JP2001262146A - Flame retardant auxiliary comprising polyalkylamine derivative, composite flame retardant using the same and flame retardant resin composition - Google Patents

Flame retardant auxiliary comprising polyalkylamine derivative, composite flame retardant using the same and flame retardant resin composition

Info

Publication number
JP2001262146A
JP2001262146A JP2000079304A JP2000079304A JP2001262146A JP 2001262146 A JP2001262146 A JP 2001262146A JP 2000079304 A JP2000079304 A JP 2000079304A JP 2000079304 A JP2000079304 A JP 2000079304A JP 2001262146 A JP2001262146 A JP 2001262146A
Authority
JP
Japan
Prior art keywords
flame retardant
reaction
flame
composite
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000079304A
Other languages
Japanese (ja)
Inventor
Hideo Sakka
秀雄 属
Masaki Ishida
政喜 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2000079304A priority Critical patent/JP2001262146A/en
Publication of JP2001262146A publication Critical patent/JP2001262146A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flame-retardant auxiliary that can be more readily produced than the conventional in an industrial scale and can effectively develop the flame-retardant properties of the conventional flame retardant even in the case that the formulation of the flame retardant, particularly the halogen atom- free flame retardant is decreased, as well as the underwater insulation resistance, and further provide a composite flame retardant prepared by combining this auxiliary with a flame retardant and a flame-retardant resin composition prepared by compounding the composite flame retardant. SOLUTION: The objective flame retardant auxiliary comprises the reaction product from a polyalkylamine bearing 3 or more primary and/or secondary amino groups and cyanuric chloride. The auxiliary is used to provide the objective composite flame retardant and a flame retardant resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1級及び/又は2
級のアミノ基を3個以上含有するポリアルキルアミンと
塩化シアヌルの反応生成物からなる難燃助剤、複合難燃
剤、及びそれを配合してなる難燃性樹脂組成物に関する
ものである。本発明の複合難燃剤を配合してなる難燃性
樹脂組成物は、各種電気機器、自動車部品、建材及び電
線、ケーブル等の材料として広範に使用される。
TECHNICAL FIELD The present invention relates to primary and / or secondary grades.
The present invention relates to a flame-retardant auxiliary, a composite flame-retardant comprising a reaction product of a polyalkylamine containing three or more graded amino groups and cyanuric chloride, and a flame-retardant resin composition comprising the same. The flame-retardant resin composition containing the composite flame retardant of the present invention is widely used as a material for various electric appliances, automobile parts, building materials, electric wires, cables and the like.

【0002】[0002]

【従来の技術】従来より、樹脂の難燃化に対してハロゲ
ン系の難燃剤が難燃性、樹脂物性、価格の面で優れてい
るために広く用いられてきたが、発煙性、加工及び燃焼
時における毒性ガス発生の問題により、近年ハロゲン系
化合物を使用しない難燃処方の開発が盛んに行われてい
る。
2. Description of the Related Art Hitherto, halogen-based flame retardants have been widely used for flame retardancy of resins because of their excellent flame retardancy, resin properties, and price. Due to the problem of toxic gas generation during combustion, flame retardant formulations that do not use halogen compounds have been actively developed in recent years.

【0003】樹脂の難燃化を目的としたハロゲン原子を
含まない難燃剤としては、リン酸エステル系化合物(例
えばトリフェニルホスフェート、トリクレジルホスフェ
ート(いずれも例えば特公昭53−418号公報))、
ポリリン酸アンモニウム(例えば特開平7−33096
8号公報)、赤リン、リン酸アミン(例えばエチレンジ
アミンリン酸塩(例えば特開平5−156116号公
報))等のリン系難燃剤、水酸化マグネシウム、水酸化
アルミニウム、ホウ酸亜鉛等の無機系難燃剤等が知られ
ている。
Phosphoric ester compounds (eg, triphenyl phosphate and tricresyl phosphate (both of which are disclosed, for example, in Japanese Patent Publication No. 53-418)) include flame retardants containing no halogen atoms for the purpose of flame retardation of resins. ,
Ammonium polyphosphate (for example, JP-A-7-33096)
No. 8), phosphorus-based flame retardants such as red phosphorus, amine phosphates (for example, ethylenediamine phosphate (for example, JP-A-5-156116)), and inorganic based flame retardants such as magnesium hydroxide, aluminum hydroxide, and zinc borate. Flame retardants and the like are known.

【0004】しかしながら、リン酸エステル系化合物
は、揮発性が高く耐熱性が十分でないものが多く、難燃
性能及び配合樹脂の機械物性の問題でさらなる改善が求
められていた。また、ポリリン酸アンモニウムに代表さ
れるリン化合物を配合した樹脂組成物は耐水性が劣ると
いう問題があり、また赤リンを配合した樹脂組成物は、
樹脂組成物が着色し、さらには加工時にフォスフィンガ
スが発生する等の問題があり、更に水酸化マグネシウ
ム、水酸化アルミニウムに代表される無機系難燃剤も難
燃性の面で必ずしも満足されていないのが現状である。
[0004] However, many phosphate ester compounds have high volatility and insufficient heat resistance, and further improvement has been demanded due to the problems of flame retardancy and mechanical properties of the compounded resin. Further, a resin composition containing a phosphorus compound represented by ammonium polyphosphate has a problem that water resistance is poor, and a resin composition containing red phosphorus is
There is a problem that the resin composition is colored, and furthermore, phosphine gas is generated during processing, and inorganic flame retardants represented by magnesium hydroxide and aluminum hydroxide are not always satisfied in terms of flame retardancy. There is no present.

【0005】こうした状況の中、上記問題を解決するた
めに特許第2567327号では、塩化シアヌルとジア
ミン類を反応させて得られる、残存塩素量を極力減らし
た反応生成物を難燃助剤として用い、特定のリン系難燃
剤と組み合わせることによって、低配合量で優れた難燃
性を発現できることが開示されている。しかしながら、
塩化シアヌルとジアミン類とを反応させる場合、製造中
に反応器へスケーリングが起こりやすくなること、ま
た、この反応生成物とリン系難燃剤とを用いた難燃剤を
樹脂へ配合させて得られる難燃性樹脂組成物は、難燃性
及び水中絶縁抵抗性の面で未だ満足できるものではなか
った。
Under these circumstances, in order to solve the above-mentioned problem, Japanese Patent No. 2567327 discloses that a reaction product obtained by reacting cyanuric chloride with diamines and having a reduced residual chlorine amount as much as possible is used as a flame retardant aid. It is disclosed that excellent flame retardancy can be exhibited with a low blending amount by combining with a specific phosphorus-based flame retardant. However,
In the case of reacting cyanuric chloride with diamines, scaling is likely to occur in the reactor during the production, and it is difficult to obtain a resin by incorporating a flame retardant using this reaction product and a phosphorus-based flame retardant into a resin. Flammable resin compositions have not yet been satisfactory in terms of flame retardancy and insulation resistance in water.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の課題に
鑑みてなされたものであり、その目的は、従来よりも工
業規模での製造が容易にでき、かつ低配合量であっても
従来の難燃剤、特にハロゲン原子を含まない難燃剤の難
燃性及び水中絶縁抵抗性を効果的に発現させることがで
きる難燃助剤、及びこの難燃助剤と難燃剤とを組み合わ
せて得られる複合難燃剤を提供することにある。さら
に、複合難燃剤を樹脂に配合してなる難燃性樹脂組成物
を提供することも本発明の目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to make it easier to manufacture on an industrial scale than in the prior art, and to achieve the conventional method even if the compounding amount is low. A flame retardant, particularly a flame retardant that does not contain a halogen atom, which can effectively exhibit the flame retardancy and insulation resistance in water, and a flame retardant obtained by combining the flame retardant with the flame retardant An object of the present invention is to provide a composite flame retardant. It is a further object of the present invention to provide a flame-retardant resin composition obtained by blending a composite flame retardant with a resin.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決するため鋭意検討した結果、1級及び/又は2級の
アミノ基を3個以上含有するポリアルキルアミンと塩化
シアヌルとを反応させると、製造中において殆ど反応器
へのスケーリングを発生させることなく容易に製造でき
ると共に、従来から知られるリン系難燃剤、金属酸化
物、膨張黒鉛等の難燃剤と組み合わせて用いて複合化す
ることで、これらの難燃剤の機能を著しく高めることを
見出し、本発明を完成させるに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a polyalkylamine containing three or more primary and / or secondary amino groups reacts with cyanuric chloride. By doing so, it can be easily manufactured with almost no scaling to the reactor during the manufacture, and is combined with a conventionally known flame retardant such as a phosphorus-based flame retardant, metal oxide, or expanded graphite to form a composite. As a result, they found that the function of these flame retardants was significantly improved, and completed the present invention.

【0008】すなわち本発明は、1級及び/又は2級の
アミノ基を3個以上含有するポリアルキルアミンと塩化
シアヌルの反応生成物からなる難燃助剤、複合難燃剤、
及びこの複合難燃剤を樹脂に配合してなる難燃性樹脂組
成物である。
That is, the present invention provides a flame retardant auxiliary, a composite flame retardant comprising a reaction product of a polyalkylamine containing three or more primary and / or secondary amino groups and cyanuric chloride.
And a flame retardant resin composition obtained by blending the composite flame retardant with a resin.

【0009】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】本発明でいうポリアルキルアミンと塩化シ
アヌルとの反応生成物とは、塩化シアヌルの3個の活性
塩素原子をポリアルキルアミン中のアミノ基で順次置換
反応させて得られた化合物であり、この化合物は水及び
有機溶剤に実質的に不溶なものである。尚、本明細書で
いうポリアルキルアミンとは、1級及び/又は2級のア
ミノ基を3個以上有する化合物である。例えば、ジエチ
レントリアミン、トリエチレンテトラミン、テトラエチ
レンペンタミン、ペンタエチレンヘキサミン、ジプロパ
ントリアミンなどの脂肪族アミン類、これらポリアルキ
ルアミンを製造する際に生成する高沸点アミン類や、ポ
リエチレンイミン、ポリビニルイミダゾリン、ポリアリ
ルアミンなどの窒素原子を有する重合体などの化合物が
挙げられる。これらの化合物中のアミノ基は、塩化シア
ヌルの活性塩素原子と反応しうる1級及び/又は2級の
アミノ基が3個以上あればよく、化合物中のアミノ基の
一部が3級アミノ基となっていてもよい。
The reaction product of the polyalkylamine and cyanuric chloride referred to in the present invention is a compound obtained by successively substituting three active chlorine atoms of cyanuric chloride with amino groups in the polyalkylamine. This compound is substantially insoluble in water and organic solvents. In addition, the polyalkylamine referred to in the present specification is a compound having three or more primary and / or secondary amino groups. For example, diaminetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, aliphatic amines such as dipropanetriamine, high-boiling amines generated when producing these polyalkylamines, polyethyleneimine, polyvinylimidazoline, Compounds such as a polymer having a nitrogen atom such as polyallylamine are exemplified. The amino group in these compounds may have at least three primary and / or secondary amino groups capable of reacting with an active chlorine atom of cyanuric chloride, and some of the amino groups in the compound may be tertiary amino groups. It may be.

【0011】塩化シアヌルとポリアルキルアミンとの反
応において、塩化シアヌル中の活性塩素原子はアミノ基
で1個置換される毎に残存する活性塩素原子の活性が著
しく低下するため、反応毎に反応温度を高くすることが
好ましく、このため、塩化シアヌルの各活性塩素原子と
ポリアルキルアミンの反応は三段階に分けて行うことが
好ましい。
In the reaction of cyanuric chloride with a polyalkylamine, the activity of the remaining active chlorine atom in cyanuric chloride is greatly reduced each time one of the active chlorine atoms in the cyanuric chloride is replaced with an amino group. Therefore, the reaction between each active chlorine atom of cyanuric chloride and polyalkylamine is preferably performed in three stages.

【0012】まず、第一段目の反応は、反応溶媒に分散
された塩化シアヌルの活性塩素原子とポリアルキルアミ
ンとの反応を、脱塩酸剤の存在下、10℃以下の反応温
度、好ましくは5℃以下の反応温度で行われる。
First, in the first-stage reaction, the reaction between an active chlorine atom of cyanuric chloride dispersed in a reaction solvent and a polyalkylamine is carried out in the presence of a dehydrochlorinating agent at a reaction temperature of 10 ° C. or lower, preferably at a reaction temperature of 10 ° C. or lower. The reaction is performed at a reaction temperature of 5 ° C. or less.

【0013】用いられる反応溶媒としては特に限定され
るものではないが、通常塩化シアヌルに対して不活性な
溶媒が使用され、例えばベンゼン、トルエン、キシレン
等の芳香族系溶媒や、ヘキサン、ヘプタン等の脂肪族系
溶媒、塩化メチレン、クロロホルム等のハロゲン系溶媒
を挙げることができる。
The reaction solvent to be used is not particularly limited, but usually a solvent inert to cyanuric chloride is used, for example, an aromatic solvent such as benzene, toluene, xylene and the like, hexane, heptane and the like. And a halogen-based solvent such as methylene chloride and chloroform.

【0014】第一段目の反応において、塩化シアヌルと
ポリアルキルアミンの使用比率は、塩化シアヌルの活性
塩素原子に対するポリアルキルアミン中のアミノ基のモ
ル比率が0.1〜2.0の範囲のモル比であることが好
ましく、さらに0.2〜1.0の範囲のモル比が好まし
い。また、塩化シアヌルの反応溶媒中の濃度としては特
に限定されるものではないが、通常1〜50重量%であ
る。
In the first stage reaction, the molar ratio of cyanuric chloride to polyalkylamine used is such that the molar ratio of amino groups in polyalkylamine to active chlorine atoms of cyanuric chloride is in the range of 0.1 to 2.0. It is preferably a molar ratio, and more preferably a molar ratio in the range of 0.2 to 1.0. The concentration of cyanuric chloride in the reaction solvent is not particularly limited, but is usually 1 to 50% by weight.

【0015】本発明で使用される脱塩酸剤は、特に限定
されるものではなく、主に反応により生じる塩酸と反応
させるものであり、水酸化ナトリウム、水酸化カリウ
ム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウ
ム、炭酸水素カリウム等の無機金属塩基、若しくはトリ
エチルアミン、トリプロピルアミン、トリブチルアミン
等の3級アミン類が使用される。この脱塩酸剤の使用量
は、通常反応で副生する塩酸に対して1.0〜3.0の
範囲のモル比である。このポリアルキルアミン及び脱塩
酸剤の添加方法は特に限定されるものではないが、通常
塩化シアヌルを反応溶媒に分散させた溶液に、まずポリ
アルキルアミンを反応溶媒で溶解させた溶液を滴下し、
次いで脱塩酸剤を水等で溶解させた溶液を滴下する方
法、または両者を同時に滴下する方法、あるいは両者を
水で溶解させた混合溶液を滴下する方法が行われる。さ
らに、反応を完結するために滴下後所定の温度で1〜1
0時間の範囲で熟成を行うことが望ましい。
The dehydrochlorinating agent used in the present invention is not particularly limited, and is mainly used to react with hydrochloric acid generated by the reaction, and includes sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and carbonic acid. Inorganic metal bases such as sodium hydrogen and potassium hydrogen carbonate, and tertiary amines such as triethylamine, tripropylamine and tributylamine are used. The amount of the dehydrochlorinating agent used is usually a molar ratio in the range of 1.0 to 3.0 with respect to hydrochloric acid by-produced in the reaction. The method of adding the polyalkylamine and the dehydrochlorinating agent is not particularly limited, but usually, first, a solution in which the polyalkylamine is dissolved in the reaction solvent is dropped into a solution in which cyanuric chloride is dispersed in the reaction solvent,
Next, a method in which a solution in which a dehydrochlorinating agent is dissolved in water or the like is dropped, a method in which both are dropped simultaneously, or a method in which a mixed solution in which both are dissolved in water are dropped. Furthermore, in order to complete the reaction, 1 to 1 at a predetermined temperature after dropping.
It is desirable to perform ripening within the range of 0 hours.

【0016】第二段目の反応は、第一段目の反応で得ら
れた生成物中の活性塩素原子とポリアルキルアミンの反
応を、第一段目と同じく脱塩酸剤の存在下で、40〜8
0℃の反応温度にて行われる。尚、反応は第一段目の反
応で得られたスラリー反応液をそのまま継続して使用し
ても差し支えなく、また第一段目の反応で得られたスラ
リー反応液中の生成物を、濾過、乾燥して使用しても問
題ない。
In the second stage reaction, the reaction between the active chlorine atom in the product obtained in the first stage reaction and the polyalkylamine is carried out in the presence of a dehydrochlorinating agent as in the first stage. 40-8
The reaction is performed at a reaction temperature of 0 ° C. The reaction may be continued using the slurry reaction solution obtained in the first stage reaction as it is, and the product in the slurry reaction solution obtained in the first stage reaction may be filtered. There is no problem if used after drying.

【0017】第二段目の反応においては、第一段目の反
応で得られた生成物とポリアルキルアミンの使用比率
は、生成物の活性塩素原子に対するポリアルキルアミン
のアミノ基のモル比率が、0.1〜2.0の範囲のモル
比であることが好ましく、さらに0.2〜1.0の範囲
のモル比が好ましい。
In the second-stage reaction, the ratio of the product obtained in the first-stage reaction to the polyalkylamine is determined by the molar ratio of the amino group of the polyalkylamine to the active chlorine atom of the product. , 0.1 to 2.0, and more preferably 0.2 to 1.0.

【0018】反応で使用される脱塩酸剤は、第一段目の
反応で使用したものと同様なものが使用でき、その使用
量も第一段目の反応と同じく、反応で副生する塩酸に対
して1.0〜3.0の範囲のモル比とすることが好まし
い。この二段目の反応においても、ポリアルキルアミン
及び脱塩酸剤の添加方法は特に限定されるものではない
が、通常第一段目の反応と同様な添加方法で行われる。
さらに、反応を完結するために滴下後所定の温度で1〜
20時間の範囲で熟成を行うことが望ましい。
As the dehydrochlorinating agent used in the reaction, the same dehydrochlorinating agent as that used in the first-stage reaction can be used, and the amount of hydrochloric acid used as a by-product in the reaction is the same as in the first-stage reaction. The molar ratio is preferably in the range of 1.0 to 3.0. In the second-stage reaction, the method of adding the polyalkylamine and the dehydrochlorinating agent is not particularly limited, but is usually performed in the same manner as in the first-stage reaction.
Furthermore, in order to complete the reaction, after dropping,
It is desirable to perform aging within a range of 20 hours.

【0019】第三段目の反応は、第二段目の反応で得ら
れた生成物中の残った活性塩素原子とポリアルキルアミ
ンの反応を、第一段目と同じく脱塩酸剤の存在下で、1
00℃以上の反応温度にて行われる。
In the third step, the reaction between the remaining active chlorine atom in the product obtained in the second step and the polyalkylamine is carried out in the presence of a dehydrochlorinating agent, as in the first step. And 1
The reaction is performed at a reaction temperature of 00 ° C or more.

【0020】反応で使用される溶媒としては、第二段目
の反応終了後、スラリー反応液から生成物を濾過等によ
り分離して使用した場合、沸点が100℃以上を有する
トルエン、キシレン等の芳香族系溶媒やN,N−ジメチ
ルホルムアミド、ジメチルスルホキシド等の極性溶媒が
使用される。また、第一段目からトルエン、キシレン等
の高沸点溶媒を使用した場合、第二段目の反応終了後共
沸留去等の操作により、スラリー反応液中から水を分離
して反応を行っても差し支えない。
The solvent used in the reaction is, for example, toluene or xylene having a boiling point of 100 ° C. or higher when the product is separated from the slurry reaction solution by filtration or the like after the completion of the second stage reaction. A polar solvent such as an aromatic solvent or N, N-dimethylformamide or dimethyl sulfoxide is used. When a high-boiling solvent such as toluene or xylene is used from the first stage, water is separated from the slurry reaction solution by an operation such as azeotropic distillation after the completion of the second stage reaction to carry out the reaction. No problem.

【0021】第三段目の反応において、第二段目の反応
で得られた生成物とポリアルキルアミンの使用比率は、
生成物の活性塩素原子に対するポリアルキルアミンのア
ミノ基のモル比率が、0.1〜2.0の範囲のモル比で
あることが好ましく、さらに0.2〜1.0の範囲のモ
ル比が好ましい。
In the third reaction, the ratio of the product obtained in the second reaction to the polyalkylamine is as follows:
The molar ratio of the amino group of the polyalkylamine to the active chlorine atom of the product is preferably in the range of 0.1 to 2.0, and more preferably in the range of 0.2 to 1.0. preferable.

【0022】反応で使用される脱塩酸剤は、第一段目あ
るいは第二段目の反応で使用したものと同様なものが使
用でき、その使用量も第一段目の反応と同じく反応で副
生する塩酸に対して1.0〜3.0の範囲のモル比とす
ることが好ましい。
As the dehydrochlorinating agent used in the reaction, the same dehydrochlorinating agent as that used in the first-stage or second-stage reaction can be used, and the amount used is the same as in the first-stage reaction. The molar ratio is preferably in the range of 1.0 to 3.0 with respect to hydrochloric acid as a by-product.

【0023】この第三段目の反応おいて、ポリアルキル
アミン及び脱塩酸剤の添加方法は特に限定されるもので
はないが、通常一括添加にて行われ、添加後、反応を完
結するために所定の温度で5〜50時間、好ましくは1
0〜25時間の範囲で熟成が行われることが望ましい。
In the third-stage reaction, the method of adding the polyalkylamine and the dehydrochlorinating agent is not particularly limited, but it is usually carried out by batch addition, and after the addition, it is necessary to complete the reaction. 5 to 50 hours at a predetermined temperature, preferably 1
It is desirable that the aging is performed in the range of 0 to 25 hours.

【0024】第三段目の反応により得られる生成物は、
その後、濾過、洗浄、乾燥され、本発明の難燃助剤とな
る生成物が得られることとなる。この生成物は、通常白
色または微黄色粉体として得られる。
The product obtained by the third stage reaction is
Thereafter, the product is filtered, washed, and dried to obtain a product serving as the flame retardant aid of the present invention. This product is usually obtained as a white or slightly yellow powder.

【0025】次に、本発明における複合難燃剤について
説明する。
Next, the composite flame retardant of the present invention will be described.

【0026】本発明の複合難燃剤は、前述のポリアルキ
ルアミンと塩化シアヌルとの反応により得られる生成物
と難燃剤とからなるものである。詳細な理由は定かでな
いが、このポリアルキルアミンと塩化シアヌルとの反応
生成物は、それ自体の難燃性は低いが、1種以上の難燃
剤と配合した複合難燃剤として用いられることで、その
難燃性を相乗的に向上させるという非常に優れた効果が
あり、難燃助剤として有用な性能を示す。
The composite flame retardant of the present invention comprises a product obtained by reacting the above-mentioned polyalkylamine with cyanuric chloride and a flame retardant. Although the detailed reason is not clear, the reaction product of this polyalkylamine and cyanuric chloride has low flame retardancy per se, but is used as a composite flame retardant blended with one or more flame retardants, It has a very excellent effect of synergistically improving its flame retardancy and exhibits useful performance as a flame retardant aid.

【0027】本発明の複合難燃剤に用いられる難燃剤と
しては、通常難燃剤としての効果を有するものであれば
特に限定されるものではないが、リン系難燃剤、金属酸
化物、膨張黒鉛が好ましく用いられる。また、これらの
難燃剤は1種単独のみならず、2種以上を用いてもよ
い。
The flame retardant used in the composite flame retardant of the present invention is not particularly limited as long as it generally has an effect as a flame retardant. Examples thereof include phosphorus-based flame retardants, metal oxides, and expanded graphite. It is preferably used. These flame retardants may be used alone or in combination of two or more.

【0028】さらに、これらの難燃剤を具体的に例示す
れば、リン系化合物としては、ポリリン酸アンモニウ
ム、アミド変性ポリリン酸アンモニウム、リン酸メラミ
ン、ポリリン酸メラミン、リン酸グアニジン、エチレン
ジアミンリン酸塩、エチレンジアミンリン酸亜鉛塩、
1、4−ブタンジアミンリン酸塩などのリン酸アミン塩
や、赤燐、リン酸エステル等が好適な例として挙げられ
る。
Further, when these flame retardants are specifically exemplified, as the phosphorus compound, ammonium polyphosphate, amide-modified ammonium polyphosphate, melamine phosphate, melamine polyphosphate, guanidine phosphate, ethylenediamine phosphate, Zinc ethylenediamine phosphate,
Preferable examples include phosphate amine salts such as 1,4-butanediamine phosphate, red phosphorus, and phosphate esters.

【0029】また、金属化合物としては、水酸化マグネ
シウム、水酸化アルミニウム、水酸化カルシウム、ヒド
ロキシスズ酸亜鉛、スズ酸亜鉛、酸化ニッケル、酸化コ
バルト、酸化鉄、酸化銅、酸化モリブデン、酸化スズ、
酸化亜鉛、酸化ケイ素、ゼオライト、ホウ酸亜鉛、酸化
ジルコニウム、三酸化アンチモン、五酸化アンチモン等
が好適な例として挙げられる。
Examples of the metal compound include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, zinc hydroxystannate, zinc stannate, nickel oxide, cobalt oxide, iron oxide, copper oxide, molybdenum oxide, tin oxide,
Preferable examples include zinc oxide, silicon oxide, zeolite, zinc borate, zirconium oxide, antimony trioxide, and antimony pentoxide.

【0030】さらに、膨張黒鉛としては従来公知の物質
が使用でき、例えば、天然の鱗片状グラファイト、熱分
解グラファイト、キャッシュグラファイト等の粉末を濃
硫酸、硝酸等の無機酸と濃硝酸、過塩素酸、過塩素酸塩
や、過マンガン酸塩等の強酸化剤で処理してグラファイ
ト層間化合物を生成させた炭素の層状構造を維持したま
まの結晶化合物が挙げられる。
Further, as the expanded graphite, conventionally known substances can be used. For example, powders such as natural flaky graphite, pyrolytic graphite, and cache graphite are mixed with inorganic acids such as concentrated sulfuric acid and nitric acid, concentrated nitric acid, and perchloric acid. And a crystalline compound which maintains a layered structure of carbon which has been treated with a strong oxidizing agent such as perchlorate or permanganate to form a graphite intercalation compound.

【0031】これらの難燃剤と本発明の難燃助剤との配
合比は、配合される樹脂への配合部数によっても変わる
が、重量比で1/20〜20/1の範囲であれば非常に
優れた難燃効果を示し、1/10〜10/1の範囲であ
ればさらにその効果を向上できる。
The mixing ratio of these flame retardants and the flame retardant auxiliary of the present invention varies depending on the number of parts to be mixed with the resin to be compounded. However, if the weight ratio is in the range of 1/20 to 20/1, it is very low. Excellent flame retardant effect, and the effect can be further improved in the range of 1/10 to 10/1.

【0032】続いて、本発明の難燃性樹脂組成物につい
て説明する。
Next, the flame-retardant resin composition of the present invention will be described.

【0033】本発明の難燃性樹脂組成物は、本発明の複
合難燃剤を樹脂に配合させたものである。
The flame-retardant resin composition of the present invention is obtained by mixing the composite flame retardant of the present invention with a resin.

【0034】本発明の複合難燃剤が配合可能な樹脂とし
ては、フェノール樹脂、ユリア樹脂、メラミン樹脂、不
飽和ポリエステル樹脂、ポリウレタン、アルキド樹脂、
エポキシ樹脂等の熱硬化性樹脂や、低密度ポリエチレ
ン、高密度ポリエチレン、エチレン−ビニルアセテート
共重合体、ポリスチレン、耐衝撃性ポリスチレン、発泡
ポリスチレン、アクリロニトリル−スチレン共重合体、
アクリロニトリル−スチレン−ブタジエン共重合体、ポ
リプロピレン、石油樹脂、ポリメチルメタクリレート、
ポリアミド、ポリカーボネート、ポリエチレンテレフタ
レート、ポリブチレンテレフタレート、ポリフェニレン
エーテル等の熱可塑性樹脂が挙げられ、さらに熱可塑性
樹脂を2種以上混合したポリカーボネート−ABS、ポ
リフェニレンエーテル−ポリスチレン等に代表されるポ
リマーアロイ等も例示できる。これらのうち、低密度ポ
リエチレン、高密度ポリエチレン、エチレン−ビニルア
セテート共重合体、ポリプロピレン等のポリオレフィン
系熱可塑性樹脂が好適な樹脂として例示される。
The resins to which the composite flame retardant of the present invention can be compounded include phenol resins, urea resins, melamine resins, unsaturated polyester resins, polyurethanes, alkyd resins,
Thermosetting resins such as epoxy resins, low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, polystyrene, impact-resistant polystyrene, expanded polystyrene, acrylonitrile-styrene copolymer,
Acrylonitrile-styrene-butadiene copolymer, polypropylene, petroleum resin, polymethyl methacrylate,
Examples thereof include thermoplastic resins such as polyamide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, and polyphenylene ether, and further include polymer alloys represented by polycarbonate-ABS, polyphenylene ether-polystyrene, etc. obtained by mixing two or more kinds of thermoplastic resins. it can. Among them, low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, and polyolefin-based thermoplastic resins such as polypropylene are exemplified as suitable resins.

【0035】本発明の複合難燃剤の樹脂への配合量は、
配合する樹脂の種類や目的とする難燃性能により異な
り、特に限定されるものではないが、通常、樹脂100
重量部に対し5〜200重量部、さらに10〜150重
量部配合することが好ましい。配合量が5重量部より少
ない場合、難燃効果が不十分となることがあり、また、
200重量部を超える場合、難燃性樹脂組成物の機械物
性が低下してしまうことがある。尚、さらに必要に応じ
て、ベンゾトリアゾール系の紫外線吸収剤、2,2,
6,6−テトラメチルピペリジン誘導体の光安定剤、ヒ
ンダードフェノール系の酸化防止剤等を添加してもよ
く、その添加量としては、本発明の難燃性樹脂組成物1
00重量部に対して通常0.05〜5重量部添加される
ことが好ましい。これらの他、必要に応じて帯電防止剤
やタルク、グラスファイバー等の無機充填剤を添加して
もよい。
The compounding amount of the composite flame retardant of the present invention to the resin is as follows:
It depends on the type of resin to be blended and the intended flame retardancy, and is not particularly limited.
It is preferable to add 5-200 parts by weight, more preferably 10-150 parts by weight, based on parts by weight. If the amount is less than 5 parts by weight, the flame retardant effect may be insufficient,
If it exceeds 200 parts by weight, the mechanical properties of the flame-retardant resin composition may be reduced. In addition, if necessary, a benzotriazole-based ultraviolet absorber,
A light stabilizer such as a 6,6-tetramethylpiperidine derivative, a hindered phenol-based antioxidant, and the like may be added.
It is usually preferable to add 0.05 to 5 parts by weight to 00 parts by weight. In addition to these, if necessary, an inorganic filler such as an antistatic agent, talc, or glass fiber may be added.

【0036】本発明の複合難燃剤の樹脂への配合方法と
しては、熱硬化性樹脂に配合する場合には、例えば、あ
らかじめ本発明の複合難燃剤を樹脂原料に分散させた後
硬化させればよく、熱可塑性樹脂に配合する場合には、
例えば、コニカルブレンダーやタンブラーミキサーを用
いて複合難燃剤を混合し、二軸押出機等を用いてペレッ
ト化してもよい。これらの方法で得られた難燃性樹脂組
成物の加工方法は、特に限定されるものではなく、例え
ば押出成型、射出成型等を行い、目的とする成型品を得
ることができる。
The method of compounding the composite flame retardant of the present invention into a resin is as follows. For example, when the compound flame retardant of the present invention is previously dispersed in a resin material and then cured, Well, when blended with thermoplastic resin,
For example, the composite flame retardant may be mixed using a conical blender or a tumbler mixer, and pelletized using a twin-screw extruder or the like. The method for processing the flame-retardant resin composition obtained by these methods is not particularly limited. For example, extrusion molding, injection molding, or the like can be performed to obtain a desired molded product.

【0037】[0037]

【発明の効果】本発明によれば以下の効果を奏する。According to the present invention, the following effects can be obtained.

【0038】(1)本発明のポリアルキルアミンと塩化
シアヌルの反応生成物からなる難燃助剤は、従来の難燃
剤の有する難燃性、水中絶縁抵抗性といった性能を一層
効果的に発現させることができる。
(1) The flame retardant auxiliary comprising the reaction product of the polyalkylamine and cyanuric chloride of the present invention more effectively expresses the properties of the conventional flame retardant, such as flame retardancy and underwater insulation resistance. be able to.

【0039】(2)本発明の複合難燃剤を樹脂に配合す
ることで、高難燃性能、高耐水性を発現できる。
(2) By incorporating the composite flame retardant of the present invention into a resin, high flame retardancy and high water resistance can be exhibited.

【0040】(3)本発明の複合難燃剤を樹脂に配合し
てなる難燃性樹脂組成物は、各種電気機器、自動車部
品、建材及び電線、ケーブル等の材料として広範に利用
でき、産業上極めて有用である。
(3) The flame-retardant resin composition obtained by blending the composite flame retardant of the present invention with a resin can be widely used as a material for various electric appliances, automobile parts, building materials, electric wires, cables and the like. Extremely useful.

【0041】[0041]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれら実施例のみに限定されるものでは
ない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0042】製造例1 攪拌翼及び温度計を有する容量1リットルのガラス反応
器に、水225gと75重量%リン酸を仕込み、攪拌混
合しながら、さらに硫酸亜鉛7水和物323gを加えて
溶解させた。この溶液に、エチレンジアミン41.0g
を水225gに溶解させた溶液を添加し、次いで48重
量%水酸化ナトリウム水溶液でpHを7.0に調整し、
30℃の温度を維持しながら22時間攪拌した。反応
後、生成物を濾過、水洗し、120℃で常圧乾燥して白
色のエチレンジアミンリン酸亜鉛214.0gを得た。
以下、この得られたエチレンジアミンリン酸亜鉛をED
A−ZPと略す。
Production Example 1 225 g of water and 75% by weight of phosphoric acid were charged into a 1-liter glass reactor having a stirring blade and a thermometer, and 323 g of zinc sulfate heptahydrate was added and dissolved while stirring and mixing. I let it. 41.0 g of ethylenediamine was added to this solution.
Was dissolved in 225 g of water, and the pH was adjusted to 7.0 with a 48% by weight aqueous sodium hydroxide solution.
The mixture was stirred for 22 hours while maintaining the temperature at 30 ° C. After the reaction, the product was filtered, washed with water, and dried under normal pressure at 120 ° C. to obtain 214.0 g of white zinc zinc ethylenediamine phosphate.
Hereinafter, the obtained ethylenediamine zinc phosphate is referred to as ED
Abbreviated as A-ZP.

【0043】実施例1 (一段目の反応)攪拌翼、温度計及び冷却管を有する容
量1リットルのガラス反応器に塩化シアヌル92.2g
とキシレン500gを仕込み、0〜5℃の温度を維持し
ながら攪拌し、ジエチレントリアミン17.2g及び水
酸化ナトリウム20.0gを水100gに溶解させた溶
液を1時間かけて滴下した。滴下終了後、さらに0〜5
℃の温度で1時間攪拌した後、室温になるまで放置し
た。
Example 1 (First-stage reaction) 92.2 g of cyanuric chloride was placed in a 1-liter glass reactor having a stirring blade, a thermometer and a cooling pipe.
And 500 g of xylene, stirred while maintaining a temperature of 0 to 5 ° C., and a solution in which 17.2 g of diethylenetriamine and 20.0 g of sodium hydroxide were dissolved in 100 g of water was added dropwise over 1 hour. After completion of the dropping, 0-5
After stirring at a temperature of ° C. for 1 hour, the mixture was allowed to reach room temperature.

【0044】(二段目の反応)続いて、この反応液に、
室温下、ジエチレントリアミン17.2g及び水酸化ナ
トリウム20.0gを水100gに溶解させた溶液を2
時間かけて滴下し、滴下終了後、80℃まで昇温して1
7時間攪拌した。反応終了後、冷却し、反応生成物を濾
過した。
(Second Step Reaction) Subsequently, the reaction solution
At room temperature, a solution prepared by dissolving 17.2 g of diethylenetriamine and 20.0 g of sodium hydroxide in 100 g of water was added.
After dropping over time, the temperature was raised to 80 ° C.
Stir for 7 hours. After the completion of the reaction, the mixture was cooled and the reaction product was filtered.

【0045】(三段目の反応)次に、攪拌翼、温度計及
び冷却管を有する容量1リットルのガラス反応器に先程
の反応生成物を仕込み、さらにキシレン500gを仕込
んで攪拌しながら還流状態となるまで加熱し、反応生成
物中に含有する付着水を共沸留去した。留去後、この溶
液にジエチレントリアミン17.2g及び水酸化ナトリ
ウム20.0gを仕込み、140℃の温度で24時間攪
拌しながら反応した。反応後、冷却し、生成物を濾過、
水洗し、140℃で減圧乾燥して白色の粉末89.0g
を得た。
(Third-stage reaction) Next, the above reaction product was charged into a glass reactor having a capacity of 1 liter having a stirring blade, a thermometer and a cooling tube, and 500 g of xylene was further charged and stirred under reflux. , And the attached water contained in the reaction product was azeotropically distilled off. After the distillation, 17.2 g of diethylenetriamine and 20.0 g of sodium hydroxide were charged into the solution, and the mixture was reacted at 140 ° C. with stirring for 24 hours. After the reaction, cool and filter the product,
After washing with water and drying under reduced pressure at 140 ° C., 89.0 g of a white powder was obtained.
I got

【0046】得られた生成物は、有機溶媒及び水に不溶
であり、融点が>300℃であり、元素分析を行った結
果、塩素が5.1%残存していた。尚、各反応工程にお
ける反応生成物の反応器へのスケーリングは殆ど発生し
なかった。
The obtained product was insoluble in organic solvents and water, had a melting point of> 300 ° C., and was subjected to elemental analysis. As a result, 5.1% of chlorine remained. The scaling of the reaction product in the reactor in each reaction step hardly occurred.

【0047】この得られた生成物とポリリン酸アンモニ
ウム(ヘキスト(株)社製、商品名:Exolit46
2)をそれぞれ1:2の重量比で混合し、複合難燃剤1
を調製した。
The obtained product and ammonium polyphosphate (manufactured by Hoechst Co., Ltd., trade name: Exolit46)
2) were mixed at a weight ratio of 1: 2, respectively.
Was prepared.

【0048】実施例2 (一段目の反応)攪拌翼、温度計及び冷却管を有する容
量1リットルのガラス反応器に塩化シアヌル92.2g
とキシレン500gを仕込み、0〜5℃の温度を維持し
ながら攪拌し、テトラエチレンペンタミン18.9g及
び水酸化ナトリウム20.0gを水120gに溶解させ
た溶液を1.5時間かけて滴下した。滴下終了後、更に
同温度で1時間攪拌し、室温になるまで放置した。
Example 2 (First-stage reaction) 92.2 g of cyanuric chloride was placed in a 1-liter glass reactor having a stirring blade, a thermometer and a cooling pipe.
And 500 g of xylene, stirred while maintaining a temperature of 0 to 5 ° C., and a solution in which 18.9 g of tetraethylenepentamine and 20.0 g of sodium hydroxide were dissolved in 120 g of water was added dropwise over 1.5 hours. . After the completion of the dropwise addition, the mixture was further stirred at the same temperature for 1 hour and allowed to stand at room temperature.

【0049】(二段目の反応)続いて、この反応液に、
室温下、テトラエチレンペンタミン18.9g及び水酸
化ナトリウム20.0gを水120gに溶解させた溶液
を2時間かけて滴下し、滴下終了後、80℃まで昇温し
て18時間攪拌した。反応終了後、冷却し、反応生成物
を濾過した。
(Second Step Reaction) Subsequently,
At room temperature, a solution prepared by dissolving 18.9 g of tetraethylenepentamine and 20.0 g of sodium hydroxide in 120 g of water was added dropwise over 2 hours. After completion of the addition, the temperature was raised to 80 ° C., and the mixture was stirred for 18 hours. After the completion of the reaction, the mixture was cooled and the reaction product was filtered.

【0050】(三段目の反応)次に、攪拌翼、温度計及
び冷却管を有する容量1リットルのガラス反応器に先程
の反応生成物を仕込み、さらにキシレン500gを仕込
んで攪拌しながら還流状態となるまで加熱し、反応生成
物中に含有する付着水を共沸留去した。留去後、この溶
液にテトラエチレンペンタミン18.9g及び水酸化ナ
トリウム20.0gを仕込み、142℃の温度で24時
間攪拌しながら反応した。反応後、冷却し、生成物を濾
過、水洗し、140℃で減圧乾燥して微黄色の粉末7
3.0gを得た。
(Third-stage reaction) Next, the above reaction product was charged into a 1-liter glass reactor having a stirring blade, a thermometer and a cooling tube, and further, 500 g of xylene was charged and stirred under reflux. , And the attached water contained in the reaction product was azeotropically distilled off. After the distillation, 18.9 g of tetraethylenepentamine and 20.0 g of sodium hydroxide were charged into the solution, and the mixture was reacted at a temperature of 142 ° C. with stirring for 24 hours. After the reaction, the reaction mixture was cooled, and the product was filtered, washed with water, and dried at 140 ° C. under reduced pressure to give a slightly yellow powder 7.
3.0 g were obtained.

【0051】この得られた生成物は、有機溶媒及び水に
不溶であり、融点が>300℃であり、元素分析を行っ
た結果、塩素が2.0%残存していた。尚、各反応工程
における反応生成物の反応器へのスケーリングは殆ど発
生しなかった。
The obtained product was insoluble in organic solvents and water, had a melting point of> 300 ° C., and was subjected to elemental analysis. As a result, it was found that 2.0% of chlorine remained. The scaling of the reaction product in the reactor in each reaction step hardly occurred.

【0052】この得られた生成物と、ポリリン酸アンモ
ニウム(ヘキスト(株)社製、商品名:Exolit4
62)、製造例1で調製したEDA−ZPをそれぞれ
1:1:1の重量比で混合し、複合難燃剤2を調製し
た。
The obtained product was mixed with ammonium polyphosphate (Exolit 4 manufactured by Hoechst Co., Ltd.).
62), EDA-ZP prepared in Production Example 1 was mixed at a weight ratio of 1: 1: 1 to prepare a composite flame retardant 2.

【0053】実施例3 (一段目の反応)攪拌翼、温度計及び冷却管を有する容
量1リットルのガラス反応器に塩化シアヌル92.2g
とキシレン500gを仕込み、0〜5℃の温度を維持し
ながら攪拌し、キシレン49.5gに溶解させたペンタ
エチレンヘキサミン16.5gの溶液と水80gに溶解
させた水酸化ナトリウム20.0gの溶液を同時に2.
2時間かけて滴下した。滴下終了後、さらに同温度で1
時間攪拌し、室温になるまで放置した。
Example 3 (First reaction) 92.2 g of cyanuric chloride was placed in a 1-liter glass reactor having a stirring blade, a thermometer and a cooling tube.
And 500 g of xylene, stirred while maintaining the temperature of 0 to 5 ° C., and a solution of 16.5 g of pentaethylenehexamine dissolved in 49.5 g of xylene and a solution of 20.0 g of sodium hydroxide dissolved in 80 g of water At the same time 2.
It was added dropwise over 2 hours. After dropping, add
Stirred for hours and allowed to reach room temperature.

【0054】(二段目の反応)続いて、この反応液に、
室温下、キシレン49.5gに溶解させたペンタエチレ
ンヘキサミン16.5gの溶液を0.3時間かけて滴下
し、続いて水80gに溶解させた水酸化ナトリウム2
0.0gの溶液を0.4時間かけて滴下した。滴下終了
後、80℃まで昇温して20時間攪拌した。反応終了
後、冷却し、反応生成物を濾過した。
(Second Stage Reaction) Subsequently, the reaction solution
At room temperature, a solution of 16.5 g of pentaethylenehexamine dissolved in 49.5 g of xylene was added dropwise over 0.3 hours, followed by sodium hydroxide 2 dissolved in 80 g of water.
0.0 g of the solution was added dropwise over 0.4 hours. After completion of the dropwise addition, the temperature was raised to 80 ° C., and the mixture was stirred for 20 hours. After the completion of the reaction, the mixture was cooled and the reaction product was filtered.

【0055】(三段目の反応)次に、攪拌翼、温度計及
び冷却管を有する容量1Lのガラス反応器に先程の反応
生成物を仕込み、更にキシレン500gを仕込んで攪拌
しながら還流状態となるまで加熱し、反応生成物中に含
有する付着水を共沸留去した。留去後、この溶液にペン
タエチレンヘキサミン16.5g及び水酸化ナトリウム
20.0gを仕込み、135℃の温度で48時間攪拌し
ながら反応した。反応後、冷却し、生成物を濾過、水洗
し、140℃で減圧乾燥して微黄色の粉末42.7gを
得た。
(Third-stage reaction) Next, the above reaction product was charged into a glass reactor having a capacity of 1 L having a stirring blade, a thermometer and a cooling tube, and 500 g of xylene was further charged and stirred to be refluxed. The mixture was heated until the temperature reached, and the attached water contained in the reaction product was azeotropically distilled off. After the distillation, 16.5 g of pentaethylenehexamine and 20.0 g of sodium hydroxide were charged into the solution, and reacted while stirring at a temperature of 135 ° C. for 48 hours. After the reaction, the mixture was cooled, the product was filtered, washed with water, and dried under reduced pressure at 140 ° C. to obtain 42.7 g of a slightly yellow powder.

【0056】この得られた生成物は、有機溶媒及び水に
不溶であり、融点が>300℃であり、元素分析を行っ
た結果、塩素が1.8%残存していた。尚、各反応工程
における反応生成物の反応器へのスケーリングは殆ど発
生しなかった。
The obtained product was insoluble in organic solvents and water, had a melting point of> 300 ° C., and was subjected to elemental analysis. As a result, 1.8% of chlorine remained. The scaling of the reaction product in the reactor in each reaction step hardly occurred.

【0057】この得られた生成物とポリリン酸アンモニ
ウム(ヘキスト(株)社製、商品名:Exolit46
2)をそれぞれ1:2の重量比で混合し、複合難燃剤3
を調製した。
The obtained product was mixed with ammonium polyphosphate (Exolit 46, manufactured by Hoechst Co., Ltd.).
2) were mixed in a weight ratio of 1: 2, respectively, and a composite flame retardant 3
Was prepared.

【0058】実施例4〜6 エチレン−酢酸ビニル共重合体(東ソー社(株)製、商
品名:ウルトラセンUE635、以下「EVA」とい
う)100重量部に対し実施例1〜3で得られた複合難
燃剤1〜3を、表1に示すような重量部で配合して13
0℃の温度でロール混練し、150℃でプレス成形し、
難燃性樹脂組成物を調製した。次いで調製した難燃性樹
脂組成物の難燃性及び耐水性の評価を以下の方法により
行った。
Examples 4 to 6 Ethylene-vinyl acetate copolymers (trade name: Ultracene UE635, manufactured by Tosoh Corp., hereinafter referred to as "EVA") were obtained in Examples 1 to 3 based on 100 parts by weight. Compound flame retardants 1 to 3 were mixed in parts by weight as shown in Table 1 to obtain 13
Roll kneading at a temperature of 0 ° C, press molding at 150 ° C,
A flame-retardant resin composition was prepared. Next, the flame retardancy and water resistance of the prepared flame retardant resin composition were evaluated by the following methods.

【0059】すなわち、難燃性の評価は、JIS K7
201に規格化されている酸素指数法による高分子材料
の燃焼試験方法、米国Underwrites Lab
oratories社の規格であるUL94V(試験片
の厚さ1/8インチ)に従って行った。また、耐水性の
評価は上記の方法で作成した試験片(100×100×
0.2mm)を20℃の水に6時間浸漬した後、その試
験片の体積抵抗率をULTRA HIGH RESIS
TANCE METER(アドバンテスト社(株)製R
8340)で測定することにより行った。表1には、用
いた複合難燃剤の種類、難燃性樹脂組成物中のEVA、
ポリリン酸アンモニウム、EDA−ZP及び難燃助剤の
配合量、難燃性樹脂組成物の燃焼性及び耐水性の評価結
果を示した。
That is, the evaluation of flame retardancy is based on JIS K7
201, a combustion test method for polymer materials by the oxygen index method, Underwriters Lab, USA
The test was performed according to UL94V (1/8 inch thickness of test piece) which is a standard of Oratories. The evaluation of water resistance was performed on test pieces (100 × 100 ×
0.2 mm) in water at 20 ° C. for 6 hours, and the volume resistivity of the test piece was measured by ULTRA HIGH RESIS.
TANCE METER (R manufactured by Advantest Corporation)
8340). Table 1 shows the types of the composite flame retardants used, EVA in the flame retardant resin composition,
The evaluation results of the amounts of ammonium polyphosphate, EDA-ZP and the flame retardant aid, and the flammability and water resistance of the flame retardant resin composition are shown.

【0060】[0060]

【表1】 [Table 1]

【0061】実施例7〜9 低密度ポリエチレン(東ソー社製(株)製、商品名:ペ
トロセン202、以下「LDPE」という)100重量
部に対しに実施例1〜3で得られた複合難燃剤1〜3を
表2に示すような重量部で配合して130℃の温度でロ
ール混練し、150℃でプレス成形し、難燃性樹脂組成
物を調製した。次いで、調製した難燃性樹脂組成物の難
燃性及び耐水性の評価を実施例4〜6と同様の方法によ
り行った。表2には、用いた複合難燃剤の種類、難燃性
樹脂組成物中のLDPE、ポリリン酸アンモニウム、E
DA−ZP及び難燃助剤の配合量、難燃性樹脂組成物の
燃焼性及び耐水性の評価結果を示した。
Examples 7 to 9 The composite flame retardants obtained in Examples 1 to 3 based on 100 parts by weight of low density polyethylene (manufactured by Tosoh Corporation, trade name: Petrocene 202, hereinafter referred to as "LDPE") 1 to 3 were mixed in parts by weight as shown in Table 2, roll-kneaded at a temperature of 130 ° C, and press-formed at 150 ° C to prepare a flame-retardant resin composition. Next, the flame retardancy and water resistance of the prepared flame retardant resin composition were evaluated in the same manner as in Examples 4 to 6. Table 2 shows the types of composite flame retardants used, LDPE in the flame retardant resin composition, ammonium polyphosphate, E
The amounts of DA-ZP and the flame retardant aid, and the results of evaluation of the flammability and water resistance of the flame retardant resin composition are shown.

【0062】[0062]

【表2】 [Table 2]

【0063】比較例1 (一段目の反応)攪拌翼、温度計及び冷却管を有する容
量1リットルのガラス反応器に塩化シアヌル92.2g
とアセトン294gを仕込み、0〜5℃の温度を維持し
ながら攪拌し、アセトン49.0gに溶解させたエチレ
ンジアミン14.7gの溶液と水58.8gに溶解させ
た水酸化ナトリウム19.7gの溶液を同時に2.5時
間かけて滴下した。滴下終了後、さらに同温度で3時間
攪拌し、室温になるまで放置した。
Comparative Example 1 (First-stage reaction) 92.2 g of cyanuric chloride was placed in a 1-liter glass reactor having a stirring blade, a thermometer and a cooling pipe.
And 294 g of acetone, stirred while maintaining a temperature of 0 to 5 ° C., and a solution of 14.7 g of ethylenediamine dissolved in 49.0 g of acetone and a solution of 19.7 g of sodium hydroxide dissolved in 58.8 g of water Was simultaneously added dropwise over 2.5 hours. After the completion of the dropwise addition, the mixture was further stirred at the same temperature for 3 hours and allowed to reach room temperature.

【0064】(二段目の反応)続いて、この反応液に、
室温下、アセトン49.0gに溶解させたエチレンジア
ミン14.7gの溶液を0.5時間かけて滴下し、続い
て水58.8gに溶解させた水酸化ナトリウム19.7
gの溶液を0.3時間かけて滴下した。滴下終了後、6
0℃まで昇温して17時間攪拌した。反応終了後、冷却
し、反応生成物を濾過し減圧乾燥を行った。
(Second-Step Reaction) Subsequently,
At room temperature, a solution of 14.7 g of ethylenediamine dissolved in 49.0 g of acetone was added dropwise over 0.5 hours, and then 19.7 g of sodium hydroxide dissolved in 58.8 g of water.
g of solution was added dropwise over 0.3 hours. After dropping, 6
The temperature was raised to 0 ° C., and the mixture was stirred for 17 hours. After completion of the reaction, the reaction mixture was cooled, the reaction product was filtered, and dried under reduced pressure.

【0065】(三段目の反応)次に、攪拌翼、温度計及
び冷却管を有する容量1リットルのガラス反応器に先程
の反応生成物を仕込み、次いでエチレンジアミン15.
3g及び水酸化ナトリウム20.4gを仕込み、138
℃の温度で17時間攪拌しながら反応した。反応後、冷
却し、生成物を濾過、水洗し、140℃で減圧乾燥して
微黄色の粉末74.2gを得た。
(Third-stage reaction) Next, the above reaction product was charged into a 1-liter glass reactor having a stirring blade, a thermometer, and a cooling pipe.
3 g and 20.4 g of sodium hydroxide were charged.
The reaction was carried out with stirring at a temperature of ° C for 17 hours. After the reaction, the mixture was cooled, and the product was filtered, washed with water, and dried under reduced pressure at 140 ° C. to obtain 74.2 g of a slightly yellow powder.

【0066】この得られた生成物は、有機溶媒及び水に
不溶であり、融点が>300℃であり、元素分析を行っ
た結果、塩素が8.6%残存していた。尚、各反応工程
において反応生成物の反応器へのスケーリングが生じ
た。
The obtained product was insoluble in organic solvents and water, had a melting point of> 300 ° C., and was subjected to elemental analysis. As a result, 8.6% of chlorine remained. In each of the reaction steps, scaling of the reaction product to the reactor occurred.

【0067】実施例1〜3と比較例1とを比較すると、
エチレンジアミンを塩化シアヌルと反応させた場合には
スケーリングが生じるのに対し、実施例1〜3で用いた
アミンではスケーリングが生じていないことが分かる。
When Examples 1 to 3 and Comparative Example 1 are compared,
It can be seen that scaling occurs when ethylenediamine is reacted with cyanuric chloride, whereas no scaling occurs with the amine used in Examples 1-3.

【0068】比較例2 比較例1で得られた生成物とポリリン酸アンモニウム
(ヘキスト(株)社製、商品名:Exolit462)
をそれぞれ1:2の重量比で混合し、複合難燃剤4を調
製した。
Comparative Example 2 The product obtained in Comparative Example 1 and ammonium polyphosphate (Exolit 462, manufactured by Hoechst Co., Ltd.)
Were mixed in a weight ratio of 1: 2 to prepare a composite flame retardant 4.

【0069】比較例3 比較例1で得られた生成物、ポリリン酸アンモニウム
(ヘキスト(株)社製、商品名:Exolit462)
及び製造例1で調製したEDA−ZPをそれぞれ1:
1:1の重量比で混合し、複合難燃剤5を調製した。
Comparative Example 3 The product obtained in Comparative Example 1, ammonium polyphosphate (Exolit 462, manufactured by Hoechst KK)
And EDA-ZP prepared in Production Example 1 respectively:
The mixture was mixed at a weight ratio of 1: 1 to prepare a composite flame retardant 5.

【0070】比較例4〜5 EVA100重量部に対し比較例2で得られた複合難燃
剤4又は比較例3で得られた複合難燃剤5を、表1に示
すような重量部で配合して130℃の温度でロール混練
し、150℃でプレス成形し、難燃性樹脂組成物を調製
した。次いで、調製した難燃性樹脂組成物の難燃性及び
耐水性の評価を実施例4〜6と同様の方法により行っ
た。表1には、用いた複合難燃剤の種類、難燃性樹脂組
成物中のEVA、ポリリン酸アンモニウム、及び難燃助
剤の配合量、難燃性樹脂組成物の燃焼性及び耐水性の評
価結果を示した。
Comparative Examples 4 to 5 The composite flame retardant 4 obtained in Comparative Example 2 or the composite flame retardant 5 obtained in Comparative Example 3 was mixed with 100 parts by weight of EVA in parts by weight as shown in Table 1. Roll kneading was performed at a temperature of 130 ° C., and press molding was performed at 150 ° C. to prepare a flame-retardant resin composition. Next, the flame retardancy and water resistance of the prepared flame retardant resin composition were evaluated in the same manner as in Examples 4 to 6. Table 1 shows the types of the composite flame retardants used, the amounts of EVA, ammonium polyphosphate, and the flame retardant aid in the flame retardant resin composition, and the evaluation of the flammability and water resistance of the flame retardant resin composition. The results are shown.

【0071】比較例6〜7 LDPE100重量部に対し比較例2で得られた複合難
燃剤4又は比較例3で得られた複合難燃剤5を、表2に
示すような重量部で配合して130℃の温度でロール混
練し、150℃でプレス成形し、難燃性樹脂組成物を調
製した。次いで、調製した難燃性樹脂組成物の難燃性及
び耐水性の評価を実施例4〜6と同様の方法により行っ
た。表2には、用いた複合難燃剤の種類、難燃性樹脂組
成物中のLDPE、ポリリン酸アンモニウム、EDA−
ZP及び難燃助剤の配合量、難燃性樹脂組成物の燃焼性
及び耐水性の評価結果を示した。
Comparative Examples 6 and 7 The compound flame retardant 4 obtained in Comparative Example 2 or the compound flame retardant 5 obtained in Comparative Example 3 was mixed with 100 parts by weight of LDPE in parts by weight as shown in Table 2. Roll kneading was performed at a temperature of 130 ° C., and press molding was performed at 150 ° C. to prepare a flame-retardant resin composition. Next, the flame retardancy and water resistance of the prepared flame retardant resin composition were evaluated in the same manner as in Examples 4 to 6. Table 2 shows the types of composite flame retardants used, LDPE in the flame retardant resin composition, ammonium polyphosphate, EDA-
The amounts of ZP and the flame retardant aid, and the evaluation results of the flammability and water resistance of the flame retardant resin composition are shown.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 5/45 C08K 5/45 C08L 39/00 C08L 39/00 79/02 79/02 101/00 101/00 C09K 21/02 C09K 21/02 21/04 21/04 Fターム(参考) 4H028 AA03 AA07 AA08 AA30 AA42 AB03 BA06 4J002 AA001 BB031 BB061 BJ002 CM012 DA027 DA057 DE077 DE087 DE097 DE107 DE117 DE127 DE147 DE187 DH057 DJ007 DJ017 DK007 EU186 EU187 EW047 EW157 FB077 FD010 FD040 FD050 FD070 FD100 FD132 FD136 FD137 GL00 GN00 GQ00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 5/45 C08K 5/45 C08L 39/00 C08L 39/00 79/02 79/02 101/00 101 / 00 C09K 21/02 C09K 21/02 21/04 21/04 F term (reference) 4H028 AA03 AA07 AA08 AA30 AA42 AB03 BA06 4J002 AA001 BB031 BB061 BJ002 CM012 DA027 DA057 DE077 DE087 DE097 DE107 DE117 DE127 DE147 DJ187 017 DK0 EW047 EW157 FB077 FD010 FD040 FD050 FD070 FD100 FD132 FD136 FD137 GL00 GN00 GQ00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】1級及び/又は2級のアミノ基を3個以上
含有するポリアルキルアミンと塩化シアヌルの反応生成
物からなることを特徴とする難燃助剤。
1. A flame retardant auxiliary comprising a reaction product of a polyalkylamine having three or more primary and / or secondary amino groups and cyanuric chloride.
【請求項2】難燃剤と、請求項1に記載の難燃助剤とか
らなることを特徴とする複合難燃剤。
2. A composite flame retardant comprising a flame retardant and the flame retardant auxiliary according to claim 1.
【請求項3】難燃剤と難燃助剤との配合比が、重量比で
1/20〜20/1であることを特徴とする請求項2に
記載の複合難燃剤。
3. The composite flame retardant according to claim 2, wherein the compounding ratio of the flame retardant and the flame retardant auxiliary is 1/20 to 20/1 by weight.
【請求項4】難燃剤が、リン系難燃剤、金属酸化物又は
膨張性黒鉛であることを特徴とする請求項2又は請求項
3に記載の複合難燃剤。
4. The composite flame retardant according to claim 2, wherein the flame retardant is a phosphorus-based flame retardant, metal oxide or expandable graphite.
【請求項5】難燃剤が、リン系難燃剤、金属酸化物及び
膨張性黒鉛からなる群より選ばれる2種又は3種である
ことを特徴とする請求項2又は請求項3に記載の複合難
燃剤。
5. The composite according to claim 2, wherein the flame retardant is two or three selected from the group consisting of phosphorus-based flame retardants, metal oxides and expandable graphite. Flame retardants.
【請求項6】樹脂に、請求項2〜5に記載の複合難燃剤
を樹脂100重量部に対して5〜200重量部配合して
なることを特徴とする難燃性樹脂組成物。
6. A flame-retardant resin composition comprising the resin and the composite flame retardant according to claim 2 blended in an amount of 5 to 200 parts by weight per 100 parts by weight of the resin.
JP2000079304A 2000-03-16 2000-03-16 Flame retardant auxiliary comprising polyalkylamine derivative, composite flame retardant using the same and flame retardant resin composition Pending JP2001262146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079304A JP2001262146A (en) 2000-03-16 2000-03-16 Flame retardant auxiliary comprising polyalkylamine derivative, composite flame retardant using the same and flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079304A JP2001262146A (en) 2000-03-16 2000-03-16 Flame retardant auxiliary comprising polyalkylamine derivative, composite flame retardant using the same and flame retardant resin composition

Publications (1)

Publication Number Publication Date
JP2001262146A true JP2001262146A (en) 2001-09-26

Family

ID=18596570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079304A Pending JP2001262146A (en) 2000-03-16 2000-03-16 Flame retardant auxiliary comprising polyalkylamine derivative, composite flame retardant using the same and flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP2001262146A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038263A1 (en) * 2002-10-08 2004-05-06 Oiles Corporation Spherical zone seal body
US7867615B2 (en) 1920-09-26 2011-01-11 Oiles Corporation Heat-resistant exfoliated graphite sheet
CN104751951A (en) * 2015-03-30 2015-07-01 安徽省高沟电缆有限公司 Flame retardant insulation material special for cable wrapping
CN107061876A (en) * 2017-04-27 2017-08-18 安徽国登管业科技有限公司 Polyethylene composite tube for underground coal mine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867615B2 (en) 1920-09-26 2011-01-11 Oiles Corporation Heat-resistant exfoliated graphite sheet
WO2004038263A1 (en) * 2002-10-08 2004-05-06 Oiles Corporation Spherical zone seal body
US7413195B2 (en) 2002-10-08 2008-08-19 Oiles Corporation Spherical annular seal member
US7717435B2 (en) 2002-10-08 2010-05-18 Oiles Corporation Spherical annular seal member
CN104751951A (en) * 2015-03-30 2015-07-01 安徽省高沟电缆有限公司 Flame retardant insulation material special for cable wrapping
CN107061876A (en) * 2017-04-27 2017-08-18 安徽国登管业科技有限公司 Polyethylene composite tube for underground coal mine

Similar Documents

Publication Publication Date Title
TWI523895B (en) Intumescent, halogen-free, silicon-phosphorus-nitrogen based polymeric flame retardant
CN103113719B (en) Flame-retardant thermoplastic composition as well as preparation method and application thereof
JP3885263B2 (en) Nitrogen-containing organophosphate compound and flame retardant resin composition comprising the same
EP1448698A1 (en) Fire retarded polymer composition
JP7244085B2 (en) FLAME RETARDANT COMPOSITION AND FLAME RETARDANT THERMOPLASTIC RESIN COMPOSITION CONTAINING THE FLAME RETARDANT COMPOSITION
JP2013544921A5 (en) Flame retardant polyester compound
CN1934187A (en) Flame-retardant styrene resin composition
KR102180931B1 (en) Graphene oxide filler with aminated flame retardant, and polypropylene nanocomposite using the same
JP2005500326A (en) Method for preparing dicyclic melamine compounds having excellent flame retardant properties and flame retardant for polymer applications using the same
JPH0390092A (en) Flame retardant
JP3508360B2 (en) Flame retardant and flame retardant resin composition
JP2001262146A (en) Flame retardant auxiliary comprising polyalkylamine derivative, composite flame retardant using the same and flame retardant resin composition
JPH09302237A (en) Flame-retardant thermoplastic polymer composition
JP2001011462A (en) Flame retardant composed of piperazine skeleton-bearing amine-containing zinc phosphate, and resin composition compounded therewith
JP2001106926A (en) Flame-retardant auxiliary comprising polyamine- polyisocyanate cross-linked product, flame-retardant composition and flame-retardant resin composition compounded with the same
CN105255132A (en) ABS (acfylonitrile-butadiene-styrene) modified LMW (low-molecular-weight) PC (polycarbonate) flame retardant material and preparation method of flame retardant material
JPH059376A (en) Flame-retardant urethane composition
US6414060B1 (en) Flame retardant polycarbonate-ABS polymer compositions
JP3767070B2 (en) Surface-treated composite flame retardant powder
JP3804096B2 (en) Ethylenediamine-phenylphosphonate, process for producing the same, and flame-retardant resin composition comprising the same
JP4432149B2 (en) ORGANIC PHOSPHATE COMPOUND, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT CONTAINING THE SAME, AND FLAME RETARDANT RESIN COMPOSITION
JP2001031408A (en) Zinc magnesium ethylenediamine phosphate, its production and flame-retardant resin composition
JP3484802B2 (en) Flame retardant polymer composition and molded article
JP3484803B2 (en) Flame retardant resin composition
JP2879408B2 (en) Flame retardant thermosetting resin composition