JP4432590B2 - DC casting method of aluminum alloy deformed billet - Google Patents

DC casting method of aluminum alloy deformed billet Download PDF

Info

Publication number
JP4432590B2
JP4432590B2 JP2004115565A JP2004115565A JP4432590B2 JP 4432590 B2 JP4432590 B2 JP 4432590B2 JP 2004115565 A JP2004115565 A JP 2004115565A JP 2004115565 A JP2004115565 A JP 2004115565A JP 4432590 B2 JP4432590 B2 JP 4432590B2
Authority
JP
Japan
Prior art keywords
billet
cooling water
casting
cross
secondary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004115565A
Other languages
Japanese (ja)
Other versions
JP2005296989A (en
Inventor
博文 長海
好宏 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2004115565A priority Critical patent/JP4432590B2/en
Publication of JP2005296989A publication Critical patent/JP2005296989A/en
Application granted granted Critical
Publication of JP4432590B2 publication Critical patent/JP4432590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、断面がY形,X形あるいは放射かつ任意の方向に伸びる複数のアーム形状を有する鍛造用のアルミニウム合金の異形ビレットをDC鋳造する方法に関する。   The present invention relates to a method for DC casting of a deformed billet of forging aluminum alloy having a plurality of arm shapes whose cross sections are Y-shaped, X-shaped or extending in an arbitrary direction.

航空機,車輌,産業機械,精密機械等には、アルミニウム合金の鋳造品や鍛造品が広く使用されている。鋳造品は鍛造品に比べ機械的特性、特に靭性に劣るため、近年の軽量化の要望に対して追従し難い状況になっている。これに対して、鍛造製品は靭性が高く、より一層望まれる軽量化には対応可能であるが、製造コストが上昇するという問題点もある。すなわち、円筒状のビレットで形状が複雑な製品を鍛造しようとすると、鍛造に際して多工程を要するばかりでなく、製品歩留まりが悪い。また、DC鋳造により得られたビレットを製品形状に近い形状に押出成形した押出材を最終製品に鍛造することも試みられているが、押出工程が必要になり、コストアップに繋がっている。   Aluminum aircraft castings and forgings are widely used in aircraft, vehicles, industrial machinery, precision machinery, and the like. Cast products are inferior to forged products in terms of mechanical properties, particularly toughness, and it is difficult to follow the recent demand for weight reduction. On the other hand, forged products have high toughness and can cope with further desired weight reduction, but there is also a problem that the manufacturing cost increases. That is, when trying to forge a product having a complicated shape with a cylindrical billet, not only a multi-step process is required for forging, but the product yield is poor. Further, forging an extruded material obtained by extruding a billet obtained by DC casting into a shape close to the product shape has been attempted, but an extrusion process is required, leading to an increase in cost.

このような背景のもと、近年、鍛造用素材として製品形状に近い形状にDC鋳造したビレットを、押出加工を施すことなく、必要に応じて均質化処理を施したのみで鍛造用素材として用いられることが提案されている(例えば特許文献1参照)。
断面形状が複数のアームを有するような複雑なビレットをDC鋳造しようとするとき、アーム形状に曲がりがある場合には、冷却時における熱収縮によってアーム形状の曲がり部が鋳型に抱きつき、鋳造が停止し、最悪の場合、鋳型を破壊する場合がある。抱きつきが発生しない場合でも、鋳造材の側面に割れやメタル漏れ等が生じ、スムーズにDC鋳造ができないことがある。このため、アームの形状を大きくし曲がりを小さい形状に鋳造したり、特許文献1で提案されているように、曲がり部のない放射線状に延びる複数のアームを有する形状のビレットにDC鋳造し、このビレットの放射状アームを曲げた後に所定形状に鍛造成形したりされている。
Against this background, billets DC cast into a shape close to the product shape as a forging material in recent years have been used as a forging material by simply performing homogenization treatment as needed without performing extrusion processing. Has been proposed (see, for example, Patent Document 1).
When trying to DC cast a complex billet with multiple arms in cross-section, if the arm shape is bent, the bent portion of the arm shape is stuck to the mold due to thermal contraction during cooling, and casting stops In the worst case, the mold may be destroyed. Even when the hug does not occur, cracks, metal leakage, etc. may occur on the side surface of the cast material, and DC casting may not be performed smoothly. For this reason, the shape of the arm is enlarged and the bending is cast into a small shape, or as proposed in Patent Document 1, DC casting is performed on a billet having a plurality of arms extending radially without bending portions, For example, the billet radial arm is bent and then forged into a predetermined shape.

特開平2−179336号公報JP-A-2-179336

しかし、前者の場合、鍛造歩留まりが著しく悪くなり、後者の場合は余計に曲げ工程が入るためにコストが上昇してしまう。
本発明は、このような問題を解消すべく案出されたものであり、断面がY形,X形或いは放射かつ任意の方向に伸びる複数のアーム形状を有するアルミニウム合金異形ビレットを、鋳造時における抱きつきによる鋳造停止、ビレットの割れ、メタル漏れの発生を発生させることなくDC鋳造する方法を提供することを目的とする。
However, in the former case, the forging yield is remarkably deteriorated, and in the latter case, an extra bending process is performed, resulting in an increase in cost.
The present invention has been devised to solve such a problem, and an aluminum alloy deformed billet having a plurality of arm shapes whose cross-sections are Y-shaped, X-shaped or extending in an arbitrary direction is formed at the time of casting. It is an object of the present invention to provide a method for DC casting without causing casting stop due to hugging, cracking of billets, and occurrence of metal leakage.

本発明のアルミニウム合金異形ビレットのDC鋳造方法は、断面がY形,X形或いは放射かつ任意の方向に伸びる複数のアーム形状を有するアルミニウム合金異形ビレットをDC鋳造する方法であって、当該異形ビレットの断面形状を複数のアーム部と中央部とに分割し、各々について外周長さと断面積を求めるとともに、アーム部にはその先端を除いて二次冷却水が掛からない部分を設け、アーム部の二次冷却水が掛かる部分の外周長さとアーム部断面積の比を中央部の二次冷却水が掛かる外周長さと中央部断面積の比の0.8〜1.2倍にして二次冷却することを特徴とする。
DC casting method of an aluminum alloy profile billet of the invention, the transverse cross-section Y-shaped, the aluminum alloy profiled billet having an X-shaped or radiation and a plurality of arms shape extending in any direction to a method of DC casting, the variant the transverse sectional shape of the billet divided into a plurality of arm portions and a central portion, together with obtaining the outer peripheral length and cross-sectional area for each, to the arm portion except for the tip provided moiety secondary cooling water is not applied, the arm The ratio of the outer peripheral length of the portion where the secondary cooling water is applied to the cross-sectional area of the arm portion is set to 0.8 to 1.2 times the ratio of the outer peripheral length of the central portion where the secondary cooling water is applied and the cross-sectional area of the central portion. Next cooling is characterized.

本発明により、断面がY形,X形或いは放射かつ任意の方向に伸びる複数のアーム形状を有する鍛造用のアルミニウム合金異形ビレットをDC鋳造する際にあっても、異形ビレット全体にわたって均一な凝固が進行するために、凝固収縮により鋳型から離された後に鋳型と再び接触することはない。再び接触することがあったとしても、わずかな接触であるので、その接触により鋳型からビレットが受ける圧力は小さいものである。そのため、抱きつきが発生したり、凝固殻に割れが発生したり、メタル漏れが生じたりすることはない。このため、複数のアーム形状を有する複雑な形状の異形ビレットが抱きつきや割れを発生させることなく、鋳肌も良好な鋳造体を効率的にDC鋳造を行うことができ、鍛造用の素材を低コストで供給することが可能になる。   According to the present invention, even when a forging aluminum alloy deformed billet having a plurality of arm shapes whose cross sections are Y-shaped, X-shaped or extending in an arbitrary direction is DC-cast, uniform solidification can be achieved throughout the deformed billet. In order to proceed, it does not come into contact again with the mold after it has been separated from the mold by coagulation shrinkage. Even if it comes into contact again, it is a slight contact, and the pressure that the billet receives from the mold due to the contact is small. Therefore, there is no occurrence of hugging, cracking in the solidified shell, or metal leakage. For this reason, a complex billet having a plurality of arm shapes can efficiently perform DC casting of a cast body having a good casting surface without causing hugging or cracking, and reducing the forging material. It becomes possible to supply at a cost.

本発明者等は、まず、断面が複数のアームを有し、かつアームが曲がった形状を持つ複雑形状のビレットをDC鋳造しようとするとき、冷却時に抱きつきや、割れ、メタル漏れが生じたりする原因について検討した。
一般にDC鋳造法と称せられる半連続鋳造法は、所望形状の断面を有し、上下が開放された筒状の水冷鋳型の上方に溶湯を供給し、鋳型によって冷却(一次冷却)され凝固したビレットを鋳型から下方に引き出しつつ、鋳型の直下において鋳型下部に設けたスリットから噴出する冷却水によりビレット表面を直接に冷却(二次冷却)してビレットを得ようとする方法である。
なお、ビレットを二次冷却した冷却水は、鋳造装置の下部に設けられた水槽等に貯水され、下降してきたビレットを常温近くまで冷却する。
First, when the present inventors try to DC-cast a billet having a cross section having a plurality of arms and a curved shape of the arms, a hug, crack, or metal leakage may occur during cooling. The cause was examined.
The semi-continuous casting method, generally referred to as the DC casting method, is a billet that has a cross-section of a desired shape, supplies molten metal above a cylindrical water-cooled mold that is open at the top and bottom, and is cooled (primary cooling) and solidified by the mold. In this method, the billet surface is directly cooled (secondary cooling) with cooling water ejected from a slit provided in the lower part of the mold immediately below the mold, while the billet is drawn downward from the mold.
The cooling water after the secondary cooling of the billet is stored in a water tank or the like provided in the lower part of the casting apparatus, and the lowered billet is cooled to near room temperature.

鋳型に接触した溶湯は凝固し、ビレットの表層部が形成される。その際、凝固した部分は収縮して鋳型からわずかに離れる。その後鋳型の下部に設けられたスリットから噴出される冷却水によって二次冷却され、内部まで冷却・凝固される。凝固・収縮し、鋳型から離れた後のビレットは、通常鋳型に再び接触することはない。しかし、異形ビレットの場合、凝固・収縮により一度鋳型から離れたビレットのアーム部が、再び鋳型に接触し、ビレットと鋳型の摩擦により、鋳型と接触したビレット部分に割れやメタル漏れが生じることがある。この凝固・収縮によりビレットの下降が停止することがある。また停止しないまでも、接触の状況によって、一度鋳型から離れたビレットが鋳型に再度接触し、鋳造が不能になる現象を、本明細書では「抱きつき」と称することとする。   The molten metal in contact with the mold is solidified to form a billet surface layer. At that time, the solidified portion shrinks and slightly leaves the mold. Thereafter, it is secondarily cooled by cooling water ejected from a slit provided in the lower part of the mold, and cooled and solidified to the inside. The billet after solidifying and shrinking and leaving the mold does not normally come into contact with the mold again. However, in the case of a deformed billet, the billet arm once separated from the mold due to solidification / shrinkage comes into contact with the mold again, and friction between the billet and the mold may cause cracks and metal leakage in the billet portion in contact with the mold. is there. The billet may stop descending due to the solidification / contraction. Further, even if it does not stop, the phenomenon that the billet once separated from the mold once again comes into contact with the mold and becomes impossible to cast depending on the state of contact is referred to as “holding” in this specification.

本発明者等は、「抱きつき」の発生原因について鋭意検討を重ねた。
その結果、鋳造時の異形ビレット各部の冷却強さが異なることが原因であることがわかった。異形ビレットの場合、中央部と比較して、アーム部の断面積は小さい。このため、中央部の冷却強さと同等の強さでアーム部を冷却すると、アーム部の冷却が強すぎ、アーム部が中央部方向に向かって大きく凝固・収縮する。その際、アーム部に曲がりがあると、アーム部が鋳型と接触し、抱きつきが起こって鋳造停止や、割れ、メタル漏れを引き起こすことに繋がる、と考えられる。
The inventors of the present invention have made extensive studies on the cause of “clamping”.
As a result, it was found that the cause was that the cooling strength of each part of the irregular billet during casting was different. In the case of a modified billet, the cross-sectional area of the arm portion is smaller than that of the central portion. For this reason, if the arm portion is cooled with the same strength as the cooling strength of the central portion, the arm portion is cooled too much and the arm portion is greatly solidified and contracted toward the central portion. At that time, if there is a bend in the arm part, it is considered that the arm part comes into contact with the mold and hugs to cause casting stop, cracking or metal leakage.

そこで、本発明では、アーム部を二次冷却する冷却水の供給量を、中央部を二次冷却する冷却水の供給量よりも少なくすることにより、アーム部の冷却強さを弱め、収縮を抑えて抱きつきの発生を抑制しようとするものである。
二次冷却水供給量を少なくする手段としては、アーム部に掛かる冷却水の流速を遅くしたり、冷却水を断続的に噴出させたりする手段が挙げられる。これらの手段は、中央部の冷却水供給回路と、アーム部の冷却水供給回路を別々の設け、それぞれ独自に制御できるように構成することで可能となる。
Therefore, in the present invention, the cooling water supply amount for secondary cooling of the arm portion is made smaller than the cooling water supply amount for secondary cooling of the central portion, thereby reducing the cooling strength of the arm portion and reducing the shrinkage. It is intended to suppress the occurrence of hugging.
Examples of means for reducing the secondary cooling water supply amount include a means for slowing the flow rate of the cooling water applied to the arm portion and for intermittently ejecting the cooling water. These means can be realized by separately providing a cooling water supply circuit in the central portion and a cooling water supply circuit in the arm portion so that each can be controlled independently.

二次冷却水供給量を少なくする手段としては、また、アーム部に二次冷却水が掛からない部分を設けることでも可能である。二次冷却水が掛からない部分を設ける手段としては、一次冷却用の水冷鋳型下部から噴出させる二次冷却用冷却水噴出スリットを塞げば可能となる。
さらに、本発明者等は、鋳造過程における3次元凝固・熱変形解析のシミュレーションを行って、アーム部に掛ける二次冷却水の適切供給箇所と供給箇所の長さを解析した。
As a means for reducing the secondary cooling water supply amount, it is also possible to provide a portion where the secondary cooling water is not applied to the arm portion. As a means for providing the portion where the secondary cooling water is not applied, it is possible to close the cooling water ejection slit for secondary cooling ejected from the lower part of the water cooling mold for primary cooling.
Furthermore, the present inventors performed a simulation of three-dimensional solidification / thermal deformation analysis in the casting process, and analyzed the appropriate supply location and the length of the supply location of the secondary cooling water applied to the arm portion.

3次元凝固・熱変形解析対象としては、図1に示すような形状に仮設計した異形ビレットを用いた。そして、図1(a)に示すように、ビレット断面形状を複数のアーム部と中央部とに任意の分割線sで分割し、各々についての外周長さと断面積を求めた。分割した各部分の断面積と対応する外周長さの比を、下記(1)のようにKとするとき、このKの値が単位冷却長さに対応する単位冷却断面積となる。
分割した部分の断面積/対応する外周長さ=K ・・・・(1)
As a three-dimensional solidification / thermal deformation analysis target, a deformed billet temporarily designed in a shape as shown in FIG. 1 was used. And as shown to Fig.1 (a), billet cross-sectional shape was divided | segmented into the some arm part and center part by the arbitrary dividing lines s, and the outer periphery length and cross-sectional area about each were calculated | required. When the ratio of the cross-sectional area of each divided part to the corresponding outer peripheral length is K as shown in (1) below, the value of K becomes the unit cooling cross-sectional area corresponding to the unit cooling length.
Cross-sectional area of the divided part / corresponding outer peripheral length = K (1)

図1(a)中、複数のアーム部A,B,C及び中央部Dの単位冷却断面積値Kを、それぞれKA,KB,KC,KDとするとき、異形ビレットの全部分において冷却速度を均一にして凝固速度を均一にしようとする場合、各部位の単位冷却断面積値Kを等しくする必要がある。すなわち、下記(2)式を満たすように各部位の断面積に応じて外周の二次冷却水供給部長さを設定する必要がある。
A=KB=KC=KD ・・・(2)
In FIG. 1A, when the unit cooling cross-sectional area values K of the plurality of arm portions A, B, and C and the central portion D are respectively K A , K B , K C , and K D , all parts of the irregular billet In order to make the cooling rate uniform in order to make the solidification rate uniform, it is necessary to make the unit cooling cross-sectional area value K of each part equal. That is, it is necessary to set the secondary cooling water supply section length on the outer periphery according to the cross-sectional area of each part so as to satisfy the following expression (2).
K A = K B = K C = K D (2)

そして、アーム部であるA,B及びCの各部の必要な二次冷却水供給部外周長さをLA′,LB′及びLC′とするとき、A部断面積/LA′,B部断面積/LB′及びC部断面積/LC′の値をKDと等しくする必要がある。
この関係から、各アーム部A,B及びCの二次冷却水の供給を必要とする外周長さLA′,LB′及びLC′は、各部の断面積を、KD、すなわち中央部部分の断面積と中央部外周長さの比で割った値とすればよいことがわかる。例えば、アーム部Aの場合、次の(3)式に示すような値に設定すれば良い。
A′=A部断面積/KD ・・・・(3)
この数値から逆に二次冷却水が掛からない外周長さを算出し、図1(b)に示すように、この長さ分だけビレットに二次冷却水が掛からない部分nを設ければよいことになる。
When the outer peripheral lengths of the required secondary cooling water supply parts of the parts A, B, and C as the arm parts are L A ′, L B ′, and L C ′, the A section sectional area / L A ′, the value of B Budan area / L B 'and C Budan area / L C' must be equal to K D.
From this relationship, the outer peripheral lengths L A ′, L B ′, and L C ′ that require the supply of secondary cooling water for the arms A, B, and C are the cross-sectional areas of the respective parts, K D , It can be seen that the value divided by the ratio of the cross-sectional area of the portion and the outer peripheral length of the central portion may be used. For example, in the case of the arm part A, a value as shown in the following equation (3) may be set.
L A ′ = A cross section area / K D (3)
On the contrary, the outer peripheral length that is not covered with the secondary cooling water is calculated from this numerical value, and as shown in FIG. 1 (b), the portion n where the secondary cooling water is not applied to the billet may be provided by this length. It will be.

鋳造過程における3次元凝固・熱変形解析の、実際のシミュレーションには、鋳造温度670〜730℃,鋳造速度80〜140mm/min,冷却水供給量150〜250L/minの解析条件を採用した。そして、上記のような計算方法により求められた長さの冷却水が掛からない部分を設け、異形ビレット外周部に掛かる二次冷却水の分布を、単位冷却断面で均一になるようにした。
解析ソフトには、汎用3次元鋳造解析コードCAPFLOWと汎用構造解析コードANSYSを用いた。素材の高温熱物性値である、熱伝導率,比熱,潜熱等は測定値に基づき、また素材の高温機械的特性値である、ヤング率,線熱膨張係数等は温度依存性を考慮し、測定値を採用して解析を行った。
併せて、確認のための鋳造実験を行った。
In the actual simulation of the three-dimensional solidification / thermal deformation analysis in the casting process, analysis conditions of a casting temperature of 670 to 730 ° C., a casting speed of 80 to 140 mm / min, and a cooling water supply amount of 150 to 250 L / min were employed. And the part where the cooling water of the length calculated | required by the above calculation methods is not provided was provided, and the distribution of the secondary cooling water applied to a deformed billet outer peripheral part was made uniform in a unit cooling cross section.
For the analysis software, general-purpose 3D casting analysis code CAPFLOW and general-purpose structural analysis code ANSYS were used. The material's high-temperature thermophysical property values, such as thermal conductivity, specific heat, and latent heat, are based on the measured values, and the material's high-temperature mechanical property values, such as Young's modulus and linear thermal expansion coefficient, are temperature dependent. Measurements were taken and analyzed.
In addition, a casting experiment for confirmation was conducted.

その結果、アーム部に二次冷却水が掛からない部分を設定する場合、アーム部を二次冷却する冷却水が掛かる外周長さとアーム部断面積の比が、中央部の二次冷却水が掛かる部分の外周長さと中央部断面積の比の0.8〜1.2倍にすることが好ましいことがわかった。上記の比が0.8に満たないと、冷却が不十分で表面の凝固層が再溶融してメタル漏れを起こすおそれがある。また、1.2倍を超えると冷却が強すぎて抱きつきを起こしやすくなる。
なお、アームの先端部分はメタル漏れが発生しやすい部位であるため、先端部には二次冷却水を掛けて積極的に冷却することが好ましい。
As a result, when the portion where the secondary cooling water is not applied to the arm portion is set, the ratio of the outer peripheral length of the cooling water for secondary cooling of the arm portion to the cross-sectional area of the arm portion is the secondary cooling water at the central portion It turned out that it is preferable to set it as 0.8 to 1.2 times the ratio of the outer periphery length of a part, and a center part cross-sectional area. If the above ratio is less than 0.8, cooling may be insufficient and the solidified layer on the surface may be remelted to cause metal leakage. On the other hand, if it exceeds 1.2 times, the cooling is too strong and it becomes easy to cause a hug.
In addition, since the tip portion of the arm is a portion where metal leakage is likely to occur, it is preferable to actively cool the tip portion by applying secondary cooling water.

また、比較のために、従来法である異形ビレットの全周を均一冷却する鋳造法に関しても、同様の解析と鋳造実験を行った。
図2に、(a)最適な二次冷却水分布を採用したものと、(b)従来の均一冷却したものとの凝固解析結果の相違を示す。この図からもわかるように、二次冷却水を掛けない部分を設定して最適な二次冷却水分布とした場合、異形ビレット全体にわたって均一な凝固が進行している。一方、従来法では各アーム部が中心部と比べて凝固が早く進行し、全体として不均一な凝固となっている。
For comparison, the same analysis and casting experiment were conducted for a casting method that uniformly cools the entire circumference of the modified billet, which is a conventional method.
FIG. 2 shows the difference in solidification analysis results between (a) an optimal secondary cooling water distribution and (b) a conventional uniform cooling. As can be seen from this figure, when the portion where the secondary cooling water is not applied is set to obtain the optimum secondary cooling water distribution, uniform solidification is progressing throughout the deformed billet. On the other hand, in the conventional method, the solidification of each arm portion proceeds faster than the central portion, resulting in non-uniform solidification as a whole.

また、図3に抱きつき力の違いを示す。図3(a)に示すような断面形状の異形ビレットを鋳造する際には、同図中、○印で示した部位に最も抱きつきが発生しやすい。そこで、当該部位について熱変形解析してみると、図3(b)に示すように、本発明で提案した最適二次冷却水分布の場合は、アームと鋳型間の接触圧力が従来法の均一冷却の場合と比べて約1/10になっている。接触圧力が大きいほど、抱きつきや鋳造割れが起こりやすくなるので、本発明による最適二次冷却水分布の採用により、鋳造時に抱きつきや鋳造割れの発生が抑制されると推測される。
事実、従来法のDC鋳造法と本発明で提案したDC鋳造法で鋳造実験を行ってみると、従来法では、鋳型に抱きつきが発生して、割れやメタル漏れを生じさせることなく鋳造を進めることはできなかったのに対して、本発明で提案した方法では、割れも発生せずにスムーズな半連続鋳造が可能であることが確認できた。
FIG. 3 shows the difference in hugging force. When casting an irregular billet having a cross-sectional shape as shown in FIG. 3 (a), it is most likely that the part indicated by a circle in FIG. Thus, when the part is subjected to thermal deformation analysis, as shown in FIG. 3B, in the case of the optimum secondary cooling water distribution proposed in the present invention, the contact pressure between the arm and the mold is uniform as in the conventional method. It is about 1/10 compared with the case of cooling. As the contact pressure is larger, hugging and casting cracks are more likely to occur. Therefore, it is assumed that the use of the optimum secondary cooling water distribution according to the present invention suppresses hugging and casting cracks during casting.
In fact, when performing a casting experiment using the DC casting method of the conventional method and the DC casting method proposed in the present invention, in the conventional method, the mold is hugged and the casting proceeds without causing cracks or metal leakage. On the other hand, it was confirmed that the method proposed in the present invention enables smooth semi-continuous casting without cracking.

本発明を実施するために、図4に示すような異形の鋳型を備え、かつ図5に示すようなY字型の3つのアームを有し、アームが任意の方向へ曲がった形状の断面の異形ビレットを得るための鋳造装置を準備した。この鋳造装置は、冷却水により強制的に冷却される鋳型1と、該鋳型1の上部に配置された耐火断熱材からなるホットトップ部2と、該ホットトップ上にあって鋳型へ供給する溶湯を分配する溶湯分配器9と、鋳型1の下部で昇降装置に接続された鋳塊受台7とを備えている。また、鋳型1に下部には、鋳塊を二次冷却するための冷却水8を噴出するスリットが設けられている。なお、同図中、3は樋,4は凝固殻,5は凝固界面,6は凝固鋳塊,10は注湯口,11は支柱である。
そして、本発明方法を実施する際には、図5に示すように、3つのアーム部は、先端以外に二次冷却水13が掛からない部分nを設けるべく、鋳型1に設けたスリットを塞いでいる。
In order to carry out the present invention, a deformed mold as shown in FIG. 4 is provided, and three Y-shaped arms as shown in FIG. 5 are provided, and the arms are bent in any direction. A casting apparatus for obtaining a deformed billet was prepared. The casting apparatus includes a mold 1 that is forcibly cooled by cooling water, a hot top portion 2 made of a refractory heat insulating material disposed above the mold 1, and a molten metal that is on the hot top and is supplied to the mold. The molten metal distributor 9 for distributing the liquid and the ingot receiving base 7 connected to the lifting device at the lower part of the mold 1 are provided. In addition, a slit for ejecting cooling water 8 for secondary cooling of the ingot is provided in the lower portion of the mold 1. In the figure, 3 is a ridge, 4 is a solidified shell, 5 is a solidified interface, 6 is a solidified ingot, 10 is a pouring spout, and 11 is a support.
Then, when carrying out the method of the present invention, as shown in FIG. 5, the three arm portions close the slits provided in the mold 1 so as to provide a portion n where the secondary cooling water 13 is not applied other than the tip. It is out.

上記図4,5に示す鋳造装置を用い、表1に示す化学組成を有する高強度6000系合金を鋳造した。また比較のために、同じ組成の合金を、上記鋳型のスリットを塞ぐことなく、従来の鋳造法である鋳型全周から二次冷却水を噴出させる方法でも鋳造を行った。
本発明方法を採用した実施例と従来法による比較例についての鋳造結果を纏めると、次に表2に見られるような結果となる。
比較例では、抱きつきが発生して割れやメタル漏れが認められるのに対して、本発明例では、割れやメタル漏れが認められずスムーズに鋳造できている。
A high-strength 6000 series alloy having the chemical composition shown in Table 1 was cast using the casting apparatus shown in FIGS. For comparison, casting of an alloy having the same composition was also performed by a method in which secondary cooling water was ejected from the entire periphery of the mold, which is a conventional casting method, without blocking the slit of the mold.
Summarizing the casting results of the example employing the method of the present invention and the comparative example by the conventional method, the results shown in Table 2 are obtained.
In the comparative example, hugging occurs and cracks and metal leakage are recognized, whereas in the example of the present invention, cracks and metal leakage are not recognized and the casting can be performed smoothly.

Figure 0004432590
Figure 0004432590

Figure 0004432590
Figure 0004432590

異形ビレット鋳造時の二次冷却水の分配量を計算するための模式図Schematic diagram for calculating the amount of secondary cooling water distribution during irregular billet casting 異形ビレットの凝固解析結果を対照するための図で(a)が本発明法、(b)が従来法The figure for contrasting the solidification analysis result of the deformed billet. 接触圧力(抱きつき力)の解析位置(a)と解析結果(b)を表す図Diagram showing analysis position (a) and analysis result (b) of contact pressure (holding force) 異形ビレットをDC鋳造する装置の概略を説明する図The figure explaining the outline of the apparatus which carries out DC casting of a variant billet 異形ビレットの断面形状と二次冷却水の供給部位を説明する図The figure explaining the cross-sectional shape of a variant billet and the supply part of secondary cooling water

Claims (1)

断面がY形,X形或いは放射かつ任意の方向に伸びる複数のアーム形状を有するアルミニウム合金異形ビレットをDC鋳造する方法であって、当該異形ビレットの断面形状を複数のアーム部と中央部とに分割し、各々について外周長さと断面積を求めるとともに、アーム部にはその先端を除いて二次冷却水が掛からない部分を設け、アーム部の二次冷却水が掛かる部分の外周長さとアーム部断面積の比を中央部の二次冷却水が掛かる外周長さと中央部断面積の比の0.8〜1.2倍にして二次冷却することを特徴とするアルミニウム合金異形ビレットのDC鋳造方法。 Horizontal cross-section Y-shaped, the aluminum alloy profiled billet having an X-shaped or radiation and any of a plurality of arms shape extending in a direction to a method of DC casting, a plurality of arm portions of the transverse cross-sectional shape of the profiled billet and the central portion The outer peripheral length and the cross-sectional area of each are obtained, and the arm portion is provided with a portion where the secondary cooling water is not applied except for the tip thereof, and the outer peripheral length of the portion of the arm portion where the secondary cooling water is applied. The aluminum alloy irregular billet is characterized in that the secondary cooling is performed by setting the ratio of the cross-sectional area of the arm part to 0.8 to 1.2 times the ratio of the outer peripheral length of the central part to which the secondary cooling water is applied and the ratio of the cross-sectional area of the central part. DC casting method.
JP2004115565A 2004-04-09 2004-04-09 DC casting method of aluminum alloy deformed billet Expired - Fee Related JP4432590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115565A JP4432590B2 (en) 2004-04-09 2004-04-09 DC casting method of aluminum alloy deformed billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115565A JP4432590B2 (en) 2004-04-09 2004-04-09 DC casting method of aluminum alloy deformed billet

Publications (2)

Publication Number Publication Date
JP2005296989A JP2005296989A (en) 2005-10-27
JP4432590B2 true JP4432590B2 (en) 2010-03-17

Family

ID=35329169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115565A Expired - Fee Related JP4432590B2 (en) 2004-04-09 2004-04-09 DC casting method of aluminum alloy deformed billet

Country Status (1)

Country Link
JP (1) JP4432590B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169470B2 (en) * 2007-07-10 2013-03-27 日本電気株式会社 Liquid crystal display
JP7190324B2 (en) * 2018-10-19 2022-12-15 昭和電工株式会社 Metal continuous casting apparatus and continuous casting method

Also Published As

Publication number Publication date
JP2005296989A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP5432146B2 (en) Continuous casting of metals with the same or similar shrinkage factor
EP1789213B1 (en) Extrusion apparatus and method for manufacturing the same
CN101823133A (en) The homogenizing of cast metal and heat treatment
EP3381579B1 (en) Method of producing forged product
EP1933995B1 (en) Forming tool
JP2006138015A (en) Method for manufacturing copper based precipitation hardenable alloy
CN105705271A (en) Methods and apparatus to produce high performance axisymmetric components
CN112872261A (en) Forging method of titanium alloy flange plate forge piece
JP2005074461A (en) Molding manufacturing method
JP4432590B2 (en) DC casting method of aluminum alloy deformed billet
CN106756681A (en) A kind of semi-solid blank fast preparation method based on texture controlling thought
JP4899629B2 (en) Billet continuous casting method
CN104039478A (en) Double-jet cooling device for semicontinuous vertical casting mould
CN114904933B (en) Method for preparing high-temperature alloy large-diameter fine-grain bar difficult to deform
KR100510841B1 (en) Method for designing the second optimum cooling pattern of continuous slab casting
US20200030863A1 (en) HOT EXTRUSION-MOLDING METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY AND PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY EXTRUSION MATERIAL
CN215966252U (en) Air-cooled mould for low-pressure casting of aluminum hub
CN108607973A (en) A kind of method for casting aluminium alloy generating elongate column crystal solidification tissue
JP6566566B2 (en) Heat sink forging material, heat sink forging material manufacturing method, and heat sink manufacturing method
CN106424501A (en) Sheath-based difficult-to-deform material multidirectional swaging method
JP5025153B2 (en) Mold apparatus, cast product, and mold manufacturing method
JP2560935B2 (en) Semi-continuous casting method for ingots with multiple extensions
JP2001191150A (en) Perpendicular continuous molding method of aluminum alloy billet
JP2001286968A (en) Forging method, forging stock to be used in the method, forging apparatus and under carriage part for vehicle
EP2857122A1 (en) Continuous casting method for slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees