JP4435242B2 - Pump device - Google Patents

Pump device Download PDF

Info

Publication number
JP4435242B2
JP4435242B2 JP2008079444A JP2008079444A JP4435242B2 JP 4435242 B2 JP4435242 B2 JP 4435242B2 JP 2008079444 A JP2008079444 A JP 2008079444A JP 2008079444 A JP2008079444 A JP 2008079444A JP 4435242 B2 JP4435242 B2 JP 4435242B2
Authority
JP
Japan
Prior art keywords
fluid
separation
gas
hole
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008079444A
Other languages
Japanese (ja)
Other versions
JP2009235917A (en
Inventor
紀之 中西
直裕 小倉
賢登 大森
毅 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuno Corp
Original Assignee
Tatsuno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuno Corp filed Critical Tatsuno Corp
Priority to JP2008079444A priority Critical patent/JP4435242B2/en
Priority to KR1020080109713A priority patent/KR101014242B1/en
Publication of JP2009235917A publication Critical patent/JP2009235917A/en
Application granted granted Critical
Publication of JP4435242B2 publication Critical patent/JP4435242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/064Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps
    • F04C15/066Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps of the non-return type
    • F04C15/068Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/24Fluid mixed, e.g. two-phase fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Description

本発明は、ポンプにより圧送される流体に含まれる気泡を分離してフロート室に回収しつつ液体を所定の装置に圧送するためのポンプ装置、より詳細には気液を分離する気液分離機構に関する。   The present invention relates to a pump device for separating a gas bubble contained in a fluid pumped by a pump and collecting it in a float chamber while pumping the liquid to a predetermined device, and more specifically, a gas-liquid separation mechanism for separating gas-liquid. About.

給油所ではガソリンや軽油等の揮発性の液体を取り扱っており、給油時に使用する給油装置は液体を圧送するポンプと、液体に混入している気泡を分離するための気液分離機構と、分離した液体を溜めるフロート室と、分離した液が所定量となったときにポンプ側に戻すフロート弁とが設けられている。   Gas stations handle volatile liquids such as gasoline and light oil, and the refueling equipment used during refueling is a pump that pumps liquid, a gas-liquid separation mechanism that separates bubbles mixed in the liquid, and separation A float chamber for storing the liquid and a float valve for returning to the pump side when the separated liquid reaches a predetermined amount are provided.

この種の用途に用いられる気液分離機構としては、例えば、水平に配置された有底筒形状を有し、底部の中心に小孔を設けると共に、円筒体の内周面にその接線方向に流体を流入させるように構成されたものが用いられている(例えば、特許文献1参照)。気液分離機構に流入した流体は渦巻き状に旋回し、遠心力により気泡が可及的に少ない成分と気泡を多く含む成分とに分離される。多量の気体を含む液体は底部の小孔からフロート室に流れ込み、気体がフロート室の上部の大気連通孔から大気に放出され、液体がフロート室の底部に設けられた戻し流路を通って再びポンプに戻される。気液分離機構で分離された気泡が可及的に少ない成分は、流出口から吐出される。
特開昭61−54212号公報
As a gas-liquid separation mechanism used for this kind of application, for example, it has a bottomed cylindrical shape arranged horizontally, a small hole is provided at the center of the bottom, and the inner peripheral surface of the cylindrical body has a tangential direction. What was comprised so that a fluid may flow in is used (for example, refer patent document 1). The fluid flowing into the gas-liquid separation mechanism swirls in a spiral shape, and is separated into a component having as few bubbles as possible and a component containing as many bubbles as possible by centrifugal force. A liquid containing a large amount of gas flows into the float chamber from the small hole at the bottom, the gas is released to the atmosphere from the atmosphere communication hole at the top of the float chamber, and the liquid again passes through the return channel provided at the bottom of the float chamber. Returned to the pump. The component having as few bubbles as possible separated by the gas-liquid separation mechanism is discharged from the outlet.
JP 61-54212 A

しかしながら、従来の気液分離機構は気泡成分を排出するための小孔の孔径が固定されていたので、可及的に気泡が多い成分として分離された流体が多いと小孔からフロート室に排出しきれず、気泡を十分に分離させられない可能性があった。これに対して、小孔の径を予め大きく設定すると、分離された流体が少ない場合や、処理量が少ないときにフロート室への流入量が多くなり過ぎ、流出口から吐出されるはずの液成分が多い流体がフロート室に流出してしまい、流体の吐出量が減少してしまう。
この発明は、このような事情に鑑みてなされたものであり、気液分離機構の分離能力を気泡成分の大小によって変化させることができるポンプ装置を提供することを主な目的とする。
However, in the conventional gas-liquid separation mechanism, the hole diameter of the small hole for discharging the bubble component is fixed, so if there is a large amount of fluid separated as a component having as many bubbles as possible, it is discharged from the small hole to the float chamber. There was a possibility that the air bubbles could not be sufficiently separated due to lack of space. On the other hand, if the diameter of the small hole is set large in advance, the amount of liquid flowing into the float chamber becomes too large when the separated fluid is small or the processing amount is small, and the liquid that should be discharged from the outlet The fluid with many components flows out to the float chamber, and the discharge amount of the fluid decreases.
The present invention has been made in view of such circumstances, and it is a main object of the present invention to provide a pump device that can change the separation capability of the gas-liquid separation mechanism depending on the size of the bubble component.

本発明の請求項1に係る発明は、流入口から吸い込んだ流体を加圧するポンプと、加圧後の流体を遠心力によって気液分離し、流入側の端部中央に設けられた分離孔から気体を流出させ、反対側の開放端から液体を通流させる気液分離機構と、前記気液分離機構の前記分離孔から流入した流体から前記ポンプに回収する液体を分離させるための分離室と、前記分離室から前記ポンプの吸入口に至る流路を設けられたフロート弁とを含むポンプ装置において、前記気液分離機構は、略水平に配置されて内部を流体が通流するパイプと、流体の流入側に前記分離室に送る流体の量を調整可能な可変バルブとを含んで構成され、前記可変バルブは、前記分離孔が形成されたキャップと、前記パイプ内で前記キャップから離間する方向に付勢されたバルブ本体と、前記分離孔を閉鎖可能な外形を有し、前記分離孔より小径の小孔が前記分離室に連通可能に設けられたノズルと、前記ノズルの周囲に形成されて分離された流体を前記分離孔に導くことができる連通孔とを有することを特徴とするポンプ装置とした。   The invention according to claim 1 of the present invention is a pump that pressurizes fluid sucked from an inflow port, gas-liquid separation of the fluid after pressurization by centrifugal force, and a separation hole provided at the center of the end on the inflow side. A gas-liquid separation mechanism for allowing gas to flow out and allowing liquid to flow from the open end on the opposite side; and a separation chamber for separating the liquid recovered by the pump from the fluid flowing in from the separation hole of the gas-liquid separation mechanism; In the pump device including a float valve provided with a flow path from the separation chamber to the suction port of the pump, the gas-liquid separation mechanism is arranged substantially horizontally, and a pipe through which a fluid flows, A variable valve capable of adjusting the amount of fluid sent to the separation chamber on the fluid inflow side, the variable valve being separated from the cap in the pipe and the cap in which the separation hole is formed; Urged in the direction A main body, a nozzle having an outer shape capable of closing the separation hole, and a small hole having a smaller diameter than the separation hole so as to communicate with the separation chamber, and a fluid formed and separated around the nozzle And a communication hole that can guide the gas to the separation hole.

請求項2に係る発明は、請求項1に記載のポンプ装置において、前記分離孔と前記小孔は、前記パイプと同軸に配置されていることを特徴とする。   The invention according to claim 2 is the pump device according to claim 1, wherein the separation hole and the small hole are arranged coaxially with the pipe.

請求項3に係る発明は、請求項1又は請求項2に記載のポンプ装置において、前記バルブ本体は、前記パイプに流体が流入する接続口を超えて開放端に向かって延び、前記バルブ本体には前記接続口からの流体の流入を許容するスリットが設けられていることを特徴とする。   According to a third aspect of the present invention, in the pump device according to the first or second aspect, the valve main body extends toward an open end beyond a connection port through which a fluid flows into the pipe. Is provided with a slit that allows inflow of fluid from the connection port.

請求項4に係る発明は、請求項1から請求項3のいずれか一項に記載のポンプ装置において、前記バルブ本体の外側に少なくとも1つのリブを前記バルブ本体の摺動方向に平行に設け、前記パイプの内側に前記リブに係合する溝を設けたことを特徴とする。   The invention according to claim 4 is the pump device according to any one of claims 1 to 3, wherein at least one rib is provided outside the valve body in parallel to the sliding direction of the valve body, A groove for engaging with the rib is provided inside the pipe.

請求項5に係る発明は、請求項1から請求項4のいずれか一項に記載のポンプ装置において、前記バルブ本体の摺動方向に直交する外形をD形にすると共に、前記パイプの内側の形状を前記バルブ本体を収容可能なD形としたことを特徴とする。   According to a fifth aspect of the present invention, in the pump device according to any one of the first to fourth aspects, the outer shape perpendicular to the sliding direction of the valve body is D-shaped, and the inside of the pipe is The shape is a D shape that can accommodate the valve body.

請求項6に係る発明は、請求項3に記載のポンプ装置において、前記スリットを通って流入する流体の流れが可及的に前記バルブ本体の周面の接線方向になるように整流する整流板を前記バルブ本体に設けたことを特徴とする。   According to a sixth aspect of the present invention, in the pump device according to the third aspect, the rectifying plate rectifies the flow of the fluid flowing in through the slit as much as possible in the tangential direction of the peripheral surface of the valve body. Is provided in the valve body.

本発明によれば、可変バルブが開いたときは開口面積が大きい分離孔を通して流体が分離室に流出し、可変バルブが閉じたときは分離孔が閉鎖されると共に分離孔より小径の小孔を通して分離された流体が分離室に流出するので、可変バルブによって気液分離機構で分離された流体の流出量を制御することができ、ポンプ装置から流体を安定して吐出させることが可能になる。   According to the present invention, when the variable valve is opened, the fluid flows into the separation chamber through the separation hole having a large opening area, and when the variable valve is closed, the separation hole is closed and through the small hole having a smaller diameter than the separation hole. Since the separated fluid flows out into the separation chamber, the amount of the fluid separated by the gas-liquid separation mechanism can be controlled by the variable valve, and the fluid can be stably discharged from the pump device.

本発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1に本実施の形態に係るポンプ装置の断面図を示す。ポンプ装置1は、ハウジング2を有し、ハウジング2には燃料油(流体)の流入口3と流出口4が設けられている。流入口3の内側には、チェック弁5が設けられており、ストレーナ6が設けられたフィルタ室7に連通している。フィルタ室7は、上方の吸入室8を介してポンプ9の吸い込み口9Aに接続されている。この実施の形態におけるポンプ9には、公知の内接歯車ポンプが用いられている。ポンプ9の吐出口9Bは、液路10を介して気液分離機構11に接続されている。液路10は略直線状に延び、気液分離機構11のパイプ12の一方の端部側に、パイプ12の内周面の接線方向に燃料油が流入するように気液分離機構11に接続されている。
The best mode for carrying out the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a cross-sectional view of a pump device according to the present embodiment. The pump device 1 has a housing 2, and a fuel oil (fluid) inlet 3 and outlet 4 are provided in the housing 2. A check valve 5 is provided inside the inflow port 3 and communicates with a filter chamber 7 in which a strainer 6 is provided. The filter chamber 7 is connected to the suction port 9A of the pump 9 via the upper suction chamber 8. A known internal gear pump is used as the pump 9 in this embodiment. The discharge port 9 </ b> B of the pump 9 is connected to the gas-liquid separation mechanism 11 through the liquid path 10. The liquid passage 10 extends substantially linearly, and is connected to the gas-liquid separation mechanism 11 so that fuel oil flows into one end of the pipe 12 of the gas-liquid separation mechanism 11 in the tangential direction of the inner peripheral surface of the pipe 12. Has been.

気液分離機構11は、液路10が接続された側の一方の端部(流入側の端部)に本発明が特徴とする可変バルブ13が設けられており、全体として有底筒形状を有する。開放されている端部はフィルタ室15に連通している。一方、可変バルブ13には分離孔14が形成されており、分離孔14を介して分離室21(フロート室)に連通している。   The gas-liquid separation mechanism 11 is provided with a variable valve 13 characterized by the present invention at one end (an end on the inflow side) on the side to which the liquid passage 10 is connected, and has a bottomed cylindrical shape as a whole. Have. The open end communicates with the filter chamber 15. On the other hand, a separation hole 14 is formed in the variable valve 13 and communicates with the separation chamber 21 (float chamber) via the separation hole 14.

気液分離機構11の開放された端部は、フィルタ室15内に引き出されている。フィルタ室15には、気液分離機構11の端部を囲むようにストレーナ16が設けられている。フィルタ室15と流出口4の間には、コントロール弁17が設けられている。コントロール弁17は、バネにより常時閉弁方向に付勢されている。さらに、フィルタ室15には、吸入室8に連通するバイパス孔18が設けられている。バイパス孔18は、吸入室8側に設けられたバイパス弁19によって開閉がコントロールされる。   The open end of the gas-liquid separation mechanism 11 is drawn into the filter chamber 15. A strainer 16 is provided in the filter chamber 15 so as to surround the end of the gas-liquid separation mechanism 11. A control valve 17 is provided between the filter chamber 15 and the outlet 4. The control valve 17 is normally urged in the valve closing direction by a spring. Further, the filter chamber 15 is provided with a bypass hole 18 communicating with the suction chamber 8. Opening and closing of the bypass hole 18 is controlled by a bypass valve 19 provided on the suction chamber 8 side.

分離室21は、分離孔14から排出される若干気泡が混じっている流体を一時的に滞溜させ、流体内の気体と液体とを重力もしくは浮力により分離させるための空間である。分離室21の上部には、分離した空気を放出するための孔22が形成されている。分離室21の底部側には、フロート弁23が設けられている。フロート弁23は、分離室21からフィルタ室7に延びる戻り流路24の開閉を制御するために設けられている。   The separation chamber 21 is a space for temporarily retaining the fluid that is slightly mixed with air bubbles discharged from the separation hole 14 and separating the gas and the liquid in the fluid by gravity or buoyancy. A hole 22 for releasing the separated air is formed in the upper part of the separation chamber 21. A float valve 23 is provided on the bottom side of the separation chamber 21. The float valve 23 is provided to control the opening and closing of the return flow path 24 extending from the separation chamber 21 to the filter chamber 7.

ここで、この実施の形態に係る気液分離機構11の詳細について説明する。
図2及び図3に示すように、気液分離機構11のパイプ12は、略水平に配置され、液路10との接続口10Aが設けられている。接続口10Aを含む接続口10Aの近傍は、段差をもって内径が拡大されており、ここに可変バルブ13のバルブ本体31が摺動可能に挿入されている。また、パイプ12の拡径された部分の内周には、一対の溝38が接続口10Aを避け、かつ中心軸に対して対称な位置に、軸線に平行に刻まれている。このようなパイプ12の接続口10A側の端部は、可変バルブ13のキャップ32によって閉鎖されている。
Here, the details of the gas-liquid separation mechanism 11 according to this embodiment will be described.
As shown in FIGS. 2 and 3, the pipe 12 of the gas-liquid separation mechanism 11 is disposed substantially horizontally and is provided with a connection port 10 </ b> A for connection with the liquid path 10. In the vicinity of the connection port 10A including the connection port 10A, the inner diameter is enlarged with a step, and the valve body 31 of the variable valve 13 is slidably inserted therein. In addition, a pair of grooves 38 are carved in parallel with the axis at positions symmetrical to the central axis, avoiding the connection port 10A, on the inner circumference of the expanded diameter portion of the pipe 12. The end of the pipe 12 on the side of the connection port 10 </ b> A is closed by the cap 32 of the variable valve 13.

可変バルブ13は、パイプ12の端部を塞ぐキャップ32と、キャップ32の中央にパイプ12と同軸に設けられた分離孔14に進入可能なノズル34を備えるバルブ本体31と、バルブ本体31とキャップ32の間に挿入されたコイルバネ35とを有する。   The variable valve 13 includes a cap 32 that closes the end of the pipe 12, a valve main body 31 that includes a nozzle 34 that can enter a separation hole 14 that is provided coaxially with the pipe 12 in the center of the cap 32, and the valve main body 31 and the cap. And a coil spring 35 inserted between them.

図2及び図4に示すように、キャップ32は、中央に分離孔14が形成されている。キャップ32の内面には、コイルバネ35を挿入する収容部32Aが環状に凹設されている。
図2及び図5に示すように、バルブ本体31は、軸線方向に延びる胴部39を有し、胴部39の軸線に直交する断面がD形になっている。胴部39には、平面状の整流板40が気液分離機構11に流入する燃料油の流れに略平行になるように設けられており、整流板40の上側の一部には接続口10Aからの燃料油の流入を許容するためのスリット41が形成されている。この実施の形態では、液管10が略鉛直上向きに延びているので、整流板40は略垂直に配置されている。なお、整流板40は、接続口10Aを通って流入する燃料油の流れが可及的にバルブ本体31の周面の接線方向になるように、±20°の範囲で向きが設定される。
整流板40を除いた円弧部分の胴部39の内周部分の径d1は、パイプ12の拡径されていない部分の内径d2に略等しい。さらに、バルブ本体31の外周の曲面部分には、一対のリブ42がパイプ12側の溝38の形成位置にあわせて、即ち中心軸に対して対称で、かつ中心軸と平行に突設されている。バルブ本体31において、キャップ32に臨む一方の端部には一段下がった位置に底部43が設けられており、反対側の端部は開放されている。
As shown in FIGS. 2 and 4, the cap 32 has a separation hole 14 formed in the center. A receiving portion 32A for inserting the coil spring 35 is annularly recessed on the inner surface of the cap 32.
As shown in FIGS. 2 and 5, the valve body 31 has a body portion 39 extending in the axial direction, and a cross section perpendicular to the axis of the body portion 39 is D-shaped. A flat rectifying plate 40 is provided in the body portion 39 so as to be substantially parallel to the flow of the fuel oil flowing into the gas-liquid separation mechanism 11, and a connection port 10 </ b> A is provided at a part of the upper side of the rectifying plate 40. A slit 41 for allowing inflow of the fuel oil from is formed. In this embodiment, since the liquid pipe 10 extends substantially vertically upward, the rectifying plate 40 is disposed substantially vertically. The direction of the rectifying plate 40 is set within a range of ± 20 ° so that the flow of the fuel oil flowing through the connection port 10A is as tangential to the peripheral surface of the valve body 31 as much as possible.
The diameter d1 of the inner peripheral portion of the body portion 39 of the arc portion excluding the rectifying plate 40 is substantially equal to the inner diameter d2 of the portion where the pipe 12 is not expanded. Further, a pair of ribs 42 are provided on the curved surface portion of the outer periphery of the valve body 31 in accordance with the formation position of the groove 38 on the pipe 12 side, that is, symmetrical with respect to the central axis and parallel to the central axis. Yes. In the valve body 31, one end facing the cap 32 is provided with a bottom 43 at a position lowered by one step, and the opposite end is open.

図2及び図6に示すように、バルブ本体31の底部43は、中央にノズル34が一体に形成されると共に、底部43を貫通する一対の連通孔44がノズル34を挟むようにそれぞれ円弧状に形成されている。さらに、連通孔44の周囲には、円形のリブ45が突設されている。リブ45からバルブ本体31の外壁に至るまでに形成される環状の凹部にコイルバネ35の端部が収容される。
ノズル34は、底部43から軸線に沿って外向きに突出しており、先端には径方向に膨出する先端部46が設けられている。先端部46は、端部が円形の平面になっており、外縁部はノズル34の突出方向に向かって外径を縮小させるようなテーパ状のガイド面46Aになっている。ガイド面46Aの外側面には、ノズル34がキャップ32に挿入されたときに分離孔14に一部が進入して密閉できる大きさで、ガイド面46Aの先端側の最も小径の部分が分離孔14の孔径より小さく、ガイド面46Aの基端側の最も大径の部分が分離孔14の孔径より大きい円錐台形に形成されている。さらに、ノズル34には、小孔47が軸線と平行に貫通して設けられている。小孔47の孔径は、キャップ32側の分離孔14より小さい。
As shown in FIGS. 2 and 6, the bottom portion 43 of the valve body 31 has an arc shape so that the nozzle 34 is integrally formed at the center and a pair of communication holes 44 penetrating the bottom portion 43 sandwich the nozzle 34. Is formed. In addition, a circular rib 45 is provided around the communication hole 44. The end of the coil spring 35 is accommodated in an annular recess formed from the rib 45 to the outer wall of the valve body 31.
The nozzle 34 protrudes outward along the axis from the bottom 43, and a tip 46 that bulges in the radial direction is provided at the tip. The front end portion 46 has a circular plane at the end portion, and the outer edge portion has a tapered guide surface 46A that reduces the outer diameter in the protruding direction of the nozzle 34. The outer surface of the guide surface 46A has a size that allows a part of the nozzle 34 to enter the sealing hole 14 and seal it when the nozzle 34 is inserted into the cap 32. The smallest diameter portion on the tip side of the guide surface 46A is the separation hole. The largest diameter portion on the proximal end side of the guide surface 46 </ b> A is smaller than the hole diameter of 14 and is formed in a truncated cone shape larger than the hole diameter of the separation hole 14. Further, the nozzle 34 is provided with a small hole 47 penetrating in parallel with the axis. The hole diameter of the small hole 47 is smaller than the separation hole 14 on the cap 32 side.

可変バルブ13は、接続口10Aにバルブ本体31のスリット41を合わせ、バルブ本体31のリブ42を溝38に嵌め込みながら挿入する。バルブ本体31とパイプ12のそれぞれのD形状が合致すると共に、溝38にリブ42が挿入されることで、パイプ12に対するバルブ本体31の回転が防止される。   The variable valve 13 is inserted while fitting the slit 41 of the valve main body 31 to the connection port 10 </ b> A and fitting the rib 42 of the valve main body 31 into the groove 38. The valve body 31 and the pipe 12 have the same D shape, and the rib 42 is inserted into the groove 38, thereby preventing the valve body 31 from rotating with respect to the pipe 12.

次に、ポンプ装置1の動作について説明する。
図1に示すポンプ装置1の流入口3に供給された燃料油は、フィルタ室7のストレーナ6でゴミなどが除去された後、吸入室8に流入する。さらに、吸い込み口9Aからポンプ9に吸入され、所定の圧力に加圧された後、液路10に吐出される。燃料油は、液路10を通って気液分離機構11に導かれる。気液分離機構11では、遠心力の作用によって燃料油と、気泡として混入されていた空気とが分離させられる。燃料油は、主に気液分離機構11のパイプ12の内周面を通って他方の開放側の端部から排出され、フィルタ室15に導かれる。そして、コントロール弁17を押し開いて、流出口4から送り出され、例えば給油ノズルから自動車の燃料タンクに供給される。一方、燃料油に含まれていた気泡は、主に気液分離機構11のパイプ12の中央に集められ、可変バルブ13を通って分離室21に排出される。気泡である空気は、分離室21の上部の孔22から大気に放出され、液成分である燃料油は分離室21の底部に溜まる。分離室21の液位が上昇すると、フロート弁23が開いて溜まった燃料油が戻り流路12からフィルタ室7に戻され、ポンプ9で再び加圧される。
Next, the operation of the pump device 1 will be described.
The fuel oil supplied to the inlet 3 of the pump device 1 shown in FIG. 1 flows into the suction chamber 8 after dust and the like are removed by the strainer 6 of the filter chamber 7. Further, the air is sucked into the pump 9 through the suction port 9A, pressurized to a predetermined pressure, and then discharged into the liquid passage 10. The fuel oil is guided to the gas-liquid separation mechanism 11 through the liquid passage 10. In the gas-liquid separation mechanism 11, fuel oil and air mixed as bubbles are separated by the action of centrifugal force. The fuel oil is mainly discharged from the other open end through the inner peripheral surface of the pipe 12 of the gas-liquid separation mechanism 11 and guided to the filter chamber 15. And the control valve 17 is pushed open, it sends out from the outflow port 4, for example, is supplied to the fuel tank of a motor vehicle from a fueling nozzle. On the other hand, the bubbles contained in the fuel oil are collected mainly in the center of the pipe 12 of the gas-liquid separation mechanism 11 and are discharged to the separation chamber 21 through the variable valve 13. Air as a bubble is discharged to the atmosphere from the hole 22 at the top of the separation chamber 21, and fuel oil as a liquid component accumulates at the bottom of the separation chamber 21. When the liquid level in the separation chamber 21 rises, the fuel oil accumulated by opening the float valve 23 is returned to the filter chamber 7 from the return flow path 12 and pressurized again by the pump 9.

ここで、バルブ本体31の胴部39の整流板40によって、気液分離機構11に流入する燃料油は可及的にバルブ本体31の内周面の接線方向に整流されて流入する。その結果、気液分離機構11内で燃料油の旋回流が形成され、これによって発生する遠心力によって気体と液体が分離させられる。
さらに、この実施の形態に係る気液分離機構11では、燃料油を可及的に空気が少ない成分と空気が多い成分とに分離するにあたり、空気の混入量によって変化する流体圧力に応じて可変バルブ13が開閉して分離室21への流出量を制御する。
Here, the fuel oil flowing into the gas-liquid separation mechanism 11 is rectified and flows in the tangential direction of the inner peripheral surface of the valve body 31 as much as possible by the rectifying plate 40 of the body portion 39 of the valve body 31. As a result, a swirl flow of the fuel oil is formed in the gas-liquid separation mechanism 11, and the gas and the liquid are separated by the centrifugal force generated thereby.
Furthermore, in the gas-liquid separation mechanism 11 according to this embodiment, when separating the fuel oil into a component with as little air as possible and a component with much air, it is variable according to the fluid pressure that varies depending on the amount of air mixed in. The valve 13 opens and closes to control the amount of flow into the separation chamber 21.

燃料油の空気混入量が高い場合は、空気量が多いために流体全体としての粘性が小さくなって流体抵抗が低下し、相対的に燃料が少ないことから気液分離機構11内の流体圧力が低下する。その結果、図2に示すように、バルブ本体31をキャップ32に押し付ける力が弱くなって、コイルバネ35が伸長してバルブ本体31がキャップ32から離れて可変バルブ13が開く。即ち、ノズル34がパイプ12内に完全に引き込まれてキャップ32の分離孔14が開放される。
気液分離機構11に流入した燃料油は、接続口10Aからバルブ本体31の内周面に沿って流れ、遠心力によって比重の重い燃料油が外側に向けて、比重の軽い空気が中央に向けて分離される。中央には、空気を主体とし、少量の燃料油が含まれた流体が分離される。この分離された流体は、図2に矢印で示すようにノズル34の小孔47及びノズル34を挟む連通孔44を通って、バルブ本体31とキャップ32が形成する空間51を通り、キャップ32の分離孔14から分離室21に流出する。
When the amount of air mixed in the fuel oil is high, the amount of air is large, so the viscosity of the whole fluid is reduced, the fluid resistance is lowered, and the fuel pressure is relatively low. descend. As a result, as shown in FIG. 2, the force for pressing the valve body 31 against the cap 32 is weakened, the coil spring 35 is extended, the valve body 31 is separated from the cap 32, and the variable valve 13 is opened. That is, the nozzle 34 is completely drawn into the pipe 12 and the separation hole 14 of the cap 32 is opened.
The fuel oil that has flowed into the gas-liquid separation mechanism 11 flows along the inner peripheral surface of the valve body 31 from the connection port 10A, the fuel oil having a higher specific gravity is directed outward by centrifugal force, and the air having a lower specific gravity is directed toward the center. Separated. In the center, a fluid mainly containing air and containing a small amount of fuel oil is separated. The separated fluid passes through a small hole 47 of the nozzle 34 and a communication hole 44 sandwiching the nozzle 34 as shown by an arrow in FIG. 2, passes through a space 51 formed by the valve body 31 and the cap 32, and passes through the cap 32. It flows out from the separation hole 14 into the separation chamber 21.

可変バルブ13のノズル34の小孔47及び一対の連通孔44の全体の開口面積や形状は、分離孔14と同程度、又はそれ以上に流体を流し易くなっており、分離された流体は、スムーズに分離室21に流出する。
一方、パイプ12及びバルブ本体31の外側に集まった燃料油を主体とする流体は、パイプ12の開放された端部からフィルタ室15に流出し、前記のように流出口4から吐出される。
The entire opening area and shape of the small hole 47 and the pair of communication holes 44 of the nozzle 34 of the variable valve 13 are easy to flow the fluid to the same degree as or more than the separation hole 14, and the separated fluid is It flows out smoothly into the separation chamber 21.
On the other hand, the fluid mainly composed of fuel oil gathered outside the pipe 12 and the valve body 31 flows out from the open end of the pipe 12 into the filter chamber 15 and is discharged from the outlet 4 as described above.

これに対して、燃料油の空気混入量が低い場合は、空気量が少ないために流体全体としての粘性が大きくなって流体抵抗が増加し、相対的に燃料が多いことから気液分離機構11内の流体圧力が上昇する。気液分離機構11内の流体圧力が予め定められた圧力を越えると、図7に示すように、バルブ本体31をキャップ32に押し付ける力が強くなって、コイルバネ35が収縮して可変バルブ13が閉じる。このとき、ノズル34は、キャップ32の分離孔14に進入する。ノズル34は、ガイド面46Aのテーパによってスムーズに分離孔14内に導かれて分離孔14を閉鎖し、ノズル34の小孔47のみで分離室21に連通する。
従って、気液分離機構11内で分離させられて中央に集められた流体は、矢印に示すようにノズル34の小孔47のみを通って分離室21に流出する。一方、外側に集められた燃料油を主体とする流体は、パイプ12の開放された端部からフィルタ室15に流出する。なお、可変バルブ13が開いた状態から閉じるまでの間は、分離前の流体圧力、粘度、密度に関係する流体抗力と、コイルバネ35の作用によって気体混入量に応じて弁開度が変化するので、気体混入量の変化に応じて分離室21への排出量を変化させることができる。
On the other hand, when the amount of air mixed in the fuel oil is low, since the amount of air is small, the viscosity of the fluid as a whole increases, the fluid resistance increases, and the fuel is relatively large. The fluid pressure inside increases. When the fluid pressure in the gas-liquid separation mechanism 11 exceeds a predetermined pressure, as shown in FIG. 7, the force that presses the valve body 31 against the cap 32 becomes strong, the coil spring 35 contracts, and the variable valve 13 close. At this time, the nozzle 34 enters the separation hole 14 of the cap 32. The nozzle 34 is smoothly guided into the separation hole 14 by the taper of the guide surface 46 </ b> A to close the separation hole 14, and communicates with the separation chamber 21 only by the small hole 47 of the nozzle 34.
Therefore, the fluid separated in the gas-liquid separation mechanism 11 and collected in the center flows out to the separation chamber 21 through only the small hole 47 of the nozzle 34 as shown by the arrow. On the other hand, the fluid mainly composed of fuel oil collected outside flows out from the open end of the pipe 12 into the filter chamber 15. In addition, since the variable valve 13 is in an open state to a closed state, the valve opening changes in accordance with the amount of mixed gas due to the fluid drag related to the fluid pressure, viscosity, and density before separation and the action of the coil spring 35. The discharge amount to the separation chamber 21 can be changed according to the change in the gas mixing amount.

ここで、図8に本実施の形態に係るポンプ装置1で空気混入量と計測誤差の関係を調べた結果を示す。比較として従来のポンプ装置の計測誤差を破線で示している。従来のポンプ装置では空気混入量が少ない場合を想定して分離孔を調整してあるので、空気混入量が増えると分離しきれなかった空気が燃料油と共に吐出され、空気混入量が30%を越えると、計測誤差が3%以上になり、計測誤差が大きかった。これに対して、本実施の形態に係るポンプ装置1では、空気混入量に応じて弁開度が調整されるので、空気混入量に係わりなく計測誤差は1%未満であり、計測誤差を小さく抑えることが可能になる。   Here, FIG. 8 shows the result of examining the relationship between the air mixing amount and the measurement error in the pump device 1 according to the present embodiment. As a comparison, the measurement error of the conventional pump device is indicated by a broken line. In the conventional pump device, the separation hole is adjusted assuming that the air mixing amount is small, so if the air mixing amount increases, the air that could not be separated is discharged together with the fuel oil, and the air mixing amount is reduced to 30%. When exceeded, the measurement error was 3% or more, and the measurement error was large. On the other hand, in the pump device 1 according to the present embodiment, the valve opening is adjusted according to the air mixing amount. Therefore, the measurement error is less than 1% regardless of the air mixing amount, and the measurement error is reduced. It becomes possible to suppress.

以上、説明したように、この実施の形態に係るポンプ装置1では、気泡の含有量による流体圧力によって弁開度が自動的に調整される可変バルブ13を気液分離機構11に設け、空気の混入量が多い場合に分離室21に流出する流体の流路が大きくなるようにしたので、空気を主体とする多量の流体を分離室21に確実に回収できる。空気の混入量が少ない場合には、可変バルブ13が閉じて分離室21に流出する流体の流路が小さくなるので、大量の燃料油が分離室21に流出することはなく、ポンプ装置1を効率良く安定して運転させることができる。なお、このポンプ装置1は、気液分離機構11に流入する燃料油の量が少ないときに可変バルブ13が開き、流入量が多いときに可変バルブ13が閉じることによっても、分離室21に流出させる流体量を調整することができる。   As described above, in the pump device 1 according to this embodiment, the gas-liquid separation mechanism 11 is provided with the variable valve 13 whose valve opening degree is automatically adjusted by the fluid pressure depending on the bubble content, Since the flow path of the fluid flowing out to the separation chamber 21 is increased when the amount of mixing is large, a large amount of fluid mainly composed of air can be reliably collected in the separation chamber 21. When the amount of mixed air is small, the variable valve 13 is closed and the flow path of the fluid flowing out into the separation chamber 21 becomes small, so that a large amount of fuel oil does not flow out into the separation chamber 21 and the pump device 1 It can be operated efficiently and stably. The pump device 1 also flows into the separation chamber 21 by opening the variable valve 13 when the amount of fuel oil flowing into the gas-liquid separation mechanism 11 is small and closing the variable valve 13 when the amount of inflow is large. The amount of fluid to be adjusted can be adjusted.

また、バルブ本体31が軸線方向に延びているので、パイプ12内を安定して摺動させることができる。バルブ本体31は、接続口10Aの形成位置を越えてフィルタ室15側に延びているが、バルブ本体31にスリット41を設けると共に、内部にパイプ12と略同形の曲面を形成したので燃料油の流れが乱れることはない。
バルブ本体31の断面をD形にし、これを受けるパイプ12の内部形状もこれに合わせてD形にしたので、バルブ本体31の回転が防止される。同様に、溝38とリブ42を組み合わせることで、バルブ本体31の回転が防止される。また、D形や溝38、リブ42は、バルブ本体31をパイプ12に挿入する際の位置決めを容易にする役割も有する。
Further, since the valve body 31 extends in the axial direction, the pipe 12 can be stably slid. The valve body 31 extends to the filter chamber 15 side beyond the position where the connection port 10A is formed. However, the slit 41 is provided in the valve body 31 and a curved surface substantially the same shape as the pipe 12 is formed inside. The flow is not disturbed.
Since the cross section of the valve body 31 is D-shaped, and the internal shape of the pipe 12 receiving it is also D-shaped accordingly, the rotation of the valve body 31 is prevented. Similarly, the combination of the groove 38 and the rib 42 prevents the valve body 31 from rotating. Further, the D shape, the groove 38 and the rib 42 also have a role of facilitating positioning when inserting the valve body 31 into the pipe 12.

なお、バルブ本体31の断面及びパイプ12の内形をD形にすることと、溝38とリブ42を設けることの一方のみを実施しても良い。リブ42を設ける場合は、1つ以上設ければ良い。   Note that only one of the cross-section of the valve body 31 and the inner shape of the pipe 12 may be D-shaped or the grooves 38 and the ribs 42 may be provided. When the ribs 42 are provided, one or more ribs may be provided.

ここで、図9及び図10に変形例として、ポンプ装置1に使用される気液分離機構61の断面構造を示す。
気液分離機構61は、円筒62の接続口10A側に、可変バルブ63を備えている。可変バルブ63は、円筒62の端部を覆うキャップ72と、コイルバネ35でキャップ72から離れる方向に付勢されたバルブ本体71とを有する。キャップ72は中央に分離孔14が形成されているのみであるが、前記のキャップ32のようにコイルバネ35の収容部32Aを設けても良い。バルブ本体71は、底部43からキャップ72に向けて円筒を延ばした形状を有し、底部43にはノズル34と一対の流通孔44が設けられている。
円筒62は、バルブ本体71を摺動させるためのスペースを確保している。このため、バルブ本体71は、段差に当接するまで接続口10A側に移動することができる。
Here, FIG.9 and FIG.10 shows the cross-sectional structure of the gas-liquid separation mechanism 61 used for the pump apparatus 1 as a modification.
The gas-liquid separation mechanism 61 includes a variable valve 63 on the connection port 10 </ b> A side of the cylinder 62. The variable valve 63 includes a cap 72 that covers the end of the cylinder 62 and a valve body 71 that is biased in a direction away from the cap 72 by the coil spring 35. The cap 72 is only formed with the separation hole 14 in the center, but the accommodating portion 32A of the coil spring 35 may be provided like the cap 32 described above. The valve body 71 has a shape in which a cylinder extends from the bottom 43 toward the cap 72, and the bottom 43 is provided with a nozzle 34 and a pair of flow holes 44.
The cylinder 62 secures a space for sliding the valve body 71. For this reason, the valve main body 71 can move to the connection port 10 </ b> A side until it contacts the step.

燃料油の空気混入量が高く、気液分離機構61内の流体圧力が低いときは、バルブ本体71をキャップ72に押し付ける力が弱いので、コイルバネ35が伸長してバルブ本体71がキャップ72から離れて可変バルブ63が開く。即ち、図9に示すように、ノズル34がパイプ62内に完全に引き込まれてキャップ72の分離孔14が開放される。分離された流体が、ノズル34の小孔47及びノズル34を挟む連通孔44を通って、バルブ本体71とキャップ72が形成する空間51を通り、キャップ72の分離孔14から分離室21に流出する。   When the amount of fuel oil mixed in is high and the fluid pressure in the gas-liquid separation mechanism 61 is low, the force that presses the valve body 71 against the cap 72 is weak, so the coil spring 35 extends and the valve body 71 moves away from the cap 72. Then, the variable valve 63 is opened. That is, as shown in FIG. 9, the nozzle 34 is completely drawn into the pipe 62, and the separation hole 14 of the cap 72 is opened. The separated fluid passes through the small hole 47 of the nozzle 34 and the communication hole 44 sandwiching the nozzle 34, passes through the space 51 formed by the valve body 71 and the cap 72, and flows out from the separation hole 14 of the cap 72 to the separation chamber 21. To do.

これに対して、燃料油の空気混入量が低く、気液分離機構61内の流体圧力が高いときは、バルブ本体71をキャップ72に押し付ける力が強くなる。気液分離機構61内の流体圧力が予め定められた圧力を越えると、図10に示すように、コイルバネ35が収縮して可変バルブ63が閉じる。このとき、ノズル34の先端部46がキャップ72の分離孔14に進入して閉鎖し、ノズル34の小孔47のみで分離室21に連通する。分離された流体が、ノズル34の小孔47のみを通って分離室21に流出する。   In contrast, when the amount of fuel oil mixed in is low and the fluid pressure in the gas-liquid separation mechanism 61 is high, the force pressing the valve body 71 against the cap 72 becomes strong. When the fluid pressure in the gas-liquid separation mechanism 61 exceeds a predetermined pressure, the coil spring 35 contracts and the variable valve 63 closes as shown in FIG. At this time, the tip end portion 46 of the nozzle 34 enters and closes the separation hole 14 of the cap 72 and communicates with the separation chamber 21 only by the small hole 47 of the nozzle 34. The separated fluid flows out into the separation chamber 21 only through the small hole 47 of the nozzle 34.

本発明の実施の形態に係るポンプ装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the pump apparatus which concerns on embodiment of this invention. 気液分離機構を拡大して示す断面図である。It is sectional drawing which expands and shows a gas-liquid separation mechanism. 気液分離機構のパイプを示す斜視図である。It is a perspective view which shows the pipe of a gas-liquid separation mechanism. 図2のA矢視図であって、キャップの正面図である。FIG. 3 is a front view of the cap, as viewed from the direction of arrow A in FIG. 2. 図2のB矢視図であって、バルブ本体の背面側の斜視図である。FIG. 3 is a perspective view of the back side of the valve main body, as seen from the direction of arrow B in FIG. バルブ本体の正面側の斜視図である。It is a perspective view of the front side of a valve body. 可変バルブが閉じた状態を示す図である。It is a figure which shows the state which the variable valve closed. 本発明の実施の形態のポンプ装置の計測誤差と従来の計測誤差を示すグラフである。It is a graph which shows the measurement error of the pump apparatus of embodiment of this invention, and the conventional measurement error. 気液分離機構の変形例を示す断面図であって、可変バルブが閉じた状態を示す図である。It is sectional drawing which shows the modification of a gas-liquid separation mechanism, Comprising: It is a figure which shows the state which the variable valve closed. 気液分離機構の変形例を示す断面図であって、可変バルブが開いた状態を示す図である。It is sectional drawing which shows the modification of a gas-liquid separation mechanism, Comprising: It is a figure which shows the state which the variable valve opened.

符号の説明Explanation of symbols

1 ポンプ装置
3 流入口
9 ポンプ
10A 接続口
11 気液分離機構
12 パイプ
13,63 可変バルブ
14 分離孔
21 分離室
31,71 バルブ本体
32,72 キャップ
34 ノズル
38 溝
40 整流板
41 スリット
42 リブ
44 連通孔
46 ノズル先端部
47 小孔
DESCRIPTION OF SYMBOLS 1 Pump apparatus 3 Inlet 9 Pump 10A Connection port 11 Gas-liquid separation mechanism 12 Pipe 13, 63 Variable valve 14 Separation hole 21 Separation chamber 31, 71 Valve body 32, 72 Cap 34 Nozzle 38 Groove 40 Rectification plate 41 Slit 42 Rib 44 Communication hole 46 Nozzle tip 47 Small hole

Claims (6)

流入口から吸い込んだ流体を加圧するポンプと、加圧後の流体を遠心力によって気液分離し、流入側の端部中央に設けられた分離孔から気体を流出させ、反対側の開放端から液体を通流させる気液分離機構と、前記気液分離機構の前記分離孔から流入した流体から前記ポンプに回収する液体を分離させるための分離室と、前記分離室から前記ポンプの吸入口に至る流路を設けられたフロート弁とを含むポンプ装置において、
前記気液分離機構は、略水平に配置されて内部を流体が通流するパイプと、流体の流入側に前記分離室に送る流体の量を調整可能な可変バルブとを含んで構成され、前記可変バルブは、前記分離孔が形成されたキャップと、前記パイプ内で前記キャップから離間する方向に付勢されたバルブ本体と、前記分離孔を閉鎖可能な外形を有し、前記分離孔より小径の小孔が前記分離室に連通可能に設けられたノズルと、前記ノズルの周囲に形成されて分離された流体を前記分離孔に導くことができる連通孔とを有することを特徴とするポンプ装置。
A pump that pressurizes the fluid sucked from the inflow port, and the pressurized fluid is separated into gas and liquid by centrifugal force, and the gas flows out from the separation hole provided at the center of the end on the inflow side, and from the open end on the opposite side A gas-liquid separation mechanism for allowing liquid to flow; a separation chamber for separating the liquid recovered by the pump from the fluid flowing in from the separation hole of the gas-liquid separation mechanism; and from the separation chamber to an inlet of the pump In a pump device including a float valve provided with a flow path leading to
The gas-liquid separation mechanism is configured to include a pipe that is arranged substantially horizontally and through which fluid flows, and a variable valve that can adjust the amount of fluid sent to the separation chamber on the fluid inflow side, The variable valve has a cap in which the separation hole is formed, a valve body biased in a direction away from the cap in the pipe, and an outer shape capable of closing the separation hole, and has a smaller diameter than the separation hole. The nozzle device is provided with a nozzle that can communicate with the separation chamber, and a communication hole that is formed around the nozzle and can guide the separated fluid to the separation hole. .
前記分離孔と前記小孔は、前記パイプと同軸に配置されていることを特徴とする請求項1に記載のポンプ装置。   The pump device according to claim 1, wherein the separation hole and the small hole are arranged coaxially with the pipe. 前記バルブ本体は、前記パイプに流体が流入する接続口を超えて開放端に向かって延び、前記バルブ本体には前記接続口からの流体の流入を許容するスリットが設けられていることを特徴とする請求項1又は請求項2に記載のポンプ装置。   The valve body extends toward an open end beyond a connection port through which fluid flows into the pipe, and the valve body is provided with a slit that allows inflow of fluid from the connection port. The pump device according to claim 1 or 2. 前記バルブ本体の外側に少なくとも1つのリブを前記バルブ本体の摺動方向に平行に設け、前記パイプの内側に前記リブに係合する溝を設けたことを特徴とする請求項1から請求項3のいずれか一項に記載のポンプ装置。   The at least 1 rib is provided in the outer side of the said valve main body in parallel with the sliding direction of the said valve main body, and the groove | channel which engages with the said rib was provided in the inner side of the said pipe. The pump device according to any one of the above. 前記バルブ本体の摺動方向に直交する外形をD形にすると共に、前記パイプの内側の形状を前記バルブ本体を収容可能なD形としたことを特徴とする請求項1から請求項4のいずれか一項に記載のポンプ装置。   The outer shape perpendicular to the sliding direction of the valve main body is D-shaped, and the inner shape of the pipe is D-shaped capable of accommodating the valve main body. The pump device according to claim 1. 前記スリットを通って流入する流体の流れが可及的に前記バルブ本体の周面の接線方向になるように整流する整流板を前記バルブ本体に設けたことを特徴とする請求項3に記載のポンプ装置。
The rectifying plate for rectifying the flow so that the flow of the fluid flowing in through the slit is tangential to the peripheral surface of the valve body as much as possible is provided on the valve body. Pump device.
JP2008079444A 2008-03-26 2008-03-26 Pump device Active JP4435242B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008079444A JP4435242B2 (en) 2008-03-26 2008-03-26 Pump device
KR1020080109713A KR101014242B1 (en) 2008-03-26 2008-11-06 Pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079444A JP4435242B2 (en) 2008-03-26 2008-03-26 Pump device

Publications (2)

Publication Number Publication Date
JP2009235917A JP2009235917A (en) 2009-10-15
JP4435242B2 true JP4435242B2 (en) 2010-03-17

Family

ID=41250188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079444A Active JP4435242B2 (en) 2008-03-26 2008-03-26 Pump device

Country Status (2)

Country Link
JP (1) JP4435242B2 (en)
KR (1) KR101014242B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085801B2 (en) * 2017-04-19 2022-06-17 トキコシステムソリューションズ株式会社 Pumping unit
WO2023167401A1 (en) * 2022-03-03 2023-09-07 엘지전자 주식회사 Scroll compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154212A (en) 1984-08-23 1986-03-18 Tokyo Tatsuno Co Ltd Gas-liquid separator
JP2876578B2 (en) * 1992-03-26 1999-03-31 株式会社タツノ・メカトロニクス Pump device
JP3384001B2 (en) * 1992-09-02 2003-03-10 株式会社タツノ・メカトロニクス Pump device
JP4828967B2 (en) 2006-03-08 2011-11-30 トキコテクノ株式会社 Pumping unit

Also Published As

Publication number Publication date
JP2009235917A (en) 2009-10-15
KR20090102606A (en) 2009-09-30
KR101014242B1 (en) 2011-02-14

Similar Documents

Publication Publication Date Title
KR101862958B1 (en) Flap valve device and gas-liquid separating device comprising flap valve device
US8360741B2 (en) Manual/pneumatic pump structure
US8651068B1 (en) Systems and devices for separating water and contaminants from fuel
JP4435242B2 (en) Pump device
JP4828967B2 (en) Pumping unit
JP4435243B2 (en) Pump device
US11333116B2 (en) Water drain mechanism for filter assemblies
JP4553160B2 (en) Pump device
JP2007120398A (en) Air bubble separator
KR101041382B1 (en) Pump apparatus
JP4643515B2 (en) Fuel oil pump unit with float valve
JP2009150315A (en) Pump unit
JPH084660A (en) Pump unit
JPH09209940A (en) Pump unit
JP2009240853A (en) Push-down head of pump
CN111765674A (en) Oil separator and refrigerating system with same
EP4051407B1 (en) A filter cartridge for a liquid such as fuel, the upper end plate of which including an automatic degassing valve
KR101133033B1 (en) Pump apparatus
JP4706873B2 (en) Pump device
JP2008031862A (en) Pump unit
CN111336104A (en) Gear pump for fuel dispenser
JPH07197882A (en) Pump unit
CN113748038A (en) Over-supply oil preventing valve
JPH0861249A (en) Pump unit
JPH07197881A (en) Pump unit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4435242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350