JP4434515B2 - Hydroelectric power plant control equipment - Google Patents

Hydroelectric power plant control equipment Download PDF

Info

Publication number
JP4434515B2
JP4434515B2 JP2001170447A JP2001170447A JP4434515B2 JP 4434515 B2 JP4434515 B2 JP 4434515B2 JP 2001170447 A JP2001170447 A JP 2001170447A JP 2001170447 A JP2001170447 A JP 2001170447A JP 4434515 B2 JP4434515 B2 JP 4434515B2
Authority
JP
Japan
Prior art keywords
abnormality
control
hydroelectric power
detection device
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001170447A
Other languages
Japanese (ja)
Other versions
JP2002366201A (en
Inventor
純一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba System Technology Corp
Original Assignee
Toshiba Corp
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba System Technology Corp filed Critical Toshiba Corp
Priority to JP2001170447A priority Critical patent/JP4434515B2/en
Publication of JP2002366201A publication Critical patent/JP2002366201A/en
Application granted granted Critical
Publication of JP4434515B2 publication Critical patent/JP4434515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水力発電所向けの制御装置に関する。
【0002】
【従来の技術】
水力発電所の運用上、油の補給,空気の補給等その状況下に応じて必要な設備機器等を運転させる必要がある。このような設備機器は、水車発電機,遮断器,主要変圧器が主機と呼ばれるのに対し補機と呼ばれ、その責務は非常に重要である。
【0003】
これら補機の種類や制御方式としては、昭和47年1月25日社団法人電気共同研究会発行の電気共同研究第27巻第9号“水力発電所標準一人制御方式”の31頁から35頁に記載されていて、一般的に良く知られている。
【0004】
図5は前記した補機の中で主機の運転・停止に拘わらず常時運転し、更に検出装置を用いて物理量を制御する圧縮空気発生装置及び圧油装置を示した従来例であり、その構成及び運転の概要を説明する。
【0005】
圧縮空気発生装置は圧縮空気を発生するための空気圧縮機1、発生した圧縮空気を溜める空気タンク2、空気タンク2内の空気圧を検出する気圧検出装置3、空気圧縮機1への運転指令(電源供給)を行なう補機制御装置4にて構成される。
【0006】
又、圧油装置は油を送るための圧油ポンプ5、油圧を確保するための圧油タンク6、圧油ポンプ5と圧油タンク6の間には油圧の過剰加圧を防止し圧油ポンプ運転による電力損失を少なくするためのアンローダバルブ7、圧油タンク6内の油圧を検出する油圧検出装置8、圧油タンク6内の油面を検出する油面検出装置12、装置油を溜めておく集油タンク9、圧油ポンプや給気弁への運転指令(電源供給)を行なう補機制御装置10にて構成され、空気タンク2と圧油タンク6との間には圧油タンク6へ圧縮空気を供給するための給気弁11が設けられている。
【0007】
気圧検出装置3で計測された物理量が、検出装置内部に空気圧縮機の起動用として予め設定された値と比較し、条件成立であれば補機起動指令3aの信号を出力する。補機制御装置4に入力された補機起動指令3aの信号により補機制御装置4内の主制御リレー4xを動作させ、操作電源4aを空気圧縮機1に供給する。操作電源4aの供給で空気圧縮機1が起動し、規定空気圧となるまで空気タンク2へ圧縮空気を補給する。
【0008】
又、油圧検出装置8で計測された物理量が、検出装置内部圧油ポンプの起動用として予め設定された値と比較され、条件成立であれば補機起動指令8aの信号を出力する。補機制御装置10に入力された補機起動指令8aの信号により補機制御装置10内の主制御リレー10xを動作させ、操作電源10aを圧油ポンプ5に供給する。操作電源10aの供給で圧油ポンプ5が起動され、規定油圧となるまで圧油タンク6に油が補給される。
【0009】
油圧検出装置8で計測された物理量が、検出装置内部に給気弁開用として予め設定した値と比較し条件成立であれば給気弁開指令8dの信号、油面検出装置12で計測された物理量が、検出装置内部に給気弁の開用として予め設定した値と比較し条件成立であれば給気弁開指令12aの信号を出力する。
【0010】
補機制御装置10に入力された給気弁開指令8dと給気弁開指令12aの両条件成立にて補機制御装置10内の主制御リレー10yを動作させ、操作電源10bを給気弁11に供給する。操作電源10bの供給で給気弁11が開き、圧縮空気を規定の油圧や油面となるまで圧油タンク6内へ補給する。油圧がアンロードの域となった場合、アンローダバルブ7による油圧調整を実施し圧油タンク6内の油圧を規定値へ制御する。
【0011】
なお、気圧検出装置3には空気圧規定値以上で条件成立となる主機起動条件3b、油圧検出装置8には油圧規定値以上で条件成立となる主機起動条件8bと油圧低下で条件成立となる主機急停止指令8cが装備されており、それらの信号をプラント制御装置13へ入力して主機の起動ロックや保護停止を行ない主機の運転を制限している。
【0012】
【発明が解決しようとする課題】
上記従来方式にて採用されてきた物理量を計測する検出装置は、リミットスイッチのような接点を兼ね備えた機械式の検出装置が主流であったが、これらの検出装置は周囲環境(油霧,水滴,塵埃等)によって汚損され、経年と共にメンテナンス周期が短くなって、保守に要する人手が掛かり信頼度も落ちてくる。
【0013】
近年では、これら検出装置の保守業務の省略化という観点と、検出装置技術の発達に伴い物理量を電気量に変換する検出装置(以下、センサと称す)を採用する発電所が新設・既設を問わず主流となってきている。
【0014】
しかしながら、この電気式センサの普及に伴い従来考慮する必要のなかった温度,水没,湿度,誘導・サージ,電源等によるセンサの異常や故障も発生しており、これらは運用上大事故に繋がる場合もあった。
【0015】
前記従来の技術で説明した圧縮空気発生装置の例では、空気タンクに設置された気圧センサ自体の故障やセンサからの信号伝送ルートに何等かの異常が発生した場合、気圧が正常値にも拘わらずセンサからの出力信号は“ゼロ”となりその信号を予め設定された設定値と比較する比較回路にて気圧低下と誤って判断し、気圧を規定値に戻そうと空気圧縮機へ起動指令を出し続ける。
【0016】
その結果、無人の発電所であれば、巡視員が発電所へ来所し手動で停止するまで空気圧縮機を運転し続けることとなり、場合によっては機器破損となる。しかも、センサ故障の判断は容易ではないため、発見されないこともありうる。しかも、主機の起動前であれば、空気圧低下要素が動作するため起動条件が成立せず、運転が不可能となる。
【0017】
又、圧油装置の場合は、装置途中に設置された油圧センサ自体の故障やセンサからの信号伝送ルートに何等かの異常が発生した場合、油圧が正常値であるにも拘わらずセンサからの出力信号は“ゼロ”となり、その信号を予め設定された設定値と比較する比較回路にて油圧低下と誤って判断し、主機を急停止(#86−2)させる。圧油装置自体は油圧を規定値に戻そうと圧油ポンプへ起動指令を出し続ける。
【0018】
その結果、無人の発電所であれば、巡視員が発電所へ来所し手動で停止するまで圧油ポンプを運転し続けることとなり、場合によっては機器破損となる。しかも、センサ故障の判断は容易ではないため、発見されないこともありうる。これが主機の起動前であれば、急停止保護装置(#86−2)を不要動作させてしまう訳であるから当然起動条件が成立せず、運転が不可能となる。
【0019】
本発明は上記課題を解決するためになされたものであり、補機の制御に使用されているセンサ故障や信号伝送ルートに異常が発生した場合であっても、補機の不要動作をなくし、主機の運転に支障をきたすことのない水力発電所向け制御装置を提供することを目的としている。
【0020】
【課題を解決するための手段】
本発明の[請求項1]に係る水力発電所向け制御装置は、圧縮空気及び油を操作動力源とし機器を制御する水力発電所の補機の制御方式であって、操作動力源を確保するための空気圧縮装置及び圧油装置と、前記空気圧縮装置及び圧油装置を運転制御する補機制御装置と、操作動力源の物理量を測定し電気量に変換する検出装置と、プラント全体を統括して監視・制御・保護する水力発電所向け制御装置において、前記各検出装置からの伝送信号と前記プラント制御装置からの前記伝送信号と同じ時系列のプロセスデータと前記補機自体の前記伝送信号と同じ時系列の運転状況から導かれる特性である前記補機の運転特性とから当該補機の今後の運転状態を予測した運転マニュアルを作成する学習機能と、前記各検出装置による検出値と前記作成した運転マニュアルとをもとに前記検出装置の異常を判定する異常判断機能を内蔵した手段を設け、前記検出装置異常と判定された場合は前記作成された運転マニュアルに従って、前記補助制御装置により前記空気圧縮装置及び圧油装置を運転制御するよう構成した。
【0021】
そして作用について説明すると、圧縮空気発生装置内に設けられた気圧センサ及び圧油装置内に設けられた油圧センサ及び油面センサにより測定されたデータと、プラント制御装置から与えられる主機側の運転モードやガイドベーンの開度,入口弁の開閉,ブレーキ印加等のプロセスデータ、補機の運転状態を基に補機の今後の運転状態を予測した運転マニュアルを作成する。そして、センサ異常と判断した場合、運転マニュアルに従い補機の起動停止を行ない、主機の保護停止要素ロックによる運転継続及び安全に停止できる。
【0022】
本発明の[請求項2]に係る水力発電所向け制御装置は、[請求項1]において、前記異常判断機能にて検出装置異常と判断された場合、主機の起動条件である空気圧及び油圧を成立させるようにした。したがって作用としては、センサ異常と判断された場合、保護停止要素をロックすることで主機の起動条件を成立させる。そのため、センサ異常であっても運転マニュアルにより補機を運転させ、主機の運転を可能とした。
【0023】
本発明の[請求項3]に係る水力発電所向け制御装置は、[請求項1]において、前記異常判断機能にて検出装置異常と判断された場合検出装置の異常を運転員に知らせるようにした。したがって作用としては、センサ異常と判断した場合は外部へ警報を出力する。そして、運転員にその警報を知らせる。
【0024】
本発明の[請求項4]に係る水力発電所向け制御装置は、[請求項1]において、前記異常判断機能にて検出装置異常と判断された場合、当該警報項目及び内容を記録するようにした。したがって作用としては、異常検出された場合、その項目及び内容を前記補助装置へ記録する。そのため、運転員はその履歴が確認できる。
【0025】
本発明の[請求項5]に係る水力発電所向け制御装置は、[請求項1]ないし[請求項4]の何れかにおいて、前記検出装置異常を判定する異常判断機能が、各検出点に対し複数個設置した検出装置からの伝送信号と運転マニュアルとから判定するようにした。したがって作用としては、検出装置を各検出点に対し複数個設置し、それらの伝送信号と運転マニュアルとから検出装置の異常を判断する。
【0026】
【発明の実施の形態】
(第1の実施の形態)
図1は本発明による水力発電所向け制御装置の第1の実施の形態を示す構成図である。図1において、図5と同一機能部分については同一符号を付して説明を省略する。本実施の形態では、気圧検出装置3,油圧検出装置8,油面検出装置12は制御対象の物理量を電気信号として出力するセンサとし、補機制御盤(図示しない)内に設置した補助装置14,補助装置15に入力する。
【0027】
補助装置へは常時、プラント制御装置13から出力されたプラント側のプロセスデータ13a,13bとセンサからの伝送信号3c,8e,12bを入力している。それらのデータを基に運転マニュアルを作成する。
【0028】
異常判断機能の処理にてセンサ異常を判断し、運転マニュアルに従い補機起動指令3a,8a及び給気弁開指令15aを出力する。その他、主機起動要素や保護停止要素を補機制御装置4,10内にて検出し、必要によりプラント制御装置へ主機起動条件3b,8bや主機急停止指令8cを出力する。
【0029】
図2は補機制御装置4内に設けられた補助装置14のブロック図である。プラント側のプロセスデータ13a及び気圧検出装置3からの伝送信号3cを入力し、検出装置異常警報14c又は補機の起動指令3a又は主機の起動条件3bを出力するインターフェースを持つ。
【0030】
補助装置14の学習機能S2はプラント制御装置13からの入力データと補機の運転状況を加味し内蔵する演算プログラムにより運転マニュアルを作成するための各種演算を実行し、情報を演算処理結果記憶部S3へ伝達する。
【0031】
演算処理結果記憶部S3は学習機能S2によって作成された運転マニュアルを記憶しておき、検出装置の異常を運転マニュアルにて記憶されているデータと比較監視するための異常判断機能S5にて判定し、検出装置の異常時には異常処置制御部S4へ伝達する。
【0032】
異常処置制御部S4は検出装置からの伝送信号のみで異常判断するデータチェック部S1又は異常判断機能S5より異常信号を受信した場合、演算処理結果記憶部S3の記憶停止と演算処理結果記憶部S3からの運転マニュアルにより検出装置異常警報14c,補機起動指令3a,主機起動条件3bへ必要な信号を伝達する。
【0033】
異常判断機能S5は演算処理結果記憶部S3からの運転マニュアルと常時入力されてくるデータを比較し、結果が監視の範囲を逸脱していれば異常と判断し異常処置制御部S4へ伝達する。
【0034】
比較部S8,S11は予め決められた設定値とデータチェック部S1からの正常な信号を比較し、条件成立であれば異常判断機能S5からの正常信号と論理積S9をとり補機起動指令3aや、主機起動条件3bとして出力する。
【0035】
又、異常処置制御部S4からの操作信号も前記S9からの信号と論理和S10をとり補機起動指令3aや、主機起動条件3bとして出力する。又、異常信号を異常処置制御部S4から検出装置異常警報14cを出力する。
【0036】
図3は補機制御装置10内に設けられた補助装置15のブロック図である。プラント側のプロセスデータ13b及び油圧検出装置8と油面検出装置12からの伝送信号8e及び12bを入力し、検出装置異常警報15d,補機の起動指令8a,主機の起動条件8b,主機の急停止指令8cを出力するインターフェースを持つ。
【0037】
学習機能S2は前記入力データと補機の運転状況を加味し、内蔵する演算プログラムにより運転マニュアルを作成するための各種演算を実行し、情報を演算処理結果記憶部S3へ伝達する。演算処理結果記憶部S3は学習機能S2によって圧油ポンプと給気弁の各々個別に作成された運転マニュアルを記憶しておき、検出装置の異常を運転マニュアルにて記憶されているデータと比較監視するための異常判断機能S5,S19にて判断し、検出装置の異常時には異常処置制御部S4,S17へ伝達する。
【0038】
異常処置制御部S4,S17は検出装置からの伝送信号のみで異常判断するデータチェック部S1,S23、又は異常判断機能S5,S19より異常信号を受信した場合、演算処理結果記憶部S3の記憶停止と演算処理結果記憶部S3からの運転マニュアルにより、検出装置異常警報15d,補機起動指令8a,主機起動条件8b,主機急停止指令8c,給気弁開指令15aへ必要な信号を伝達する。
【0039】
異常判断機能S5,S19は演算処理結果記憶部S3からの運転マニュアルと現に入力されてくるデータとを比較し、結果が監視の範囲を逸脱していれば異常と判断し異常処置制御部S4,S17へ伝達する。
【0040】
比較部S8,S11,S13は予め決められた設定値とデータチェック部S1からの正常な信号を比較し、条件成立であれば異常判断機能S5からの正常信号と論理積S9をとり、この論理積S9からの信号と異常処置制御部S4からの信号と論理和S10をとり、補機起動指令8aや、主機起動条件8b,主機急停止指令8cとして出力する。
【0041】
比較部S1は予め決められた設定値とデータチェック部S1からの正常な信号を比較し、条件成立であれば異常判断機能S5からの正常信号と論理積S9をとり、比較部S24は予め決められた設定値とデータチェック部S23からの正常な信号とを比較し、条件成立であれば異常判断機能S19からの正常信号と前記比較部S15を介した論理積S9からの信号で論理積S9をとり、給気弁開指令15aとして出力する。
【0042】
又、異常処置制御部S17からの操作信号も前記S9からの信号と論理和S10をとり給気弁開指令15aとして出力する。又、異常信号を異常処置制御部S17から検出装置異常警報15dを出力する。
【0043】
図4はセンサからの伝送信号とプラント制御装置からのプロセスデータ及び補機自体の運転状況から、前記データを学習機能にて主機の運転モードに対する補機の運転特性として記憶させ、前記運転特性から今後補機の運転すべき状態を表す圧縮空気発生装置運転マニュアルを作成した例である。
【0044】
気圧検出装置3からの伝送信号3c及びプラント制御装置13からのプロセスデータ13aと補機の運転状況を入力し、伝送信号3cの測定された物理量は縦軸であるY1軸へ時系列的に記憶させ、補機の運転状況は運転しているか否かを縦軸であるY2軸へ前記同様時系列的に記憶させる。又、プロセスデータ13aは主機の起動指令から停止,停止中の運転モードをX軸へ前記時系列の時間データとして使用する。これらを補機の運転特性としてグラフ化する。
【0045】
上記グラフ化した運転特性からAとB間の運転モード(例えばA:主機起動指令,B:入口弁開指令)に対する補機の運転回数と間隔及び1回あたりの運転時間、測定した物理量の最大値と最低値を算出し、今後補機の運転すべきデータとして運転マニュアル化する。同様にBからC間、CからD間、DからE間、その他(例えば主機停止中)のモードを運転マニュアル化する。
【0046】
本実施の形態によれば、センサの故障(伝送路異常含む)が発生した場合でも学習機能により作成された運転マニュアルから、主機の運転モードに応じた補機の運転を実行するので、主機起動前であれば起動を可能とし、主機運転中であれば不要停止させることなく運転を継続することが出来る。
【0047】
又、補機も運転マニュアルによる運転となるので、不要な連続運転を防止し機器の破損等を防止できる。なお、運転マニュアルは試運転時等に1回のみ作成する事を基本とするが、定期点検や機器の更新にて運転マニュアルも更新しても良い。
【0048】
【発明の効果】
以上説明したように、本発明によればセンサ本体やその信号伝送路の異常や故障等により、補機又は主機の起動停止ができない場合、警報を発生させることができると同時に自動的に学習機能からの運転制御が可能となり主機や補機を運転継続又は安全に停止できる。又、保守員は不適合が発生しているか容易に認識でき、速やかに対応処置をとることができる。
【図面の簡単な説明】
【図1】本発明に係る補機制御装置の第1実施の形態を示す構成図。
【図2】第1実施の形態の補助装置のブロック図。
【図3】第1実施の形態の補助装置のブロック図。
【図4】第1実施の形態の学習機能による補機運転マニュアル作成例。
【図5】従来例の構成図。
【符号の説明】
1 空気圧縮機
2 空気タンク
3 気圧検出装置
4,10 補機制御装置
5 圧油ポンプ
6 圧油タンク
7 アンローダバルブ
8 油圧検出装置
9 集油タンク
11 給気弁
12 油面検出装置
13 プラント制御装置
14,15 補助装置
3a,8a 補機起動指令
3b,8b 主機起動条件
3c 空気圧伝送信号
4x,10x 補機電源供給用主制御リレー
4a,10a 補機起動操作電源
8c 主機急停止指令
8e 油圧伝送信号
10y 給気弁電源供給用主制御リレー
10b 給気弁開操作電源
8d,12a,15a 給気弁開指令
12b 油面伝送信号
13a,13b プラント側プロセスデータ
14c,15d 検出装置異常警報
S1,S23 データチェック
S2 学習機能
S3 演算処理結果記憶部
S4,S17 異常処置制御部
S5,S19 異常判断機能
S8 比較部(補機起動指令)
S9 論理
S10 論理
S11 比較部(主機起動条件)
S13 比較部(主機急停止指令)
S15,S24 比較部(給気弁開指令
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a hydroelectric power plant.
[0002]
[Prior art]
In the operation of hydroelectric power plants, it is necessary to operate necessary equipment and equipment according to the situation such as oil supply and air supply. Such equipment is called an auxiliary machine, whereas a turbine generator, circuit breaker, and main transformer are called main machines, and their responsibilities are very important.
[0003]
As for the types and control methods of these auxiliary machines, pages 31-35 of Electric Joint Research Vol. 27, No. 9, “Standard Hydropower Station Standard One-person Control Method” published on January 25, 1972 And is generally well known.
[0004]
FIG. 5 is a conventional example showing a compressed air generating device and a pressure oil device that always operate regardless of the operation / stop of the main engine among the above-mentioned auxiliary machines, and further control the physical quantity using a detection device. An outline of operation will be described.
[0005]
The compressed air generating device includes an air compressor 1 for generating compressed air, an air tank 2 for storing the generated compressed air, an air pressure detecting device 3 for detecting air pressure in the air tank 2, and an operation command to the air compressor 1 ( It is comprised by the auxiliary machine control apparatus 4 which performs a power supply.
[0006]
In addition, the pressure oil device is a pressure oil pump 5 for sending oil, a pressure oil tank 6 for ensuring oil pressure, and between the pressure oil pump 5 and the pressure oil tank 6 to prevent over pressurization of oil pressure. An unloader valve 7 for reducing power loss due to pump operation, a hydraulic pressure detection device 8 for detecting the hydraulic pressure in the pressure oil tank 6, an oil level detection device 12 for detecting the oil level in the pressure oil tank 6, and a device oil reservoir An oil collecting tank 9 and an auxiliary machine control device 10 for giving an operation command (power supply) to a pressure oil pump and an air supply valve. A pressure oil tank is provided between the air tank 2 and the pressure oil tank 6. An air supply valve 11 for supplying compressed air to 6 is provided.
[0007]
The physical quantity measured by the atmospheric pressure detection device 3 is compared with a value preset for starting the air compressor in the detection device, and if the condition is satisfied, a signal of the auxiliary device start command 3a is output. The main control relay 4x in the auxiliary machine control device 4 is operated by the signal of the auxiliary machine start command 3a input to the auxiliary machine control device 4, and the operation power supply 4a is supplied to the air compressor 1. The air compressor 1 is activated by the supply of the operation power supply 4a, and the compressed air is supplied to the air tank 2 until the specified air pressure is reached.
[0008]
Further, the physical quantity measured by the hydraulic pressure detection device 8 is compared with a preset value for starting the detection device internal pressure oil pump, and if the condition is satisfied, a signal of an auxiliary machine start command 8a is output. The main control relay 10 x in the auxiliary machine control device 10 is operated by the signal of the auxiliary machine start command 8 a input to the auxiliary machine control device 10, and the operation power supply 10 a is supplied to the pressure oil pump 5. The pressure oil pump 5 is activated by the supply of the operation power supply 10a, and oil is supplied to the pressure oil tank 6 until the specified oil pressure is reached.
[0009]
If the physical quantity measured by the oil pressure detection device 8 is compared with a value preset for opening the air supply valve in the detection device, and the condition is satisfied, the signal of the air supply valve opening command 8d is measured by the oil level detection device 12. If the determined physical quantity is compared with a value preset for opening the air supply valve in the detection device and the condition is satisfied, the signal of the air supply valve opening command 12a is output.
[0010]
Accessory control device to operate the main control relay 10y of the auxiliary control device 10 at both conditions met for the air supply valve is input opening command 8d and the air supply valve opening command 12a to 10, supply valve operation source 10b 11 is supplied. The supply valve 11 is opened by the supply of the operation power supply 10b, and the compressed air is replenished into the pressure oil tank 6 until the air pressure reaches a specified oil pressure or oil level. When the hydraulic pressure is in an unloading region, the hydraulic pressure is adjusted by the unloader valve 7 to control the hydraulic pressure in the pressure oil tank 6 to a specified value.
[0011]
The atmospheric pressure detection device 3 has a main engine start condition 3b that satisfies the condition when the air pressure exceeds a predetermined value, and the hydraulic pressure detection device 8 has a main apparatus start condition 8b that satisfies the condition when the oil pressure exceeds a predetermined value and a main machine that satisfies the condition when the oil pressure decreases. An emergency stop command 8c is provided, and these signals are input to the plant control device 13 to perform start-up lock and protection stop of the main machine to limit the operation of the main machine.
[0012]
[Problems to be solved by the invention]
The detection devices that measure physical quantities that have been adopted in the above-mentioned conventional methods are mainly mechanical detection devices that have contacts such as limit switches. However, these detection devices are used in the surrounding environment (oil mist, water droplets). , Dust, etc.), the maintenance cycle is shortened with age, manpower required for maintenance is reduced, and the reliability is also lowered.
[0013]
In recent years, the power plant that employs a detection device (hereinafter referred to as a sensor) that converts a physical quantity into an electrical quantity in accordance with the development of detection device technology, regardless of whether maintenance work for these detection devices is omitted, is questionable It has become mainstream.
[0014]
However, along with the widespread use of electrical sensors, sensor abnormalities and failures due to temperature, submersion, humidity, induction / surge, power supply, etc., which had not been considered in the past, have also occurred, which may lead to major accidents in operation. There was also.
[0015]
In the example of the compressed air generator described in the above-mentioned conventional technology, when a failure occurs in the atmospheric pressure sensor installed in the air tank or any abnormality occurs in the signal transmission route from the sensor, the atmospheric pressure is related to the normal value. The output signal from the sensor becomes “zero”, and it is erroneously determined that the pressure has dropped by a comparison circuit that compares the signal with a preset value, and a start command is sent to the air compressor to return the pressure to the specified value. Continue to put out.
[0016]
As a result, in the case of an unmanned power plant, the patrol officer will continue to operate the air compressor until he / she comes to the power plant and manually stops it, resulting in equipment damage. Moreover, since it is not easy to determine a sensor failure, it may not be found. In addition, before the main machine is started, the air pressure lowering element operates, so the start condition is not satisfied, and the operation becomes impossible.
[0017]
Also, in the case of a pressure oil device, if a failure occurs in the hydraulic sensor installed in the middle of the device or if any abnormality occurs in the signal transmission route from the sensor, the pressure from the sensor is The output signal becomes “zero”, and it is erroneously determined that the hydraulic pressure is lowered by a comparison circuit that compares the signal with a preset set value, and the main engine is suddenly stopped (# 86-2). The pressure oil device itself continues to issue a start command to the pressure oil pump to return the oil pressure to the specified value.
[0018]
As a result, in the case of an unmanned power plant, the oil pressure pump will continue to be operated until the patrolman comes to the power plant and manually stops it, resulting in equipment damage. Moreover, since it is not easy to determine a sensor failure, it may not be found. If this is before the main machine is started, the sudden stop protection device (# 86-2) is operated unnecessarily, so that the start condition is not satisfied and the operation is impossible.
[0019]
The present invention has been made to solve the above-mentioned problems, and even if a sensor failure or signal transmission route used for controlling the auxiliary machine has an abnormality, unnecessary operation of the auxiliary machine is eliminated. The purpose is to provide a control system for hydroelectric power plants that does not interfere with the operation of the main engine.
[0020]
[Means for Solving the Problems]
A control device for a hydropower plant according to [Claim 1] of the present invention is a control system for an auxiliary machine of a hydropower plant that controls equipment using compressed air and oil as operating power sources, and secures the operating power source. Air compressor and pressure oil device, auxiliary machine control device that controls the operation of the air compressor and pressure oil device, a detector that measures the physical quantity of the operating power source and converts it into an electrical quantity, and overall plant in to the monitoring, control and hydroelectric power plants control device for protecting the transmission signal and the transmission signal to the same time sequence of the process data and the transmission signal of the auxiliary machine itself from the plant control system from the detector the same time a learning function that determines the operating manuals predict future driving state and a driving characteristic of the auxiliary is a characteristic derived from the operating condition of the auxiliary stream, the value detected by the respective detection devices and According form was operated manually and is provided with means which incorporates an abnormality determining function of determining an abnormality of the detection device on the basis of the detection device abnormality determined as if said created operation manual, the auxiliary control unit Thus, the air compression device and the pressure oil device are controlled to operate.
[0021]
Then, the operation will be described. The data measured by the pressure sensor provided in the compressed air generator and the hydraulic pressure sensor and oil level sensor provided in the pressure oil device, and the operation mode on the main engine side given from the plant control device And an operation manual that predicts the future operating state of the auxiliary machine based on the process data such as the opening degree of the guide vane, the opening / closing of the inlet valve, the brake application, and the operating state of the auxiliary machine When it is determined that the sensor is abnormal, the auxiliary machine is started and stopped according to the operation manual, and the operation can be continued and safely stopped by the protection stop element lock of the main machine.
[0022]
The control device for a hydroelectric power plant according to [Claim 2] of the present invention, in [Claim 1], when the abnormality determination function determines that the detection device is abnormal, the control device is configured to control the air pressure and hydraulic pressure that are the starting conditions of the main engine. It was made to be established. Therefore, as an action, when it is determined that the sensor is abnormal, the start condition of the main engine is established by locking the protection stop element. Therefore, even if the sensor is abnormal, the auxiliary machine is operated by the operation manual, and the main machine can be operated.
[0023]
The control device for a hydroelectric power plant according to [Claim 3] of the present invention informs the operator of the abnormality of the detection device when the abnormality determination function determines that the detection device is abnormal in [Claim 1]. I made it. Therefore, as an operation, when it is determined that the sensor is abnormal, an alarm is output to the outside. Then, the operator is notified of the alarm.
[0024]
The control apparatus for a hydroelectric power plant according to [Claim 4] of the present invention records the alarm item and the content when the abnormality determination function determines that the detection apparatus is abnormal in [Claim 1]. did. Therefore, as an action, when an abnormality is detected, the item and contents are recorded in the auxiliary device. Therefore, the operator can confirm the history.
[0025]
Hydroelectric power plants control apparatus according to the claim 5 of the present invention, in any one of the [Claim 1] [Claim 4], abnormality determining function of determining an abnormality of the detection device, the detection point On the other hand, the judgment is made based on the transmission signal from a plurality of detection devices installed and the operation manual . Therefore, as a function, a plurality of detection devices are installed at each detection point, and abnormality of the detection device is determined from the transmission signal and the operation manual .
[0026]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 is a block diagram showing a first embodiment of a control apparatus for a hydropower station according to the present invention. In FIG. 1, the same functional parts as those in FIG. In the present embodiment, the atmospheric pressure detection device 3, the hydraulic pressure detection device 8, and the oil level detection device 12 are sensors that output a physical quantity to be controlled as an electrical signal, and an auxiliary device 14 installed in an auxiliary machine control panel (not shown). , Input to the auxiliary device 15.
[0027]
The plant side process data 13a, 13b output from the plant control device 13 and the transmission signals 3c, 8e, 12b from the sensors are always input to the auxiliary device. An operation manual is created based on these data.
[0028]
Sensor abnormality is determined by processing of the abnormality determination function, and auxiliary machine activation commands 3a and 8a and an air supply valve opening command 15a are output according to the operation manual. In addition, the main machine starting element and the protection stopping element are detected in the auxiliary machine control devices 4 and 10, and if necessary, the main machine starting conditions 3b and 8b and the main machine sudden stop command 8c are output to the plant control device.
[0029]
FIG. 2 is a block diagram of the auxiliary device 14 provided in the auxiliary machine control device 4. It has an interface for inputting process data 13a on the plant side and a transmission signal 3c from the atmospheric pressure detection device 3, and outputting a detection device abnormality alarm 14c, an auxiliary device start command 3a, or a main device start condition 3b.
[0030]
The learning function S2 of the auxiliary device 14 executes various calculations for creating an operation manual by using a built-in calculation program in consideration of the input data from the plant control device 13 and the operation status of the auxiliary machine, and stores the information as an arithmetic processing result storage unit. Transmit to S3.
[0031]
The arithmetic processing result storage unit S3 stores the operation manual created by the learning function S2, and determines the abnormality of the detection device by the abnormality determination function S5 for comparing and monitoring the data stored in the operation manual. When the detection device is abnormal, it is transmitted to the abnormality treatment control unit S4.
[0032]
When the abnormality treatment control unit S4 receives an abnormality signal from the data check unit S1 or the abnormality determination function S5 that makes an abnormality determination only with the transmission signal from the detection device, the storage stop of the arithmetic processing result storage unit S3 and the arithmetic processing result storage unit S3 Necessary signals are transmitted to the detection device abnormality alarm 14c, the auxiliary machine start command 3a, and the main machine start condition 3b according to the operation manual from.
[0033]
The abnormality determination function S5 compares the operation manual from the calculation processing result storage unit S3 with the data that is constantly input, and if the result deviates from the monitoring range, determines that there is an abnormality and transmits it to the abnormality treatment control unit S4.
[0034]
The comparison units S8 and S11 compare the predetermined set value with the normal signal from the data check unit S1, and if the condition is satisfied, take the normal signal from the abnormality determination function S5 and the logical product S9 to obtain the auxiliary machine start command 3a. Or as the main engine start condition 3b.
[0035]
Also, the operation signal from the abnormality treatment control unit S4 takes the logical sum S10 from the signal from S9 and outputs it as an auxiliary machine start command 3a or a main machine start condition 3b. Also, an abnormality signal is output from the abnormality treatment control unit S4 to the detection device abnormality alarm 14c.
[0036]
FIG. 3 is a block diagram of the auxiliary device 15 provided in the auxiliary machine control device 10. The process data 13b on the plant side and the transmission signals 8e and 12b from the oil pressure detection device 8 and the oil level detection device 12 are input, the detection device abnormality alarm 15d, the auxiliary device start command 8a, the main device start condition 8b, the main device sudden It has an interface for outputting a stop command 8c.
[0037]
The learning function S2 considers the input data and the operation status of the auxiliary machine, executes various calculations for creating an operation manual by a built-in calculation program, and transmits information to the calculation processing result storage unit S3. The arithmetic processing result storage unit S3 stores operation manuals individually created for the pressure oil pump and the air supply valve by the learning function S2, and compares and monitors the abnormality of the detection device with the data stored in the operation manual. Are determined in the abnormality determination functions S5 and S19, and are transmitted to the abnormality treatment control units S4 and S17 when the detection device is abnormal.
[0038]
When the abnormality treatment control units S4 and S17 receive an abnormality signal from the data check units S1 and S23 that determine an abnormality only by a transmission signal from the detection device or from the abnormality determination functions S5 and S19, the storage of the arithmetic processing result storage unit S3 is stopped. Then, necessary signals are transmitted to the detection device abnormality alarm 15d, the auxiliary machine start command 8a, the main machine start condition 8b, the main machine sudden stop command 8c, and the supply valve open command 15a by the operation manual from the arithmetic processing result storage unit S3.
[0039]
The abnormality determination functions S5 and S19 compare the operation manual from the calculation processing result storage unit S3 with the data currently input, and if the result deviates from the monitoring range, it is determined that there is an abnormality and the abnormality treatment control unit S4. Transmit to S17.
[0040]
The comparison units S8, S11, and S13 compare a predetermined set value with a normal signal from the data check unit S1, and if the condition is satisfied, take a logical product S9 from the normal signal from the abnormality determination function S5. The signal from the product S9, the signal from the abnormality treatment control unit S4, and the logical sum S10 are taken and output as an auxiliary machine start command 8a, a main machine start condition 8b, and a main machine quick stop command 8c.
[0041]
Comparing portion S1 5 compares the normal signals from the set value and data check portion S1 to a predetermined takes a normal signal ANDed S9 in the abnormality determining function S5 if conditions are satisfied, the comparison unit S24, advance The determined set value is compared with the normal signal from the data check unit S23, and if the condition is satisfied, the logical product is obtained from the normal signal from the abnormality determination function S19 and the signal from the logical product S9 via the comparison unit S15. S9 is taken and output as an air supply valve opening command 15a.
[0042]
Further, the operation signal from the abnormality treatment control unit S17 also takes the logical sum S10 with the signal from S9 and outputs it as the air supply valve opening command 15a. In addition, an abnormality signal is output from the abnormality treatment control unit S17 to the detection device abnormality alarm 15d.
[0043]
FIG. 4 shows the transmission data from the sensor, the process data from the plant control device, and the operation status of the auxiliary machine itself. The learning function stores the data as the operation characteristic of the auxiliary machine with respect to the operation mode of the main machine. This is an example in which a compressed air generator operating manual representing a state in which the auxiliary machine should be operated is created.
[0044]
The transmission signal 3c from the atmospheric pressure detection device 3, the process data 13a from the plant control device 13, and the operation status of the auxiliary machine are input, and the measured physical quantity of the transmission signal 3c is stored in time series on the Y1 axis which is the vertical axis. Then, the operation status of the auxiliary machine is stored in time series in the same manner as described above on the Y2 axis which is the vertical axis. Further, the process data 13a uses the operation mode that has been stopped and stopped from the start command of the main machine as the time-series time data to the X axis. These are graphed as the operating characteristics of the auxiliary equipment.
[0045]
From the graphed operating characteristics, the number and interval of operation of the auxiliary machine for the operation mode between A and B (for example, A: main engine start command, B: inlet valve opening command), the operation time per operation, and the maximum of the measured physical quantity Calculate the value and the minimum value, and make it an operation manual as data to be operated in the future. Similarly, the operation manual is set to the modes from B to C, from C to D, from D to E, and other (for example, when the main engine is stopped).
[0046]
According to the present embodiment, even when a sensor failure (including a transmission line abnormality) occurs, the auxiliary machine is operated according to the operation mode of the main engine from the operation manual created by the learning function. If it is before, it is possible to start, and if the main engine is operating, the operation can be continued without unnecessary stop.
[0047]
Further, since the auxiliary machine is also operated according to the operation manual, unnecessary continuous operation can be prevented and damage to the equipment can be prevented. Note that the operation manual is basically created only once during a test run or the like, but the operation manual may be updated through periodic inspections or device updates.
[0048]
【The invention's effect】
As described above, according to the present invention, when the auxiliary machine or the main machine cannot be started or stopped due to an abnormality or failure of the sensor body or its signal transmission path, an alarm can be generated and at the same time a learning function automatically. It is possible to control the operation of the main engine and auxiliary equipment from the start or stop safely. In addition, the maintenance staff can easily recognize whether a nonconformity has occurred and can take a countermeasure immediately.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of an auxiliary machine control device according to the present invention.
FIG. 2 is a block diagram of an auxiliary device according to the first embodiment.
FIG. 3 is a block diagram of an auxiliary device according to the first embodiment.
FIG. 4 is an example of creating an auxiliary machine operation manual by the learning function of the first embodiment.
FIG. 5 is a configuration diagram of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air compressor 2 Air tank 3 Atmospheric pressure detection apparatus 4,10 Auxiliary equipment control apparatus 5 Pressure oil pump 6 Pressure oil tank 7 Unloader valve 8 Oil pressure detection apparatus 9 Oil collection tank 11 Supply valve 12 Oil level detection apparatus 13 Plant control apparatus 14, 15 Auxiliary equipment 3a, 8a Auxiliary machine start command 3b, 8b Main machine start condition 3c Air pressure transmission signal 4x, 10x Auxiliary power supply main control relay 4a, 10a Auxiliary machine start operation power supply 8c Main machine sudden stop command 8e Hydraulic transmission signal 10y Main control relay for supply air supply valve 10b Supply valve opening operation power supply
8d, 12a , 15a Supply valve opening command 12b Oil level transmission signal 13a, 13b Plant-side process data 14c, 15d detection device abnormality alarm S1 , S23 data check unit S2, learning function S3 arithmetic processing result storage unit S4, S17 abnormality treatment control Part S5, S19 Abnormality judgment function S8 Comparison part (auxiliary machine start command)
S9 logical product S10 logical sum S11 comparison unit (main machine start condition)
S13 Comparison unit (main engine sudden stop command)
S15, S24 comparison unit (supply valve open command )

Claims (5)

圧縮空気及び油を操作動力源とし機器を制御する水力発電所の補機の制御方式であって、操作動力源を確保するための空気圧縮装置及び圧油装置と、前記空気圧縮装置及び圧油装置を運転制御する補機制御装置と、操作動力源の物理量を測定し電気量に変換する検出装置と、プラント全体を統括して監視・制御・保護する水力発電所向け制御装置において、前記各検出装置からの伝送信号と前記プラント制御装置からの前記伝送信号と同じ時系列のプロセスデータと前記補機自体の前記伝送信号と同じ時系列の運転状況から導かれる特性である前記補機の運転特性とから当該補機の今後の運転状態を予測した運転マニュアルを作成する学習機能と、前記各検出装置からの検出値と前記作成した運転マニュアルとをもとに前記検出装置の異常を判定する異常判断機能を内蔵した手段を設け、前記検出装置異常と判定された場合は前記作成された運転マニュアルに従って、前記補助制御装置により前記空気圧縮装置及び圧油装置を運転制御させることを特徴とする水力発電所向け制御装置。A control method of an auxiliary machine of a hydroelectric power plant that controls equipment using compressed air and oil as operating power sources, and an air compressing device and a pressure oil device for securing the operating power source, and the air compressing device and the pressure oil In each of the above-mentioned auxiliary machine control device that controls the operation of the device, a detection device that measures the physical quantity of the operating power source and converts it into an electric quantity, and a control device for a hydroelectric power plant that monitors, controls, and protects the entire plant. operation of the transmission signal and the transmission signal processing data of the same time series and said auxiliary said auxiliary which is the characteristic derived from the operating condition of the same time series as the transmission signal itself from the plant control system from the detector a learning function that determines the operating manual from the characteristics predicted future operating state of the accessory, the abnormality of the detection device the on the basis of said created operation manuals and detecting values from each detector A means which incorporates an abnormality determination function of the constant, the following when it is judged that the detecting device abnormality the created operating manual, the auxiliary control unit by the operation control the air compressor and the hydraulic oil system A control device for hydroelectric power plants. 請求項1記載の水力発電所向け制御装置において、前記異常判断機能にて前記検出装置異常と判断された場合、前記作成された運転マニュアルに従って、主機の起動条件である空気圧及び油圧を成立させることを特徴とする水力発電所向け制御装置。2. The control apparatus for a hydroelectric power plant according to claim 1, wherein when the abnormality determination function determines that the detection device is abnormal, air pressure and hydraulic pressure, which are starting conditions for the main engine, are established according to the created operation manual. A control device for a hydroelectric power plant. 請求項1記載の水力発電所向け制御装置において、前記異常判断機能にて前記検出装置異常と判断された場合、前記検出装置の異常を運転員に知らせることを特徴とする水力発電所向け制御装置。In hydroelectric power plants control apparatus according to claim 1, wherein the abnormality determination when it is determined that the abnormality of the detection device in function, the detection abnormality hydroelectric power plants control, characterized in that to inform the operator of the apparatus apparatus. 請求項1記載の水力発電所向け制御装置において、前記異常判断機能にて前記検出装置異常と判断された場合、当該異常を示す警報項目及び内容を記録することを特徴とする水力発電所向け制御装置。The control device for a hydroelectric power plant according to claim 1, wherein when the abnormality determination function determines that the detection device is abnormal, an alarm item and content indicating the abnormality are recorded. Control device. 請求項1ないし請求項4の何れかに記載の水力発電所向け制御装置において、前記検出装置異常を判定する異常判断機能が、各検出点に対し複数個設置した検出装置からの伝送信号と前記作成した運転マニュアルとから判定することを特徴とする水力発電所向け制御装置。In hydroelectric power plants control device according to any one of claims 1 to 4, abnormality determining function of determining an abnormality of the detection device, a transmission signal from a plurality installed detection device for each detection point A control apparatus for a hydroelectric power plant, which is determined from the created operation manual .
JP2001170447A 2001-06-06 2001-06-06 Hydroelectric power plant control equipment Expired - Fee Related JP4434515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170447A JP4434515B2 (en) 2001-06-06 2001-06-06 Hydroelectric power plant control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170447A JP4434515B2 (en) 2001-06-06 2001-06-06 Hydroelectric power plant control equipment

Publications (2)

Publication Number Publication Date
JP2002366201A JP2002366201A (en) 2002-12-20
JP4434515B2 true JP4434515B2 (en) 2010-03-17

Family

ID=19012368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170447A Expired - Fee Related JP4434515B2 (en) 2001-06-06 2001-06-06 Hydroelectric power plant control equipment

Country Status (1)

Country Link
JP (1) JP4434515B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9767671B2 (en) * 2014-11-05 2017-09-19 Intel Corporation System for determining sensor condition
CN110456752B (en) * 2019-08-19 2020-12-01 蘑菇物联技术(深圳)有限公司 Air compression station control method based on combination of plan scheduling and algorithm scheduling

Also Published As

Publication number Publication date
JP2002366201A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
AU757522B2 (en) Intelligent air compressor operation
US6842718B2 (en) Intelligent auxiliary cooling system
CN105626277B (en) A kind of controller and method of the remote fault diagnosis of oil-electric engine group and Gernral Check-up
KR20020077648A (en) Predictive failure scheme for industrial thin films processing power delivery system
EP1540186B1 (en) Condition monitoring of pumps and pump system
JPS5870078A (en) Supervising apparatus for screw compressor
CN113266460B (en) Abnormality monitoring method, control device, turbocharger, and engine system
JPH11264499A (en) Oil mist generating system and method
KR20100100104A (en) Apparatus and method for managing remote maintenance
JP4434515B2 (en) Hydroelectric power plant control equipment
CN106120950B (en) Closed circulating water full-automatic switching rapid emergency pressure stabilizing device
CN109375575A (en) A kind of band-type brake control method and system
KR100781711B1 (en) Water hammer preventive system within output sensing circuit
CN112253999B (en) Hydrogen storage device management system, intelligent replacement method and device
AU2004201018A1 (en) Compressed air system utilizing a motor slip parameter
CN1391032A (en) Electronic cabinet for intelligent in-situ monitor of diesel engine as primary power of ship
JP3872865B2 (en) Monitoring and control device of vacuum valve unit in sewer system
KR20010018421A (en) Remote error detection apparatus for elevator and control method thereof
CN112147926B (en) Centralized control system and control method for wellhead gas recovery device
JP3474786B2 (en) Process failure monitoring support device
KR200301862Y1 (en) Prognostic Maintenance System For Air-Controlled
CN116736686A (en) Single-phase power supply self-service car washer control system with safety early warning function and control method
JP2005121435A (en) Gas purity measuring apparatus
CN117418951A (en) Diesel engine rotating speed safety protection control device and method
CN114856881A (en) Self-diagnosis technology design method and system for aviation ignition system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees