JP4433869B2 - Steam turbine pressure calculation method, steam turbine efficiency calculation method, steam turbine pressure calculation program, and steam turbine efficiency calculation program - Google Patents

Steam turbine pressure calculation method, steam turbine efficiency calculation method, steam turbine pressure calculation program, and steam turbine efficiency calculation program Download PDF

Info

Publication number
JP4433869B2
JP4433869B2 JP2004137832A JP2004137832A JP4433869B2 JP 4433869 B2 JP4433869 B2 JP 4433869B2 JP 2004137832 A JP2004137832 A JP 2004137832A JP 2004137832 A JP2004137832 A JP 2004137832A JP 4433869 B2 JP4433869 B2 JP 4433869B2
Authority
JP
Japan
Prior art keywords
pressure
steam
turbine
steam pressure
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004137832A
Other languages
Japanese (ja)
Other versions
JP2005320876A (en
Inventor
修一 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2004137832A priority Critical patent/JP4433869B2/en
Publication of JP2005320876A publication Critical patent/JP2005320876A/en
Application granted granted Critical
Publication of JP4433869B2 publication Critical patent/JP4433869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統における蒸気タービン圧力算出方法、蒸気タービン効率算出方法、蒸気タービン圧力算出プログラム及び蒸気タービン効率算出プログラムに関する。   The present invention relates to a steam turbine pressure calculation method, a steam turbine efficiency calculation method, and a steam turbine in a steam turbine system that guides steam that has finished work in a high-pressure turbine to an intermediate-pressure turbine and guides steam that has finished work in an intermediate-pressure turbine to a low-pressure turbine. The present invention relates to a pressure calculation program and a steam turbine efficiency calculation program.

火力発電プラントの熱効率の向上は、燃料の節約および発電コストの低減を図る上で益々重要になっている。例えば、火力発電プラントのうち蒸気発電プラントでは、ボイラで発生した蒸気を蒸気タービンに導き、蒸気タービンを回転させて発電機を駆動する。蒸気タービンで蒸気がした仕事は発電機により電気エネルギーに変換される。そして、蒸気タービンで仕事を終えた蒸気は復水器で水に戻され、給水ポンプによりボイラに給水される。   Improving the thermal efficiency of thermal power plants is becoming increasingly important to save fuel and reduce power generation costs. For example, in a thermal power plant among thermal power plants, steam generated in a boiler is guided to a steam turbine, and the steam turbine is rotated to drive a generator. The work done by the steam in the steam turbine is converted into electrical energy by the generator. And the steam which finished work with the steam turbine is returned to water with a condenser, and water is supplied to a boiler with a water supply pump.

ここで、蒸気タービン系統として、高圧タービン、中圧タービン及び低圧タービンを備えたものがあり、高圧タービンにはボイラからの高温高圧の蒸気を導き、高圧タービンで仕事を終えた蒸気を再熱器で過熱して中圧タービンに導き、さらに中圧タービンで仕事を終えた蒸気を低圧タービンに導き高温高圧の蒸気を有効に利用し発電効率を高めるようにしている。   Here, some steam turbine systems include a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine. The high-pressure turbine guides high-temperature and high-pressure steam from the boiler, and reheats the steam that has finished work in the high-pressure turbine. In order to increase the power generation efficiency, the steam that has been superheated at the intermediate pressure turbine is led to an intermediate pressure turbine, and the steam that has finished its work in the intermediate pressure turbine is guided to a low pressure turbine to effectively use high temperature and high pressure steam.

また、火力発電プラントとして、ガスタービンと蒸気タービンとを組み合せ、ガスタービンからの排熱を排熱回収ボイラに導き、排熱回収ボイラで発生した蒸気で蒸気タービンを駆動するようにしたコンバインドサイクル発電プラントがある。このようなコンバインドサイクル発電プラントにおいても、蒸気タービン系統として、高圧タービン、中圧タービン及び低圧タービンを備えたものがあり、排熱回収ボイラからの高温高圧の蒸気を有効に利用し発電効率を高めるようにしている。   As a thermal power plant, combined cycle power generation is a combination of a gas turbine and a steam turbine, and the exhaust heat from the gas turbine is guided to an exhaust heat recovery boiler, and the steam turbine is driven by the steam generated in the exhaust heat recovery boiler. There is a plant. Even in such a combined cycle power plant, some steam turbine systems include a high-pressure turbine, a medium-pressure turbine, and a low-pressure turbine. The high-temperature and high-pressure steam from the exhaust heat recovery boiler is effectively used to increase power generation efficiency. I am doing so.

火力発電プラントの性能データのひとつである蒸気タービンのタービン効率を管理することは、火力発電プラントの熱効率の向上を図る上で重要なことである。ここで、蒸気タービンのタービン効率Eは、タービン入口蒸気エンタルピーをH1、タービン出口蒸気エンタルピーをH2、断熱エンタルピーをH2aとすると、次式で示される。   Managing the turbine efficiency of the steam turbine, which is one of the performance data of the thermal power plant, is important for improving the thermal efficiency of the thermal power plant. Here, the turbine efficiency E of the steam turbine is expressed by the following equation, where the turbine inlet steam enthalpy is H1, the turbine outlet steam enthalpy is H2, and the adiabatic enthalpy is H2a.

E=(H1−H2)/(H1−H2a)
そして、タービン入口蒸気エンタルピーH1、タービン出口蒸気エンタルピーH2、断熱エンタルピーH2aは、それぞれタービン入口蒸気圧力、タービン出口蒸気圧力、タービン入口蒸気温度及びタービン出口蒸気温度から演算することができる(例えば、特許文献1参照)。
特開平5−142001号公報([0007])
E = (H1-H2) / (H1-H2a)
The turbine inlet steam enthalpy H1, the turbine outlet steam enthalpy H2, and the heat insulation enthalpy H2a can be calculated from the turbine inlet steam pressure, the turbine outlet steam pressure, the turbine inlet steam temperature, and the turbine outlet steam temperature, respectively (for example, Patent Documents). 1).
JP-A-5-142001 ([0007])

しかし、高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン系統においては、これら高圧タービン、中圧タービン及び低圧タービンのそれぞれに、入口蒸気圧力検出器、出口蒸気圧力検出器、入口蒸気温度検出器及び出口蒸気温度検出器を設けていない場合がある。例えば、中圧タービンの排気部に、蒸気温度検出器及び蒸気圧力検出器を設置していない場合があり、その場合には中圧タービンの出口蒸気圧力及び出口蒸気温度が検出できないので、中圧タービンのタービン効率を管理することができない。   However, in a steam turbine system including a high pressure turbine, an intermediate pressure turbine, and a low pressure turbine, an inlet steam pressure detector, an outlet steam pressure detector, and an inlet steam temperature detection are respectively provided for the high pressure turbine, the intermediate pressure turbine, and the low pressure turbine. In some cases, the detector and the outlet steam temperature detector are not provided. For example, there are cases where a steam temperature detector and a steam pressure detector are not installed in the exhaust section of the intermediate pressure turbine. In this case, the outlet steam pressure and outlet steam temperature of the intermediate pressure turbine cannot be detected. The turbine efficiency of the turbine cannot be managed.

この中圧タービンの排気部に蒸気圧力検出器や蒸気温度検出器を一時的な計測を目的として特設することは可能であるが、これらの蒸気圧力検出器や蒸気温度検出器を常設する場合には、設置費用やメンテナンス費用が発生し、また、コンピュータへの検出データの取り込みの費用が発生する。   It is possible to install a steam pressure detector or steam temperature detector in the exhaust section of this intermediate pressure turbine for the purpose of temporary measurement, but when these steam pressure detectors or steam temperature detectors are installed permanently Incurs installation costs and maintenance costs, and incurs costs for importing detected data into the computer.

本発明の目的は、高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン系統のいずれかの蒸気タービンの入口または出口に蒸気圧力検出器や蒸気温度検出器の設置がない場合であっても適正に蒸気圧力や蒸気温度を取得でき、しかも蒸気タービンの効率を得ることできる蒸気タービン圧力算出方法、蒸気タービン効率算出方法、蒸気タービン圧力算出プログラム及び蒸気タービン効率算出プログラムを提供することである。   The object of the present invention is even when there is no installation of a steam pressure detector or a steam temperature detector at the inlet or outlet of any steam turbine of a steam turbine system including a high pressure turbine, an intermediate pressure turbine, and a low pressure turbine. To provide a steam turbine pressure calculation method, a steam turbine efficiency calculation method, a steam turbine pressure calculation program, and a steam turbine efficiency calculation program that can appropriately acquire the steam pressure and the steam temperature and obtain the efficiency of the steam turbine.

請求項1の発明に係わる蒸気タービン圧力算出方法は、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうちいずれか3つを検出し、検出した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求め、求めた値を蒸気圧力特性関数の定数a、b、cに代入して蒸気圧力特性関数を作成し、作成した蒸気圧力特性関数のxに、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうち検出していない蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、仮想検出点位置での蒸気圧力を算出することを特徴とする。 The steam turbine pressure calculation method according to the first aspect of the present invention is an inlet of a high-pressure turbine of a steam turbine system that guides steam that has finished work in a high-pressure turbine to an intermediate-pressure turbine and guides steam that has finished work in an intermediate-pressure turbine to a low-pressure turbine. Any three of the steam pressure, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine are detected, and the detected three steam pressures are converted into a steam pressure characteristic function {P (x) = A × b x + c} is substituted for P (x), and the number of turbine paragraphs at the steam pressure detection point position is substituted for x to obtain the constants a, b, and c of the steam pressure characteristic function. A steam pressure characteristic function is created by substituting the constants a, b, and c of the pressure characteristic function, and the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, and the low pressure turbine are added to x of the created steam pressure characteristic function. The steam pressure at the virtual detection point position is calculated by substituting the number of turbine stages at the virtual detection point position of the undetected steam pressure among the steam pressure at the inlet and the outlet steam pressure of the low-pressure turbine. .

請求項2の発明に係わる蒸気タービン圧力算出方法は、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうちいずれか3つを検出し、検出した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求め、求めた値を蒸気圧力特性関数の定数a、b、cに代入して蒸気圧力特性関数を作成し、作成した蒸気圧力特性関数式のxに、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうち検出していない蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、検出していない蒸気圧力について仮想検出点位置での蒸気圧力を算出し、算出した蒸気圧力が仮設の蒸気圧力検出器で検出した仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正し、補正した蒸気圧力特性関数を用いて、仮想検出点位置での蒸気圧力を算出することを特徴とする。 A steam turbine pressure calculation method according to a second aspect of the invention is an inlet of a high-pressure turbine of a steam turbine system in which steam that has finished work in a high-pressure turbine is guided to an intermediate-pressure turbine and steam that has finished work in an intermediate-pressure turbine is guided to a low-pressure turbine. Any three of the steam pressure, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine are detected, and the detected three steam pressures are converted into a steam pressure characteristic function {P (x) = A × b x + c} is substituted for P (x), and the number of turbine paragraphs at the steam pressure detection point position is substituted for x to obtain the constants a, b, and c of the steam pressure characteristic function. A steam pressure characteristic function is created by substituting the constants a, b, and c of the pressure characteristic function, and x of the created steam pressure characteristic function expression is replaced with the high pressure turbine inlet steam pressure, the medium pressure turbine inlet steam pressure, and the low pressure turbine. By substituting the number of turbine stages at the virtual detection point position of the undetected steam pressure out of the inlet steam pressure of the bin and the outlet steam pressure of the low-pressure turbine, the steam pressure at the virtual detection point position is determined for the undetected steam pressure. Calculate and correct the steam pressure characteristic function so that the calculated steam pressure matches the steam pressure at the virtual detection point detected by the temporary steam pressure detector or the design value of the steam pressure, and use the corrected steam pressure characteristic function. Thus, the steam pressure at the virtual detection point position is calculated.

請求項3の発明に係わる蒸気タービン効率算出方法は、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうちいずれか3つを検出し、検出した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求め、求めた値を蒸気圧力特性関数の定数a、b、cに代入して蒸気圧力特性関数を作成し、作成した蒸気圧力特性関数のxに、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうち検出していない蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、検出していない蒸気圧力について仮想検出点位置での蒸気圧力を算出し、仮想検出点位置近傍の蒸気タービンのメタル温度及び算出した蒸気圧力に基づいて、仮想検出点位置近傍の蒸気タービンの効率を算出することを特徴とする。 The steam turbine efficiency calculation method according to the invention of claim 3 is an inlet of a high-pressure turbine of a steam turbine system that guides steam that has finished work in a high-pressure turbine to an intermediate-pressure turbine and guides steam that has finished work in an intermediate-pressure turbine to a low-pressure turbine. Any three of the steam pressure, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine are detected, and the detected three steam pressures are converted into a steam pressure characteristic function {P (x) = A × b x + c} is substituted for P (x), and the number of turbine paragraphs at the steam pressure detection point position is substituted for x to obtain the constants a, b, and c of the steam pressure characteristic function. A steam pressure characteristic function is created by substituting the constants a, b, and c of the pressure characteristic function, and the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, and the low pressure turbine are added to x of the created steam pressure characteristic function. The steam pressure at the virtual detection point position is determined for the undetected steam pressure by substituting the number of turbine stages at the virtual detection point position of the undetected steam pressure among the steam pressure at the inlet and the outlet steam pressure of the low-pressure turbine. The efficiency of the steam turbine near the virtual detection point position is calculated based on the calculated metal temperature of the steam turbine near the virtual detection point position and the calculated steam pressure.

請求項4の発明に係わる蒸気タービン効率算出方法は、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうちいずれか3つを検出し、検出した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求め、求めた値を蒸気圧力特性関数の定数a、b、cに代入して蒸気圧力特性関数を作成し、作成した蒸気圧力特性関数のxに、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうち検出していない蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、検出していない蒸気圧力について仮想検出点位置での蒸気圧力を算出し、算出した蒸気圧力が仮設の蒸気圧力検出器で検出した仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正し、補正した蒸気圧力特性関数を用いて、検出していない蒸気圧力について仮想検出点位置での蒸気圧力を算出し、仮想検出点位置近傍の蒸気タービンのメタル温度及び算出した蒸気圧力に基づいて、仮想検出点位置近傍の蒸気タービンの効率を算出することを特徴とする。 A steam turbine efficiency calculating method according to a fourth aspect of the invention is an inlet of a high-pressure turbine of a steam turbine system that guides steam that has finished work in a high-pressure turbine to an intermediate-pressure turbine and guides steam that has finished work in an intermediate-pressure turbine to a low-pressure turbine. Any three of the steam pressure, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine are detected, and the detected three steam pressures are converted into a steam pressure characteristic function {P (x) = A × b x + c} is substituted for P (x), and the number of turbine paragraphs at the steam pressure detection point position is substituted for x to obtain the constants a, b, and c of the steam pressure characteristic function. A steam pressure characteristic function is created by substituting the constants a, b, and c of the pressure characteristic function, and the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, and the low pressure turbine are added to x of the created steam pressure characteristic function. The steam pressure at the virtual detection point position is determined for the undetected steam pressure by substituting the number of turbine stages at the virtual detection point position of the undetected steam pressure among the steam pressure at the inlet and the outlet steam pressure of the low-pressure turbine. Calculate and correct the steam pressure characteristic function so that the calculated steam pressure matches the steam pressure at the virtual detection point detected by the temporary steam pressure detector or the design value of the steam pressure, and use the corrected steam pressure characteristic function. The steam pressure at the virtual detection point position is calculated for the undetected steam pressure, and the steam turbine near the virtual detection point position is calculated based on the metal temperature of the steam turbine near the virtual detection point position and the calculated steam pressure. It is characterized by calculating efficiency.

請求項5の発明に係わる蒸気タービン圧力算出プログラムは、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の蒸気圧力を算出するためにコンピュータを、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうちいずれか3つを入力する手段、入力した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求める手段、求めた値を蒸気圧力特性関数のa、b、cに代入して蒸気圧力特性関数を作成する手段、及び作成した蒸気圧力特性関数のxに、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうち入力しなかった蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、入力しなかった蒸気圧力について仮想検出点位置での蒸気圧力を算出する手段として機能させることを特徴とする。 The steam turbine pressure calculation program according to the invention of claim 5 calculates the steam pressure of the steam turbine system that guides the steam that has finished the work in the high-pressure turbine to the intermediate-pressure turbine and guides the steam that has finished the work in the intermediate-pressure turbine to the low-pressure turbine. In order to do this, the computer inputs means for inputting three of the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine; Substituting the pressure into P (x) of the steam pressure characteristic function {P (x) = a × b x + c} and substituting the turbine stage number at the position of the steam pressure detection point into x, the constant a of the steam pressure characteristic function, Means for obtaining b, c, means for creating the steam pressure characteristic function by substituting the obtained values into a, b, c of the steam pressure characteristic function, and x for the created steam pressure characteristic function Substituting the number of turbine stages at the virtual detection point position of the steam pressure that was not input among the inlet steam pressure of the pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine, It is made to function as a means to calculate the steam pressure in the virtual detection point position about the steam pressure which was not input.

請求項6に係わる蒸気タービン圧力算出プログラムは、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の蒸気圧力を算出するためにコンピュータを、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうちいずれか3つを入力する手段、入力した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求める手段、求めた値を蒸気圧力特性関数のa、b、cに代入して蒸気圧力特性関数を作成する手段、及び作成した蒸気圧力特性関数のxに、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうち入力しなかった蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、入力しなかった蒸気圧力について仮想検出点位置での蒸気圧力を算出する手段、仮設の蒸気圧力検出器で検出した仮想検出点位置の蒸気圧力を入力する手段、及び算出した蒸気圧力が仮設の蒸気圧力検出器で検出した仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正する手段、及び補正した蒸気圧力特性関数を用いて、仮想検出点位置での蒸気圧力を算出する手段として機能させることを特徴とする。 The steam turbine pressure calculation program according to claim 6 is for calculating the steam pressure of the steam turbine system that guides the steam that has finished the work in the high-pressure turbine to the medium-pressure turbine and guides the steam that has finished the work in the medium-pressure turbine to the low-pressure turbine. A computer for inputting three of the inlet steam pressure of the high-pressure turbine, the inlet steam pressure of the medium-pressure turbine, the inlet steam pressure of the low-pressure turbine and the outlet steam pressure of the low-pressure turbine; Substituting P (x) of the steam pressure characteristic function {P (x) = a × b x + c} and substituting the turbine stage number at the position of the steam pressure detection point for x, constants a, b, means for obtaining c, means for substituting the obtained values into a, b, and c of the steam pressure characteristic function to create a steam pressure characteristic function, and x of the created steam pressure characteristic function Input by substituting the number of turbine stages at the virtual detection point position of the steam pressure that was not input among the inlet steam pressure of the bin, the inlet steam pressure of the medium pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine. Means for calculating the steam pressure at the virtual detection point position for the steam pressure that has not been performed, means for inputting the steam pressure at the virtual detection point position detected by the temporary steam pressure detector, and the calculated steam pressure is the temporary steam pressure Means for correcting the steam pressure characteristic function so as to match the steam pressure or the steam pressure design value at the virtual detection point position detected by the detector, and the steam pressure at the virtual detection point position using the corrected steam pressure characteristic function It is made to function as a means to calculate.

請求項7の発明に係わる蒸気タービン効率算出プログラムは、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統における蒸気タービンの効率を算出するためにコンピュータを、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうちいずれか3つを入力する手段、入力した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求める手段、求めた値を蒸気圧力特性関数のa、b、cに代入して蒸気圧力特性関数を作成する手段、作成した蒸気圧力特性関数のxに、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうち入力しなかった蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、入力しなかった蒸気圧力について仮想検出点位置での蒸気圧力を算出する手段、及び仮想検出点位置近傍の蒸気タービンのメタル温度及び算出した蒸気圧力に基づいて、仮想検出点位置近傍の蒸気タービンの効率を算出する手段として機能させることを特徴とする。 The steam turbine efficiency calculation program according to the invention of claim 7 is a steam turbine efficiency in a steam turbine system that guides steam that has finished work in a high-pressure turbine to an intermediate-pressure turbine and guides steam that has finished work in an intermediate-pressure turbine to a low-pressure turbine. The computer inputs a means for inputting any three of the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine. Substituting two steam pressures into P (x) of the steam pressure characteristic function {P (x) = a × b x + c} and substituting the number of turbine paragraphs at the steam pressure detection point position into x is a constant of the steam pressure characteristic function Means for obtaining a, b, c, means for creating a steam pressure characteristic function by substituting the obtained values into a, b, c of the steam pressure characteristic function, and the created steam pressure characteristic function The number of turbine paragraphs at the virtual detection point position of the steam pressure that was not input among the x steam of the high pressure turbine, the inlet steam pressure of the medium pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine Substituting, the means for calculating the steam pressure at the virtual detection point position for the steam pressure not input, and the virtual detection point position based on the metal temperature of the steam turbine near the virtual detection point position and the calculated steam pressure It functions as a means for calculating the efficiency of a nearby steam turbine.

請求項8の発明に係わる蒸気タービン効率算出プログラムは、高圧タービンで仕事を終えた蒸気を中圧タービンに導き中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統における蒸気タービンの効率を算出するためにコンピュータを、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうちいずれか3つを入力する手段、入力した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求める手段、求めた値を蒸気圧力特性関数のa、b、cに代入して蒸気圧力特性関数を作成する手段、作成した蒸気圧力特性関数のxに、高圧タービンの入口蒸気圧力、中圧タービンの入口蒸気圧力、低圧タービンの入口蒸気圧力及び低圧タービンの出口蒸気圧力のうち入力しなかった蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、入力しなかった蒸気圧力について仮想検出点位置での蒸気圧力を算出する手段、仮設の蒸気圧力検出器で検出した仮想検出点位置の蒸気圧力を入力する手段、及び算出した蒸気圧力が仮設の蒸気圧力検出器で検出した仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正する手段、補正した蒸気圧力特性関数を用いて、仮想検出点位置での蒸気圧力を算出する手段、及び仮想検出点位置近傍の蒸気タービンのメタル温度及び補正した蒸気圧力特性関数を用いて算出した蒸気圧力に基づいて、仮想検出点位置近傍の蒸気タービンの効率を算出する手段として機能させることを特徴とする。 The steam turbine efficiency calculation program according to the invention of claim 8 is an efficiency of a steam turbine in a steam turbine system that guides steam that has finished work in a high-pressure turbine to an intermediate-pressure turbine and guides steam that has finished work in an intermediate-pressure turbine to a low-pressure turbine. The computer inputs a means for inputting any three of the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine. Substituting two steam pressures into P (x) of the steam pressure characteristic function {P (x) = a × b x + c} and substituting the number of turbine paragraphs at the steam pressure detection point position into x is a constant of the steam pressure characteristic function Means for obtaining a, b, c, means for creating a steam pressure characteristic function by substituting the obtained values into a, b, c of the steam pressure characteristic function, and the created steam pressure characteristic function The number of turbine paragraphs at the virtual detection point position of the steam pressure that was not input among the x steam of the high pressure turbine, the inlet steam pressure of the medium pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine , Means for calculating the steam pressure at the virtual detection point position for the steam pressure not input, means for inputting the steam pressure at the virtual detection point position detected by the temporary steam pressure detector, and the calculated steam Means for correcting the steam pressure characteristic function so that the pressure coincides with the steam pressure at the virtual detection point position detected by the temporary steam pressure detector or the design value of the steam pressure, using the corrected steam pressure characteristic function, the virtual detection point Means for calculating the steam pressure at the position, and the steam pressure calculated using the steam turbine metal temperature near the virtual detection point position and the corrected steam pressure characteristic function. There are, characterized in that to function as means for calculating the efficiency of the steam turbine in the vicinity of the virtual detection point position.

本発明によれば、高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン系統のいずれかの蒸気タービンの入口または出口に蒸気圧力検出器や蒸気温度検出器の設置がない場合であっても適正に蒸気圧力や蒸気温度を取得でき、しかも蒸気タービンの効率を得ることできる。従って、蒸気タービンの効率の管理が可能となり、的確な保守やメンテナンスに役立てることができる。   According to the present invention, even if there is no installation of a steam pressure detector or a steam temperature detector at the inlet or outlet of any steam turbine of a steam turbine system including a high pressure turbine, an intermediate pressure turbine, and a low pressure turbine. The steam pressure and steam temperature can be properly acquired, and the efficiency of the steam turbine can be obtained. Therefore, the efficiency of the steam turbine can be managed, which can be used for accurate maintenance and maintenance.

図1は本発明の第1の実施の形態に係わる蒸気タービン圧力算出方法を示すフローチャート、図2は本発明の第1の実施の形態に係わる蒸気タービン圧力算出方法が適用される蒸気タービン系統の系統構成図、図3は蒸気タービン圧力算出方法を演算処理するコンピュータのブロック構成図である。   FIG. 1 is a flowchart showing a steam turbine pressure calculation method according to the first embodiment of the present invention, and FIG. 2 shows a steam turbine system to which the steam turbine pressure calculation method according to the first embodiment of the present invention is applied. FIG. 3 is a block diagram of a computer that performs arithmetic processing of the steam turbine pressure calculation method.

まず、本発明の蒸気タービン圧力算出方法が適用される蒸気タービン系統について説明する。図2(a)に示すように、蒸気タービン系統は、高圧タービン11、中圧タービン12及び低圧タービン13を有し、高圧タービン11と中圧タービン12との間に再熱器14を有している。高圧タービン11には蒸気発生装置で発生した蒸気が導入され、高圧タービン11で仕事を終えた蒸気は、再熱器14で過熱されて中圧タービン12に導かれる。そして、中圧タービン12で仕事を終えた蒸気は低圧タービン13に導かれ、低圧タービン13で仕事を終えた後に復水器に導かれる。   First, a steam turbine system to which the steam turbine pressure calculation method of the present invention is applied will be described. As shown in FIG. 2A, the steam turbine system includes a high pressure turbine 11, an intermediate pressure turbine 12, and a low pressure turbine 13, and a reheater 14 between the high pressure turbine 11 and the intermediate pressure turbine 12. ing. Steam generated by the steam generator is introduced into the high-pressure turbine 11, and the steam that has finished work in the high-pressure turbine 11 is superheated by the reheater 14 and guided to the intermediate-pressure turbine 12. The steam that has finished work in the intermediate pressure turbine 12 is guided to the low-pressure turbine 13, and after the work is completed in the low-pressure turbine 13, the steam is guided to the condenser.

このような蒸気タービン系統においては、通常、高圧タービン11の入口、高圧タービンの出口、中圧タービン12の入口、低圧タービンの出口にそれぞれ蒸気圧力検出器15a〜15d及び蒸気温度検出器16a〜16dが設けられ、中圧タービン12の排気部には蒸気圧力検出器や蒸気温度検出器が設けられていない。これは、中圧タービン12の排気部の蒸気圧力や蒸気温度は監視制御に用いられることがほとんどないからである。また、高圧タービン11や中圧タービン12の静翼にはメタル温度検出器17a、17bが設けられている。   In such a steam turbine system, steam pressure detectors 15a to 15d and steam temperature detectors 16a to 16d are usually provided at the inlet of the high pressure turbine 11, the outlet of the high pressure turbine, the inlet of the intermediate pressure turbine 12, and the outlet of the low pressure turbine, respectively. The steam pressure detector and the steam temperature detector are not provided in the exhaust part of the intermediate pressure turbine 12. This is because the steam pressure and steam temperature in the exhaust section of the intermediate pressure turbine 12 are rarely used for monitoring control. Further, metal temperature detectors 17 a and 17 b are provided on the stationary blades of the high-pressure turbine 11 and the intermediate-pressure turbine 12.

そして、高圧タービン11のタービン効率は、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気温度検出器16aで検出された高圧タービン11の入口蒸気温度、蒸気圧力検出器15b’で検出された高圧タービン11の出口蒸気圧力、蒸気温度検出器16b’で検出された高圧タービン11の出口蒸気温度に基づいて算出される。   The turbine efficiency of the high-pressure turbine 11 is determined based on the inlet steam pressure of the high-pressure turbine 11 detected by the steam pressure detector 15a, the inlet steam temperature of the high-pressure turbine 11 detected by the steam temperature detector 16a, and the steam pressure detector 15b ′. Is calculated on the basis of the outlet steam pressure of the high-pressure turbine 11 detected in step S1 and the outlet steam temperature of the high-pressure turbine 11 detected by the steam temperature detector 16b ′.

一方、中圧蒸気タービン12のタービン効率は、中圧タービン12の入口蒸気圧力、中圧タービン12の入口蒸気温度、中圧タービン12の出口蒸気圧力、中圧タービン12の出口蒸気温度に基づいて算出することになるが、図2(a)に示すように、中圧タービン12の出口蒸気圧力を検出するための蒸気圧力検出器や、中圧タービン12の出口蒸気温度を検出するための蒸気温度検出器が設けられていない。中圧タービン12の出口蒸気温度を検出するための蒸気温度検出器については、中圧タービン12の静翼にはメタル温度検出器17bが設けられているので、このメタル温度検出器17bで検出されたメタル温度を中圧タービン12の出口蒸気温度として用いることができるが、中圧タービン12の出口蒸気圧力を検出することができない。   On the other hand, the turbine efficiency of the intermediate pressure steam turbine 12 is based on the inlet steam pressure of the intermediate pressure turbine 12, the inlet steam temperature of the intermediate pressure turbine 12, the outlet steam pressure of the intermediate pressure turbine 12, and the outlet steam temperature of the intermediate pressure turbine 12. As shown in FIG. 2A, the steam pressure detector for detecting the outlet steam pressure of the intermediate pressure turbine 12 and the steam for detecting the outlet steam temperature of the intermediate pressure turbine 12 are calculated. No temperature detector is provided. The steam temperature detector for detecting the outlet steam temperature of the intermediate pressure turbine 12 is detected by the metal temperature detector 17b because the stationary blade of the intermediate pressure turbine 12 is provided with the metal temperature detector 17b. The metal temperature can be used as the outlet steam temperature of the intermediate pressure turbine 12, but the outlet steam pressure of the intermediate pressure turbine 12 cannot be detected.

そこで、本発明の第1の実施の形態に係わる蒸気タービン圧力算出方法は、このような蒸気タービン系統での蒸気圧力検出器が設けられていない箇所、例えば中圧タービン12の排気部での蒸気圧力を算出するものである。なお、図2(a)では、高圧タービン11と中圧タービン12との間に再熱器14が設けられているが、説明の便宜上、以下、図2(b)に示すように、再熱器14を有していない蒸気タービン系統について説明する。図2(b)に示す蒸気タービン系統では、再熱器14で蒸気が再過熱されることがないので、高圧タービン11の排気部の蒸気圧力が中圧タービン12の入口の蒸気圧力となる。また、図2(b)では、蒸気温度検出器16a〜16cやメタル温度検出器17a、17bの図示を省略している。これは、第1の実施の形態に係わる蒸気タービン圧力算出方法においては、蒸気温度検出器16a〜16cやメタル温度検出器17a、17bで検出された温度を必要としないからである。   Therefore, the steam turbine pressure calculation method according to the first embodiment of the present invention is a method in which the steam pressure detector in such a steam turbine system is not provided, for example, steam at the exhaust section of the intermediate pressure turbine 12. The pressure is calculated. In FIG. 2A, a reheater 14 is provided between the high-pressure turbine 11 and the intermediate-pressure turbine 12. However, for convenience of explanation, as shown in FIG. A steam turbine system that does not have the vessel 14 will be described. In the steam turbine system shown in FIG. 2B, the steam is not re-superheated by the reheater 14, so that the steam pressure at the exhaust portion of the high-pressure turbine 11 becomes the steam pressure at the inlet of the intermediate-pressure turbine 12. Moreover, in FIG.2 (b), illustration of the steam temperature detectors 16a-16c and the metal temperature detectors 17a and 17b is abbreviate | omitted. This is because the steam turbine pressure calculation method according to the first embodiment does not require the temperatures detected by the steam temperature detectors 16a to 16c and the metal temperature detectors 17a and 17b.

図2(b)において、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力はコンピュータ18に入力され、このコンピュータ18の演算処理により、蒸気圧力検出器が設けられていない箇所である中圧タービン12の排気部での蒸気圧力が算出される。   In FIG. 2B, the inlet steam pressure of the high-pressure turbine 11 detected by the steam pressure detector 15a, the inlet steam pressure of the intermediate-pressure turbine 12 detected by the steam pressure detector 15b, and the steam pressure detector 15c. The outlet steam pressure of the low-pressure turbine 13 is input to the computer 18, and the steam pressure at the exhaust part of the intermediate-pressure turbine 12, which is a location where the steam pressure detector is not provided, is calculated by calculation processing of the computer 18. .

図3は、コンピュータ18のブロック構成図である。蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力は、コンピュータ18のプロセス入力装置19で入力され、演算処理装置20で演算処理されて記憶装置21に記憶される。   FIG. 3 is a block diagram of the computer 18. The inlet steam pressure of the high pressure turbine 11 detected by the steam pressure detector 15a, the inlet steam pressure of the intermediate pressure turbine 12 detected by the steam pressure detector 15b, and the outlet steam of the low pressure turbine 13 detected by the steam pressure detector 15c. The pressure is input by the process input device 19 of the computer 18, arithmetically processed by the arithmetic processing device 20, and stored in the storage device 21.

演算処理装置20は記憶装置21に記憶した高圧タービン11の入口蒸気圧力、中圧タービン12の入口蒸気圧力、低圧タービン13の出口蒸気圧力に基づいて、高圧タービン11から低圧タービン13までのタービン段落数に対する蒸気圧力曲線を求め、求めた蒸気圧力曲線を記憶装置に記憶するとともに、必要に応じて入出力処理装置22を介し入出力装置23に出力する。そして、入出力装置23から入力された蒸気圧力検出器が設けられていない箇所の蒸気圧力を蒸気圧力曲線から求めて必要に応じて入出力装置23に出力する。   The arithmetic processing unit 20 is a turbine stage from the high pressure turbine 11 to the low pressure turbine 13 based on the inlet steam pressure of the high pressure turbine 11, the inlet steam pressure of the intermediate pressure turbine 12, and the outlet steam pressure of the low pressure turbine 13 stored in the storage device 21. The steam pressure curve for the number is obtained, the obtained steam pressure curve is stored in the storage device, and is output to the input / output device 23 via the input / output processing device 22 as necessary. And the steam pressure of the location where the steam pressure detector input from the input / output device 23 is not provided is calculated | required from a steam pressure curve, and it outputs to the input / output device 23 as needed.

すなわち、図1に示すように、演算処理装置20は、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力を入力し(S1)、これら入力した3つの蒸気圧力を下記の(1)式で示される蒸気圧力特性関数P(x)のP(x)に代入するとともに、xに蒸気圧力検出点位置のタービン段落数を代入して(1)式の定数a、b、cを求める(S2)。   That is, as shown in FIG. 1, the arithmetic processing unit 20 includes an inlet steam pressure of the high pressure turbine 11 detected by the steam pressure detector 15a, an inlet steam pressure of the intermediate pressure turbine 12 detected by the steam pressure detector 15b, The steam pressure at the outlet of the low-pressure turbine 13 detected by the steam pressure detector 15c is input (S1), and the three steam pressures thus input are converted to P of the steam pressure characteristic function P (x) expressed by the following equation (1). Substituting for (x) and substituting the number of turbine paragraphs at the steam pressure detection point for x, the constants a, b, and c in equation (1) are determined (S2).

P(x)=a×b+c …(1)
ここで、xに代入する蒸気圧力検出点位置のタービン段落数は、以下に示すとおりである。例えば、高圧タービン11が12段の段落数を有し、中圧タービン12が9段の段落数を有し、低圧タービン13が5段の段落数を有する場合には、高圧タービン11から低圧タービン13までのタービン段落数は26段である。そこで、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力に対応する段数は0段、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力に対応する段数は12段、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力に対応する段数は26段である。
P (x) = a × b x + c (1)
Here, the number of turbine stages at the steam pressure detection point position to be substituted for x is as follows. For example, when the high-pressure turbine 11 has 12 stages, the intermediate-pressure turbine 12 has 9 stages, and the low-pressure turbine 13 has 5 stages, the high-pressure turbine 11 to the low-pressure turbine The number of turbine stages up to 13 is 26. Therefore, the number of stages corresponding to the inlet steam pressure of the high-pressure turbine 11 detected by the steam pressure detector 15a is 0, and the number of stages corresponding to the inlet steam pressure of the intermediate-pressure turbine 12 detected by the steam pressure detector 15b is 12 stages. The number of stages corresponding to the outlet steam pressure of the low-pressure turbine 13 detected by the steam pressure detector 15c is 26 stages.

このように、これら入力した3つの蒸気圧力を(1)式のP(x)に代入するとともに、これら入力した3つの蒸気圧力に対応するタービン段落数をxに代入すると、3つの連立方程式ができるので、この連立方程式を解いて(1)式のa、b、cを求める。そして、求めた値を(1)式の定数a、b、cに代入して蒸気圧力特性関数P(x)を作成する(S3)。ステップS3において、実測された3つの蒸気圧力により定数a、b、cを定めて蒸気圧力特性関数P(x)を作成するようにしているのは、蒸気条件が異なる蒸気タービン系統に適用できるようにするためである。   In this way, when these three input steam pressures are substituted into P (x) in the equation (1), and the turbine stage number corresponding to these three input steam pressures is substituted into x, three simultaneous equations are obtained. Therefore, the simultaneous equations are solved to obtain a, b, and c in the equation (1). Then, the steam pressure characteristic function P (x) is created by substituting the obtained values into the constants a, b, and c in the equation (1) (S3). In step S3, the constants a, b and c are determined from the three actually measured steam pressures to create the steam pressure characteristic function P (x) so that it can be applied to steam turbine systems having different steam conditions. It is to make it.

次に、ステップS3で作成された蒸気圧力特性関数P(x)のxに、蒸気圧力検出器が設けられていない箇所であるタービン段落数を代入して、仮想検出点位置での蒸気圧力を算出する。例えば、蒸気圧力検出器が設けられていない箇所である中圧タービン12の排気部の蒸気圧力を求めるには、高圧タービン11が12段の段落数を有し、中圧タービン12が9段の段落数を有していることから、中圧タービン12の最終段落数である21をxに代入する。これにより、中圧タービン12の排気部の蒸気圧力が算出される(S4)。   Next, the steam pressure at the virtual detection point position is calculated by substituting the number of turbine stages where the steam pressure detector is not provided in x of the steam pressure characteristic function P (x) created in step S3. calculate. For example, in order to obtain the steam pressure of the exhaust part of the intermediate pressure turbine 12 where the steam pressure detector is not provided, the high pressure turbine 11 has 12 stages and the intermediate pressure turbine 12 has 9 stages. Since it has the number of paragraphs, 21 which is the number of last paragraphs of the intermediate pressure turbine 12 is substituted for x. Thereby, the steam pressure of the exhaust part of the intermediate pressure turbine 12 is calculated (S4).

図4は、ステップS3で求めた蒸気圧力特性関数P(x)の一例による特性曲線の特性図である。図4では、高圧タービン11から低圧タービン13までのタービン段落数が26段の蒸気タービン系統で、検出された高圧タービン11の入口蒸気圧力が約252000[hPa]、中圧タービン12の入力蒸気圧力が約39000[hPa]、低圧タービン13の出口蒸気圧力が約50[hPa]の場合を示している。なお、蒸気タービン系統が図2(a)に示したように再熱器14を有している場合は、再熱器14で過熱されたことに伴う圧力変化を補正することになる。その補正は中圧タービン12の入口蒸気圧力を基準とするので、高圧タービン11の入口蒸気圧力が補正されることになる。   FIG. 4 is a characteristic diagram of a characteristic curve according to an example of the steam pressure characteristic function P (x) obtained in step S3. In FIG. 4, the detected steam pressure of the high pressure turbine 11 is about 252000 [hPa] in the steam turbine system having 26 stages of turbine stages from the high pressure turbine 11 to the low pressure turbine 13, and the input steam pressure of the intermediate pressure turbine 12. Is about 39000 [hPa], and the outlet steam pressure of the low-pressure turbine 13 is about 50 [hPa]. In addition, when the steam turbine system has the reheater 14 as shown in FIG. 2A, the pressure change accompanying the overheating by the reheater 14 is corrected. Since the correction is based on the inlet steam pressure of the intermediate-pressure turbine 12, the inlet steam pressure of the high-pressure turbine 11 is corrected.

この蒸気圧力特性関数P(x)から仮想検出点位置での蒸気圧力を算出するには、求めたい仮想検出点位置の段落数をxに代入する。例えば、蒸気圧力検出器が設けられていない箇所である中圧タービン12の排気部の蒸気圧力を求めるには、中圧タービン12の最終段落数である21をxに代入する。これにより、中圧タービン12の排気部における蒸気圧力は、約7500[hPa]であることが算出できる。   In order to calculate the steam pressure at the virtual detection point position from the steam pressure characteristic function P (x), the number of paragraphs at the virtual detection point position to be obtained is substituted into x. For example, in order to obtain the steam pressure of the exhaust part of the intermediate pressure turbine 12 where the steam pressure detector is not provided, 21 which is the final paragraph number of the intermediate pressure turbine 12 is substituted for x. Thereby, it can be calculated that the steam pressure in the exhaust part of the intermediate pressure turbine 12 is about 7500 [hPa].

以上の説明では、中圧タービン12の排気部に蒸気圧力検出器が設けられていない場合について説明したが、図5に示すように、中圧タービン12の排気部には蒸気圧力検出器15dが設けられているが、高圧タービン11の排気部には蒸気圧力検出器が設けられていない場合にも、同様に高圧タービン11の排気部の蒸気圧力を算出できる。すなわち、高圧タービン11の入口蒸気圧力、中圧タービン12の出口蒸気圧力、低圧タービン13の出口蒸気圧力を検出して蒸気圧力特性関数を作成し、作成した蒸気圧力特性関数から求めたい検出位置をタービン段落数で指定してその箇所の蒸気圧力を求める。   In the above description, the case where the steam pressure detector is not provided in the exhaust portion of the intermediate pressure turbine 12 has been described. However, as shown in FIG. 5, the steam pressure detector 15 d is provided in the exhaust portion of the intermediate pressure turbine 12. Even if the steam pressure detector is not provided in the exhaust part of the high-pressure turbine 11, the steam pressure in the exhaust part of the high-pressure turbine 11 can be calculated similarly. That is, a steam pressure characteristic function is created by detecting the inlet steam pressure of the high pressure turbine 11, the outlet steam pressure of the intermediate pressure turbine 12, and the outlet steam pressure of the low pressure turbine 13, and the detection position to be obtained from the created steam pressure characteristic function is determined. Specify the number of turbine paragraphs to find the steam pressure at that point.

第1の実施の形態によれば、高圧タービン11、中圧タービン12及び低圧タービン13を備えた蒸気タービン系統のいずれかの蒸気タービンの入口または出口に蒸気圧力検出器15の設置がない場合であっても、その箇所の蒸気圧力を取得できる。   According to the first embodiment, when the steam pressure detector 15 is not installed at the inlet or outlet of any steam turbine of the steam turbine system including the high pressure turbine 11, the intermediate pressure turbine 12, and the low pressure turbine 13. Even if it exists, the steam pressure of the location can be acquired.

次に、本発明の第2の実施の形態について説明する。図6は本発明の第2の実施の形態に係わる蒸気タービン圧力算出方法を示すフローチャート、図7は本発明の第2の実施の形態に係わる蒸気タービン圧力算出方法が適用される蒸気タービン系統の系統構成図である。この第2の実施の形態は、第1の実施の形態に対し、蒸気圧力検出器を設置していない箇所に仮設の蒸気圧力検出器を設置し、蒸気圧力特性関数により算出した蒸気圧力が仮設の蒸気圧力検出器で検出した蒸気圧力または蒸気圧力設計値に一致するように、蒸気圧力特性関数を補正し、補正した蒸気圧力特性関数を用いて仮想検出点位置での蒸気圧力を算出するようにしたものである。   Next, a second embodiment of the present invention will be described. FIG. 6 is a flowchart showing a steam turbine pressure calculating method according to the second embodiment of the present invention, and FIG. 7 is a diagram of a steam turbine system to which the steam turbine pressure calculating method according to the second embodiment of the present invention is applied. It is a system configuration | structure figure. This second embodiment is different from the first embodiment in that a temporary steam pressure detector is installed at a location where no steam pressure detector is installed, and the steam pressure calculated by the steam pressure characteristic function is temporarily set. The steam pressure characteristic function is corrected so that it matches the steam pressure detected by the steam pressure detector of, or the steam pressure design value, and the steam pressure at the virtual detection point position is calculated using the corrected steam pressure characteristic function. It is a thing.

表1は、ある火力発電プラントにおいて、蒸気圧力検出器を設置していない箇所で仮設の蒸気圧力検出器により検出した蒸気圧力の測定値と、蒸気圧力特性関数を用いて計算した蒸気圧力の計算値との差(計測値−計算値)を示す表である。1年間に亘って32回の計測を行った場合を示しており、蒸気圧力検出器を設置していない箇所での蒸気圧力を計測するとともに、蒸気圧力検出器を設けている3箇所の蒸気圧力を計測して蒸気圧力特性関数から蒸気圧力検出器を設置していない箇所での蒸気圧力の計算値を求め、(計測値−計算値)を表としたものである。

Figure 0004433869
Table 1 shows the steam pressure measured using a temporary steam pressure detector at a location where no steam pressure detector is installed in a thermal power plant, and the steam pressure calculated using the steam pressure characteristic function. It is a table | surface which shows the difference (measured value-calculated value) with a value. This shows the case where 32 measurements were taken over the course of one year. The steam pressure was measured at the location where the steam pressure detector was not installed, and the steam pressure at three locations where the steam pressure detector was installed. And the calculated value of the steam pressure at the location where the steam pressure detector is not installed is obtained from the steam pressure characteristic function, and (measured value−calculated value) is tabulated.
Figure 0004433869

表1から分かるように、計測値と計算値との差分(計測値−計算値)の平均値は1228[hPa]であり、その標準偏差は22.6[hPa]である。計測値と計算値との差分(計測値−計算値)が無視できない場合には、蒸気圧力特性関数により算出した蒸気圧力が仮設の蒸気圧力検出器で検出した蒸気圧力に一致するように蒸気圧力特性関数を補正する。例えば、図4に示した蒸気圧力特性関数の段落数21の蒸気圧力値が計測値に一致するように平行移動させる。   As can be seen from Table 1, the average value of the difference between the measured value and the calculated value (measured value−calculated value) is 1228 [hPa], and its standard deviation is 22.6 [hPa]. When the difference between the measured value and the calculated value (measured value-calculated value) is not negligible, the steam pressure is calculated so that the steam pressure calculated by the steam pressure characteristic function matches the steam pressure detected by the temporary steam pressure detector. Correct the characteristic function. For example, the steam pressure value of paragraph number 21 of the steam pressure characteristic function shown in FIG. 4 is translated so as to coincide with the measured value.

図7において、図2(b)に対し、高圧タービン11の入口蒸気圧力を検出する蒸気圧力検出器15a、中圧タービン12の入口蒸気圧力を検出する蒸気圧力検出器15b、低圧タービン13の出口蒸気圧力を検出する蒸気圧力検出器15cに加えて、仮設の蒸気圧力検出器15Xが中圧タービン12の排気部に設けられている。仮設の蒸気圧力検出器15Xは蒸気タービン系統の定期点検時等に一時的に取り付けられるもので、通常運転時には取り外される。すなわち、蒸気圧力特性関数を求める際に、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力に加えて、仮設の蒸気圧力検出器15Xで検出された蒸気圧力をコンピュータ18に入力する。   In FIG. 7, compared to FIG. 2B, a steam pressure detector 15 a that detects the inlet steam pressure of the high-pressure turbine 11, a steam pressure detector 15 b that detects the inlet steam pressure of the intermediate-pressure turbine 12, and the outlet of the low-pressure turbine 13. In addition to the steam pressure detector 15 c that detects the steam pressure, a temporary steam pressure detector 15 X is provided in the exhaust section of the intermediate pressure turbine 12. The temporary steam pressure detector 15X is temporarily attached during regular inspection of the steam turbine system, and is removed during normal operation. That is, when obtaining the steam pressure characteristic function, the inlet steam pressure of the high pressure turbine 11 detected by the steam pressure detector 15a, the inlet steam pressure of the intermediate pressure turbine 12 detected by the steam pressure detector 15b, and the steam pressure detector. In addition to the outlet steam pressure of the low-pressure turbine 13 detected at 15c, the steam pressure detected by the temporary steam pressure detector 15X is input to the computer 18.

コンピュータ18では、図6に示すように、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力を入力し(S1)、これら入力した3つの蒸気圧力に基づいて(1)式で示される蒸気圧力特性関数P(x)の定数a、b、cを求める(S2)。そして、蒸気圧力特性関数P(x)を作成し(S3)、作成された蒸気圧力特性関数P(x)に基づいて、蒸気圧力検出器の設置がない中圧タービン12の排気部の蒸気圧力を算出する(S4)。   In the computer 18, as shown in FIG. 6, the inlet steam pressure of the high pressure turbine 11 detected by the steam pressure detector 15a, the inlet steam pressure of the intermediate pressure turbine 12 detected by the steam pressure detector 15b, and the steam pressure detector. The outlet steam pressure of the low-pressure turbine 13 detected in 15c is input (S1), and constants a, b, and b of the steam pressure characteristic function P (x) expressed by the equation (1) based on the three input steam pressures are input. c is obtained (S2). Then, a steam pressure characteristic function P (x) is created (S3), and based on the created steam pressure characteristic function P (x), the steam pressure of the exhaust section of the intermediate pressure turbine 12 where no steam pressure detector is installed. Is calculated (S4).

さらに、ステップS4で算出した蒸気圧力が仮設の蒸気圧力検出器15Xで検出した仮想検出点位置の蒸気圧力に一致するように蒸気圧力特性関数を補正し(S5)、補正した蒸気圧力特性関数を用いて、蒸気圧力検出器の設置がない中圧タービン12の排気部の蒸気圧力を算出する(S6)。   Further, the steam pressure characteristic function is corrected so that the steam pressure calculated in step S4 matches the steam pressure at the virtual detection point position detected by the temporary steam pressure detector 15X (S5), and the corrected steam pressure characteristic function is By using this, the steam pressure in the exhaust part of the intermediate pressure turbine 12 without the steam pressure detector is calculated (S6).

ここで、蒸気圧力特性関数の補正は、例えば、算出した蒸気圧力と仮設の蒸気圧力検出器15Xで検出した蒸気圧力との差分を算出し、蒸気圧力特性関数での仮想検出点位置における蒸気圧力が仮設の蒸気圧力検出器15Xで検出した蒸気圧力になるように、その差分だけ蒸気圧力特性関数で定まる特性曲線を平行移動させる。これにより、蒸気圧力特性関数で定まる仮想検出点位置での蒸気圧力は実測値に一致するので、蒸気圧力検出器を設置していない箇所での蒸気圧力の算出がより正確に行える。   Here, the correction of the steam pressure characteristic function is performed, for example, by calculating the difference between the calculated steam pressure and the steam pressure detected by the temporary steam pressure detector 15X, and the steam pressure at the virtual detection point position in the steam pressure characteristic function. The characteristic curve determined by the steam pressure characteristic function is translated by the difference so that becomes the steam pressure detected by the temporary steam pressure detector 15X. Thereby, the steam pressure at the virtual detection point position determined by the steam pressure characteristic function matches the actual measurement value, so that the steam pressure can be calculated more accurately at the location where the steam pressure detector is not installed.

以上の説明では、仮設の蒸気圧力検出器15Xで検出した仮想検出点位置の蒸気圧力に一致するように蒸気圧力特性関数を補正するようにしたが、蒸気圧力設計値を用いるようにしても良い。また、中圧タービン12の排気部に蒸気圧力検出器が設けられていない場合について説明したが、図8に示すように、中圧タービン12の排気部には蒸気圧力検出器15dが設けられているが、高圧タービン11の排気部には蒸気圧力検出器が設けられていない場合にも、同様に高圧タービン11の排気部に仮設の蒸気圧力検出器15Xを設けて蒸気圧力特性関数を補正できる。   In the above description, the steam pressure characteristic function is corrected so as to coincide with the steam pressure at the virtual detection point position detected by the temporary steam pressure detector 15X, but the steam pressure design value may be used. . Moreover, although the case where the steam pressure detector was not provided in the exhaust part of the intermediate pressure turbine 12 was demonstrated, as shown in FIG. 8, the steam pressure detector 15d is provided in the exhaust part of the intermediate pressure turbine 12. However, even when the steam pressure detector is not provided in the exhaust part of the high-pressure turbine 11, the steam pressure characteristic function can be corrected similarly by providing a temporary steam pressure detector 15 X in the exhaust part of the high-pressure turbine 11. .

すなわち、高圧タービン11の入口蒸気圧力、中圧タービン12の出口蒸気圧力、低圧タービン13の出口蒸気圧力を検出して蒸気圧力特性関数を作成し、作成した蒸気圧力特性関数から求めたい検出位置をタービン段落数で指定してその箇所の蒸気圧力を求め、さらに、算出した蒸気圧力が仮設の蒸気圧力検出器15Xで検出した仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正し、補正した蒸気圧力特性関数を用いて、蒸気圧力検出器が設置されていない高圧タービン11の排気部の蒸気圧力を算出する。   That is, a steam pressure characteristic function is created by detecting the inlet steam pressure of the high pressure turbine 11, the outlet steam pressure of the intermediate pressure turbine 12, and the outlet steam pressure of the low pressure turbine 13, and the detection position to be obtained from the created steam pressure characteristic function is determined. The steam pressure is determined by specifying the number of turbine stages, and the steam pressure is calculated so that the calculated steam pressure matches the steam pressure at the virtual detection point detected by the temporary steam pressure detector 15X or the steam pressure design value. The pressure characteristic function is corrected, and the steam pressure in the exhaust part of the high-pressure turbine 11 in which the steam pressure detector is not installed is calculated using the corrected steam pressure characteristic function.

第2の実施の形態によれば、仮設の蒸気圧力検出器15Xを設けて蒸気圧力特性関数を補正し、補正された蒸気圧力特性関数を用いて、蒸気圧力検出器15の設置がない箇所の蒸気圧力を取得するので、蒸気圧力検出器15の設置がない箇所の蒸気圧力をより正確に算出できる。   According to the second embodiment, the temporary steam pressure detector 15X is provided to correct the steam pressure characteristic function, and the corrected steam pressure characteristic function is used to correct the location where the steam pressure detector 15 is not installed. Since the vapor pressure is acquired, the vapor pressure at a location where the vapor pressure detector 15 is not installed can be calculated more accurately.

次に、本発明の第3の実施の形態について説明する。図9は本発明の第3の実施の形態に係わる蒸気タービン効率算出方法を示すフローチャート、図10は本発明の第3の実施の形態に係わる蒸気タービン効率算出方法が適用される蒸気タービン系統の系統構成図である。この第3の実施の形態は、第1の実施の形態で算出した蒸気圧力検出器15の設置がない箇所の蒸気圧力に基づいて、蒸気圧力検出器15や蒸気温度検出器16の設置がない箇所の蒸気タービンの効率を算出するようにしたものである。   Next, a third embodiment of the present invention will be described. FIG. 9 is a flowchart showing a steam turbine efficiency calculation method according to the third embodiment of the present invention, and FIG. 10 shows a steam turbine system to which the steam turbine efficiency calculation method according to the third embodiment of the present invention is applied. It is a system configuration | structure figure. In the third embodiment, the steam pressure detector 15 and the steam temperature detector 16 are not installed based on the steam pressure at the location where the steam pressure detector 15 calculated in the first embodiment is not installed. The efficiency of the steam turbine at the location is calculated.

図10において、図2(b)に対し、コンピュータ18には、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力に加え、中圧タービン12の静翼のメタル温度検出器17bからのメタル温度が入力されている。   In FIG. 10, in contrast to FIG. 2B, the computer 18 includes an inlet steam pressure of the high-pressure turbine 11 detected by the steam pressure detector 15a and an inlet steam of the intermediate-pressure turbine 12 detected by the steam pressure detector 15b. In addition to the outlet steam pressure of the low-pressure turbine 13 detected by the pressure and steam pressure detector 15c, the metal temperature from the metal temperature detector 17b of the stationary blade of the intermediate-pressure turbine 12 is input.

コンピュータ18では、図9に示すように、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力、さらにメタル温度検出器17bで検出された中圧タービン12のメタル温度を入力し(S1)、入力した3つの蒸気圧力に基づいて(1)式で示される蒸気圧力特性関数P(x)の定数a、b、cを求める(S2)。そして、蒸気圧力特性関数P(x)を作成し(S3)、作成された蒸気圧力特性関数P(x)に基づいて蒸気圧力検出器の設置がない中圧タービン12の排気部の蒸気圧力を算出する(S4)。さらに、中圧タービン12の静翼のメタル温度をメタル温度検出器17bから取得し、そのメタル温度を中圧蒸気タービンの出口蒸気温度として使用する。すなわち、メタル温度検出器17bから取得したメタル温度及びステップS4で算出した蒸気圧力に基づいて、蒸気圧力検出器及び蒸気温度検出器の設置がない中圧タービン12の効率を算出する(S5)。   In the computer 18, as shown in FIG. 9, the inlet steam pressure of the high pressure turbine 11 detected by the steam pressure detector 15a, the inlet steam pressure of the intermediate pressure turbine 12 detected by the steam pressure detector 15b, and the steam pressure detector. The outlet steam pressure of the low-pressure turbine 13 detected at 15c and the metal temperature of the intermediate-pressure turbine 12 detected by the metal temperature detector 17b are input (S1), and the formula (1) is based on the input three steam pressures. The constants a, b, and c of the steam pressure characteristic function P (x) indicated by (2) are obtained (S2). Then, a steam pressure characteristic function P (x) is created (S3), and based on the created steam pressure characteristic function P (x), the steam pressure of the exhaust section of the intermediate pressure turbine 12 where no steam pressure detector is installed is determined. Calculate (S4). Furthermore, the metal temperature of the stationary blade of the intermediate pressure turbine 12 is acquired from the metal temperature detector 17b, and the metal temperature is used as the outlet steam temperature of the intermediate pressure steam turbine. That is, based on the metal temperature acquired from the metal temperature detector 17b and the steam pressure calculated in step S4, the efficiency of the intermediate pressure turbine 12 without the steam pressure detector and the steam temperature detector is calculated (S5).

以上の説明では、中圧タービン12の排気部に蒸気圧力検出器が設けられていない場合について説明したが、図11に示すように、中圧タービン12の排気部には蒸気圧力検出器15dが設けられているが、高圧タービン11の排気部には蒸気圧力検出器が設けられていない場合にも、同様に高圧タービン11の効率を計算できる。すなわち、高圧タービン11の入口蒸気圧力、中圧タービン12の出口蒸気圧力、低圧タービン13の出口蒸気圧力を検出して蒸気圧力特性関数を作成し、作成した蒸気圧力特性関数から求めたい検出位置をタービン段落数で指定してその箇所の蒸気圧力を求め、さらに、高圧タービン11のメタル温度検出器17aからのメタル温度を取得し、そのメタル温度及び算出した蒸気圧力に基づいて高圧タービン11の効率を算出する。   In the above description, the case where the steam pressure detector is not provided in the exhaust part of the intermediate pressure turbine 12 has been described. However, as shown in FIG. 11, the steam pressure detector 15 d is provided in the exhaust part of the intermediate pressure turbine 12. Although provided, the efficiency of the high-pressure turbine 11 can be calculated in the same manner even when the steam pressure detector is not provided in the exhaust portion of the high-pressure turbine 11. That is, a steam pressure characteristic function is created by detecting the inlet steam pressure of the high pressure turbine 11, the outlet steam pressure of the intermediate pressure turbine 12, and the outlet steam pressure of the low pressure turbine 13, and the detection position to be obtained from the created steam pressure characteristic function is determined. The steam pressure at that location is determined by designating the number of turbine stages, and the metal temperature from the metal temperature detector 17a of the high-pressure turbine 11 is obtained, and the efficiency of the high-pressure turbine 11 based on the metal temperature and the calculated steam pressure. Is calculated.

第3の実施の形態によれば、高圧タービン11、中圧タービン12及び低圧タービン13を備えた蒸気タービン系統のいずれかの蒸気タービンの入口または出口に蒸気圧力検出器15や蒸気温度検出器16の設置がない場合であっても、その箇所の近傍の蒸気タービンの効率を算出することができる。   According to the third embodiment, the steam pressure detector 15 or the steam temperature detector 16 is provided at the inlet or outlet of any steam turbine of the steam turbine system including the high pressure turbine 11, the intermediate pressure turbine 12, and the low pressure turbine 13. Even if there is no installation, the efficiency of the steam turbine in the vicinity of the location can be calculated.

次に、本発明の第4の実施の形態を説明する。図12は本発明の第4の実施の形態に係わる蒸気タービン効率算出方法を示すフローチャート、図13は本発明の第4の実施の形態に係わる蒸気タービン効率算出方法が適用される蒸気タービン系統の系統構成図である。この第4の実施の形態は、第3の実施の形態に対し、蒸気圧力検出器を設置していない箇所に仮設の蒸気圧力検出器を設置し、蒸気圧力特性関数により算出した蒸気圧力が仮設の蒸気圧力検出器で検出した蒸気圧力に一致するように、蒸気圧力特性関数を補正し、補正した蒸気圧力特性関数を用いて仮想検出点位置での蒸気圧力を算出し、その蒸気圧力を用いて蒸気タービンの効率を計算するようにしたものである。   Next, a fourth embodiment of the present invention will be described. FIG. 12 is a flowchart showing a steam turbine efficiency calculation method according to the fourth embodiment of the present invention, and FIG. 13 shows a steam turbine system to which the steam turbine efficiency calculation method according to the fourth embodiment of the present invention is applied. It is a system configuration | structure figure. This fourth embodiment is different from the third embodiment in that a temporary steam pressure detector is installed at a location where no steam pressure detector is installed, and the steam pressure calculated by the steam pressure characteristic function is temporarily set. Correct the steam pressure characteristic function so that it matches the steam pressure detected by the steam pressure detector, calculate the steam pressure at the virtual detection point using the corrected steam pressure characteristic function, and use the steam pressure. In this way, the efficiency of the steam turbine is calculated.

図13において、図10に対し、仮設の蒸気圧力検出器15Xが中圧タービン12の排気部に設けられている。仮設の蒸気圧力検出器15Xは蒸気タービン系統の定期点検時等に一時的に取り付けられるもので、通常運転時には取り外される。   In FIG. 13, a temporary steam pressure detector 15 </ b> X is provided in the exhaust section of the intermediate pressure turbine 12 with respect to FIG. 10. The temporary steam pressure detector 15X is temporarily attached at the time of periodic inspection of the steam turbine system and is removed during normal operation.

すなわち、蒸気圧力特性関数を求める際に、コンピュータ18には、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力、中圧タービン12の静翼のメタル温度検出器17bからのメタル温度に加え、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力に加えて、仮設の蒸気圧力検出器15Xで検出された蒸気圧力が入力される。   That is, when obtaining the steam pressure characteristic function, the computer 18 includes the inlet steam pressure of the high pressure turbine 11 detected by the steam pressure detector 15a and the inlet steam pressure of the intermediate pressure turbine 12 detected by the steam pressure detector 15b. In addition to the outlet steam pressure of the low pressure turbine 13 detected by the steam pressure detector 15c and the metal temperature from the metal temperature detector 17b of the stationary blade of the intermediate pressure turbine 12, the high pressure turbine 11 detected by the steam pressure detector 15a. In addition to the inlet steam pressure of the intermediate pressure turbine 12 detected by the steam pressure detector 15b, the outlet steam pressure of the low pressure turbine 13 detected by the steam pressure detector 15c, the temporary steam pressure detector 15X The steam pressure detected at is input.

コンピュータ18では、図12に示すように、蒸気圧力検出器15aで検出された高圧タービン11の入口蒸気圧力、蒸気圧力検出器15bで検出された中圧タービン12の入口蒸気圧力、蒸気圧力検出器15cで検出された低圧タービン13の出口蒸気圧力、さらにメタル温度検出器17bで検出された中圧タービン12のメタル温度を入力し(S1)、入力した3つの蒸気圧力に基づいて(1)式で示される蒸気圧力特性関数P(x)の定数a、b、cを求める(S2)。そして、蒸気圧力特性関数P(x)を作成し(S3)、作成された蒸気圧力特性関数P(x)に基づいて蒸気圧力検出器の設置がない中圧タービン12の排気部の蒸気圧力を算出する(S4)。   In the computer 18, as shown in FIG. 12, the inlet steam pressure of the high pressure turbine 11 detected by the steam pressure detector 15a, the inlet steam pressure of the intermediate pressure turbine 12 detected by the steam pressure detector 15b, and the steam pressure detector. The outlet steam pressure of the low-pressure turbine 13 detected at 15c and the metal temperature of the intermediate-pressure turbine 12 detected by the metal temperature detector 17b are input (S1), and the formula (1) is based on the input three steam pressures. The constants a, b, and c of the steam pressure characteristic function P (x) indicated by (2) are obtained (S2). Then, a steam pressure characteristic function P (x) is created (S3), and based on the created steam pressure characteristic function P (x), the steam pressure of the exhaust section of the intermediate pressure turbine 12 where no steam pressure detector is installed is determined. Calculate (S4).

さらに、ステップS4で算出した蒸気圧力が仮設の蒸気圧力検出器15Xで検出した仮想検出点位置の蒸気圧力に一致するように蒸気圧力特性関数を補正し(S5)、補正した蒸気圧力特性関数を用いて、蒸気圧力検出器の設置がない中圧タービン12の排気部の蒸気圧力を算出する(S6)。そして、中圧タービン12の静翼のメタル温度をメタル温度検出器17bから取得し、そのメタル温度を中圧蒸気タービンの出口蒸気温度として使用する。すなわち、メタル温度検出器17bから取得したメタル温度及びステップS6で補正された蒸気圧力特性関数により算出された蒸気圧力に基づいて、蒸気圧力検出器及び蒸気温度検出器の設置がない中圧タービン12の効率を算出する(S7)。   Further, the steam pressure characteristic function is corrected so that the steam pressure calculated in step S4 matches the steam pressure at the virtual detection point position detected by the temporary steam pressure detector 15X (S5), and the corrected steam pressure characteristic function is The steam pressure of the exhaust part of the intermediate pressure turbine 12 without the steam pressure detector is calculated (S6). And the metal temperature of the stationary blade of the intermediate pressure turbine 12 is acquired from the metal temperature detector 17b, and the metal temperature is used as the outlet steam temperature of the intermediate pressure steam turbine. That is, based on the metal temperature acquired from the metal temperature detector 17b and the steam pressure calculated by the steam pressure characteristic function corrected in step S6, the intermediate pressure turbine 12 without the steam pressure detector and the steam temperature detector installed. Is calculated (S7).

以上の説明では、仮設の蒸気圧力検出器15Xで検出した仮想検出点位置の蒸気圧力に一致するように蒸気圧力特性関数を補正するようにしたが、蒸気圧力設計値を用いるようにしても良い。また、中圧タービン12の排気部に蒸気圧力検出器が設けられていない場合について説明したが、図14に示すように、中圧タービン12の排気部には蒸気圧力検出器15dが設けられているが、高圧タービン11の排気部には蒸気圧力検出器が設けられていない場合にも、同様に高圧タービン11の効率を計算できる。   In the above description, the steam pressure characteristic function is corrected so as to coincide with the steam pressure at the virtual detection point position detected by the temporary steam pressure detector 15X, but the steam pressure design value may be used. . Moreover, although the case where the steam pressure detector was not provided in the exhaust part of the intermediate pressure turbine 12 was demonstrated, as shown in FIG. 14, the steam pressure detector 15d is provided in the exhaust part of the intermediate pressure turbine 12. However, the efficiency of the high-pressure turbine 11 can be calculated in the same manner even when the steam pressure detector is not provided in the exhaust portion of the high-pressure turbine 11.

すなわち、高圧タービン11の入口蒸気圧力、中圧タービン12の出口蒸気圧力、低圧タービン13の出口蒸気圧力を検出して蒸気圧力特性関数を作成し、作成した蒸気圧力特性関数から求めたい検出位置をタービン段落数で指定してその箇所の蒸気圧力を求め、さらに、算出した蒸気圧力が仮設の蒸気圧力検出器15Xで検出した仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正し、補正した蒸気圧力特性関数を用いて、蒸気圧力検出器が設置されていない高圧タービン11の排気部の蒸気圧力を算出する。そして、高圧タービン11のメタル温度検出器17aからのメタル温度を取得し、そのメタル温度及び算出した蒸気圧力に基づいて高圧タービン11の効率を算出する。   That is, a steam pressure characteristic function is created by detecting the inlet steam pressure of the high pressure turbine 11, the outlet steam pressure of the intermediate pressure turbine 12, and the outlet steam pressure of the low pressure turbine 13, and the detection position to be obtained from the created steam pressure characteristic function is determined. The steam pressure is determined by specifying the number of turbine stages, and the steam pressure is calculated so that the calculated steam pressure matches the steam pressure at the virtual detection point detected by the temporary steam pressure detector 15X or the steam pressure design value. The pressure characteristic function is corrected, and the steam pressure in the exhaust section of the high-pressure turbine 11 in which the steam pressure detector is not installed is calculated using the corrected steam pressure characteristic function. And the metal temperature from the metal temperature detector 17a of the high pressure turbine 11 is acquired, and the efficiency of the high pressure turbine 11 is calculated based on the metal temperature and the calculated steam pressure.

第4の実施の形態によれば、高圧タービン11、中圧タービン12及び低圧タービン13を備えた蒸気タービン系統のいずれかの蒸気タービンの入口または出口に蒸気圧力検出器15や蒸気温度検出器16の設置がない場合であっても、その箇所の近傍の蒸気タービンの効率をより正確に算出することができる。   According to the fourth embodiment, the steam pressure detector 15 or the steam temperature detector 16 is provided at the inlet or outlet of any steam turbine of the steam turbine system including the high pressure turbine 11, the intermediate pressure turbine 12, and the low pressure turbine 13. Even if there is no installation, the efficiency of the steam turbine in the vicinity of the location can be calculated more accurately.

前述した各実施の形態において記載した手法は、コンピュータ18に実行させることのできるプログラムとして作成できる。そして、そのプログラムを記憶媒体に記憶し各装置に応用したり、通信媒体により伝送して各種装置に適用することも可能である。   The method described in each embodiment described above can be created as a program that can be executed by the computer 18. Then, the program can be stored in a storage medium and applied to each device, or transmitted by a communication medium and applied to various devices.

本発明の第1の実施の形態に係わる蒸気タービン圧力算出方法を示すフローチャート。The flowchart which shows the steam turbine pressure calculation method concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態に係わる蒸気タービン圧力算出方法が適用される蒸気タービン系統の系統構成図。1 is a system configuration diagram of a steam turbine system to which a steam turbine pressure calculation method according to a first embodiment of the present invention is applied. 本発明の蒸気タービン圧力算出方法を演算処理するコンピュータのブロック構成図。The block block diagram of the computer which arithmetically processes the steam turbine pressure calculation method of this invention. 本発明で使用される蒸気圧力特性関数P(x)の一例による特性曲線の特性図。The characteristic view of the characteristic curve by an example of the steam pressure characteristic function P (x) used by this invention. 本発明の第1の実施の形態に係わる蒸気タービン圧力算出方法が適用される蒸気タービン系統の他の一例の系統構成図。The system configuration | structure figure of another example of the steam turbine system | strain with which the steam turbine pressure calculation method concerning the 1st Embodiment of this invention is applied. 本発明の第2の実施の形態に係わる蒸気タービン圧力算出方法を示すフローチャート。The flowchart which shows the steam turbine pressure calculation method concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係わる蒸気タービン圧力算出方法が適用される蒸気タービン系統の系統構成図。The system block diagram of the steam turbine system | strain with which the steam turbine pressure calculation method concerning the 2nd Embodiment of this invention is applied. 本発明の第2の実施の形態に係わる蒸気タービン圧力算出方法が適用される蒸気タービン系統の他の一例の系統構成図。The system block diagram of another example of the steam turbine system | strain with which the steam turbine pressure calculation method concerning the 2nd Embodiment of this invention is applied. 本発明の第3の実施の形態に係わる蒸気タービン効率算出方法を示すフローチャート。The flowchart which shows the steam turbine efficiency calculation method concerning the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係わる蒸気タービン効率算出方法が適用される蒸気タービン系統の系統構成図。The system block diagram of the steam turbine system | strain with which the steam turbine efficiency calculation method concerning the 3rd Embodiment of this invention is applied. 本発明の第3の実施の形態に係わる蒸気タービン効率算出方法が適用される蒸気タービン系統の他の一例の系統構成図。The system block diagram of another example of the steam turbine system | strain with which the steam turbine efficiency calculation method concerning the 3rd Embodiment of this invention is applied. 本発明の第4の実施の形態に係わる蒸気タービン効率算出方法を示すフローチャート。The flowchart which shows the steam turbine efficiency calculation method concerning the 4th Embodiment of this invention. 本発明の第4の実施の形態に係わる蒸気タービン効率算出方法が適用される蒸気タービン系統の系統構成図。The system block diagram of the steam turbine system | strain with which the steam turbine efficiency calculation method concerning the 4th Embodiment of this invention is applied. 本発明の第4の実施の形態に係わる蒸気タービン効率算出方法が適用される蒸気タービン系統の他の一例の系統構成図。The system configuration | structure figure of another example of the steam turbine system | strain with which the steam turbine efficiency calculation method concerning the 4th Embodiment of this invention is applied.

符号の説明Explanation of symbols

11…高圧タービン、12…中圧タービン、13…低圧タービン、14…再熱器、15…蒸気圧力検出器、16…蒸気温度検出器、17…メタル温度検出器、18…コンピュータ DESCRIPTION OF SYMBOLS 11 ... High pressure turbine, 12 ... Medium pressure turbine, 13 ... Low pressure turbine, 14 ... Reheater, 15 ... Steam pressure detector, 16 ... Steam temperature detector, 17 ... Metal temperature detector, 18 ... Computer

Claims (8)

高圧タービンで仕事を終えた蒸気を中圧タービンに導き前記中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうちいずれか3つを検出し、
検出した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求め、
求めた値を蒸気圧力特性関数の定数a、b、cに代入して蒸気圧力特性関数を作成し、
作成した蒸気圧力特性関数のxに、前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうち検出していない蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、仮想検出点位置での蒸気圧力を算出することを特徴とする蒸気タービン圧力算出方法。
Inlet steam pressure of the high-pressure turbine of the steam turbine system that guides steam that has finished work in the high-pressure turbine to an intermediate-pressure turbine and that directs steam that has finished work in the intermediate-pressure turbine to a low-pressure turbine, inlet steam pressure of the intermediate-pressure turbine, Detecting any three of the inlet steam pressure of the low-pressure turbine and the outlet steam pressure of the low-pressure turbine;
The detected three steam pressures are substituted into P (x) of the steam pressure characteristic function {P (x) = a × b x + c}, and the number of turbine stages at the steam pressure detection point position is substituted into x to obtain the steam pressure characteristics. Find the constants a, b, c of the function,
Substituting the obtained values into the constants a, b, and c of the steam pressure characteristic function to create a steam pressure characteristic function,
In the generated steam pressure characteristic function x, the steam pressure not detected among the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine. A steam turbine pressure calculation method, wherein the steam pressure at the virtual detection point position is calculated by substituting the number of turbine paragraphs at the virtual detection point position.
高圧タービンで仕事を終えた蒸気を中圧タービンに導き前記中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうちいずれか3つを検出し、
検出した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求め、
求めた値を蒸気圧力特性関数の定数a、b、cに代入して蒸気圧力特性関数を作成し、
作成した蒸気圧力特性関数式のxに、前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうち検出していない蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、検出していない蒸気圧力について仮想検出点位置での蒸気圧力を算出し、
前記算出した蒸気圧力が仮設の蒸気圧力検出器で検出した前記仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正し、
補正した蒸気圧力特性関数を用いて、仮想検出点位置での蒸気圧力を算出することを特徴とする蒸気タービン圧力算出方法。
Inlet steam pressure of the high-pressure turbine of the steam turbine system that guides steam that has finished work in the high-pressure turbine to an intermediate-pressure turbine and that directs steam that has finished work in the intermediate-pressure turbine to a low-pressure turbine, inlet steam pressure of the intermediate-pressure turbine, Detecting any three of the inlet steam pressure of the low-pressure turbine and the outlet steam pressure of the low-pressure turbine;
The detected three steam pressures are substituted into P (x) of the steam pressure characteristic function {P (x) = a × b x + c}, and the number of turbine stages at the steam pressure detection point position is substituted into x to obtain the steam pressure characteristics. Find the constants a, b, c of the function,
Substituting the obtained values into the constants a, b, and c of the steam pressure characteristic function to create a steam pressure characteristic function,
In the created steam pressure characteristic function expression x, the steam not detected among the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine Substituting the number of turbine stages at the virtual detection point position of pressure, and calculating the steam pressure at the virtual detection point position for the steam pressure that is not detected,
Correcting the steam pressure characteristic function so that the calculated steam pressure matches the steam pressure or steam pressure design value of the virtual detection point position detected by a temporary steam pressure detector;
A steam turbine pressure calculation method, wherein a steam pressure at a virtual detection point position is calculated using a corrected steam pressure characteristic function.
高圧タービンで仕事を終えた蒸気を中圧タービンに導き前記中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうちいずれか3つを検出し、
検出した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求め、
求めた値を蒸気圧力特性関数の定数a、b、cに代入して蒸気圧力特性関数を作成し、
作成した蒸気圧力特性関数のxに、前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうち検出していない蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、検出していない蒸気圧力について仮想検出点位置での蒸気圧力を算出し、
仮想検出点位置近傍の蒸気タービンのメタル温度及び算出した蒸気圧力に基づいて、仮想検出点位置近傍の蒸気タービンの効率を算出することを特徴とする蒸気タービン効率算出方法。
Inlet steam pressure of the high-pressure turbine of the steam turbine system that guides steam that has finished work in the high-pressure turbine to an intermediate-pressure turbine and that directs steam that has finished work in the intermediate-pressure turbine to a low-pressure turbine, inlet steam pressure of the intermediate-pressure turbine, Detecting any three of the inlet steam pressure of the low-pressure turbine and the outlet steam pressure of the low-pressure turbine;
The detected three steam pressures are substituted into P (x) of the steam pressure characteristic function {P (x) = a × b x + c}, and the number of turbine stages at the steam pressure detection point position is substituted into x to obtain the steam pressure characteristics. Find the constants a, b, c of the function,
Substituting the obtained values into the constants a, b, and c of the steam pressure characteristic function to create a steam pressure characteristic function,
In the generated steam pressure characteristic function x, the steam pressure not detected among the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine. Substituting the number of turbine paragraphs at the virtual detection point position, and calculating the steam pressure at the virtual detection point position for the steam pressure not detected,
A steam turbine efficiency calculation method, comprising: calculating efficiency of a steam turbine near a virtual detection point position based on a metal temperature of the steam turbine near the virtual detection point position and the calculated steam pressure.
高圧タービンで仕事を終えた蒸気を中圧タービンに導き前記中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうちいずれか3つを検出し、
検出した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求め、
求めた値を蒸気圧力特性関数の定数a、b、cに代入して蒸気圧力特性関数を作成し、
作成した蒸気圧力特性関数のxに、前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうち検出していない蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、検出していない蒸気圧力について仮想検出点位置での蒸気圧力を算出し、
前記算出した蒸気圧力が仮設の蒸気圧力検出器で検出した前記仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正し、
補正した蒸気圧力特性関数を用いて、検出していない蒸気圧力について仮想検出点位置での蒸気圧力を算出し、
仮想検出点位置近傍の蒸気タービンのメタル温度及び算出した蒸気圧力に基づいて、仮想検出点位置近傍の蒸気タービンの効率を算出することを特徴とする蒸気タービン効率算出方法。
Inlet steam pressure of the high-pressure turbine of the steam turbine system that guides steam that has finished work in the high-pressure turbine to the intermediate-pressure turbine and that directs steam that has finished work in the intermediate-pressure turbine to the low-pressure turbine, inlet steam pressure of the intermediate-pressure turbine, Detecting any three of the inlet steam pressure of the low-pressure turbine and the outlet steam pressure of the low-pressure turbine;
The detected three steam pressures are substituted into P (x) of the steam pressure characteristic function {P (x) = a × b x + c}, and the number of turbine stages at the steam pressure detection point position is substituted into x to obtain the steam pressure characteristics. Find the constants a, b, c of the function,
Substituting the obtained values into the constants a, b, and c of the steam pressure characteristic function to create a steam pressure characteristic function,
In the generated steam pressure characteristic function x, the steam pressure not detected among the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine. Substituting the number of turbine paragraphs at the virtual detection point position, and calculating the steam pressure at the virtual detection point position for the steam pressure not detected,
Correcting the steam pressure characteristic function so that the calculated steam pressure matches the steam pressure or steam pressure design value of the virtual detection point position detected by a temporary steam pressure detector;
Using the corrected steam pressure characteristic function, calculate the steam pressure at the virtual detection point position for the undetected steam pressure,
A steam turbine efficiency calculation method, comprising: calculating efficiency of a steam turbine near a virtual detection point position based on a metal temperature of the steam turbine near the virtual detection point position and the calculated steam pressure.
高圧タービンで仕事を終えた蒸気を中圧タービンに導き前記中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の蒸気圧力を算出するためにコンピュータを、
前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうちいずれか3つを入力する手段、
入力した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求める手段、
求めた値を蒸気圧力特性関数のa、b、cに代入して蒸気圧力特性関数を作成する手段、及び
作成した蒸気圧力特性関数のxに、前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうち入力しなかった蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、入力しなかった蒸気圧力について仮想検出点位置での蒸気圧力を算出する手段、
として機能させるための蒸気タービン圧力算出プログラム。
A computer for calculating the steam pressure of the steam turbine system that directs the steam that has finished work in the high-pressure turbine to the medium-pressure turbine and directs the steam that has finished work in the medium-pressure turbine to the low-pressure turbine;
Means for inputting any three of the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine;
Substituting the three input steam pressures into P (x) of the steam pressure characteristic function {P (x) = a × b x + c} and substituting the turbine stage number at the steam pressure detection point position into x, the steam pressure characteristics Means for determining constants a, b, c of the function;
Means for creating a steam pressure characteristic function by substituting the obtained values into a, b, and c of the steam pressure characteristic function, and x of the created steam pressure characteristic function, the inlet steam pressure of the high pressure turbine, the intermediate pressure turbine Of the steam pressure at the virtual detection point position of the steam pressure that was not input among the inlet steam pressure of the low pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine. Means for calculating the vapor pressure at the detection point position;
Steam turbine pressure calculation program to function as
高圧タービンで仕事を終えた蒸気を中圧タービンに導き前記中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統の蒸気圧力を算出するためにコンピュータを、
前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうちいずれか3つを入力する手段、
入力した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求める手段、
求めた値を蒸気圧力特性関数のa、b、cに代入して蒸気圧力特性関数を作成する手段、
及び
作成した蒸気圧力特性関数のxに、前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうち入力しなかった蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、入力しなかった蒸気圧力について仮想検出点位置での蒸気圧力を算出する手段、
仮設の蒸気圧力検出器で検出した前記仮想検出点位置の蒸気圧力を入力する手段、及び
前記算出した蒸気圧力が仮設の蒸気圧力検出器で検出した前記仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正する手段、及び
補正した蒸気圧力特性関数を用いて、仮想検出点位置での蒸気圧力を算出する手段、
として機能させるための蒸気タービン圧力算出プログラム。
A computer for calculating the steam pressure of the steam turbine system that directs the steam that has finished work in the high-pressure turbine to the medium-pressure turbine and directs the steam that has finished work in the medium-pressure turbine to the low-pressure turbine;
Means for inputting any three of the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine;
Substituting the three input steam pressures into P (x) of the steam pressure characteristic function {P (x) = a × b x + c} and substituting the turbine stage number at the steam pressure detection point position into x, the steam pressure characteristics Means for determining constants a, b, c of the function;
Means for creating a steam pressure characteristic function by substituting the obtained values into a, b and c of the steam pressure characteristic function;
And the steam pressure characteristic function x that has been created, the steam not input from the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine Means for substituting the number of turbine stages at the virtual detection point position of pressure and calculating the steam pressure at the virtual detection point position for the steam pressure not input;
Means for inputting steam pressure at the virtual detection point position detected by a temporary steam pressure detector, and steam pressure or steam pressure design at the virtual detection point position where the calculated steam pressure is detected by a temporary steam pressure detector Means for correcting the steam pressure characteristic function so as to match the value, and means for calculating the steam pressure at the virtual detection point position using the corrected steam pressure characteristic function;
Steam turbine pressure calculation program to function as
高圧タービンで仕事を終えた蒸気を中圧タービンに導き前記中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統における蒸気タービンの効率を算出するためにコンピュータを、
前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうちいずれか3つを入力する手段、
入力した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求める手段、
求めた値を蒸気圧力特性関数のa、b、cに代入して蒸気圧力特性関数を作成する手段、
作成した蒸気圧力特性関数のxに、前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうち入力しなかった蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、入力しなかった蒸気圧力について仮想検出点位置での蒸気圧力を算出する手段、及び
仮想検出点位置近傍の蒸気タービンのメタル温度及び算出した蒸気圧力に基づいて、仮想検出点位置近傍の蒸気タービンの効率を算出する手段、
として機能させるための蒸気タービン効率算出プログラム。
A computer for calculating the efficiency of the steam turbine in the steam turbine system that directs the steam that has finished work in the high-pressure turbine to the medium-pressure turbine and directs the steam that has finished work in the medium-pressure turbine to the low-pressure turbine;
Means for inputting any three of the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine;
Substituting the three input steam pressures into P (x) of the steam pressure characteristic function {P (x) = a × b x + c} and substituting the turbine stage number at the steam pressure detection point position into x, the steam pressure characteristics Means for determining constants a, b, c of the function;
Means for creating a steam pressure characteristic function by substituting the obtained values into a, b and c of the steam pressure characteristic function;
The steam pressure that was not inputted among x of the created steam pressure characteristic function among the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine Substituting the number of turbine stages at the virtual detection point position and calculating the steam pressure at the virtual detection point position for the steam pressure that was not input, and the metal temperature of the steam turbine near the virtual detection point position and the calculated steam Means for calculating the efficiency of the steam turbine near the virtual detection point position based on the pressure;
Steam turbine efficiency calculation program to function as
高圧タービンで仕事を終えた蒸気を中圧タービンに導き前記中圧タービンで仕事を終えた蒸気を低圧タービンに導く蒸気タービン系統における蒸気タービンの効率を算出するためにコンピュータを、
前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうちいずれか3つを入力する手段、
入力した3つの蒸気圧力を蒸気圧力特性関数{P(x)=a×b+c}のP(x)に代入するとともにxに蒸気圧力検出点位置のタービン段落数を代入して蒸気圧力特性関数の定数a、b、cを求める手段、
求めた値を蒸気圧力特性関数のa、b、cに代入して蒸気圧力特性関数を作成する手段、
作成した蒸気圧力特性関数のxに、前記高圧タービンの入口蒸気圧力、前記中圧タービンの入口蒸気圧力、前記低圧タービンの入口蒸気圧力及び前記低圧タービンの出口蒸気圧力のうち入力しなかった蒸気圧力の仮想検出点位置におけるタービン段落数を代入して、入力しなかった蒸気圧力について仮想検出点位置での蒸気圧力を算出する手段、
仮設の蒸気圧力検出器で検出した前記仮想検出点位置の蒸気圧力を入力する手段、及び
前記算出した蒸気圧力が仮設の蒸気圧力検出器で検出した前記仮想検出点位置の蒸気圧力または蒸気圧力設計値に一致するように蒸気圧力特性関数を補正する手段、
補正した蒸気圧力特性関数を用いて、仮想検出点位置での蒸気圧力を算出する手段、及び
仮想検出点位置近傍の蒸気タービンのメタル温度及び補正した蒸気圧力特性関数を用いて算出した蒸気圧力に基づいて、仮想検出点位置近傍の蒸気タービンの効率を算出する手段、
として機能させるための蒸気タービン効率算出プログラム。
A computer for calculating the efficiency of the steam turbine in the steam turbine system that directs the steam that has finished work in the high-pressure turbine to the medium-pressure turbine and directs the steam that has finished work in the medium-pressure turbine to the low-pressure turbine;
Means for inputting any three of the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine;
Substituting the three input steam pressures into P (x) of the steam pressure characteristic function {P (x) = a × b x + c} and substituting the turbine stage number at the steam pressure detection point position into x, the steam pressure characteristics Means for determining constants a, b, c of the function;
Means for creating a steam pressure characteristic function by substituting the obtained values into a, b and c of the steam pressure characteristic function;
The steam pressure that was not inputted among x of the created steam pressure characteristic function among the inlet steam pressure of the high pressure turbine, the inlet steam pressure of the intermediate pressure turbine, the inlet steam pressure of the low pressure turbine, and the outlet steam pressure of the low pressure turbine Means for substituting the number of turbine stages at the virtual detection point position and calculating the steam pressure at the virtual detection point position for the steam pressure not input,
Means for inputting steam pressure at the virtual detection point position detected by a temporary steam pressure detector, and steam pressure or steam pressure design at the virtual detection point position where the calculated steam pressure is detected by a temporary steam pressure detector Means for correcting the steam pressure characteristic function to match the value,
Means for calculating the steam pressure at the virtual detection point position using the corrected steam pressure characteristic function, and the steam pressure calculated using the metal temperature of the steam turbine near the virtual detection point position and the corrected steam pressure characteristic function. A means for calculating the efficiency of the steam turbine near the virtual detection point position,
Steam turbine efficiency calculation program to function as
JP2004137832A 2004-05-06 2004-05-06 Steam turbine pressure calculation method, steam turbine efficiency calculation method, steam turbine pressure calculation program, and steam turbine efficiency calculation program Expired - Fee Related JP4433869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137832A JP4433869B2 (en) 2004-05-06 2004-05-06 Steam turbine pressure calculation method, steam turbine efficiency calculation method, steam turbine pressure calculation program, and steam turbine efficiency calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137832A JP4433869B2 (en) 2004-05-06 2004-05-06 Steam turbine pressure calculation method, steam turbine efficiency calculation method, steam turbine pressure calculation program, and steam turbine efficiency calculation program

Publications (2)

Publication Number Publication Date
JP2005320876A JP2005320876A (en) 2005-11-17
JP4433869B2 true JP4433869B2 (en) 2010-03-17

Family

ID=35468335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137832A Expired - Fee Related JP4433869B2 (en) 2004-05-06 2004-05-06 Steam turbine pressure calculation method, steam turbine efficiency calculation method, steam turbine pressure calculation program, and steam turbine efficiency calculation program

Country Status (1)

Country Link
JP (1) JP4433869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545170B2 (en) 2009-10-27 2013-10-01 General Electric Company Turbo machine efficiency equalizer system
US9032733B2 (en) 2013-04-04 2015-05-19 General Electric Company Turbomachine system with direct header steam injection, related control system and program product
KR101687643B1 (en) * 2015-01-23 2016-12-20 두산중공업 주식회사 Apparatus for analyzing material property of steam in the boiler and method thereof
CN106844893B (en) * 2016-12-30 2020-05-12 华电电力科学研究院有限公司 Method for calculating low pressure cylinder efficiency of steam turbine of single-shaft gas-steam combined cycle unit

Also Published As

Publication number Publication date
JP2005320876A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP5981693B2 (en) Method and system for determining safe drum water level in combined cycle operation
CN105201564B (en) Main-steam-flow-based steam turbine sliding pressure optimization control method
Wei et al. Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery
CN101813562B (en) Method for estimating exhaust enthalpy of low pressure cylinder of steam turbine in real time
JP4513771B2 (en) Performance monitoring method and system for single-shaft combined cycle plant
US10168306B2 (en) Time reference derivation from time of arrival measurements
JPH11229820A (en) Thermal efficiency diagnosis and device of thermal power plant
JP4433869B2 (en) Steam turbine pressure calculation method, steam turbine efficiency calculation method, steam turbine pressure calculation program, and steam turbine efficiency calculation program
Blinov et al. Estimation of the driven gas turbine unit technical performance using the standard measuring systems
US20030125906A1 (en) Method and apparatus for assessing the impact of individual parts of a gas turbine component on the overall thermal performance of a gas turbine
EP2644850B1 (en) A system for analyzing operation of power plant units and a method for analyzing operation of power plant units
CN103954380A (en) Determination method of steam turbine generator unit exhaust enthalpy
JP6291239B2 (en) Turbine purge flow control system and associated operating method
EP3165720A1 (en) Steam turbine inlet temperature control system, computer program product and related methods
JP2012021487A (en) Thermal efficiency analyzing method and thermal efficiency analyzing program
US10677102B2 (en) Systems and methods for controlling machinery stress via temperature trajectory
Ogbonnaya et al. Gas turbine engine anomaly detection through Computer simulation technique of statistical correlation
US10280844B2 (en) Control systems for controlling power systems based on fuel consumption and related program products
US9234442B2 (en) Steam turbine system and control system therefor
CN114051581A (en) Plant monitoring device, plant monitoring method, and program
Dobkiewicz-Wieczorek Influence of surface condensers connection configuration on power plant unit performance
CN114112414B (en) Partial load performance test method for gas-steam combined cycle split-shaft unit
US11585234B2 (en) Systems, program products, and methods for detecting thermal stability within gas turbine systems
KR101474553B1 (en) System and method for calculating efficiency of turbine of nuclear power plant
Kim et al. Development of performance analysis system (NOPAS) for turbine cycle of nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees