status (1)

Country Link
JP (1) JP4435591B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073322A1 (en) * 2004-01-30 2005-08-11 Kaneka Corporation Hardenable composition
JP4951889B2 (en) * 2004-07-29 2012-06-13 旭硝子株式会社 Room temperature curable composition
JP2007051251A (en) * 2005-08-19 2007-03-01 Shin Etsu Chem Co Ltd Reactive silyl group-modified norbornene-based resin and method for producing the same
JP5587538B2 (en) 2005-09-30 2014-09-10 株式会社カネカ Method for producing organic polymer having terminal end of trimethoxysilyl group
KR101354835B1 (en) * 2005-12-02 2014-01-22 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Room temperature curable silicon group-containing polymer composition
WO2007072825A1 (en) * 2005-12-20 2007-06-28 Asahi Glass Company, Limited Room-temperature-curable composition
JP5420896B2 (en) * 2006-02-16 2014-02-19 株式会社カネカ Curable composition
US7294731B1 (en) * 2006-08-28 2007-11-13 3M Innovative Properties Company Perfluoropolyether silanes and use thereof
JP5110957B2 (en) * 2007-05-10 2012-12-26 株式会社カネカ Curable composition
US8772407B2 (en) * 2007-09-17 2014-07-08 Ppg Industries Ohio, Inc. One component polysiloxane coating compositions and related coated substrates
JP5394039B2 (en) * 2008-10-28 2014-01-22 サンスター技研株式会社 Sealant composition
JP5479862B2 (en) * 2009-11-26 2014-04-23 株式会社カネカ Curable composition
JP5564997B2 (en) * 2010-03-03 2014-08-06 旭硝子株式会社 Curable composition and method for producing the same
CN103180395B (en) 2010-10-27 2016-03-09 株式会社钟化 Solidification compound
JP2012126881A (en) * 2010-11-24 2012-07-05 Kaneka Corp Curable composition
EP2653490B1 (en) 2010-12-13 2018-04-18 Kaneka Corporation Reactive plasticizer and curable composition containing same
US20160174385A1 (en) 2013-07-11 2016-06-16 Cemedine Co., Ltd. Method of producing conductive cured material and conductive cured material, and method of curing pulse light-curable composition and pulse light-curable composition
US20160152783A1 (en) 2013-07-18 2016-06-02 Cemedine Co., Ltd. Photocurable composition
WO2015088021A1 (en) 2013-12-13 2015-06-18 セメダイン株式会社 Photocurable composition having adhesive properties
JP6480663B2 (en) * 2014-02-28 2019-03-13 善則 菅野 Neutron shielding material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155035B2 (en) * 1991-09-04 2001-04-09 旭硝子株式会社 Curable composition
JP3575132B2 (en) * 1995-09-29 2004-10-13 旭硝子株式会社 Room temperature curable composition and production method thereof
JP2001055503A (en) * 1999-08-17 2001-02-27 Asahi Glass Co Ltd Curable composition
WO2005073322A1 (en) * 2004-01-30 2005-08-11 Kaneka Corporation Hardenable composition

Also Published As

Publication number Publication date
JP2005213446A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP5101817B2 (en) Curable composition
JP4435591B2 (en) Curable composition
CN108137900B (en) Curable composition
JP5002262B2 (en) Curable composition
JP6275036B2 (en) POLYMER HAVING TERMINAL STRUCTURE HAVING MULTIPLE REACTIVE SILICON GROUPS, PROCESS FOR PRODUCING THE SAME AND USE
JP4964056B2 (en) Curable composition
JP6475615B2 (en) Curable composition and cured product thereof
US9023932B2 (en) Curable composition
JP5081448B2 (en) Curable composition
JP5953234B2 (en) Curable composition
JPWO2006051798A1 (en) Curable composition
JPWO2009020040A1 (en) Curable composition
WO2012081483A1 (en) Reactive plasticizer and curable composition containing same
JP4480457B2 (en) Curable composition
JP2017066349A (en) Curable composition
JP5210685B2 (en) Method for producing reactive silicon group-containing organic polymer composition, method for adjusting fluidity, and joint structure using the organic polymer composition
JP2013194197A (en) Curable composition
JP2004156023A (en) Sealing material for photocatalyst layer-having transparent material
JP2005162917A (en) Curable composition
JP2020164607A (en) Reactive silyl group-containing (meth) acrylate polymer and curable composition containing the same
JP2004224985A (en) Cold-setting composition
JP5183126B2 (en) EPDM tarpaulin adhesion method
JP6640723B2 (en) Laminate and sealing method
JP6371049B2 (en) Curable composition
JP2021155507A (en) POLYMER CONTAINING Si-F BOND AND CURABLE COMPOSITION CONTAINING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Ref document number: 4435591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250