JP4432149B2 - ORGANIC PHOSPHATE COMPOUND, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT CONTAINING THE SAME, AND FLAME RETARDANT RESIN COMPOSITION - Google Patents

ORGANIC PHOSPHATE COMPOUND, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT CONTAINING THE SAME, AND FLAME RETARDANT RESIN COMPOSITION Download PDF

Info

Publication number
JP4432149B2
JP4432149B2 JP15356099A JP15356099A JP4432149B2 JP 4432149 B2 JP4432149 B2 JP 4432149B2 JP 15356099 A JP15356099 A JP 15356099A JP 15356099 A JP15356099 A JP 15356099A JP 4432149 B2 JP4432149 B2 JP 4432149B2
Authority
JP
Japan
Prior art keywords
flame retardant
compound
phosphoric acid
phosphate
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15356099A
Other languages
Japanese (ja)
Other versions
JP2000344787A (en
Inventor
典久 近藤
巧 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP15356099A priority Critical patent/JP4432149B2/en
Publication of JP2000344787A publication Critical patent/JP2000344787A/en
Application granted granted Critical
Publication of JP4432149B2 publication Critical patent/JP4432149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン原子を含まない新規な有機リン酸化合物、その製造方法、それを含む難燃剤及び難燃性樹脂組成物に関するものであり、本発明の化合物は各種電気機器等に多用される難燃樹脂用配合型難燃剤として有用な化合物である。
【0002】
【従来の技術】
従来、樹脂の難燃化に対して、ハロゲン系の難燃剤が難燃性、樹脂物性、価格の面で優れているために広く用いられてきたが、発煙性、加工及び燃焼時に毒性ガスが発生する等の問題により、近年、ハロゲン系化合物を使用しない難燃処方の開発が盛んに行われている。
【0003】
樹脂の難燃化を目的としたハロゲン原子を含まない難燃剤としては、例えば、には、トリフェニルホスフェートやトリクレジルホスフェート等のリン酸エステル系化合物(特公昭53−418号公報参照)、ポリリン酸アンモニウム(特開昭7−3309688号公報参照)、エチレンジアミンリン酸塩等のリン酸アミン(特開平5−156116号公報参照)、赤リン等のリン系難燃剤や、水酸化マグネシウム、水酸化アルミニウム、ホウ酸亜鉛等の無機系難燃剤等が知られている。
【0004】
【発明が解決しようとする課題】
しかしながらこれら従来の難燃剤のうち、例えば、リン酸エステル系化合物は、揮発性が高く耐熱性が十分でないものが多く、また難燃性能及び配合樹脂の機械物性の低下等の問題があり、さらなる改善が求められていた。また水酸化マグネシウムに代表される無機系難燃剤や、ポリリン酸アンモニウム、赤リン、リン酸アミン等のリン系難燃剤も難燃性の面で必ずしも満足されていないのが現状である。その他、種々の非ハロゲン系難燃剤の提案がなされ、様々な用途で使い分けがなされているものの、近年の難燃規制の強化、配合した難燃樹脂の性能のさらなる向上要求が高く、従来品の課題を克服できる剤の創製が望まれていた。
【0005】
本発明は上記の課題に鑑みてなされたものであり、その目的は、ハロゲン原子を含まない新規なリン酸エステル系化合物、その製造方法、それを含む難燃剤及びそれを配合した難燃性及び耐熱性に優れた難燃性樹脂組成物を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記課題を解決するため鋭意検討した結果、本発明の有機リン酸化合物が耐熱性、難燃性付与性能に優れ、樹脂等に混ぜることで十分な難燃性を発揮させることができることを見出し、本発明を完成させるに至った。
【0007】
すなわち本発明は、下記一般式(1)
【0008】
【化3】

Figure 0004432149
【0009】
(式中、R1、R2は各々独立して炭素数1〜10の直鎖、分岐又は環式のアルキル基を表し、a、bは各々独立して0〜3の整数を表し、mは1〜9の整数を表す。)
で示される有機リン酸化合物、下記一般式(2)
【0010】
【化4】
Figure 0004432149
【0011】
(式中、R3は各々独立して炭素数1〜10の直鎖、分岐又は環式のアルキル基を表し、cは各々独立して0〜3の整数を表し、nは1〜9の整数を表す。)
で示される有機リン酸亜鉛化合物、それらの製造方法、それらを含む難燃剤及びそれらを樹脂に配合してなる難燃性樹脂組成物に関する。
【0012】
以下、本発明を詳細に説明する。
【0013】
本発明の有機リン化合物は上記一般式(1)又は一般式(2)で示される化合物である。
【0014】
本発明において、上記一般式(1)又は一般式(2)中のR1、R2、R3は各々独立して炭素数1〜10の直鎖、分岐又は環式のアルキル基であり、a、b、cは0〜3の整数であり、置換基R1、R2、R3の位置は特に限定されない。また、一般式(1)又は一般式(2)中のm、nは1〜9の整数である。本発明においては、上記一般式(1)又は一般式(2)中のa,b,cは、製造の容易さから、0であることが好ましい。
【0015】
上記一般式(1)で表される有機リン酸化合物の具体例としては、フェニルリン酸の縮合物でmが1〜9の化合物、フェニルリン酸とトリルリン酸の縮合物でmが1〜9の化合物、フェニルリン酸とキシリルリン酸の縮合物でmが1〜9の化合物、フェニルリン酸と2−エチルフェニルリン酸の縮合物でmが1〜9の化合物、フェニルリン酸と3−n−プロピルフェニルリン酸の縮合物でmが1〜9の化合物、フェニルリン酸と4−t−ブチルフェニルリン酸の縮合物でmが1〜9の化合物、トリルリン酸とキシリルリン酸の縮合物でmが1〜9の化合物、トリルリン酸と2−エチルフェニルリン酸の縮合物でmが1〜9の化合物、トリルリン酸と3−n−プロピルフェニルリン酸の縮合物でmが1〜9の化合物、キシリルリン酸と2−エチルフェニルリン酸の縮合物でmが1〜9の化合物等が挙げられる。
【0016】
また上記一般式(2)で表される有機リン酸化合物の具体例としては、フェニルリン酸とリン酸の縮合物の亜鉛塩でnが1〜9の化合物、トリルリン酸とリン酸の縮合物の亜鉛塩でnが1〜9の化合物、キシリルリン酸とリン酸の縮合物の亜鉛塩でnが1〜9の化合物、2−エチルフェニルリン酸とリン酸の縮合物の亜鉛塩でnが1〜9の化合物、3−n−プロピルフェニルリン酸とリン酸の縮合物の亜鉛塩でnが1〜9の化合物、4−t−ブチルフェニルリン酸とリン酸の縮合物の亜鉛塩でnが1〜9の化合物等が挙げられる。
【0017】
本発明の有機リン酸化合物の製造方法については特に限定するものではないが、例えば、上記一般式(1)で示される有機リン酸化合物は、アリールリン酸ジクロライドとアリールリン酸との反応により容易に得ることができる。また上記一般式(2)で示される有機リン酸化合物は、アリールリン酸ジクロライドとリン酸との反応により得られる下記一般式(3)
【0018】
【化5】
Figure 0004432149
【0019】
(式中、R3は炭素数1〜10の直鎖、分岐又は環式のアルキル基を表し、cは0〜3の整数を表し、nは1〜9の整数を表す。)
で示される化合物と亜鉛化合物との反応等により容易に得ることができる。
【0020】
本発明の上記一般式(1)又は一般式(2)で示される有機リン酸化合物の製造方法に用いられるアリールリン酸ジクロライドとしては、特に限定するものではないが、具体的には、フェニルリン酸ジクロライド、トリルリン酸ジクロライド、キシリルリン酸ジクロライド、2−エチルフェニルリン酸ジクロライド、3−n−プロピルフェニルリン酸ジクロライド、4−t−ブチルフェニルリン酸ジクロライド等が挙げられる。
【0021】
本発明の上記一般式(1)で示される有機リン酸化合物の製造方法に用いられるアリールリン酸としては、特に限定するものではないが、具体的には、フェニルリン酸、トリルリン酸、キシリルリン酸、2−エチルフェニルリン酸、3−n−プロピルフェニルジリン酸、4−t−ブチルフェニルリン酸等が挙げられる。
【0022】
本発明の上記一般式(2)で示される有機リン酸化合物の製造方法に用いられる亜鉛化合物としては、具体的には、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛、過塩素酸亜鉛等の無機酸塩、安息香酸亜鉛、クエン酸亜鉛、ギ酸亜鉛、乳酸亜鉛、オレイン酸亜鉛、サリチル酸亜鉛等の有機酸塩、亜鉛金属、酸化亜鉛、水酸化亜鉛等が例示されるが、特に限定されることなく使用可能である。
【0023】
本発明の上記一般式(1)又は一般式(2)で示される有機リン酸化合物の製造方法において、アリールリン酸ジクロライドの使用量としては特に限定するものではないが、リン酸又はアリールリン酸に対して通常0.5〜3当量用いられる。
【0024】
本発明の上記一般式(2)で示される有機リン酸化合物の方法において亜鉛化合物の使用量としては、特に限定されるものではないが、アリールリン酸ジクロライドに対して通常1〜1.3当量用いられる。
【0025】
本発明の上記一般式(1)又は一般式(2)で示される有機リン酸化合物の製造方法において、反応温度としては、アリールリン酸ジクロライド及び亜鉛化合物の種類により左右されるため一概にいえないが、通常−10℃〜300℃の範囲で実施され、より好ましくは100℃〜250℃の範囲である。
【0026】
本発明の上記一般式(1)又は一般式(2)で示される有機リン酸化合物の製造方法において、反応時間としては、アリールリン酸ジクロライド及び亜鉛化合物の種類及び反応温度により左右されるため一概にいえないが、通常1〜24時間の範囲で実施され、より好ましくは3〜10時間の範囲である。
【0027】
本発明の有機リン酸化合物を樹脂に配合することにより、難燃性樹脂組成物とすることができる。その場合には、上記一般式(1)又は一般式(2)で表される有機リン酸化合物のうちの、単一の構造の化合物を用いるのみならず、本発明の範囲内で任意の位置に置換基を有したものや、置換数の数の異なるものを混合物として樹脂に混ぜても良い。
【0028】
本発明の有機リン酸化合物が配合可能な樹脂としては、特に限定するものではなく、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン、アルキド樹脂、エポキシ樹脂等の熱硬化性樹脂や、低密度ポリエチレン、高密度ポリエチレン、エチレン−ビニルアセテート共重合体、ポリスチレン、耐衝撃性ポリスチレン、発泡ポリスチレン、アクリロニトリル−スチレン共重合体、アクリロニトリル−スチレン−ブタジエン共重合体(以下ABSと略す)、ポリプロピレン、石油樹脂、ポリメチルメタクリレート、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル等の熱可塑性樹脂が挙げられ、さらに熱可塑性樹脂を2種以上混合したポリカーボネート−ABS、ポリフェニレンエーテル−ポリスチレン等に代表されるポリマーアロイ等も例示できる。これらのうち、低密度ポリエチレン、高密度ポリエチレン、エチレン−ビニルアセテート共重合体、ポリスチレン、耐衝撃性ポリスチレン、発泡ポリスチレン、アクリロニトリル−スチレン共重合体、アクリロニトリル−スチレン−ブタジエン共重合体、ポリプロピレン、石油樹脂、ポリメチルメタクリレート、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル等の熱可塑性樹脂や、熱可塑性樹脂を2種以上混合したポリカーボネート−ABS、ポリフェニレンエーテル−ポリスチレン等に代表されるポリマーアロイが好適な樹脂として例示される。
【0029】
本発明の有機リン酸化合物の樹脂への配合量としては、配合する樹脂の種類や目的とする難燃性能により異なり、特に限定されるものではないが、樹脂100重量部に対して1〜100重量部配合することが好ましく、さらに難燃性樹脂組成物としての効果をより発揮させるために10〜100重量部、特に15〜100重量部配合することが好ましい。
【0030】
本発明の有機リン酸化合物を樹脂に配合するにあたり、上記一般式(1)で示される有機リン酸化合物及び上記一般式(2)で示される有機リン酸化合物からなる群より選ばれる1種を単独で配合しても、2種以上を混合しても配合してもよく、さらにその他のリン酸化合物、臭素含有化合物等の難燃剤を併用して配合してもよい。
【0031】
本発明の有機リン酸化合物を樹脂に配合するにあたり、三酸化アンチモン、アンチモン酸ソーダ、テフロン、ポリエーテルイミド、ほう酸亜鉛、メラミンシアヌレート等の難燃助剤を添加してもよく、この場合、本発明の有機リン酸化合物100重量部に対して通常5〜80重量部添加される。
【0032】
さらに必要に応じて、ベンゾトリアゾール系の紫外線吸収剤、2,2,6,6−テトラメチルピペリジン誘導体の光安定剤、ヒンダードフェノール系の酸化防止剤等を添加してもよく、この場合本発明の難燃性樹脂組成物100重量部に対して通常0.05〜5重量部添加される。これらの他、必要に応じて帯電防止剤やタルク、グラスファイバー等の無機充填剤を添加してもよい。
【0033】
本発明の有機リン酸化合物の樹脂への配合方法としては、説くに限定するものではないが、熱硬化性樹脂に配合する場合には、例えば、予め本発明の有機リン酸化合物を樹脂原料に分散させた後硬化させればよい。また、熱可塑性樹脂に配合する場合には、例えば、コニカルブレンダーやタンブラーミキサーを用いて必要な配合試剤を混合し、二軸押出機等を用いてペレット化してもよい。これらの方法で得られた難燃性樹脂組成物の加工方法は、特に限定されるものではなく、例えば、押出成型、射出成型等を行い、目的とする成型品を得ることができる。
【0034】
本発明の有機リン酸化合物は耐熱性が高いため、樹脂に配合する際に高温での処理が必要であっても難燃性能が低下することなく配合でき、多くの樹脂に適用できるという利点がある。
【0035】
本発明の難燃剤は主成分として本発明の有機リン酸化合物を含むものであり、樹脂等へ配合することで難燃性能を付与できるものである。本発明においていう主成分とは、難燃剤の効果を示す成分であり、難燃剤の効果が認められる量を有していればよい。本発明の難燃剤に含まれる他の成分としては、本発明の難燃剤以外の既存の難燃剤、上記した難燃助剤、増量剤、劣化防止剤等を含んでいてもよい。剤型としては使用する態様により選択すればよく、溶液状、懸濁状、固形状等種々の剤型を採用できる。
【0036】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0037】
参考例1
撹拌機、温度計及び冷却管を備えた1リットルのガラス反応器にフェニルリン酸ジクロライド84.4g(0.40モル)及びフェニルリン酸69.6g(0.40モル)を仕込み、撹拌下、210℃まで昇温し、同温度で3時間反応を行った。反応終了後、粘稠な有機リン酸化合物(A)118.9g(収率95.2%)を得た。
【0038】
この得られた粘稠物について、元素分析、赤外吸収スペクトル及び熱天秤を測定した結果を以下に示す。
【0039】
尚、元素分析は炭素及び水素については元素分析計により、リンはICPにより行った。また、熱天秤測定は、空気中、室温より600℃まで10℃/分の速度で昇温させる条件にて行った。
【0040】
A.元素分析
【0041】
【表1】
Figure 0004432149
【0042】
表1より明らかなようにこの化合物は、下式(4)で示される化合物の理論値とほぼ一致した。
【0043】
【化6】
Figure 0004432149
【0044】
B.赤外吸収スペクトル(KBr、ν cm-1):3375、1702、1592、1490、1207、1164、1102、1024、985、928、771、763、688。
【0045】
C.熱天秤(℃):5%重量減少(305)、10%重量減少(319)、50%重量減少(391)。
【0046】
実施例2
撹拌機、温度計及び冷却管を備えた1リットルのガラス反応器にフェニルリン酸ジクロライド105.5g(0.50モル)及びオルトリン酸49.0g(0.50モル)を仕込み、撹拌下、210℃まで昇温し、同温度で3時間反応を行った。反応終了後、粘稠物104.6g(収率88.6%)を得た。
【0047】
この得られた粘稠物について、元素分析、赤外吸収スペクトル及び熱天秤を測定した結果を以下に示す。
【0048】
D.元素分析
【0049】
【表2】
Figure 0004432149
【0050】
表2より明らかなようにこの化合物は、下式(5)で示される化合物の理論値とほぼ一致した。
【0051】
【化7】
Figure 0004432149
【0052】
E.赤外吸収スペクトル(KBr、ν cm-1):2755、2272、1693、1591、1490、1203、1024、933、770、688、507。
【0053】
F.熱天秤(℃):5%重量減少(252)、10%重量減少(279)。
【0054】
次に撹拌機、温度計及び冷却管を備えた1リットルのガラス反応器に先に得られた粘稠物70.8g及び塩化亜鉛20.4g(0.15モル)を仕込み、撹拌下、150℃まで昇温し、同温度で3時間反応を行った。反応終了後、水洗、濾過することにより含亜鉛有機リン酸化合物(B)50.7g(収率63.1%)を得た。
【0055】
この得られた白色粉末について、元素分析、赤外吸収スペクトル及び熱天秤を測定した結果を以下に示す。
【0056】
G.元素分析
【0057】
【表3】
Figure 0004432149
【0058】
表3より明らかなようにこの化合物は、下式(6)で示される化合物の理論値とほぼ一致した。
【0059】
【化8】
Figure 0004432149
【0060】
H.融点:196〜215℃。
【0061】
I.赤外吸収スペクトル(KBr、ν cm-1):3413、2361、1636、1590、1491、1217、1149、1027、1000、971、933、786、760、688、619、585、520。
【0062】
J.熱天秤(℃):5%重量減少(251)、10%重量減少(284)。
【0063】
参考例3、実施例4〜実施例5
表4に示すように、PPE(旭化成製、商品名:ザイロン500H)100重量部に対して、参考例1で得られた有機リン酸化合物(A)[表4中では化合物Aと記載]及び/又は実施例2で得られた含亜鉛有機リン酸化合物(B)[表4中では化合物Bと記載]15重量部を配合し、異方二軸押出機にてシリンダー温度285℃でペレット化を行い、射出成形機にて295℃で試料片を作製した。得られた試料片を、JIS K7201に規格されている酸素指数測定法に準拠して燃焼性の評価を行った。その結果を表4に示す。
【0064】
【表4】
Figure 0004432149
【0065】
実施例4〜実施例5と比較例1を比較すると、本発明の化合物Bを配合して得られた難燃性樹脂組成物は、市販剤を配合して得た樹脂組成物よりも優れた難燃性及び耐熱性を示すことが分かる。
【0066】
実施例3〜実施例5と比較例1を比較すると、本発明の化合物A及び/又は化合物Bを配合して得られた難燃性樹脂組成物は、市販剤を配合して得た樹脂組成物よりも優れた難燃性及び耐熱性を示すことが分かる。
【0067】
比較例2
ポリリン酸アンモニウムに変えて水酸化マグネシウム(協和化学製、商品名:キスマ5B)を15重量部配合する以外は、比較例1と同様に試料片を作製した。得られた試料片を、JIS K7201に規格されている酸素指数測定法に準拠して燃焼性の評価を行った。その結果を表4にあわせて示す。
【0068】
なお、比較例2で得られた試験片は機械強度が低く、実用に耐えるものではなかった。
【0069】
比較例3
ポリリン酸アンモニウムに変えてリン酸メラミン(三和ケミカル製、商品名:MPP−A)を15重量部配合する以外は、比較例1と同様に試料片を作製した。得られた試料片を、JIS K7201に規格されている酸素指数測定法に準拠して燃焼性の評価を行った。その結果を表4にあわせて示す。
【0070】
【発明の効果】
本発明の有機リン酸化合物は新規な化合物であり、耐熱性が高いため、樹脂に配合する際に高温での処理が必要であっても難燃性能が低下することなく配合でき、多くの樹脂に適用できるという利点があるため、難燃剤として優れた性能を示す。
【0071】
また本発明の製造方法は、本発明の有機リン酸化合物を容易に製造できるものであり、工業的に極めて有用である。
【0072】
さらに、本発明の有機リン酸化合物を熱硬化性樹脂や熱可塑性樹脂に配合して得られる難燃性樹脂組成物は、高い難燃性能と高い耐熱性能を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel organic phosphoric acid compound containing no halogen atom, a method for producing the same, a flame retardant containing the same, and a flame retardant resin composition. The compound of the present invention is frequently used in various electric devices and the like. It is a useful compound as a compounding flame retardant for flame retardant resins.
[0002]
[Prior art]
Conventionally, halogen-based flame retardants have been widely used for flame retardancy of resins because they are excellent in terms of flame retardancy, resin physical properties, and price. Due to problems such as generation, flame retardant formulations that do not use halogen compounds have been actively developed in recent years.
[0003]
Examples of the flame retardant containing no halogen atom for the purpose of making the resin flame-retardant include, for example, phosphate compounds such as triphenyl phosphate and tricresyl phosphate (see Japanese Patent Publication No. 53-418), Ammonium polyphosphate (see JP-A-7-3309688), amine phosphates such as ethylenediamine phosphate (see JP-A-5-156116), phosphorus-based flame retardants such as red phosphorus, magnesium hydroxide, water Inorganic flame retardants such as aluminum oxide and zinc borate are known.
[0004]
[Problems to be solved by the invention]
However, among these conventional flame retardants, for example, phosphate ester compounds are often volatile and have insufficient heat resistance, and there are problems such as flame retardancy and deterioration of mechanical properties of compounded resins. There was a need for improvement. In addition, inorganic flame retardants typified by magnesium hydroxide and phosphorus flame retardants such as ammonium polyphosphate, red phosphorus, and amine phosphate are not always satisfied in terms of flame retardancy. In addition, although various non-halogen flame retardants have been proposed and used for various purposes, there has been a strong demand for further improvement in the performance of fire retardant resins and the performance of blended flame retardant resins in recent years. The creation of an agent that can overcome the problem has been desired.
[0005]
The present invention has been made in view of the above problems, and its object is to provide a novel phosphate ester compound not containing a halogen atom, a method for producing the same, a flame retardant containing the same, and flame retardancy containing the same and It is providing the flame-retardant resin composition excellent in heat resistance.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have demonstrated that the organophosphate compound of the present invention has excellent heat resistance and flame retardancy, and exhibits sufficient flame retardancy when mixed with a resin or the like. As a result, the present invention has been completed.
[0007]
That is, the present invention provides the following general formula (1)
[0008]
[Chemical 3]
Figure 0004432149
[0009]
(Wherein R 1 and R 2 each independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, a and b each independently represent an integer of 0 to 3; Represents an integer of 1 to 9.)
An organic phosphate compound represented by the following general formula (2)
[0010]
[Formula 4]
Figure 0004432149
[0011]
(In the formula, each R 3 independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, each c independently represents an integer of 0 to 3, and n represents 1 to 9) Represents an integer.)
It relates to a flame retardant resin composition formed by blending them with a resin, a flame retardant containing them, and a method for producing them.
[0012]
Hereinafter, the present invention will be described in detail.
[0013]
The organophosphorus compound of the present invention is a compound represented by the above general formula (1) or general formula (2).
[0014]
In the present invention, R 1 , R 2 and R 3 in the general formula (1) or the general formula (2) are each independently a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, a, b and c are integers of 0 to 3, and the positions of the substituents R 1 , R 2 and R 3 are not particularly limited. Moreover, m and n in General formula (1) or General formula (2) are the integers of 1-9. In the present invention, a, b and c in the general formula (1) or the general formula (2) are preferably 0 from the viewpoint of ease of production.
[0015]
Specific examples of the organic phosphoric acid compound represented by the general formula (1) include a phenylphosphoric acid condensate having m of 1 to 9, and a phenylphosphoric acid and tolylphosphoric acid condensate having m of 1 to 9. A compound of phenylphosphoric acid and xylylphosphoric acid, m is 1-9, a compound of phenylphosphoric acid and 2-ethylphenylphosphoric acid, m is 1-9, phenylphosphoric acid and 3-n A compound of 1 to 9 in a condensate of propylphenyl phosphoric acid, a compound of 1 to 9 in a condensate of phenyl phosphoric acid and 4-t-butylphenyl phosphoric acid, a condensate of tolyl phosphoric acid and xylyl phosphoric acid a compound in which m is 1 to 9, a condensate of tolylphosphoric acid and 2-ethylphenylphosphoric acid and m is a compound of 1 to 9, a condensate of tolylphosphoric acid and 3-n-propylphenylphosphoric acid and m is 1 to 9 Compound, xylyl phosphate and 2-ethyl I m a condensation product of phenyl phosphoric acid compounds such as 1-9.
[0016]
Specific examples of the organic phosphoric acid compound represented by the above general formula (2) include a zinc salt of a condensate of phenylphosphoric acid and phosphoric acid, wherein n is 1 to 9, and a condensate of tolylphosphoric acid and phosphoric acid. And a zinc salt of a condensate of xylyl phosphoric acid and phosphoric acid, a compound of n of 1 to 9 and a zinc salt of a condensate of 2-ethylphenyl phosphoric acid and phosphoric acid. A compound of 1-9, a zinc salt of a condensate of 3-n-propylphenyl phosphoric acid and phosphoric acid, and a compound of n being 1-9, a zinc salt of a condensate of 4-t-butylphenyl phosphoric acid and phosphoric acid Examples include compounds in which n is 1 to 9.
[0017]
The method for producing the organophosphate compound of the present invention is not particularly limited. For example, the organophosphate compound represented by the general formula (1) is easily obtained by the reaction of aryl phosphate dichloride and aryl phosphate. be able to. In addition, the organic phosphoric acid compound represented by the general formula (2) is obtained by the reaction of arylphosphoric dichloride and phosphoric acid, and the following general formula (3)
[0018]
[Chemical formula 5]
Figure 0004432149
[0019]
(In the formula, R 3 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, c represents an integer of 0 to 3, and n represents an integer of 1 to 9.)
It can be easily obtained by reaction of a compound represented by
[0020]
The aryl phosphoric acid dichloride used in the method for producing the organic phosphoric acid compound represented by the general formula (1) or the general formula (2) of the present invention is not particularly limited, but specifically, phenyl phosphoric acid. Examples include dichloride, tolyl phosphate dichloride, xylyl phosphate dichloride, 2-ethylphenyl phosphate dichloride, 3-n-propylphenyl phosphate dichloride, 4-t-butylphenyl phosphate dichloride.
[0021]
The aryl phosphoric acid used in the method for producing the organic phosphoric acid compound represented by the general formula (1) of the present invention is not particularly limited. Specifically, phenyl phosphoric acid, tolyl phosphoric acid, xylyl phosphoric acid, Examples include 2-ethylphenyl phosphoric acid, 3-n-propylphenyl diphosphoric acid, 4-t-butylphenyl phosphoric acid and the like.
[0022]
Specific examples of the zinc compound used in the method for producing the organic phosphate compound represented by the general formula (2) of the present invention include zinc sulfate, zinc nitrate, zinc chloride, zinc acetate, and zinc perchlorate. Examples include inorganic acid salts, organic acid salts such as zinc benzoate, zinc citrate, zinc formate, zinc lactate, zinc oleate, and zinc salicylate, zinc metal, zinc oxide, and zinc hydroxide, but are particularly limited. It can be used without.
[0023]
In the method for producing an organic phosphoric acid compound represented by the general formula (1) or the general formula (2) of the present invention, the amount of aryl phosphoric acid dichloride used is not particularly limited, but relative to phosphoric acid or aryl phosphoric acid. Usually 0.5 to 3 equivalents are used.
[0024]
In the method of the organic phosphoric acid compound represented by the general formula (2) of the present invention, the amount of the zinc compound used is not particularly limited, but is usually 1 to 1.3 equivalents based on the aryl phosphoric acid dichloride. It is done.
[0025]
In the method for producing an organic phosphate compound represented by the general formula (1) or the general formula (2) of the present invention, the reaction temperature depends on the kind of the aryl phosphate dichloride and the zinc compound. Usually, it is carried out in the range of -10 ° C to 300 ° C, more preferably in the range of 100 ° C to 250 ° C.
[0026]
In the method for producing an organic phosphate compound represented by the general formula (1) or the general formula (2) of the present invention, the reaction time depends on the kind of the aryl phosphate dichloride and the zinc compound and the reaction temperature. Although it cannot be said, it is usually carried out in the range of 1 to 24 hours, more preferably in the range of 3 to 10 hours.
[0027]
The flame retardant resin composition can be obtained by blending the organophosphate compound of the present invention with a resin. In that case, not only the compound having a single structure among the organic phosphate compounds represented by the general formula (1) or the general formula (2) is used, but any position within the scope of the present invention. Those having a substituent or a different number of substitutions may be mixed with the resin as a mixture.
[0028]
The resin that can be blended with the organic phosphate compound of the present invention is not particularly limited, and thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane, alkyd resin, epoxy resin, , Low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, polystyrene, high impact polystyrene, expanded polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-styrene-butadiene copolymer (hereinafter abbreviated as ABS), polypropylene , Petroleum resin, polymethylmethacrylate, polyamide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene ether, and other thermoplastic resins, and further, a polycarbonate mixed with two or more kinds of thermoplastic resins. Boneto - ABS, polyphenylene ether - polymer alloy typified by polystyrene, etc. can also be exemplified. Among these, low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, polystyrene, high impact polystyrene, expanded polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-styrene-butadiene copolymer, polypropylene, petroleum resin Polymer alloys represented by thermoplastic resins such as polymethyl methacrylate, polyamide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene ether, and polycarbonate-ABS, polyphenylene ether-polystyrene mixed with two or more thermoplastic resins. Illustrated as a suitable resin.
[0029]
The blending amount of the organophosphate compound of the present invention into the resin varies depending on the kind of the resin to be blended and the intended flame retardancy, and is not particularly limited, but is 1 to 100 with respect to 100 parts by weight of the resin. It is preferable to mix | blend a weight part, and also in order to exhibit the effect as a flame-retardant resin composition more, it is preferable to mix | blend 10-100 weight part, especially 15-100 weight part.
[0030]
In blending the organophosphate compound of the present invention into a resin, one kind selected from the group consisting of the organophosphate compound represented by the above general formula (1) and the organophosphate compound represented by the above general formula (2) is used. They may be blended singly or in combination of two or more, and may be blended in combination with other flame retardants such as phosphate compounds and bromine-containing compounds.
[0031]
In blending the organophosphate compound of the present invention with a resin, a flame retardant aid such as antimony trioxide, sodium antimonate, Teflon, polyetherimide, zinc borate, melamine cyanurate may be added. Usually, 5 to 80 parts by weight are added to 100 parts by weight of the organophosphate compound of the present invention.
[0032]
If necessary, a benzotriazole-based UV absorber, a 2,2,6,6-tetramethylpiperidine derivative light stabilizer, a hindered phenol-based antioxidant, etc. may be added. Usually, 0.05 to 5 parts by weight is added to 100 parts by weight of the flame-retardant resin composition of the invention. In addition to these, if necessary, an inorganic filler such as an antistatic agent, talc, or glass fiber may be added.
[0033]
The method of blending the organophosphate compound of the present invention into the resin is not limited to the description, but when blending into the thermosetting resin, for example, the organophosphate compound of the present invention is used as the resin raw material in advance. It may be cured after being dispersed. Moreover, when mix | blending with a thermoplastic resin, you may mix a required compounding reagent using a conical blender or a tumbler mixer, and may pelletize using a twin-screw extruder etc., for example. The processing method of the flame retardant resin composition obtained by these methods is not particularly limited. For example, extrusion molding, injection molding, or the like can be performed to obtain a desired molded product.
[0034]
Since the organophosphate compound of the present invention has high heat resistance, it can be blended without lowering the flame retardancy even if treatment at a high temperature is required when blended with a resin, and can be applied to many resins. is there.
[0035]
The flame retardant of the present invention contains the organic phosphoric acid compound of the present invention as a main component, and can impart flame retardant performance by blending with a resin or the like. The main component referred to in the present invention is a component showing the effect of the flame retardant, and it is sufficient that it has an amount in which the effect of the flame retardant is recognized. As other components contained in the flame retardant of the present invention, existing flame retardants other than the flame retardant of the present invention, the above-mentioned flame retardant aids, extenders, deterioration inhibitors and the like may be included. The dosage form may be selected depending on the mode of use, and various dosage forms such as a solution, suspension, and solid may be employed.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
[0037]
Reference example 1
A 1 liter glass reactor equipped with a stirrer, a thermometer and a condenser was charged with 84.4 g (0.40 mol) of phenylphosphoric dichloride and 69.6 g (0.40 mol) of phenylphosphoric acid. The temperature was raised to 210 ° C., and the reaction was carried out at the same temperature for 3 hours. After completion of the reaction, 118.9 g (yield 95.2%) of a viscous organophosphate compound (A) was obtained.
[0038]
About the obtained viscous material, the result of having measured the elemental analysis, the infrared absorption spectrum, and the thermobalance is shown below.
[0039]
Elemental analysis was carried out with an element analyzer for carbon and hydrogen, and ICP with phosphorus. In addition, the thermobalance measurement was performed under the conditions of increasing the temperature from room temperature to 600 ° C. at a rate of 10 ° C./min in air.
[0040]
A. Elemental analysis [0041]
[Table 1]
Figure 0004432149
[0042]
As is apparent from Table 1, this compound almost coincided with the theoretical value of the compound represented by the following formula (4).
[0043]
[Chemical 6]
Figure 0004432149
[0044]
B. Infrared absorption spectrum (KBr, ν cm −1 ): 3375, 1702, 1592, 1490, 1207, 1164, 1102, 1024, 985, 928, 771, 763, 688.
[0045]
C. Thermal balance (° C.): 5% weight reduction (305), 10% weight reduction (319), 50% weight reduction (391).
[0046]
Example 2
A 1 liter glass reactor equipped with a stirrer, a thermometer and a condenser was charged with 105.5 g (0.50 mol) of phenylphosphoric dichloride and 49.0 g (0.50 mol) of orthophosphoric acid. The temperature was raised to 0 ° C., and the reaction was carried out at the same temperature for 3 hours. After completion of the reaction, 104.6 g of viscous material (yield 88.6%) was obtained.
[0047]
About the obtained viscous material, the result of having measured the elemental analysis, the infrared absorption spectrum, and the thermobalance is shown below.
[0048]
D. Elemental analysis [0049]
[Table 2]
Figure 0004432149
[0050]
As is apparent from Table 2, this compound almost coincided with the theoretical value of the compound represented by the following formula (5).
[0051]
[Chemical 7]
Figure 0004432149
[0052]
E. Infrared absorption spectrum (KBr, ν cm −1 ): 2755, 2272, 1693, 1591, 1490, 1203, 1024, 933, 770, 688, 507.
[0053]
F. Thermal balance (° C.): 5% weight loss (252), 10% weight loss (279).
[0054]
Next, 70.8 g of the viscous material obtained previously and 20.4 g (0.15 mol) of zinc chloride were charged into a 1 liter glass reactor equipped with a stirrer, a thermometer and a cooling pipe, The temperature was raised to 0 ° C., and the reaction was carried out at the same temperature for 3 hours. After completion of the reaction, the reaction mixture was washed with water and filtered to obtain 50.7 g (yield 63.1%) of the zinc-containing organophosphate compound (B).
[0055]
About this obtained white powder, the result of having measured the elemental analysis, the infrared absorption spectrum, and the thermobalance is shown below.
[0056]
G. Elemental analysis [0057]
[Table 3]
Figure 0004432149
[0058]
As is apparent from Table 3, this compound almost agreed with the theoretical value of the compound represented by the following formula (6).
[0059]
[Chemical 8]
Figure 0004432149
[0060]
H. Melting point: 196-215 ° C.
[0061]
I. Infrared absorption spectrum (KBr, ν cm −1 ): 3413, 2361, 1636, 1590, 1491, 1217, 1149, 1027, 1000, 971, 933, 786, 760, 688, 619, 585, 520.
[0062]
J. et al. Thermal balance (° C.): 5% weight reduction (251), 10% weight reduction (284).
[0063]
Reference Example 3, Example 4 to Example 5
As shown in Table 4, the organophosphate compound (A) obtained in Reference Example 1 [described as Compound A in Table 4] with respect to 100 parts by weight of PPE (manufactured by Asahi Kasei, trade name: Zylon 500H) and / Or 15 parts by weight of the zinc-containing organophosphate compound (B) obtained in Example 2 [denoted as compound B in Table 4] and pelletized in an anisotropic twin-screw extruder at a cylinder temperature of 285 ° C. A sample piece was produced at 295 ° C. with an injection molding machine. The obtained sample piece was evaluated for flammability according to the oxygen index measurement method standardized in JIS K7201. The results are shown in Table 4.
[0064]
[Table 4]
Figure 0004432149
[0065]
When Example 4 to Example 5 and Comparative Example 1 were compared, the flame retardant resin composition obtained by blending compound B of the present invention was superior to the resin composition obtained by blending a commercial agent. It turns out that it shows a flame retardance and heat resistance.
[0066]
When Example 3 to Example 5 and Comparative Example 1 are compared, the flame retardant resin composition obtained by blending compound A and / or compound B of the present invention is a resin composition obtained by blending a commercial agent. It turns out that the flame retardance and heat resistance superior to the thing are shown.
[0067]
Comparative Example 2
A sample piece was prepared in the same manner as in Comparative Example 1, except that 15 parts by weight of magnesium hydroxide (trade name: Kisuma 5B, manufactured by Kyowa Chemical) was blended in place of ammonium polyphosphate. The obtained sample piece was evaluated for flammability according to the oxygen index measurement method standardized in JIS K7201. The results are also shown in Table 4.
[0068]
Note that the test piece obtained in Comparative Example 2 had low mechanical strength and was not practically usable.
[0069]
Comparative Example 3
A sample piece was prepared in the same manner as in Comparative Example 1 except that 15 parts by weight of melamine phosphate (trade name: MPP-A, manufactured by Sanwa Chemical Co., Ltd.) was mixed instead of ammonium polyphosphate. The obtained sample piece was evaluated for flammability according to the oxygen index measurement method standardized in JIS K7201. The results are also shown in Table 4.
[0070]
【The invention's effect】
Since the organophosphate compound of the present invention is a novel compound and has high heat resistance, it can be blended without reducing the flame retardant performance even when treatment at a high temperature is required when blended into the resin, and many resins Because it has the advantage that it can be applied to, it exhibits excellent performance as a flame retardant.
[0071]
In addition, the production method of the present invention can easily produce the organophosphate compound of the present invention, and is extremely useful industrially.
[0072]
Furthermore, the flame retardant resin composition obtained by blending the organophosphate compound of the present invention with a thermosetting resin or a thermoplastic resin has high flame resistance and high heat resistance.

Claims (6)

下記一般式(2)で示される有機リン酸化合物。
Figure 0004432149
(式中、Rは炭素数1〜10の直鎖、分岐又は環式のアルキル基を表し、cは0〜3の整数を表し、nは1〜9の整数を表す。)
An organic phosphoric acid compound represented by the following general formula (2).
Figure 0004432149
(Wherein R 3 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, c represents an integer of 0 to 3, and n represents an integer of 1 to 9)
アリールリン酸ジクロライドとリン酸を反応させ、次いで亜鉛化合物と反応させることを特徴とする請求項1に記載の有機リン酸化合物の製造方法。2. The method for producing an organic phosphate compound according to claim 1, wherein the aryl phosphate dichloride is reacted with phosphoric acid and then reacted with a zinc compound. アリールリン酸ジクロライドが、フェニルリン酸ジクロライド、トリルリン酸ジクロライド、キシリルリン酸ジクロライド、2−エチルフェニルリン酸ジクロライド、3−n−プロピルフェニルリン酸ジクロライド及び4−t−ブチルフェニルリン酸ジクロライドからなる群より選ばれる少なくとも1種であることを特徴とする請求項2に記載の有機リン酸化合物の製造方法。The aryl phosphate dichloride is selected from the group consisting of phenyl phosphate dichloride, tolyl phosphate dichloride, xylyl phosphate dichloride, 2-ethylphenyl phosphate dichloride, 3-n-propylphenyl phosphate dichloride and 4-t-butylphenyl phosphate dichloride. The method for producing an organophosphate compound according to claim 2, wherein at least one kind is selected. 請求項1に記載の有機リン酸化合物を主成分として含む難燃剤。A flame retardant comprising the organophosphate compound according to claim 1 as a main component. 請求項1に記載の有機リン酸化合物と、下記一般式(1)で示される有機リン酸化合物
Figure 0004432149
(式中、R、Rは各々独立して炭素数1〜10の直鎖、分岐又は環式のアルキル基を表し、a、bは各々独立して0〜3の整数を表し、mは1〜9の整数を表す。)
を主成分として含む難燃剤。
The organophosphate compound according to claim 1 and an organophosphate compound represented by the following general formula (1)
Figure 0004432149
(Wherein R 1 and R 2 each independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, a and b each independently represent an integer of 0 to 3; Represents an integer of 1 to 9.)
Flame retardant containing as a main component.
樹脂100重量部に対して請求項1に記載の有機リン酸化合物を1〜100重量部含む難燃性樹脂組成物。A flame-retardant resin composition comprising 1 to 100 parts by weight of the organophosphate compound according to claim 1 with respect to 100 parts by weight of the resin.
JP15356099A 1999-06-01 1999-06-01 ORGANIC PHOSPHATE COMPOUND, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT CONTAINING THE SAME, AND FLAME RETARDANT RESIN COMPOSITION Expired - Fee Related JP4432149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15356099A JP4432149B2 (en) 1999-06-01 1999-06-01 ORGANIC PHOSPHATE COMPOUND, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT CONTAINING THE SAME, AND FLAME RETARDANT RESIN COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15356099A JP4432149B2 (en) 1999-06-01 1999-06-01 ORGANIC PHOSPHATE COMPOUND, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT CONTAINING THE SAME, AND FLAME RETARDANT RESIN COMPOSITION

Publications (2)

Publication Number Publication Date
JP2000344787A JP2000344787A (en) 2000-12-12
JP4432149B2 true JP4432149B2 (en) 2010-03-17

Family

ID=15565175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15356099A Expired - Fee Related JP4432149B2 (en) 1999-06-01 1999-06-01 ORGANIC PHOSPHATE COMPOUND, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT CONTAINING THE SAME, AND FLAME RETARDANT RESIN COMPOSITION

Country Status (1)

Country Link
JP (1) JP4432149B2 (en)

Also Published As

Publication number Publication date
JP2000344787A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
JP2552780B2 (en) Method and application for producing aromatic diphosphate
EP2183314B1 (en) Triazine compounds containing phosphorous as flame retardants
JP3885263B2 (en) Nitrogen-containing organophosphate compound and flame retardant resin composition comprising the same
JP7244085B2 (en) FLAME RETARDANT COMPOSITION AND FLAME RETARDANT THERMOPLASTIC RESIN COMPOSITION CONTAINING THE FLAME RETARDANT COMPOSITION
EP3321343A1 (en) Flame protection agent compositions containing triazine intercalated metal phosphates
CN107250239A (en) The process stabilizing of polymer composition comprising phosphonium flame retardant
CN107207779A (en) The flame retardant compositions of phosphorus compound and melam comprising heat treatment
KR101234601B1 (en) Novel phosphoanate based compound and flame retardant thermoplastic resin composition including the same
US20040236132A1 (en) Method for manufacturing dicyclic phosphorus melamine compounds having superior fire retardancy and fire retardant material using thereof
KR101219556B1 (en) Novel phosphoanate based compound and flame retardant thermoplastic resin composition including the same
WO2003048247A1 (en) Flame retardant polymer compositions
JP4432149B2 (en) ORGANIC PHOSPHATE COMPOUND, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT CONTAINING THE SAME, AND FLAME RETARDANT RESIN COMPOSITION
JP4211121B2 (en) Silicon-containing organophosphate compound, method for producing the same, flame retardant containing the same, and flame retardant resin composition
CA2039468A1 (en) Flame retardants for polymers
KR20160045796A (en) Flame retardant prepared from amide derivatives and process for making the same
JP2911285B2 (en) Flame retardant thermoplastic resin composition
JP2001011462A (en) Flame retardant composed of piperazine skeleton-bearing amine-containing zinc phosphate, and resin composition compounded therewith
JP3804096B2 (en) Ethylenediamine-phenylphosphonate, process for producing the same, and flame-retardant resin composition comprising the same
JP2003238580A (en) New phosphoric acid ester amide compound and flame- retardant resin composition
JP2825466B2 (en) Flame-retardant thermostable resin composition containing aromatic diphosphate
JPH05163288A (en) Phosphonate compound, resin-compounding agent and flame-retardant thermoplastic resin composition
JP2001031408A (en) Zinc magnesium ethylenediamine phosphate, its production and flame-retardant resin composition
KR101064667B1 (en) Phosphorus piperazine compound, method for preparing the same, and flame-retardant thermoplastic resin composition comprising the compound
JP3026377B2 (en) Organophosphorus compound and flame-retardant heat-stable resin composition containing the same
JP2001262146A (en) Flame retardant auxiliary comprising polyalkylamine derivative, composite flame retardant using the same and flame retardant resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees