JP4435034B2 - Energy absorbing material, method for producing the same, and energy absorbing device - Google Patents

Energy absorbing material, method for producing the same, and energy absorbing device Download PDF

Info

Publication number
JP4435034B2
JP4435034B2 JP2005180500A JP2005180500A JP4435034B2 JP 4435034 B2 JP4435034 B2 JP 4435034B2 JP 2005180500 A JP2005180500 A JP 2005180500A JP 2005180500 A JP2005180500 A JP 2005180500A JP 4435034 B2 JP4435034 B2 JP 4435034B2
Authority
JP
Japan
Prior art keywords
energy
energy absorbing
weight
tin
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005180500A
Other languages
Japanese (ja)
Other versions
JP2006274441A (en
JP2006274441A5 (en
Inventor
栄介 柏木
直之 山口
Original Assignee
住友金属鉱山シポレックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山シポレックス株式会社 filed Critical 住友金属鉱山シポレックス株式会社
Priority to JP2005180500A priority Critical patent/JP4435034B2/en
Publication of JP2006274441A publication Critical patent/JP2006274441A/en
Publication of JP2006274441A5 publication Critical patent/JP2006274441A5/en
Application granted granted Critical
Publication of JP4435034B2 publication Critical patent/JP4435034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、例えば地震発生時に建築物や土木構造物等に伝達される振動エネルギーを減少させるためのエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置に関する。 The present invention relates to manufacturing method and the energy absorbing device of the energy-absorbing material and its for reducing vibration energy transmitted to seismic buildings and civil engineering structures upon occurrence.

従来、上記のような振動エネルギーの吸収材料としては、延性の高さ或いは再結晶温度の低さから、鉛が用いられてきた。しかしながら、昨今の環境意識の高まりによって、鉛フリーハンダ等のように鉛の使用を控える可能性も考えられる。   Conventionally, lead has been used as a material for absorbing vibration energy as described above because of its high ductility or low recrystallization temperature. However, with the recent increase in environmental awareness, there is a possibility of refraining from using lead, such as lead-free solder.

鉛代替品としては、鉛と同様な延性の高さ或いは再結晶温度の低さを持つ錫(Sn)が考えられ、錫は無害であるので食料品工業や装置および家庭用食器などにも用いられ用途が広い。   As an alternative to lead, tin (Sn) with the same high ductility or low recrystallization temperature as lead can be considered. Since tin is harmless, it is also used in the food industry, equipment and household tableware. Widely used.

しかしながら、錫は18℃付近に同素変態点があり(下記の非特許文献1参照)、通常は高温型のβ−Snであるが、激しい寒さにあると低温型のα−Snに変態する恐れがある。α−Snは固くて脆いので、同素変態が起こると機械的性質が変化し、エネルギー吸収性能が安定しないという問題がある。またβ相からα相に相変態するとき膨張し、砂状に崩壊することが一般的に知られている。このため、錫を低温でエネルギー吸収材として使用するのが難しいという問題点がある。   However, tin has an allotropic transformation point around 18 ° C. (see Non-Patent Document 1 below) and is usually high-temperature type β-Sn, but when it is extremely cold, it transforms into low-temperature type α-Sn. There is a fear. Since α-Sn is hard and brittle, there is a problem that when allotropic transformation occurs, the mechanical properties change and the energy absorption performance is not stable. Further, it is generally known that the phase expands and collapses into a sand when it is transformed from the β phase to the α phase. For this reason, there is a problem that it is difficult to use tin as an energy absorbing material at a low temperature.

上記のような同素変態を抑制するために、錫にビスマス、カドミウム、金、銀、アンチモンを添加し合金化する方法があるが、添加物によって錫の純度が低下し、延性の低下あるいは再結晶温度が上昇するという問題があった。   In order to suppress the allotropic transformation as described above, there is a method of alloying by adding bismuth, cadmium, gold, silver, and antimony to tin, but the purity of the tin is lowered by the additive, and the ductility is reduced or recycled. There was a problem that the crystal temperature increased.

一方、従来たとえば地震発生時に建築物や土木構造物等に伝達される振動エネルギーを減少させるエネルギー吸収装置として下記特許文献1,2が提案されている。図15はその一例を示すもので、本例のエネルギー吸収装置Aは、鋼板等の硬質板1とゴム等の弾性体2とを上下方向に交互に複数積層してなる積層体3の中心部に、上下方向に貫通する中空部3aを設け、その中空部3a内に地震等の振動エネルギーを吸収する鉛等の弾塑性材料よりなるエネルギー吸収体4を収容配置した構成である。なお上記図15において、硬質板1と弾性体2およびエネルギー吸収体4のハッチング(断面を表す斜線)は煩雑を避けるため省略した。   On the other hand, Patent Documents 1 and 2 below have been proposed as energy absorbers that reduce vibration energy transmitted to buildings, civil structures, and the like when an earthquake occurs. FIG. 15 shows an example, and the energy absorbing device A of this example is a central portion of a laminate 3 in which a plurality of hard plates 1 such as steel plates and elastic bodies 2 such as rubber are alternately laminated in the vertical direction. Further, a hollow portion 3a penetrating in the vertical direction is provided, and an energy absorber 4 made of an elastic-plastic material such as lead that absorbs vibration energy such as an earthquake is accommodated in the hollow portion 3a. In FIG. 15, the hatching of the hard plate 1, the elastic body 2, and the energy absorber 4 (hatched lines indicating the cross section) is omitted to avoid complication.

上記積層体3およびエネルギー吸収体4の上下両端部には、図15に示すようにそれぞれ基板5を介して取付板6が一体的に取付けられ、その取付板6を不図示のボルト等で建築物や土木構造物等に取付ける構成である。具体的には、例えば図16に示すようなビル等の建築物にあっては、その建築物等の上部構造体Bと、その土台等の下部構造体Cとの間に、また図17に示すような橋梁等の土木構造物にあっては、橋桁等の上部構造体Bと橋脚等の下部構造体Cとの間に、それぞれ上記のエネルギー吸収装置Aを1つ若しくは複数個配置し、その各エネルギー吸収装置Aの上下の取付板6に形成した上記取付孔(不図示)にボルト等を挿通して上記各構造体B、Cに取付けるものである。   As shown in FIG. 15, mounting plates 6 are integrally attached to both the upper and lower ends of the laminate 3 and the energy absorber 4 via a substrate 5, respectively, and the mounting plates 6 are constructed with bolts or the like (not shown). It is a structure to be attached to an object or a civil engineering structure. Specifically, for example, in a building such as a building as shown in FIG. 16, between the upper structure B such as the building and the lower structure C such as the base, and in FIG. In a civil structure such as a bridge as shown, one or a plurality of the energy absorbing devices A are arranged between an upper structure B such as a bridge girder and a lower structure C such as a pier, A bolt or the like is inserted into the mounting holes (not shown) formed in the upper and lower mounting plates 6 of each energy absorbing device A and is mounted on the structures B and C.

上記のようにして上下の構造体B,C間に配置したエネルギー吸収装置Aは、建築物等を安定に支持しながら地震発生時には水平方向に変形して地震エネルギーを減少させるもので、従来のいわゆる免震アイソレータと免震ダンパーとの両方の機能を併せ持った働きをする。その結果、上記アイソレータとダンパーとを各々別々に配置した場合に比べて、設置スペースを削減できると共に、施工性も向上するという利点がある。   The energy absorbing device A arranged between the upper and lower structures B and C as described above is designed to reduce seismic energy by deforming in the horizontal direction when an earthquake occurs while stably supporting a building or the like. It functions as both a seismic isolation isolator and a seismic isolation damper. As a result, the installation space can be reduced and the workability can be improved as compared with the case where the isolator and the damper are separately arranged.

ところで、前記特許文献2においては、前述のようなエネルギー吸収装置を製造する際に、弾塑性材料よりなるエネルギー吸収体に、その剪断降伏応力と同等もしくはそれ以上の静水圧を印加することが提案されている。これはエネルギー吸収体を積層体と一体化させるために必要な処置であり、これによりエネルギー吸収体と積層体は一体的に変形することで地震等の振動エネルギーを吸収可能になるとされている。すなわち、エネルギー吸収体が地震等により変形を受けると、エネルギー吸収体は長さ方向へは延び縮み、長さ方向と直交する方向には径の縮小、拡大という塑性変形をすることで振動エネルギーを吸収することになる。   By the way, in the said patent document 2, when manufacturing the above energy absorption apparatus, applying the hydrostatic pressure equivalent to or more than the shear yield stress to the energy absorber which consists of an elastic-plastic material is proposed. Has been. This is a necessary procedure for integrating the energy absorber with the laminate, and by this, the energy absorber and the laminate are integrally deformed so that vibration energy such as an earthquake can be absorbed. That is, when the energy absorber is deformed by an earthquake or the like, the energy absorber expands and contracts in the length direction, and vibration energy is reduced by plastic deformation such as diameter reduction and expansion in the direction perpendicular to the length direction. Will absorb.

しかしながら、エネルギー吸収体の外周部付近は積層ゴム中空部表面の摩擦力もしくはエネルギー吸収体の積層体への食い込みにより、いわば固着されている状態になっているため実際には、エネルギー吸収体が地震等により繰返し変形を受けると、次第にエネルギー吸収体の隅部では角部のダレ、エネルギー吸収体の端部付近では径の膨出、エネルギー吸収体の中央部付近では径の収縮が起こる。これは、エネルギー吸収体の端部付近と中央部付近でのエネルギー吸収体の変化状態が異なることにより引き起こされるものであり、主に摩擦力もしくはエネルギー吸収体の食い込みに影響を受けるエネルギー吸収体の外周部と、エネルギー吸収体内部との変形の違いにより生じているものと考えられる。   However, in the vicinity of the outer periphery of the energy absorber, the energy absorber is actually seized due to the frictional force of the hollow surface of the laminated rubber or the energy absorber biting into the laminate. When subjected to repeated deformation due to, for example, the corner of the energy absorber gradually sags, the diameter bulges near the end of the energy absorber, and the diameter shrinks near the center of the energy absorber. This is caused by the difference in the state of change of the energy absorber in the vicinity of the end and the center of the energy absorber, which is mainly affected by the frictional force or the energy absorber. This is considered to be caused by the difference in deformation between the outer peripheral portion and the inside of the energy absorber.

この結果、エネルギー吸収体の両端部付近と中央部付近とではエネルギー吸収体の変形方向や変形量が異なるために、上記角部のダレや径の膨収縮の他、最悪エネルギー吸収体にヒビが入る等の問題が起こるおそれがある。またエネルギー吸収体が上記のような状態になると所定のエネルギー量が安定的に吸収できないだけでなく、耐久性も悪くなるという問題点がある。   As a result, since the deformation direction and amount of deformation of the energy absorber are different near both ends and near the center of the energy absorber, the worst energy absorber is cracked in addition to the sagging of the corners and the expansion and contraction of the diameter. There is a risk of problems such as entering. Further, when the energy absorber is in the above state, there is a problem that not only the predetermined energy amount cannot be stably absorbed, but also the durability is deteriorated.

一方、より大きな減衰力を持つエネルギー吸収装置を得るには、積層体内のエネルギー吸収体の径をより大きくするか、エネルギー吸収装置の設置個数を増す必要があり、エネルギー吸収体の径を大きくすれば、製作時により大きな力でエネルギー吸収体をプレス等で積層体の中空部内に挿入する必要があり、大規模な設備が必要となるだけでなく、エネルギー吸収体と積層体の中空部内面の摩擦力と食い込みが大きくなることにより、前述の問題点が更に深刻化する。また、むやみにエネルギー吸収装置の設置個数を増すことは建設時に多大な設置スペースと施工コストが必要となって必ずしも現実的ではない。   On the other hand, in order to obtain an energy absorber having a larger damping force, it is necessary to increase the diameter of the energy absorber in the laminate or increase the number of installed energy absorbers. For example, it is necessary to insert the energy absorber into the hollow portion of the laminate with a greater force at the time of manufacture, which not only requires large-scale equipment, but also the inner surface of the hollow portion of the energy absorber and the laminate. As the frictional force and the bite increase, the above-mentioned problems become more serious. In addition, increasing the number of installed energy absorbers is not always practical because a large installation space and construction cost are required during construction.

雑誌「金属」1987年vol.57(7月号)株式会社アグネ技術センター発行(「錫の物性」)Magazine "Metal" 1987 vol. 57 (July issue) issued by Agne Technology Center Co., Ltd. ("Tin properties") 特公昭61−17984号公報Japanese Patent Publication No. 61-17984 特許第3360828号公報Japanese Patent No. 3360828

本発明は上記の問題点に鑑みて提案したもので、錫へ添加する金属の添加量を調整することで、低温でも機械的性質が変化せず、また径が小さくとも減衰力が大きく、地震などの振動を吸収するエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を容易・安価に提供することを目的とする。また添加量を制限することで、常温で再結晶し疲労の蓄積のないエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を提供することを目的とする。さらに添加量を制限することで、鉛と同等以上の伸び(延性)を有し、エネルギー吸収性能が安定しており繰返し耐久性も高いエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を提供することを目的とする。 The present invention has been proposed in view of the above problems. By adjusting the amount of metal added to tin, the mechanical properties do not change even at low temperatures, and the damping force is large even if the diameter is small. and to provide easy-low cost of energy absorbing material and its manufacturing method and an energy absorbing device for absorbing vibrations and the like. Also by limiting the amount, and to provide an energy absorbing material and its manufacturing method and an energy absorbing device with no accumulation of recrystallized fatigue at normal temperature. By further limiting the amount has lead least equivalent elongation (ductility), the energy absorbing performance to provide a manufacturing method and the energy absorbing device of stable even repetitive durability and high energy-absorbing material and its For the purpose.

上記の目的を達成するために本発明によるエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置は、以下の構成としたものである。すなわち、本発明によるエネルギー吸収材料は、地震等の振動エネルギーを吸収するためのエネルギー吸収材料であって、純度99重量%以上の錫を主体とし、これにビスマスを添加金属として添加して合金化した弾塑性材料よりなり、その弾塑性材料に対する上記添加金属の割合が重量%以下であることを特徴とする。 In order to achieve the above object, an energy absorbing material, a manufacturing method thereof, and an energy absorbing device according to the present invention have the following configurations. That is, the energy absorbing material according to the present invention is an energy absorbing material for absorbing vibration energy such as an earthquake, a main component 99% by weight or more of tin, to which was added bismuth scan as an additive metal alloy consists phased elastoplastic material, and the proportion of the additive metal for the elastic-plastic material is 5 wt% or less.

また本発明によるエネルギー吸収材料の製造方法は、地震等の振動エネルギーを吸収するためのエネルギー吸収材料の製造方法であって、純度99重量%以上の錫を主体とし、これに添加金属としてビスマスを5重量%以下の割合で添加して合金化することによって弾塑性材料よりなるエネルギー吸収材料を製造することを特徴とする A method for producing an energy absorbing material according to the present invention is a method for producing an energy absorbing material for absorbing vibration energy such as an earthquake, and mainly comprises tin having a purity of 99% by weight or more, and bismuth as an additive metal. An energy absorbing material made of an elastic-plastic material is produced by adding and alloying at a ratio of 5% by weight or less .

また本発明によるエネルギー吸収装置は、鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、上記エネルギー吸収体を前記のようなエネルギー吸収材料により形成したことを特徴とする。   Moreover, the energy absorbing device according to the present invention is provided with a hollow portion penetrating in the vertical direction in a laminated body formed by alternately laminating a plurality of hard plates such as steel plates and elastic bodies such as rubber in the vertical direction, and in the hollow portion. In an energy absorption device that houses and arranges an energy absorber that absorbs vibration energy such as an earthquake, the energy absorber is formed of the energy absorbing material as described above.

さらに本発明による他のエネルギー吸収装置は、筒状のシリンダ内に進退ロッドを同心状に且つ軸線方向に相対移動可能に設け、そのシリンダ内の進退ロッドの周囲にエネルギー吸収体を収容し、上記シリンダまたは進退ロッドに設けた凸部等の抵抗部が、地震等による振動発生時に上記エネルギー吸収体内を相対移動することによって振動エネルギーを吸収するエネルギー吸収装置において、上記エネルギー吸収体を前記のようなエネルギー吸収材料により形成したことを特徴とする。   Furthermore, another energy absorbing device according to the present invention is provided with an advancing / retreating rod concentrically and axially movable in a cylindrical cylinder, housing an energy absorber around the advancing / retreating rod in the cylinder, In an energy absorption device that absorbs vibration energy by a resistance portion such as a convex portion provided on a cylinder or an advancing / retreating rod relatively moving in the energy absorber when vibration is caused by an earthquake or the like, the energy absorber is as described above. It is formed by an energy absorbing material.

本発明によるエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置は、上記のような構成としたことにより、低温でも機械的性質が変化せず、径が小さくとも減衰力が大きく、また常温で再結晶し疲労の蓄積がなく、さらには鉛と同等以上の伸びを有するエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を提供することができる。そのため、エネルギー吸収性能が安定しており、繰返し耐久性も高いエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を提供することができる。 Energy absorbing material and its manufacturing method and an energy-absorbing device according to the invention, again with the construction as described above, does not change the mechanical properties even at low temperatures, large damping force with a small diameter, also at room temperature It is possible to provide an energy absorbing material that is crystallized and does not accumulate fatigue, and further has an elongation equal to or greater than that of lead, a method for manufacturing the same, and an energy absorbing device . Therefore, the energy absorbing performance can provide a stable and, repeating durability high energy-absorbing material and its manufacturing method and an energy absorber.

以下、本発明によるエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を具体的に説明する。 It will be specifically described below energy-absorbing material and its manufacturing method and an energy-absorbing device according to the present invention.

一般に地震等の振動を吸収するエネルギー吸収装置では、建物等の地震などの変位量から、概ね免震材料に対して20%以上、望ましくは40%以上追従することが好ましいとされている。然るに自ずとエネルギー吸収材料も20%以上、望ましくは40%以上の伸びが確保できることが望ましい性能となる。   In general, in an energy absorbing device that absorbs vibrations such as earthquakes, it is generally preferable to follow the seismic isolation material by 20% or more, preferably 40% or more, from the amount of displacement of earthquakes such as buildings. However, it is naturally desirable that the energy absorbing material can ensure an elongation of 20% or more, preferably 40% or more.

そこで、本発明においては、地震等の振動エネルギーを吸収するためのエネルギー吸収材料であって、純度99重量%以上の錫を主体とし、これにビスマス、カドミウム、金、銀、アンチモンの中からいずれか1種または2種以上の金属を添加金属として添加して合金化した弾塑性材料よりなり、その弾塑性材料に対する上記添加金属の割合が40重量%以下であり、かつ上記弾塑性材料の伸び量が20%以上となるようにしたものである。   Therefore, in the present invention, it is an energy absorbing material for absorbing vibration energy such as earthquakes, mainly composed of tin having a purity of 99% by weight or more, and any one of bismuth, cadmium, gold, silver, and antimony. Or an elastic-plastic material alloyed by adding one or more metals as an additive metal, the ratio of the additive metal to the elastic-plastic material is 40% by weight or less, and the elongation of the elastic-plastic material The amount is set to be 20% or more.

図1は弾塑性材料の主体として純度99重量%の錫を用い、それに添加金属としてビスマスを混合して合金化したときの混合割合(重量%)と、その合金で形成した弾塑性材料である試験片を用いてJIS Z 2201に基づく引張り試験を行ったときの破断するまでの最大引張り伸び量(%)を示したものである。なお、上記引張り試験の試験片としては、上記の合金を図2に示すような大きさ形状に形成したものを用い、20℃の温度下で、500mm/minの速度で実施した。図2中の寸法の単位はmmである。また試験体のバラツキを考慮して試験体数N=3にて試験を実施した。後述する試験についても同様である。さらに上記ビスマスの混合量は、0.2重量%〜50重量%の範囲内で適宜変更した。また参考までに、純度99重量%の錫のみ(ビスマスの混合量0重量%)の場合も同図内に示した。   FIG. 1 shows a mixture ratio (wt%) when 99% by weight tin is used as the main component of the elastoplastic material and bismuth is mixed as an additive metal to form an alloy, and an elastoplastic material formed from the alloy. It shows the maximum tensile elongation (%) until fracture when a tensile test based on JIS Z 2201 is performed using the test piece. In addition, as a test piece of the tensile test, an alloy formed in the size and shape as shown in FIG. 2 was used, and the test was performed at a temperature of 20 ° C. and a speed of 500 mm / min. The unit of the dimension in FIG. 2 is mm. In addition, the test was conducted with the number of test specimens N = 3 in consideration of the variation of the test specimens. The same applies to the test described later. Furthermore, the mixing amount of the bismuth was appropriately changed within the range of 0.2 wt% to 50 wt%. For reference, the case of only 99% by weight of tin (mixing amount of bismuth 0% by weight) is also shown in FIG.

その結果、弾塑性材料としての純度99重量%の錫にビスマスを混合して合金化した場合では、ビスマスの混合量を次第に増していくと最大伸び量は減少していく。しかしながら、その減少割合は混合量0〜10重量%位までは急激に減少するが、その後は混合量40重量%程度まで伸び量で40%から20%に比較的ゆっくり減少し、混合量40重量%を超えるとまた急激に伸び量が減少していくことが分かる。   As a result, when bismuth is mixed with 99% by weight tin as an elastic-plastic material and alloyed, the maximum elongation decreases as the amount of bismuth is gradually increased. However, the rate of decrease rapidly decreases up to the mixing amount of about 0 to 10% by weight, but thereafter, it gradually decreases from 40% to 20% in the amount of mixing up to about 40% by weight, and the mixing amount of 40% by weight. It can be seen that when the amount exceeds%, the amount of elongation decreases rapidly.

また上記図1からも明らかなようにビスマスの添加量(混合量)を10重量%以下とすれば、伸び量は40%以上となり、ビスマスの添加量を1重量%以下とすれば、60%以上の伸び量が得られることが分かる。   As is clear from FIG. 1 above, if the addition amount (mixing amount) of bismuth is 10% by weight or less, the elongation amount is 40% or more, and if the addition amount of bismuth is 1% by weight or less, 60% It can be seen that the above amount of elongation can be obtained.

図3は上記図1で行った引張り試験の引張強度(破断するまでの引張り強さ)を、純度99重量%の錫のみで上記と同様の試験片を形成して引張り試験を行ったときの引張強度に対する比(引張強さ比)を示したものである。その結果、金属の混合量を増していくと引張強度は増加していくことが分かる。しかしながらその増加率は混合量が40重量%程度を境にして下がってくる。つまり、混合量が40重量%程度以下に抑えることが引張強度を向上させる上で効率が良い混合範囲となる。   FIG. 3 shows the tensile strength of the tensile test performed in FIG. 1 (tensile strength until breakage) when a tensile test was performed by forming a test piece similar to the above using only 99% by weight of tin. The ratio to the tensile strength (tensile strength ratio) is shown. As a result, it can be seen that the tensile strength increases as the mixing amount of the metal increases. However, the rate of increase decreases when the mixing amount is about 40% by weight. That is, when the mixing amount is suppressed to about 40% by weight or less, the mixing range is efficient in improving the tensile strength.

また上記の結果は、金属の混合量により引張強度を自在に変化させることができることを示している。つまり、例えば約3倍の耐力をもつ積層ゴム積層体を望むときには、弾塑性材料の主体に添加金属を約10重量%添加した弾塑性材料をエネルギー吸収体(コア体)として使用すれば良いということである。以上を総合すると、混合量で40重量%程度以下に抑えることで、伸び量と、引張強さのバランスが最も良い範囲に収まることが分かる。   Moreover, said result has shown that tensile strength can be changed freely with the mixing amount of a metal. That is, for example, when a laminated rubber laminate having a proof strength of about 3 times is desired, an elastic-plastic material in which about 10% by weight of an additive metal is added to the main body of the elastic-plastic material may be used as an energy absorber (core body). That is. Summing up the above, it can be seen that the balance between the amount of elongation and the tensile strength falls within the best range when the mixing amount is suppressed to about 40% by weight or less.

次に、純度99.9重量%の錫を用いた試験について説明する。下記表1に示す試験体を用い、添加物が機械的性質や再結晶温度に与える影響や効果を確認した。添加物としては、代表例としてビスマスを用いた。また、比較のために、純度99.99重量%の鉛についても同様な試験を実施した。さらに純度99.99重量%〜99重量%の錫を用い、純度が機械的性質に与える影響や効果も確認した。   Next, a test using tin having a purity of 99.9% by weight will be described. Using the test specimens shown in Table 1 below, the effects and effects of the additives on the mechanical properties and recrystallization temperature were confirmed. As a typical additive, bismuth was used. For comparison, a similar test was conducted for lead with a purity of 99.99% by weight. Furthermore, tin having a purity of 99.99% by weight to 99% by weight was used, and the influence and effect of the purity on the mechanical properties were also confirmed.

Figure 0004435034
Figure 0004435034

図4は純度依存性試験での引張り強さを示す。すなわち、上記表1の試験体である純錫(1)〜(3)の引っ張り試験の結果を示すグラフであり、更に詳しくは上記各試験体を上記の速度で引っ張るのに要する荷重の大きさを示すグラフである。当該試験においては、いずれの錫も鉛よりも高い引張り強さを有しており、99.99重量%〜99.9重量%錫では高い再現性が見られた。   FIG. 4 shows the tensile strength in the purity dependence test. That is, it is a graph showing the results of a tensile test of pure tin (1) to (3), which are the test bodies in Table 1, and more specifically, the magnitude of the load required to pull each of the test bodies at the above speed. It is a graph which shows. In the test, all of the tins had higher tensile strength than lead, and high reproducibility was observed with 99.99 wt% to 99.9 wt% tin.

図5は純度依存性試験での伸びを示す。すなわち、上記表1の試験体である純錫(1)〜(3)を上記の速度で引っ張ったときの伸び率(%)を示すグラフである。当該試験においては、錫の純度にかかわらず、伸びはほぼ一定となっていた。   FIG. 5 shows the elongation in the purity dependence test. That is, it is a graph showing the elongation (%) when pure tin (1) to (3), which are the test bodies of Table 1, are pulled at the above speed. In the test, the elongation was almost constant regardless of the purity of tin.

図6は添加物依存性試験での引張り強さを示す。すなわち、上記表1の試験体である錫合金(1)、つまり純度99.9重量%の錫に添加物としてビスマスを所定量加えた錫合金を、上記図4と同様の要領で引っ張り試験を行った結果を示すグラフである。当該試験においては、添加物量の増加に伴い、引張り強さが増加した。何れの添加量においても、鉛よりも引張り強さが高いことが確認できる。   FIG. 6 shows the tensile strength in the additive dependency test. That is, a tensile test was performed in the same manner as in FIG. 4 with respect to the tin alloy (1) which is the test body of Table 1 above, that is, a tin alloy obtained by adding a predetermined amount of bismuth as an additive to 99.9 wt% purity tin. It is a graph which shows the result. In the test, the tensile strength increased as the amount of additive increased. It can be confirmed that the tensile strength is higher than that of lead at any added amount.

図7は添加物依存性試験での伸びを示す。すなわち、上記表1の試験体である錫合金(1)に添加物としてビスマスを所定量加えた錫合金を、上記図5と同様の要領で引っ張ったときの伸び率(%)を示すグラフである。当該試験においては添加物量の増加に伴い伸びが減少するが、本試験から得られた近似曲線より、添加物5.0重量%以内では99.99重量%鉛の伸びと同等であり、添加物4.0重量%以内では99.99重量%鉛の伸びよりも大きくなることが分かる。   FIG. 7 shows the elongation in the additive dependency test. That is, the graph shows the elongation (%) when a tin alloy (1), which is the specimen of Table 1 above, is added with a predetermined amount of bismuth as an additive and pulled in the same manner as in FIG. is there. In this test, the elongation decreases as the amount of the additive increases, but from the approximate curve obtained from this test, within 5.0% by weight of the additive, the elongation is equivalent to 99.99% by weight of lead. It can be seen that within 4.0 wt%, the elongation is greater than 99.99 wt% lead.

次に、常温付近での再結晶の有無を確認するために、純度99.9重量%の錫にビスマスを5.0重量%添加した試験体の引張り試験前後の断面組織を顕微鏡観察した。なお、再結晶が起こらない場合、結晶粒は引張り試験によって軸方向に伸ばされた形状となるが、再結晶が起こると結晶粒は小さくほぼ円形の形状となる。また引張り試験前後の断面組織観察によって、20℃における再結晶がどの程度の添加量まで起こるか確認することが可能である。   Next, in order to confirm the presence or absence of recrystallization near normal temperature, the cross-sectional structure before and after the tensile test of a test body in which bismuth was added to 5.0% by weight of tin having a purity of 99.9% by weight was observed with a microscope. When recrystallization does not occur, the crystal grains have a shape elongated in the axial direction by a tensile test, but when recrystallization occurs, the crystal grains become small and have a substantially circular shape. In addition, it is possible to confirm to what extent the recrystallization at 20 ° C. occurs by observing the cross-sectional structure before and after the tensile test.

図8は純度99.9重量%の錫にビスマスを5.0重量%添加したときの試験前の断面組織の顕微鏡写真、図9はその試験2日後の断面組織の顕微鏡写真である。図8の試験前の結晶粒と比較して、図9の試験2日後の粒径は小さくなり形状も円形に近くなっていることが分かる。その結果、少なくとも5.0重量%以内であれば、20℃で再結晶することが確認できた。   FIG. 8 is a photomicrograph of the cross-sectional structure before the test when bismuth is added at 5.0% by weight to 99.9% by weight of tin, and FIG. 9 is a photomicrograph of the cross-sectional structure after 2 days of the test. Compared with the crystal grains before the test of FIG. 8, it can be seen that the particle diameter after 2 days of the test of FIG. 9 is small and the shape is close to a circle. As a result, it was confirmed that recrystallization was performed at 20 ° C. within at least 5.0 wt%.

なお、実施形態は弾塑性材料の主体として純度99重量%〜99.9重量%の錫を用いたが、それよりも純度の高い、例えば純度99.99重量%の錫を用いてもよい。また主体となる上記錫に添加する添加金属としては、ビスマスに限らず、カドミウム、金、銀、アンチモンの中からいずれか1種または2種以上を混合して使用してもよく、それらの合金にあっても上記とほぼ同様の効果が得られる。   In the embodiment, tin having a purity of 99% by weight to 99.9% by weight is used as the main body of the elastoplastic material, but tin having a higher purity than that, for example, 99.99% by weight of purity may be used. The additive metal added to the main tin is not limited to bismuth, and any one or more of cadmium, gold, silver and antimony may be used in combination. Even if it exists, the effect similar to the above is acquired.

さらに、添加金属を40重量%以下とすることで、低温でも機械的性質が変化せず、径が小さくとも減衰力が大きくなるが、添加金属を10重量%以下にすれば弾塑性材料の伸びは40%以上となり、添加金属を5重量%以下にすれば常温での再結晶が期待できる。さらに添加金属を4.0重量%以下にすれば鉛と同等もしくはそれ以上の伸びが得られ、振動エネルギーの吸収を目的とした材料として良好に使用できることが明らかとなった。また上記添加金属の添加量を変化させることで強度を変更することも可能となるため、ダンパの性能も自由に調整可能である。   Furthermore, when the additive metal is 40% by weight or less, the mechanical properties do not change even at low temperatures, and the damping force increases even if the diameter is small, but if the additive metal is 10% by weight or less, the elongation of the elastic-plastic material is increased. Is 40% or more, and recrystallization at room temperature can be expected if the additive metal is 5% by weight or less. Furthermore, when the additive metal was made 4.0% by weight or less, it was clarified that elongation equal to or higher than that of lead was obtained, and that it could be used favorably as a material for absorbing vibration energy. Further, since the strength can be changed by changing the amount of the additive metal added, the performance of the damper can be freely adjusted.

図10および図11は上記のようにして作製したエネルギー吸収材料をエネルギー吸収体として用いたエネルギー吸収装置の一実施形態を示すもので、図10は斜視図、図11はその縦断図である。なお、前記従来例と同様の機能を有する部材には同一の符号を付して説明する。   FIGS. 10 and 11 show an embodiment of an energy absorbing device using the energy absorbing material produced as described above as an energy absorber, FIG. 10 is a perspective view, and FIG. 11 is a longitudinal view thereof. Note that members having the same functions as those in the conventional example will be described with the same reference numerals.

本実施形態のエネルギー吸収装置Aは、前記従来例と同様に鋼板等の硬質板1とゴム等の弾性体2とを上下方向に交互に複数積層して接着剤等で一体化してなる積層体3の中心部に、上下方向に貫通する中空部3aを設け、その中空部3a内に地震等の振動エネルギーを吸収するエネルギー吸収体4を収容配置した構成である。   The energy absorbing device A of the present embodiment is a laminated body in which a hard plate 1 such as a steel plate and an elastic body 2 such as rubber are alternately laminated in the vertical direction and integrated with an adhesive or the like as in the conventional example. 3 is provided with a hollow portion 3a penetrating in the vertical direction, and an energy absorber 4 that absorbs vibration energy such as earthquake is accommodated in the hollow portion 3a.

そのエネルギー吸収体4としては、本実施形態においては、純度99重量%以上の錫に、ビスマスを上記錫に対して40重量%以下の割合で混合して合金化し、その合金の引張り試験で破断するまでの伸び量が20%以上であるエネルギー吸収材料によって形成したものを用いた。   As the energy absorber 4, in this embodiment, tin having a purity of 99% by weight or more is mixed by mixing bismuth at a ratio of 40% by weight or less with respect to the above tin, and the alloy is fractured by a tensile test of the alloy. What was formed with the energy absorption material whose elongation amount until it is 20% or more was used.

また上記積層体3を構成する硬質板1として本実施形態においては炭素鋼板を用いたものであるが、ステンレス鋼板や他の金属板もしくは硬質の合成樹脂板等を用いることもできる。また弾性体2として本実施形態においては天然ゴムを用いたが、合成ゴムや軟質の合成樹脂等でもよい。なお図11の縦断面図においても、硬質板1と弾性体2およびエネルギー吸収体4のハッチングは省略した。   In the present embodiment, a carbon steel plate is used as the hard plate 1 constituting the laminate 3, but a stainless steel plate, another metal plate, a hard synthetic resin plate, or the like can also be used. In the present embodiment, natural rubber is used as the elastic body 2, but synthetic rubber, soft synthetic resin, or the like may be used. In the longitudinal sectional view of FIG. 11, the hatching of the hard plate 1, the elastic body 2, and the energy absorber 4 is omitted.

上記のように構成された積層体3およびエネルギー吸収体4の上下両端部には、前記従来例と同様に基板5を介して取付板6がボルト7等で一体的に取付けられ、その取付板6に取付孔6aが形成されている。そして、前記図16および図17の従来例と同様に建築物や構築物等の上部構造体Bと、その土台等の下部構造体Cとの間に、上記のエネルギー吸収装置Aを1つ若しくは複数個配置して、その各エネルギー吸収装置Aに設けた上記取付孔6aにボルト8等を挿通して上記各構造体B、Cに取付けるものである。   A mounting plate 6 is integrally attached to the upper and lower ends of the laminate 3 and the energy absorber 4 configured as described above with bolts 7 or the like via the substrate 5 as in the conventional example. An attachment hole 6 a is formed in 6. As in the conventional examples of FIGS. 16 and 17, one or a plurality of the energy absorbing devices A are provided between an upper structure B such as a building or a structure and a lower structure C such as a base. The bolts 8 and the like are inserted into the mounting holes 6a provided in the energy absorbing devices A and attached to the structures B and C.

上記のようにして上下の構造体B、C間に配置されるエネルギー吸収装置Aのエネルギー吸収体4として純度99重量%以上の錫に、ビスマスを上記錫に対して40重量%以下の割合で混合して合金化し、その合金の引張り試験で破断するまでの伸び量が20%以上であるエネルギー吸収材料を用いたから地震等の振動を効率よく吸収することができた。   As described above, the energy absorber 4 of the energy absorber A disposed between the upper and lower structures B and C is tin having a purity of 99% by weight or more and bismuth in a ratio of 40% by weight or less with respect to the tin. Since an energy absorbing material having an elongation of 20% or more until it was fractured in a tensile test of the alloy by mixing was used, vibration such as an earthquake could be efficiently absorbed.

図12は上記実施形態のエネルギー吸収装置を試験体として4サイクルの変位試験を行った際の50%変形時の変位履歴曲線図(P−δ線図)であり、エネルギー吸収性能が良く、繰り返し耐久性も良いことが容易に推察することができる。また上記の試験後その試験体を半割としエネルギー吸収体を観察した結果、ひび割れ、破断などは一切見られなかった。   FIG. 12 is a displacement history curve diagram (P-δ diagram) at the time of 50% deformation when performing a four-cycle displacement test using the energy absorbing device of the above-described embodiment as a test body. It can be easily inferred that the durability is also good. Further, after the above test, the specimen was halved and the energy absorber was observed. As a result, no cracks or breaks were observed.

図13および図14は前記のエネルギー吸収材料をエネルギー吸収体として用いたエネルギー吸収装置の他の実施形態を示すもので、図13はエネルギー吸収装置の縦断面図、図14はそのエネルギー吸収装置をビル等の建築物における免震装置もしくは制振装置等として適用した例を示すものである。   13 and 14 show another embodiment of an energy absorbing device using the energy absorbing material as an energy absorber. FIG. 13 is a longitudinal sectional view of the energy absorbing device, and FIG. 14 shows the energy absorbing device. The example applied as a seismic isolation device or a vibration control device in a building such as a building is shown.

本実施形態のエネルギー吸収装置A1は、図13に示すように筒状のシリンダ11内に進退ロッド12を同心状に且つ軸線方向に相対移動可能に設け、そのシリンダ11内の進退ロッド12の周囲に、前記のエネルギー吸収材料よりなるエネルギー吸収体13を収容し、上記シリンダ11または進退ロッド12に設けた凸部等の抵抗部12cが、地震等による振動発生時に上記エネルギー吸収体13内を相対移動することによって振動エネルギーを減衰もしくは吸収する構成である。図中、14は上記進退ロッド12を受ける軸受、15,16は上記進退ロッド12のガイド筒を兼ねるシリンダ閉塞用キャップで、その両キャップ15,16はシリンダ11の両端部にねじ結合されている。   As shown in FIG. 13, the energy absorbing device A <b> 1 of the present embodiment is provided with an advancing / retreating rod 12 in a cylindrical cylinder 11 so as to be concentrically movable relative to the axial direction. In addition, the energy absorber 13 made of the energy absorbing material is accommodated, and a resistance portion 12c such as a convex portion provided on the cylinder 11 or the forward / backward rod 12 is relatively moved in the energy absorber 13 when vibration is caused by an earthquake or the like. In this configuration, vibration energy is attenuated or absorbed by movement. In the figure, 14 is a bearing that receives the advance / retreat rod 12, 15 and 16 are cylinder closing caps that also serve as guide cylinders of the advance / retreat rod 12, and both caps 15 and 16 are screwed to both ends of the cylinder 11. .

前記図14は上記のように構成されたエネルギー吸収装置A1を、ビル等の建築物の上部構造体Bと、その土台等の下部構造体Cとの間に配置すると共に、上記進退ロッド12の一端12aをブラケット17を介して上部構造体Bに、シリンダ11のキャップ16側の端部をブラケット18を介して下部構造体Cにそれぞれ連結した構成である。なお図示例は上記のエネルギー吸収装置A1と前記のエネルギー吸収装置Aとを併用したものであるが、エネルギー吸収装置A1のみを単独で使用したり、他のエネルギー吸収装置と併用することもできる。   In FIG. 14, the energy absorbing device A1 configured as described above is arranged between an upper structure B of a building such as a building and a lower structure C such as a base thereof, and One end 12 a is connected to the upper structure B via the bracket 17, and the end of the cylinder 11 on the cap 16 side is connected to the lower structure C via the bracket 18. In the illustrated example, the energy absorbing device A1 and the energy absorbing device A are used in combination. However, only the energy absorbing device A1 can be used alone or in combination with other energy absorbing devices.

そして上記いずれの場合にも上部構造体Bと下部構造体Cとの間にエネルギー吸収装置A1を配置したことによって地震等で上部構造体Bと下部構造体Cとが水平方向に相対移動したとき、それに対応してエネルギー吸収装置A1のシリンダ11と進退ロッド12とが相対移動し、シリンダ11または進退ロッド12に設けた前記凸部等の抵抗部12cがエネルギー吸収体13内を移動する際の抵抗で振動エネルギーを減衰もしくは吸収することができるものである。   In either case, when the energy absorbing device A1 is disposed between the upper structure B and the lower structure C, the upper structure B and the lower structure C are relatively moved in the horizontal direction due to an earthquake or the like. Correspondingly, the cylinder 11 and the advance / retreat rod 12 of the energy absorbing device A1 move relative to each other, and the resistance portion 12c such as the convex portion provided on the cylinder 11 or the advance / retreat rod 12 moves in the energy absorber 13. The vibration energy can be attenuated or absorbed by resistance.

実際、上記図13および図14に示すエネルギー吸収装置A1のエネルギー吸収体13として、前記図10および図11のエネルギー吸収装置Aのエネルギー吸収体4と同様に、純度99重量%以上の錫に、ビスマスを上記錫に対して40重量%以下の割合で混合して合金化し、その合金の引張り試験で破断するまでの伸び量が20%以上であるエネルギー吸収材料を用いたところ地震等の振動を効率よく吸収することができた。   Actually, as the energy absorber 13 of the energy absorber A1 shown in FIG. 13 and FIG. 14, as in the energy absorber 4 of the energy absorber A of FIG. 10 and FIG. Bismuth is mixed with the above tin at a ratio of 40% by weight or less to form an alloy, and when an energy absorbing material having an elongation of 20% or more until the alloy breaks in a tensile test is used, vibration such as an earthquake occurs. It was able to absorb efficiently.

また上記エネルギー吸収体4およびエネルギー吸収体13として、純度99重量%以上の錫に、それに対する上記ビスマスの混合割合を10重量%以下とし、上記伸び量が約40%以上であるエネルギー吸収材料を用いた場合、および上記ビスマス混合割合を5重量%以下とし、上記伸び量が50%以上であるエネルギー吸収材料を用いた場合にも前記と同様もしくはそれ以上の好結果が得られた。また上記各実施形態における錫の純度を99.9重量%以上、さらには99.99重量%以上とした場合には更に良好な結果が得られた。   Further, as the energy absorber 4 and the energy absorber 13, an energy absorbing material in which the mixing ratio of the bismuth with respect to tin having a purity of 99% by weight or more is 10% by weight or less and the elongation is about 40% or more. When used, and when the energy absorbing material having the bismuth mixing ratio of 5% by weight or less and the elongation amount of 50% or more was used, the same or better results were obtained. In addition, even better results were obtained when the purity of tin in each of the above embodiments was 99.9% by weight or more, and further 99.99% by weight or more.

なお、上記実施形態においては、錫に添加して合金化する添加金属としてビスマスを用いたが、これに限らず、ビスマスを含めてカドミウム、金、銀、アンチモンの中からいずれか1種または2種以上を混合して使用することも可能であり、前記と同様の結果が得られる。   In the above embodiment, bismuth is used as an additive metal added to tin and alloyed. However, the present invention is not limited to this, and any one or two of cadmium, gold, silver, and antimony including bismuth are used. It is possible to use a mixture of seeds or more, and the same result as described above can be obtained.

また上記エネルギー吸収体4およびエネルギー吸収体13として、純度99.9重量%以上の錫にビスマス、アンチモン、鉛またはこれらの合金を0.01〜4.0重量%の範囲内で添加して合金化した場合にも前記と同様もしくはそれ以上の好結果が得られる。   Further, as the energy absorber 4 and the energy absorber 13, bismuth, antimony, lead, or an alloy thereof is added to tin having a purity of 99.9% by weight or more within a range of 0.01 to 4.0% by weight. Even in this case, the same or better results can be obtained.

以上のように本発明によれば、前記のような構成としたことにより、低温でも機械的性質が変化せず、また径が小さくとも減衰力が大きく、さらには常温で再結晶し疲労の蓄積が無く、鉛と同等もしくはそれ以上の伸びを有するエネルギー吸収材料およびそれを用いたエネルギー吸収装置を提供することができるもので、前記以外にも、例えば本出願人が先に提案した特開2000−240323号公報のような鉛ダンパに代わる錫ダンパとして、または特開2000−104787号公報のような免震装置や制振装置もしくは減衰機構等として、或いはそれらに用いるエネルギー吸収材料や、エネルギー吸収体としても使用可能であり、それらの設計および材料の選択の自由度が増し産業上の利用可能性を増大させることができる。   As described above, according to the present invention, the mechanical properties do not change even at a low temperature, the damping force is large even when the diameter is small, and the fatigue is accumulated by recrystallization at room temperature. In addition to the above, for example, Japanese Patent Laid-Open No. 2000 previously proposed by the applicant of the present application can provide an energy absorbing material having an elongation equal to or greater than that of lead and an energy absorbing device using the same. As a tin damper in place of a lead damper as described in Japanese Patent No. 2404032 or as a seismic isolation device, damping device or damping mechanism as disclosed in Japanese Patent Application Laid-Open No. 2000-104787, or as an energy absorbing material or energy absorbing It can also be used as a body, increasing the freedom of their design and choice of materials and increasing industrial applicability.

本発明によるエネルギー吸収材料の引張試験による伸び量を示すグラフ。The graph which shows the elongation amount by the tension test of the energy absorption material by this invention. 引張り試験で用いた試験片の大きさ形状を示す説明図。Explanatory drawing which shows the magnitude | size shape of the test piece used by the tension test. 上記エネルギー吸収材料の引張試験による引張強さ比を示すグラフ。The graph which shows the tensile strength ratio by the tensile test of the said energy absorption material. 純度依存性試験での引張り強さを示すグラフ。The graph which shows the tensile strength in a purity dependence test. 純度依存性試験での伸びを示すグラフ。The graph which shows the elongation in a purity dependence test. 添加物依存性試験での引張り強さを示すグラフ。The graph which shows the tensile strength in an additive dependence test. 添加物依存性試験での伸びを示すグラフ。The graph which shows the elongation in an additive dependence test. 引張り試験前の断面組織の顕微鏡写真。A photomicrograph of a cross-sectional structure before a tensile test. 引張り試験2日後の断面組織の顕微鏡写真。The microscope picture of the cross-sectional structure | tissue 2 days after a tension test. 本発明によるエネルギー吸収装置の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the energy absorption apparatus by this invention. 上記エネルギー吸収装置の縦断面図。The longitudinal cross-sectional view of the said energy absorption apparatus. 上記エネルギー吸収装置に変位特性を示す履歴曲線図。The hysteresis curve figure which shows a displacement characteristic in the said energy absorption apparatus. 本発明によるエネルギー吸収装置の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the energy absorption apparatus by this invention. 上記のエネルギー吸収装置を建築物に用いた例の説明図。Explanatory drawing of the example which used said energy absorption apparatus for the building. 従来のエネルギー吸収装置の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional energy absorption apparatus. 上記従来のエネルギー吸収装置を建築物に用いた例の説明図。Explanatory drawing of the example which used the said conventional energy absorption apparatus for the building. 上記従来のエネルギー吸収装置を土木構築物に用いた例の説明図。Explanatory drawing of the example which used the said conventional energy absorption apparatus for the civil engineering structure.

符号の説明Explanation of symbols

1 硬質板
2 弾性体
3 積層体
4 エネルギー吸収体
5 基板
6 取付板
7、8 ボルト
A、A1 エネルギー吸収装置
B 上部構造体
C 下部構造体
DESCRIPTION OF SYMBOLS 1 Hard board 2 Elastic body 3 Laminated body 4 Energy absorber 5 Board | substrate 6 Mounting plate 7, 8 Bolt A, A1 Energy absorber B Upper structure C Lower structure

Claims (4)

地震等の振動エネルギーを吸収するためのエネルギー吸収材料であって、純度99.9重量%以上の錫に、ビスマスを添加金属として添加して合金化した弾塑性材料よりなり、前記弾塑性材料に対する前記添加金属であるビスマスの割合が0.01〜4.0重量%であることを特徴とするエネルギー吸収材料。 An energy absorbing material for absorbing vibration energy such as an earthquake, which is made of an elastoplastic material alloyed by adding bismuth as an additive metal to tin having a purity of 99.9% by weight or more . The energy absorbing material, wherein the additive metal has a ratio of bismuth of 0.01 to 4.0% by weight . 地震等の振動エネルギーを吸収するためのエネルギー吸収材料の製造方法であって、純度99.9重量%以上の錫に、ビスマスを添加金属として添加して合金化した弾塑性材料よりなるエネルギー吸収材料を製造する際に、前記弾塑性材料に対して前記添加金属であるビスマスを0.01〜4.0重量%の割合で添加することを特徴とするエネルギー吸収材料の製造方法。An energy absorbing material manufacturing method for absorbing vibration energy such as earthquakes, comprising an elastic-plastic material alloyed by adding bismuth as an additive metal to tin having a purity of 99.9% by weight or more In manufacturing the energy absorbing material, the additive metal bismuth is added in a proportion of 0.01 to 4.0% by weight with respect to the elastic-plastic material. 鋼板等の硬質板とゴム等の弾性体を上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、In a laminate formed by alternately laminating a hard plate such as a steel plate and an elastic body such as rubber in the vertical direction, a hollow portion penetrating in the vertical direction is provided,
前記中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、In the energy absorbing device in which an energy absorber that absorbs vibration energy such as earthquake is accommodated in the hollow portion,
前記エネルギー吸収体を請求項1記載のエネルギー吸収材料により形成したことを特徴とするエネルギー吸収装置。An energy absorbing device, wherein the energy absorber is made of the energy absorbing material according to claim 1.
筒状のシリンダ内に進退ロッドを同心状に且つ軸線方向に相対移動可能に設け、In the cylindrical cylinder, advancing and retracting rods are provided concentrically and relatively movable in the axial direction,
前記シリンダ内の前記進退ロッドの周囲にエネルギー吸収体を収容し、An energy absorber is accommodated around the advance / retreat rod in the cylinder,
前記シリンダ又は前記進退ロッドに設けた凸部等の抵抗部が、地震等による振動発生時に前記エネルギー吸収体内を相対移動することによって振動エネルギーを吸収するエネルギー吸収装置において、In an energy absorbing device that absorbs vibration energy by causing a resistance portion such as a convex portion provided on the cylinder or the forward / backward rod to relatively move within the energy absorbing body when vibration is caused by an earthquake or the like,
前記エネルギー吸収体を請求項1記載のエネルギー吸収材料により形成したことを特徴とするエネルギー吸収装置。An energy absorbing device, wherein the energy absorber is made of the energy absorbing material according to claim 1.
JP2005180500A 2004-08-10 2005-06-21 Energy absorbing material, method for producing the same, and energy absorbing device Active JP4435034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180500A JP4435034B2 (en) 2004-08-10 2005-06-21 Energy absorbing material, method for producing the same, and energy absorbing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004233044 2004-08-10
JP2005056944 2005-03-02
JP2005180500A JP4435034B2 (en) 2004-08-10 2005-06-21 Energy absorbing material, method for producing the same, and energy absorbing device

Publications (3)

Publication Number Publication Date
JP2006274441A JP2006274441A (en) 2006-10-12
JP2006274441A5 JP2006274441A5 (en) 2008-11-20
JP4435034B2 true JP4435034B2 (en) 2010-03-17

Family

ID=37209470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180500A Active JP4435034B2 (en) 2004-08-10 2005-06-21 Energy absorbing material, method for producing the same, and energy absorbing device

Country Status (1)

Country Link
JP (1) JP4435034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594656A (en) * 2014-12-31 2015-05-06 上海市机械施工集团有限公司 Elastic support and method for temporarily supporting load by using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121133B1 (en) * 2008-12-23 2012-03-20 전규식 Hybrid bearing using lead-tin alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594656A (en) * 2014-12-31 2015-05-06 上海市机械施工集团有限公司 Elastic support and method for temporarily supporting load by using same
CN104594656B (en) * 2014-12-31 2016-10-05 上海市机械施工集团有限公司 A kind of elastic support and the method utilizing its temporary support load

Also Published As

Publication number Publication date
JP2006274441A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
Dolce et al. Implementation and testing of passive control devices based on shape memory alloys
JP5296350B2 (en) Damping member
JPS6117984B2 (en)
JP4771160B2 (en) Damping structure
JP4435034B2 (en) Energy absorbing material, method for producing the same, and energy absorbing device
JP5638762B2 (en) Building
JP5279356B2 (en) Plastic hinge structure of concrete member and concrete member
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
JP2006275215A (en) Vibrational energy absorbing device and its manufacturing method
JPH11270621A (en) Laminate rubber support
CN110528383B (en) Buffer type inhaul cable shock-absorbing support without additional vertical force
JP2006274441A5 (en) Energy absorbing material, method for producing the same, and energy absorbing device
JPH11350778A (en) Vibration damper and vibration-damping structure
JP3866175B2 (en) Articulated bridge protection device
JP3503712B2 (en) Lead encapsulated laminated rubber
JP3568586B2 (en) Lead encapsulated laminated rubber bearing
CN218580912U (en) Shock insulation support
JP3845838B2 (en) Viscoelastic damper, method for manufacturing the same, and damping structure using the same
WO2010074229A1 (en) Hysteretic damper
JP4188347B2 (en) Seismic isolation structure
JP2009002359A (en) Energy absorbing device
JP2003028235A (en) Axial force type vibration control device usable in both earthquake and wind
Robinson Recent applications of high-damping hysteretic devices for the seismic isolation of buildings and bridges
JPH0742744B2 (en) Damping mechanism for seismic isolation device
JP2002295055A (en) Steel bar vibration-control apparatus for use in building

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090727

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4435034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4