JP4431842B2 - Inner tank support structure of double shell spherical storage tank - Google Patents

Inner tank support structure of double shell spherical storage tank Download PDF

Info

Publication number
JP4431842B2
JP4431842B2 JP10187298A JP10187298A JP4431842B2 JP 4431842 B2 JP4431842 B2 JP 4431842B2 JP 10187298 A JP10187298 A JP 10187298A JP 10187298 A JP10187298 A JP 10187298A JP 4431842 B2 JP4431842 B2 JP 4431842B2
Authority
JP
Japan
Prior art keywords
tank
support member
assembly support
tub
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10187298A
Other languages
Japanese (ja)
Other versions
JPH11278584A (en
Inventor
宏治 石井
敬幸 多田
Original Assignee
株式会社石井鐵工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石井鐵工所 filed Critical 株式会社石井鐵工所
Priority to JP10187298A priority Critical patent/JP4431842B2/en
Publication of JPH11278584A publication Critical patent/JPH11278584A/en
Application granted granted Critical
Publication of JP4431842B2 publication Critical patent/JP4431842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、低温液体、低温高圧ガス、低温液化ガスなどを貯蔵する二重殻球形貯槽の内槽支持構造に関するものである。
【0002】
【従来の技術】
互いに隔接して設けられた内槽と外槽の間に、断熱性を有する断熱材を充填して保冷層を形成し、低温液体などを貯蔵する内槽を外槽によって支持し、地面基礎上に立設した支持脚によって外槽を支持している二重殻貯槽には、例えば二重殻球形貯槽、縦置き二重殻円筒貯槽、横置き二重殻円筒貯槽など各種の二重殻貯槽がある。
【0003】
上記二重殻貯槽の内槽支持構造の従来例について、二重殻球形貯槽の内槽支持構造を事例にして図5(a),(b),(c)に基づいて説明する。二重殻の球形貯槽1は、球形板状の外槽2の一重殻と、その外槽2の内側の保冷層3と、その保冷層3の内側に設けた球形板状の内槽4の一重殻とを組合わせて形成されている。この内槽4の内部に低温液体などを貯蔵し、保冷層3の内部にパーライトなどの粒状断熱材、発泡プラスチックスなどの発泡断熱材、軟質ウレタンなどの軟質断熱材、硬質ウレタンなどの硬質断熱材、グラスウールなどの繊維状断熱材等を充填している。
【0004】
内槽4は、保冷層3内を貫通する支持部材7,8,9によって外槽2と接続して支持され、外槽2の下部は支持脚6A,6B,6Cによって地面の基礎5から支持されている。図5(a)の支持部材7は内槽4を外槽2から吊り支持する構造に形成し、この外槽2は隔接複数本のパイプ状支持脚6Aによって基礎5から支持されている。図5(b)の支持部材8は内槽4と外槽2を直接支持する構造に形成し、円筒板スカート状の支持脚6Bによって基礎5から支持されている。図5(c)の支持部材9は内槽4を外槽2に係合支持する構造に形成し、この外槽2は円筒板スカート状の支持脚6Cによって基礎5から支持されている。
【0005】
また、上記二重殻貯槽の内槽支持構造の他の従来例として、横置き二重殻円筒貯槽の内槽を木材を介して外槽によって支持した構造が知られている。この木材による支持構造は、内外槽間に断熱効果が高い木材を間隔を設けて置いて、この木材上に内槽を据付けたものである。この木材による支持構造は、平板材を積層したブロック体、或いは平板材を多数組合せた略ブロック体形状であった。
【0006】
【発明が解決しようとする課題】
上述のように、二重殻の球形貯槽1の内槽4の支持構造は、外槽2と内槽4の間の保冷層3内を貫通する支持部材7,8,9が、鋼材等の伝熱性が大きい材料で形成されており、また内槽4の外壁面及び外槽2の内壁面とそれぞれ固着されているために、内槽4内の低温液体からの冷熱が外部に伝わり、或いは外部からの高熱が内槽4の低温液体に伝わって、熱のショートパスが発生して充分な断熱性能が得られていないことがあった。例えば鋼材の伝熱係数は、断熱材の伝熱係数に比べて約500倍乃至1500倍程度大きいため、熱のショートパスが多くなった。
【0007】
また、支持部材7,8,9が内槽4の外壁面及び外槽2の内壁面とそれぞれ少ない支持点で固着接続されているため、重量が固着支持部に掛かり、また曲げ荷重が生じ易く、変形や破損の心配があった。また、支持脚6A,6B,6Cとの接続箇所も少ないため、重量が少ない接続箇所に集中し、かつ曲げ荷重が生じ易かった。このような内槽4の支持点及び外槽2の支持箇所には、地震や強風などで大きな荷重が掛かった場合に、変形や損傷が生じる心配があった。
【0008】
また、上記横置き二重殻円筒貯槽の内槽を木材を用いて支持した従来構造は、断熱効果が高い木材を使用しているとはいえ、木材の伝熱係数は、パーライトなどの粒状断熱材、発泡プラスチックスなどの発泡断熱材、ウレタンなどの断熱材等に比べて、約5倍乃至10倍程度伝熱係数が大きいため、伝熱量が多くなるおそれがあった。また、この木材による支持構造は、平板材を積層したブロック体、或いは平板材を多数組合せた略ブロック体形状であったため、形成される空間部が少なく、かつこの空間部は閉塞空間となるため、断熱材は均一な充填ができなかった。また、ブロック体、略ブロック体の支持材は、堅固な構造であるが、地震動などの振動は減衰することなく伝導するため、内槽は大きな振動を受け易い。また、堅固なブロック体、略ブロック体の支持材は、万一亀裂破壊を生じると、その亀裂先端部は楔のように鋭利なため、亀裂は次々と進展して伝播し易く、結果として全体損傷を生じさせることがある。
【0009】
この発明は、上述のような従来技術が有する問題点に鑑みてなされたもので、内槽支持構造の断熱性と耐久性を向上させ、かつ免震構造で耐震性を向上させた二重殻球形貯槽の内槽支持構造を提供するものである。
【0010】
【課題を解決するための手段】
この発明に係る二重殻球形貯槽の内槽支持構造は、互いに間隔をおいて設けられた内槽と外槽の間に、断熱性を有する断熱材を充填して保冷層を形成し、低温液体を貯蔵する内槽を外槽によって支持し、基礎上に設置した支持脚にてこの外槽を支持してなる二重殻球形貯槽であって、
上記断熱材による保冷層の形成を阻害しないように、断熱性を有する強度部材にて枠体状構造に組立支持部材を形成し、この組立支持部材は、内外槽の湾曲面形状に適合する形状に形成し、上部を内槽底部外壁面に面接触させて下部を外槽底部内壁面に面接触させてこの組立支持部材を内外槽壁面に固着することなく上記外槽内底部に載置してこの組立支持部材にて上記内槽の底部を支承するように形成し、この組立支持部材が内外槽間を移動しても元の位置に復することを特徴とする
【0011】
削除
【0012】
また、この二重殻球形貯槽の内槽支持構造は、上記内外槽間に形成する保冷層内の側部乃至上部に、断熱性を有する間隔維持部材を設け、この間隔維持部材は内外槽壁面に固着することなく懸け渡して形成したものである。
【0013】
また、この二重殻球形貯槽の内槽支持構造は、上記組立支持部材に弾力性を有する免震材を設け、或いは上記間隔維持部材に弾力性を有する免震材を設けて、免震構造で耐震性を有する内槽支持構造に形成したものである。
【0014】
【発明の実施の形態】
この発明に係る二重殻貯槽の内槽支持構造について、二重殻球形貯槽を事例にしてその内槽の支持部材の構造を示す図1乃至図4に基づいて説明する。しかし、二重殻球形貯槽に限定されるものではなく、保冷層を介して外槽で内槽を支持する構造の二重殻貯槽、例えば縦置き二重殻円筒貯槽など各種の二重殻貯槽に適用される。
【0015】
図1に示すように、二重殻の球形貯槽1は、低温液体などを内部に貯蔵する内槽4と、その周囲に同心円状に間隔をおいた外槽2と、この内外槽の間に断熱材を充填する保冷層3を設け、基礎5上に設置した支持脚6にて外槽2を支持している。
【0016】
この内外槽間の保冷層3内の底部、すなわち外槽2の内底部に組立支持部材10を設置する。この組立支持部材10は、内槽4の底部を支承して内槽4の重量と貯蔵液の重量に耐えるとともに、内槽4内部貯蔵液の冷熱の伝導を遮断しかつ外部からの高熱の伝導を遮断するために、断熱性を有する強度部材を使用する。また、この組立支持部材10は、断熱材の充填によって形成される保冷槽3の均一な充填形成を阻害しないように、断熱材の通過可能な広い間隔を有する立体的な枠体状に組み立てて形成する。
【0017】
上記組立支持部材10は、断熱性と支持力、剛性に優れた強度部材、例えば、樫やコルク等の木材、表面を硬化させた発泡グラス材や発泡コンクリート材などの材質で、矩形材や成形材を棒状にした部材、パイプ材や丸棒材、或いは平板材などの部材を使用する。これらの強度部材を不燃化処理し、圧着や熱着などによって複合材や積層材に加工し、加熱プレス加工などによって湾曲成形し、接着や組込み、ボルト締めなどによって枠体、或いは枠体と平板を組合せたパネル体などに形成し、これらの枠体やパネル体を立体的で軽量な構造に組立てる。
【0018】
図2に一部を欠除し拡大して示すように、この組立支持部材10は、中央部を上下に隔離した環状体13,14に形成し、その間を複数の立設した柱15で接続し、その環状体13,14のさらに外側の等距離位置に、環状体16,17を設け、この環状体13と16,及び14と17間を渡すように複数放射状の骨組18,19を設ける。環状体13,16の上面及び骨組18の上面は、内槽4底部の外壁面曲率に合致するように湾曲させるとともに、環状体14と17の下面及び骨組19の下面は、外槽2底部の内壁面曲率に合致するように湾曲させて、それぞれの接触面が広い面積で面接触するように形成する。内槽4の下部中央近傍に位置する複数の柱15は、貯蔵液及び内槽4の重量を支えるように垂直に配置し、またその外方下部側面に位置する柱15は、球の軸心線に沿って配設して水平方向の荷重をも支えるように形成する。また、枠体間に斜材を設けることによって、捩じれやたわみ及び座屈に対して一層強い構造とすることができる。上記構造の組立支持部材10は、湾曲した壁面形状に合わせて簡単容易に組立て形成することができる。
【0019】
このように断熱性を有する材料で形成した組立支持部材10は、低温貯蔵液の冷熱を内槽4から伝導することがなく、また外気の高熱を外槽2から伝導することもないため、内外槽間の伝熱量が少なく熱のショートパスを防止することができる。上記断熱強度部材を使用した場合にはその伝熱係数は、従来の鋼材で接合した場合に比べて約500分の1乃至1500分の1程度と小さく、従来の木材で支持した場合に比べても約5分の1乃至10分の1程度と小さいので、伝熱量を大きく減少させることができる。
【0020】
また、ブロック体、略ブロック体の木材の支持材を使用した場合に比べて、組立支持部材10の枠体間は、空間が多く断熱材充填がよくできるので、伝熱量を減少することができる。また、断熱材の不均一部や片寄り部、空間部などを生ずることがなく、枠体間にも断熱材が均一に充填されるため、組立支持部材10があっても保冷層3の断熱性能が損なわれることがなく、保冷性能の良い保冷層3が得られる。また、組枠支持部材10の組立接合部に、上記枠体やパネル体よりも断熱性能に優れたパッキン材を挟み込んで組立てると、組立支持部材10の断熱性能をさらに高めることができる。
【0021】
上記断熱材として、例えばパーライトなどの粒状断熱材を使用した場合には、枠体間の隅々まで均一な充填が容易となり、またメンテナンス時に粒状断熱材を取替えるような場合には、粒状断熱材が枠体間を自在に移動可能なため容易に抜き出すことができる。また、現場発泡で充填する発泡ウレタンや発泡コンクリートなどの発泡断熱材を使用した場合には、枠体間の細部まで発泡断熱材が行き届いて均一な充填施工が可能となり、また発泡断熱材の圧縮強度が得られまで上部の内槽施工を待つ必要がなく、枠体に内槽荷重を支持させた状態で直ぐに上部の内槽施工を行うことができるので、工期の短縮が可能となる。また、ブロック状の固形断熱材を使用した場合には、枠体間にグラスウールなどの断熱材を詰め込んでから固形断熱材を均一に施工でき、また使用中に固形断熱材は、圧密や偏りを生ずることがないので、保冷性能を長期間安定して保持することができる。
【0022】
また、組立支持部材10は、振動伝達断面が小さいため、揺動減衰が可能となる。つまり、複数立設した柱15によって、貯蔵液及び内槽4の重量を支えるように所定の剛性強度を保有するとともに、内外槽相互の揺れによる曲げ荷重に対しても応力伝播を枠体の開口内面部で分散し逃がすため、捩じれやたわみに柔軟に対応し耐久性を有する。少なくとも複数の垂直材の柱と複数の水平材の梁とからなる組立支持部材10は、その一部の垂直材又は水平材が損傷したとしても、全体破損には到り難いため、従来構造よりも安全である。
【0023】
また、組立支持部材10は、湾曲した内外槽の鉛直軸心と組立支持部材10の鉛直軸心を合致させ、外槽2底部内壁面に固着することなく、かつ内槽4底部外壁面にも固着することなく、内槽4の重量及び内槽4内の貯蔵液の重量を平均に支えるように内外槽間底部の中央に載置する。このように、湾曲した内外槽間底部の中央に載置した組立支持部材10は、中央位置からずれ難く、かつ例え移動しても元の位置に復する構造であるため安定性が良い。また、外槽2内壁面及び内槽4外壁面に組立支持部材10を固着していないので、地震や強風による揺れや振動、或いは貯蔵液の変化によって内外槽が変動した際に、当接部の変位は拘束されず、当接部に荷重が負荷しても変形や損傷を生じることがない。
【0024】
また組立支持部材10は、弾力性を有する緩衝部材20,21で形成した免震材12Aを設けて免震構造に形成する。組立支持部材10と内槽4の接触面、つまり環状体13,16の上面と骨組18の上面には、低温貯蔵液から伝わる極低温に耐え、かつ断熱性と弾力性を有する材料、例えばグラスウールやアスベストなどの緩衝部材20を設ける。また、組立支持部材10と外槽2の接触面、つまり環状体14,17の下面と骨組19の下面には、低温特性が良く、断熱性と弾力性を有する材料、例えばシリコンゴムや合成樹脂材などの緩衝部材21を設ける。上記緩衝部材20,21で形成した免震材12Aは、内外槽の曲率形状になじむため、組立支持部材10と内外槽壁面との間隙を埋めるパッキン材となって、対流防止によって保冷性能を高めるとともに、振動や変位を吸収し荷重を平均に伝達することができる。よって、地震や強風などによる揺れや振動などに対する免震性が得られ、耐久性と安全性が一層向上する。
【0025】
上記のように、組立支持部材10と内外槽壁面との接触面に断熱性に優れた緩衝部材20,21を設け、充分な断熱性能が得られる場合には、上記組立支持部材10は必ずしも断熱性を有する部材を使用することなく、剛性強度が高く低温特性の良い鋼材などの部材を使用する。このように剛性強度が高い部材を使用することによって、組立支持部材10を構成する柱や梁材は、より細くすることができ、かつ溶着や螺着等で簡単容易に組立形成することができる。
【0026】
なお、組立支持部材10の垂直な柱15の途中に積層ゴムなどの免震材(図示せず)を組込んで免震構造に形成すると、水平方向の変位の吸収及び振動エネルギーの吸収を一層大きくすることができる。また、図示省略するが、組立支持部の枠体間垂直方向にコイルバネや板バネなどを設けて、垂直方向の変位と振動エネルギーをも吸収緩和するように形成すると、垂直荷重に対する免震性も得られる。これらの耐震性能を高めた構造は、振動が多い地域や地盤が軟弱な地域に好適となる。
【0027】
また、図1に示すように、内外槽間の保冷層3内の側部乃至上部には、内槽4と外槽2の側方向乃至上方向の所定間隔を維持するとともに、内槽4内部の冷熱の伝導を遮断しかつ外槽2の外部からの高熱の伝導を遮断するために、剛性と断熱性を有する間隔維持部材(隔接部材)11を設ける。
【0028】
この内外槽間の保冷層3内の側部乃至上部に設ける間隔維持部材(隔接部材)11を、図3に基づいて説明する。図示例は、内槽4と外槽2の側方向乃至上方向の所定間隔を維持する間隔維持部材11を、剛性を有しかつ断熱性を有する部材、例えば木材、断熱複合材などを用いて、棒状の連絡部材22で形成した場合を示す。或いは図示省略するが、断熱材が枠間を通過し充填容易となるように組枠した枠体、又は断熱材が通過可能で充填容易な貫通口を設けた平板枠体、或いはこれらの枠体を組合せたパネル枠体などに形成する。この断熱性を有する連絡部材22によって、内外槽間の熱伝導が遮断されるため、間隔維持部材11を介して熱のショートパスを生じることがない。また上記のように、保冷層3内に間隔維持部材11があっても、断熱材の充填を阻害することがないので、保冷層3内に空間や断熱材の不均一部が生じることなく、断熱性能に優れた保冷層3を形成することができる。
【0029】
またこの間隔維持部材11は、内外槽壁面には固着することなく、例えば、内槽4の外壁面に固着した取付けブラケット24A、及び外槽2の内壁面に固着した取付けブラケット24B上に、長穴遊嵌止めや差込ガイド構造など(図示省略)によって側方向乃至上方向に所定距離内で移動可能に懸け渡して取付ける。このように、間隔維持部材11を内外槽壁面に固着することなく移動可能に取付けているので、内外槽相互の側方向乃至上方向の動きを拘束することなく変位に追従し、内外槽壁面取付部に変形や損傷を生じることがない。
【0030】
また連絡部材22の先端部には、グラスウールやアスベスト、発泡材や複合材、或いは合成ゴムなど、耐低温性で低温特性が良く、かつ断熱性と弾力性を有する緩衝部材23A,23Bの免震材12Bを設けて、弾力的に移動し振動や衝撃を吸収する耐震構造に形成する。このように、間隔維持部材11に設けた免震材12Bによって、内外槽の側方向乃至上方向の変位が弾力的に吸収緩和されるので、地震や風などによる揺れや垂直振動に対して一層安全な耐震構造となる。
【0031】
組立支持部材10の他の実施形態例について、図4に基づいて説明する。この組立支持部材10は、断熱性と支持力、剛性に優れた強度部材、例えば、木材、繊維強化グラス材、発泡グラス材、発泡コンクリート材などによる平板材を使用する。これらの部材を圧着や熱着などによって複合材や積層材の合板に加工し、加熱プレス加工などによって湾曲成形し、接着や組込み、ボルト締めなどによってパネル枠体に組立てる。この組立支持部材10は、図4のように、例えば板幅が同一の環状平板25を側部に設け、その下方底部を板幅が同一の複数の組板27で接続して、内外槽間の間隔に合致させた枠体に形成する。また、この組立支持部材10の環状平板25には、複数個の略円形状の貫通口28を設け、また組立支持部材10の組板27には、複数個の略円形状の貫通口29を設ける。
【0032】
このように平板材を使用した組立支持部材10は、平板材の端部の湾曲切断加工によって内外槽の湾曲壁面形状に合わせるため、製作がし易い。また、内外槽当接壁面の曲率に合わせてプレス加工した湾曲板等(図示省略)を、組立支持部材10の上部又は下部の当接部に取り付けた場合には、当接面積が広くなり荷重を平均に受けるようになるため、安定性が良い構造となる。
【0033】
この貫通口28,29を設けた組立支持部材10は、貫通口28,29を通過して枠体間に断熱材が均一に充填され、また貫通口28,29内にも断熱材が充填されるため、保冷槽3内に断熱材の不均一部や片寄り部、空間部などを生ずる心配がなく、良好な保冷性能が得られる。
【0034】
このように、平板材に略円形状の貫通口28,29を設けた組立支持部材10は、所定の剛性強度を保持するとともに、曲げ荷重に対しても、略円形状の貫通口28,29の湾曲内面端部で、この曲げ荷重を分散し逃がすため、応力伝播が一点に集中することなく、捩じれやたわみを吸収緩和し耐久性が得られる。また、この略円形状の貫通口28,29が亀裂伝播のストップホール機能を有するため、亀裂伝播停止機能にも優れた構造となる。
【0035】
【発明の効果】
叙述の説明で明らかなように、この発明に係る二重殻球形貯槽の内槽支持構造は、この組立支持部材は、内外槽の湾曲面形状に適合する形状に形成し、上部を内槽底部外壁面に面接触させて下部を外槽底部内壁面に面接触させてこの組立支持部材を内外槽壁面に固着することなく上記外槽内底部に載置してこの組立支持部材にて上記内槽の底部を支承するように形成し、この組立支持部材が内外槽間を移動しても元の位置に復するので、湾曲した内外槽間底部で中心位置がずれ難く、かつ例え移動しても元の位置に復する構造であるため安定性が良い。なお、内外槽が変動した際にこの組立支持部材と内外槽壁面とを面接触させた当接部の変位が拘束されないと、内外槽の相互の動きを拘束することなく変位に追従し、当接部に変形や損傷を生じることがないため、地震や強風、貯蔵液の変化などによる壁面当接部への負荷荷重に対して安全性が向上する。
【0036】
また、枠体状構造に組立てた組立支持部材を、外槽内底部に設置し、この組立支持部材にて内槽の底部を支承するように形成したので、組立支持部材の枠体間の空間が多く、断熱材充填がよくできる。よって、この組立支持部材を設置した保冷層内へ断熱材を充填する際に、断熱材の不均一部や片寄り部、空間部などを生ずることがない。また、枠体間に断熱材が均一に充填されるため、組立支持部材があっても断熱性能が損なわれることがなく、保冷性能の良い保冷層が得られる。
【0037】
また、組立支持部材は、複数立設した柱によって、貯蔵液及び内槽の重量を支えるように所定の剛性強度を保有するとともに、内外槽相互の揺れによる曲げ荷重に対しても応力伝播を枠体状の開口内面部で分散し逃がし、捩じれやたわみを柔軟に吸収緩和するので、地震や強風などの振動や揺れに対する耐久性が向上する。また、組枠体は、振動伝達断面が小さいため、揺動減衰が可能となる。少なくとも複数の垂直材の柱と複数の水平材の梁とからなる組立支持部材は、その一部の垂直材又は水平材が損傷したとしても、全体破損には到り難いため、従来構造よりも安全である。なお、平板材に略円形状の貫通口を設けた組立支持部材の場合は、略円形状の貫通口の湾曲内面端部で曲げ荷重を分散し逃がすため、応力伝播が一点に集中することなく捩じれやたわみを吸収緩和し易く耐久性が得られる。また、この略円形状の貫通口が亀裂伝播のストップホール機能を有するため、亀裂伝播停止機能にも優れた構造となる。
【0038】
また、組立支持部材は樫やコルク等の木材、表面を硬化させた発泡グラス材や発泡コンクリート材などの材質で、矩形材や成形材を棒状にした部材、パイプ材や丸棒材、或いは平板材などの部材を使用して、これらの強度部材を不燃化処理し、圧着や熱着などによって複合材や積層材に加工し、加熱プレス加工などによって湾曲形成し、接着や組込み、ボルト締めなどによって立体的な枠体状に組立てるので、支持力、剛性強度と耐久性に優れており、かつ軽量化が図られ、簡単容易に製作することができる。
【0039】
また、断熱性を有する強度部材にて枠体状構造に組立支持部材を組立て形成したので、組立支持部材を伝わる熱量が少なく内外槽間での熱のショートパスが防止され、良好な保冷性能を維持することができる。
【0040】
また、上記内外槽間の側部乃至上部に断熱性を有する間隔維持部材を設け、この間隔維持部材は内外槽壁面に固着することなく懸け渡して形成した内槽支持構造は、間隔維持部材を伝わる熱量が少ないため内外槽間で側部乃至上部への熱のショートパスが少なく良好な保冷性能を維持するとともに、内外槽間で側方向及び上方向の動きを拘束することなく変位に追従し、当接部に変形や損傷を生じることがないため、地震や強風、貯蔵液の変化などによる側方向乃至上方向への負荷荷重に対して、より安全性が向上する。
【0041】
また、上記組立支持部材に弾力性を有する免震材を設け、或いは上記間隔維持部材に弾力性を有する免震材を設けて、免震構造の耐震性を有する二重殻貯槽の内槽支持構造は、弾力性を有する免震材が内外槽の曲率形状になじみ、内外槽壁面との間隙を埋めるパッキン材となって、振動や変位を吸収し荷重を平均に伝達することができるため、地震や強風などによる揺れや振動などに対する免震性が得られ、耐久性と安全性が一層向上する。
【0042】
【図面の簡単な説明】
【図1】 この発明に係る二重殻貯槽の内槽支持構造の実施形態例で、二重殻球形貯槽の内外槽間に設けた組立支持部材、及び間隔維持部材を示す側断面説明図である。
【図2】 上記内外槽間の底部に設ける組立支持部材の実施形態例を示す一部を欠除した斜視説明図である。
【図3】 内外槽間に形成する保冷層内の側部乃至上部に設ける間隔維持部材の実施形態例を示す斜視説明図である。
【図4】 上記内外槽間の底部に設ける組立支持部材の他の実施形態例を示す斜視説明図である。
【図5】 (a),(b),(c)は、従来の二重殻貯槽の内槽支持構造を示した側断面説明図である。
【符号の説明】
1 球形貯槽
2 外槽
3 保冷層
4 内槽
5 基礎
6,6A,6B,6C 支持脚
7,8,9 支持部材
10 組立支持部材
11 間隔維持部材(隔接部材)
12,12A,12B 免震材
13,14 環状体
15 柱
16,17 環状体
18,19 骨組
20,21 緩衝部材
22 連絡部材
23A,23B 緩衝部材
24A,24B 取付けブラケット
25 環状平板
27 組板
28,29 貫通口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inner tank support structure for a double-shell spherical storage tank that stores a low-temperature liquid, a low-temperature high-pressure gas, a low-temperature liquefied gas, and the like.
[0002]
[Prior art]
A heat insulating material is filled between the inner tub and the outer tub that are spaced apart from each other to form a cold insulation layer, and the inner tub that stores cryogenic liquid is supported by the outer tub, The double-shell storage tanks that support the outer tank with support legs standing upright are various double-shell storage tanks such as a double-shell spherical storage tank, a vertical double-shell cylindrical storage tank, and a horizontal double-shell cylindrical storage tank. There is.
[0003]
A conventional example of the inner shell support structure of the double shell storage tank will be described with reference to FIGS. 5A, 5B, and 5C, taking the inner tank support structure of the double shell spherical storage tank as an example. The double-shell spherical storage tank 1 is composed of a single shell of a spherical plate-shaped outer tank 2, a cold insulating layer 3 inside the outer tank 2, and a spherical plate-shaped inner tank 4 provided inside the cold insulating layer 3. It is formed by combining a single shell. A low-temperature liquid or the like is stored inside the inner tank 4, and a granular heat insulating material such as pearlite, a foam heat insulating material such as foamed plastics, a soft heat insulating material such as soft urethane, or a hard heat insulating material such as hard urethane. Filled with material, fibrous insulation such as glass wool.
[0004]
The inner tub 4 is connected to and supported by the outer tub 2 by support members 7, 8, and 9 penetrating the cold insulation layer 3, and the lower portion of the outer tub 2 is supported from the ground foundation 5 by the support legs 6A, 6B, and 6C. Has been. The support member 7 of FIG. 5A is formed in a structure that supports the inner tank 4 suspended from the outer tank 2, and the outer tank 2 is supported from the foundation 5 by a plurality of spaced pipe-shaped support legs 6A. The support member 8 in FIG. 5B is formed in a structure that directly supports the inner tub 4 and the outer tub 2, and is supported from the foundation 5 by the cylindrical leg skirt-like support legs 6B. The support member 9 shown in FIG. 5 (c) is formed in a structure for engaging and supporting the inner tub 4 with the outer tub 2. The outer tub 2 is supported from the foundation 5 by a cylindrical plate skirt-like support leg 6C.
[0005]
As another conventional example of the above-described inner shell support structure of the double shell storage tank, a structure in which the inner tank of the horizontal double shell cylindrical storage tank is supported by an outer tank via wood is known. This support structure with wood is a structure in which wood having a high heat insulation effect is placed between the inner and outer tubs with an interval between them, and the inner tub is installed on the wood. The support structure made of wood has a block shape in which flat plate materials are laminated or a substantially block shape in which a large number of flat plate materials are combined.
[0006]
[Problems to be solved by the invention]
As described above, the support structure of the inner tank 4 of the double-shell spherical storage tank 1 is such that the support members 7, 8 and 9 penetrating the inside of the cold insulation layer 3 between the outer tank 2 and the inner tank 4 are made of steel or the like. Since it is formed of a material having high heat transfer and is fixed to the outer wall surface of the inner tub 4 and the inner wall surface of the outer tub 2, the cold heat from the low-temperature liquid in the inner tub 4 is transmitted to the outside, or High heat from the outside is transmitted to the low-temperature liquid in the inner tank 4, and a short path of heat is generated, so that sufficient heat insulation performance may not be obtained. For example, the heat transfer coefficient of steel is about 500 to 1500 times larger than the heat transfer coefficient of a heat insulating material, so that there are many short paths of heat.
[0007]
Further, since the support members 7, 8, and 9 are fixedly connected to the outer wall surface of the inner tub 4 and the inner wall surface of the outer tub 2 at a small number of support points, the weight is applied to the fixed support portion and a bending load is easily generated. I was worried about deformation and damage. Moreover, since there are few connection places with support leg 6A, 6B, 6C, it concentrated on the connection place with little weight, and the bending load was easy to arise. Such a supporting point of the inner tub 4 and a supporting portion of the outer tub 2 may be deformed or damaged when a large load is applied due to an earthquake or a strong wind.
[0008]
In addition, the conventional structure in which the inner tank of the horizontal double-shell cylindrical storage tank is supported with wood uses wood with high heat insulation effect, but the heat transfer coefficient of wood is a granular heat insulation such as pearlite. Since the heat transfer coefficient is about 5 to 10 times larger than that of materials, foamed heat insulating materials such as foamed plastics, and heat insulating materials such as urethane, there is a possibility that the amount of heat transfer increases. In addition, since the support structure made of wood has a block body formed by stacking flat plates or a substantially block shape formed by combining a number of flat plates, there are few spaces to be formed, and the spaces are closed spaces. The heat insulating material could not be uniformly filled. Moreover, although the block body and the support material for the substantially block body have a solid structure, vibrations such as earthquake motions are conducted without being attenuated, and therefore the inner tank is susceptible to large vibrations. In addition, if the support material of a solid block body or a substantially block body is cracked, the crack tip is sharp like a wedge, so that the crack is easy to propagate and propagate one after another. May cause damage.
[0009]
The present invention has been made in view of the problems of the prior art as described above, to improve the heat insulating properties and durability of the inner tank support structure, and with improved earthquake resistance in seismic isolation double-shelled An inner tank support structure for a spherical storage tank is provided.
[0010]
[Means for Solving the Problems]
The inner shell support structure of the double shell spherical storage tank according to the present invention forms a cold insulation layer by filling a heat insulating material between the inner tank and the outer tank, which are spaced apart from each other. A double shell spherical storage tank that supports an inner tank for storing liquid by an outer tank, and supports the outer tank with support legs installed on a foundation,
An assembly support member is formed in the frame-like structure with a heat-insulating strength member so that the formation of the cold insulation layer by the heat insulation material is not hindered, and this assembly support member has a shape that matches the curved surface shape of the inner and outer tanks. The upper part is in surface contact with the outer wall surface of the inner tank bottom and the lower part is in surface contact with the inner wall surface of the outer tank bottom. The bottom of the inner tub is supported by the assembly support member, and the assembly support member returns to its original position even if it moves between the inner and outer tubs .
[0011]
Delete [0012]
Further, the inner shell support structure of the double shell spherical storage tank is provided with a space maintaining member having heat insulation on a side part or an upper part in the cold insulation layer formed between the inner and outer tanks. It is formed by hanging without sticking to.
[0013]
In addition, the inner shell support structure of the double shell spherical storage tank is provided with a base-isolating material having elasticity in the assembly support member, or a base-isolating material having elasticity in the spacing maintaining member. It is formed in the inner tank support structure which has earthquake resistance.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The inner-shell support structure of the double-shell storage tank according to the present invention will be described with reference to FIGS. 1 to 4 showing the structure of the support member of the inner-shell, taking a double-shell spherical storage tank as an example. However, it is not limited to the double-shell spherical storage tank, but various double-shell storage tanks such as a double-shell storage tank having a structure in which the inner tank is supported by the outer tank via a cold insulation layer, such as a vertical double-shell cylindrical storage tank. Applies to
[0015]
As shown in FIG. 1, a double-shell spherical storage tank 1 includes an inner tank 4 for storing a cryogenic liquid or the like, an outer tank 2 concentrically spaced around the inner tank 4, and an inner tank and an outer tank. A cold insulation layer 3 filled with a heat insulating material is provided, and the outer tub 2 is supported by support legs 6 installed on the foundation 5.
[0016]
The assembly support member 10 is installed on the bottom of the cold insulation layer 3 between the inner and outer tanks, that is, on the inner bottom of the outer tank 2. The assembly support member 10 supports the bottom of the inner tub 4 to withstand the weight of the inner tub 4 and the weight of the storage liquid, and also blocks the conduction of the cold heat of the internal storage liquid in the inner tub 4 and conducts high heat from the outside. In order to shut off, a strength member having heat insulating properties is used. Further, the assembly support member 10 is assembled in a three-dimensional frame shape having a wide interval through which the heat insulating material can pass so as not to disturb the uniform filling formation of the cold insulation tank 3 formed by filling the heat insulating material. Form.
[0017]
The assembly support member 10 is a strength member excellent in heat insulation, support force, and rigidity, for example, wood such as firewood and cork, a foamed glass material or a foamed concrete material whose surface is cured, and a rectangular material or a molded material. A member such as a rod-shaped member, a pipe member, a round rod member, or a flat plate member is used. These strength members are incombustible, processed into composites and laminates by crimping and heat deposition, etc., curved by hot press processing, etc., and framed or framed and flat by gluing, assembling, bolting, etc. Are formed into a panel body or the like, and these frame bodies and panel bodies are assembled into a three-dimensional and lightweight structure.
[0018]
As shown in FIG. 2 with a part thereof omitted, the assembly support member 10 is formed in annular bodies 13 and 14 whose central portions are vertically separated, and a plurality of upright columns 15 are connected therebetween. Then, annular bodies 16 and 17 are provided at equidistant positions on the outer side of the annular bodies 13 and 14, and a plurality of radial frames 18 and 19 are provided so as to pass between the annular bodies 13 and 16 and 14 and 17. . The upper surfaces of the annular bodies 13 and 16 and the upper surface of the skeleton 18 are curved so as to match the curvature of the outer wall surface of the bottom of the inner tub 4, and the lower surfaces of the annular bodies 14 and 17 and the lower surface of the skeleton 19 are Curved to match the inner wall surface curvature, each contact surface is formed so as to be in surface contact over a wide area. The plurality of columns 15 located near the lower center of the inner tank 4 are arranged vertically so as to support the weight of the stored liquid and the inner tank 4, and the columns 15 positioned on the outer lower side surface thereof are the axis of the sphere. It is formed along a line so as to support a horizontal load. Further, by providing a diagonal member between the frames, a structure that is more resistant to twisting, bending and buckling can be obtained. The assembly support member 10 having the above structure can be easily assembled and formed in accordance with the curved wall surface shape.
[0019]
The assembly support member 10 formed of a heat-insulating material does not conduct the cold heat of the low-temperature storage liquid from the inner tank 4 and does not conduct the high heat of the outside air from the outer tank 2. There is little heat transfer between tanks, and it is possible to prevent heat short path. When the heat insulation strength member is used, its heat transfer coefficient is as small as about 1/500 to 1/500 compared with the case of joining with conventional steel materials, compared with the case of supporting with conventional wood. Is about as small as about 1/5 to 1/10, so the amount of heat transfer can be greatly reduced.
[0020]
Further, compared to the case where the block body and the substantially block body support material are used, the space between the frames of the assembly support member 10 is large, and the heat insulating material can be filled well, so that the amount of heat transfer can be reduced. . Further, since the heat insulating material is uniformly filled between the frame bodies without causing uneven portions, offset portions, space portions, and the like of the heat insulating material, the heat insulating layer 3 can be insulated even if the assembly support member 10 is present. The cold insulation layer 3 with good cold insulation performance is obtained without impairing performance. Moreover, when the packing material excellent in heat insulation performance than the said frame body and panel body is inserted | pinched and assembled in the assembly joining part of the assembly frame support member 10, the heat insulation performance of the assembly support member 10 can further be improved.
[0021]
For example, when a granular heat insulating material such as pearlite is used as the heat insulating material, uniform filling to every corner between the frames becomes easy, and when the granular heat insulating material is replaced during maintenance, the granular heat insulating material is used. Can be easily extracted between the frames. In addition, when foam insulation such as foamed urethane or foam concrete is used to fill in-situ foaming, the foam insulation is delivered to every detail between the frames, enabling uniform filling work, and compression of the foam insulation. It is not necessary to wait for the upper inner tank construction until the strength is obtained, and the upper inner tank construction can be performed immediately in a state where the inner tank load is supported by the frame, so the construction period can be shortened. In addition, when block-shaped solid heat insulating material is used, the solid heat insulating material can be applied uniformly after packing the heat insulating material such as glass wool between the frames, and the solid heat insulating material can be compacted or biased during use. Since it does not occur, the cold insulation performance can be stably maintained for a long time.
[0022]
Further, since the assembly support member 10 has a small vibration transmission section, it can swing and attenuate. That is, the plurality of pillars 15 are provided with a predetermined rigidity and strength so as to support the weight of the storage liquid and the inner tub 4, and also transmit the stress propagation to the bending load due to the shaking between the inner and outer tubs. Disperses and escapes at the inner surface, so it flexibly responds to twisting and bending and has durability. The assembly support member 10 composed of at least a plurality of vertical material columns and a plurality of horizontal material beams is less likely to reach total damage even if a part of the vertical material or horizontal material is damaged. Is also safe.
[0023]
Further, the assembly support member 10 matches the vertical axis of the curved inner and outer tubs with the vertical axis of the assembly support member 10, and does not adhere to the inner wall surface of the bottom of the outer tub 2, and also on the outer wall surface of the bottom of the inner tub 4. Without sticking, it is placed at the center of the bottom between the inner and outer tanks so as to support the weight of the inner tank 4 and the weight of the stored liquid in the inner tank 4 on average. As described above, the assembly support member 10 placed at the center of the curved bottom portion between the inner and outer tubs is not easily displaced from the center position, and has a structure that returns to the original position even when moved, and thus has high stability. In addition, since the assembly support member 10 is not fixed to the inner wall surface of the outer tub 2 and the outer wall surface of the inner tub 4, when the inner and outer tubs fluctuate due to shaking or vibration due to an earthquake or strong wind, or changes in stored liquid, This displacement is not constrained, and deformation or damage does not occur even when a load is applied to the contact portion.
[0024]
Further, the assembly support member 10 is formed in a seismic isolation structure by providing the seismic isolation material 12A formed by the elastic buffer members 20 and 21. On the contact surface between the assembly support member 10 and the inner tub 4, that is, the upper surfaces of the annular bodies 13 and 16, and the upper surface of the frame 18, a material that can withstand extremely low temperatures transmitted from a low-temperature storage solution and has heat insulation and elasticity, for example, glass wool And a buffer member 20 such as asbestos. Further, the contact surface between the assembly support member 10 and the outer tub 2, that is, the lower surfaces of the annular bodies 14 and 17 and the lower surface of the skeleton 19 have good low-temperature characteristics and have heat insulation and elasticity, such as silicon rubber or synthetic resin. A buffer member 21 such as a material is provided. Since the seismic isolation material 12A formed by the buffer members 20 and 21 is adapted to the curvature shape of the inner and outer tubs, it becomes a packing material that fills the gap between the assembly support member 10 and the inner and outer tub wall surfaces, thereby improving the cold insulation performance by preventing convection. At the same time, it can absorb vibration and displacement and transmit the load to the average. Therefore, seismic isolation against vibrations and vibrations caused by earthquakes and strong winds is obtained, and durability and safety are further improved.
[0025]
As described above, when the buffer members 20 and 21 having excellent heat insulation are provided on the contact surface between the assembly support member 10 and the inner and outer tank wall surfaces and sufficient heat insulation performance is obtained, the assembly support member 10 is not necessarily insulated. A member such as steel having high rigidity and good low temperature characteristics is used without using a member having the property. By using such a member having high rigidity and strength, the pillars and beams constituting the assembly support member 10 can be made thinner, and can be easily assembled and formed by welding, screwing, or the like. .
[0026]
If a base isolation material (not shown) such as laminated rubber is incorporated in the middle of the vertical column 15 of the assembly support member 10 to form a base isolation structure, horizontal displacement absorption and vibration energy absorption are further enhanced. Can be bigger. Although not shown, if a coil spring or a leaf spring is provided in the vertical direction between the frames of the assembly support part so as to absorb and relax the vertical displacement and vibration energy, the seismic isolation against the vertical load is also achieved. can get. These structures with improved seismic performance are suitable for areas where there is a lot of vibration or where the ground is soft.
[0027]
Moreover, as shown in FIG. 1, while maintaining the predetermined space | interval of the side direction thru | or the upper direction of the inner tank 4 and the outer tank 2 in the side part thru | or upper part in the cold insulation layer 3 between an inner and outer tank, In order to block the conduction of cold heat and block the conduction of high heat from the outside of the outer tub 2, a spacing maintaining member (separation member) 11 having rigidity and heat insulation is provided.
[0028]
A spacing maintaining member (separating member) 11 provided on the side portion or the upper portion in the cold insulation layer 3 between the inner and outer tanks will be described with reference to FIG. In the illustrated example, the interval maintaining member 11 that maintains a predetermined interval in the lateral direction or the upward direction of the inner tub 4 and the outer tub 2 is used by using a rigid and heat insulating member such as wood or a heat insulating composite material. The case where it forms with the rod-shaped connection member 22 is shown. Alternatively, although not shown, a frame that is assembled so that the heat insulating material passes between the frames and can be easily filled, or a flat frame that is provided with a through-hole that allows the heat insulating material to pass and is easily filled, or these frames It is formed in the panel frame etc. which combined. Since the heat conduction between the inner and outer tubs is cut off by the connecting member 22 having the heat insulating property, a short path of heat does not occur through the gap maintaining member 11. Further, as described above, even if there is the gap maintaining member 11 in the cold insulation layer 3, it does not hinder the filling of the heat insulating material, so that a non-uniform portion of the space and the heat insulating material does not occur in the cold insulation layer 3, The cold insulating layer 3 excellent in heat insulation performance can be formed.
[0029]
Further, the distance maintaining member 11 is not fixed to the inner and outer tank wall surfaces, for example, on the mounting bracket 24A fixed to the outer wall surface of the inner tank 4 and the mounting bracket 24B fixed to the inner wall surface of the outer tank 2. It is suspended and attached so as to be movable within a predetermined distance from the side to the top by means of loose hole stoppers or insertion guide structures (not shown). In this way, since the interval maintaining member 11 is movably attached without being fixed to the inner and outer tank wall surfaces, the inner and outer tank wall surface attachments can follow the displacement without restricting the lateral or upward movement between the inner and outer tanks. No deformation or damage to the part.
[0030]
In addition, at the tip of the connecting member 22, the seismic isolation of the buffer members 23 </ b> A and 23 </ b> B, such as glass wool, asbestos, foamed material, composite material, or synthetic rubber, having low temperature resistance, good low temperature characteristics, and heat insulation and elasticity. The material 12B is provided to form an earthquake resistant structure that moves elastically and absorbs vibrations and shocks. As described above, the seismic isolation material 12B provided in the interval maintaining member 11 elastically absorbs and relaxes the displacement of the inner and outer tanks in the lateral direction or upward direction. A safe earthquake-resistant structure.
[0031]
Another embodiment of the assembly support member 10 will be described with reference to FIG. The assembly support member 10 uses a strength member excellent in heat insulation, support force, and rigidity, for example, a flat plate made of wood, fiber reinforced glass material, foam glass material, foam concrete material, or the like. These members are processed into plywoods of composite materials or laminated materials by crimping or heat-bonding, etc., curved by hot pressing, etc., and assembled into a panel frame by bonding, incorporating, bolting, or the like. As shown in FIG. 4, the assembly support member 10 is provided with, for example, an annular flat plate 25 having the same plate width on the side portion, and a lower bottom portion thereof connected by a plurality of assembled plates 27 having the same plate width. It is formed in a frame that matches the interval. A plurality of substantially circular through holes 28 are provided in the annular flat plate 25 of the assembly support member 10, and a plurality of substantially circular through holes 29 are provided in the assembly plate 27 of the assembly support member 10. Provide.
[0032]
Thus, the assembly support member 10 using a flat plate is easy to manufacture because it matches the curved wall surface shape of the inner and outer tubs by the curved cutting of the end of the flat plate. In addition, when a curved plate or the like (not shown) that is pressed according to the curvature of the inner and outer tank abutting wall surface is attached to the upper or lower abutting portion of the assembly support member 10, the abutting area is increased and the load is increased. As a result, the structure is stable.
[0033]
The assembly support member 10 provided with the through holes 28 and 29 passes through the through holes 28 and 29 and is uniformly filled with the heat insulating material between the frames, and the through holes 28 and 29 are also filled with the heat insulating material. Therefore, there is no fear that non-uniform portions, offset portions, space portions, etc. of the heat insulating material are generated in the cold insulation tank 3, and good cold insulation performance can be obtained.
[0034]
As described above, the assembly support member 10 provided with the substantially circular through-holes 28 and 29 in the flat plate material maintains a predetermined rigidity and strength, and is also substantially circular through-holes 28 and 29 against bending load. Since the bending load is distributed and released at the curved inner surface edge, the stress propagation is not concentrated at one point, and the twist and the deflection are absorbed and the durability is obtained. Further, since the substantially circular through holes 28 and 29 have a crack propagation stop hole function, the structure has an excellent crack propagation stop function.
[0035]
【The invention's effect】
As apparent from the description, the inner tank support structure of the double-shell spherical storage tank according to the present invention is such that the assembly support member is formed in a shape that matches the curved surface shape of the inner and outer tanks, and the upper part is the bottom part of the inner tank. The assembly support member is placed on the inner bottom portion of the outer tub without being fixed to the inner and outer tub wall surfaces while the lower surface is brought into surface contact with the outer wall surface and the lower butt is in surface contact with the inner wall surface of the outer tub. It is formed so as to support the bottom of the tank, and even if this assembly support member moves between the inner and outer tanks, it will return to its original position. Since the structure is restored to the original position, the stability is good. If the displacement of the abutting portion where the assembly support member and the inner and outer tank wall surfaces are in contact with each other is not restricted when the inner and outer tanks change, the displacement follows the displacement without restricting the mutual movement of the inner and outer tanks. Since the contact portion is not deformed or damaged, the safety is improved against a load applied to the wall surface contact portion due to an earthquake, a strong wind, a change in stored liquid, or the like.
[0036]
In addition, since the assembly support member assembled in the frame-like structure is installed on the inner bottom of the outer tub and the bottom of the inner tub is supported by this assembly support member, the space between the frames of the assembly support member There are many, and the heat insulating material can be filled well. Therefore, when the heat insulating material is filled into the cold insulation layer in which the assembly support member is installed, non-uniform portions, offset portions, space portions, and the like of the heat insulating material are not generated. In addition, since the heat insulating material is uniformly filled between the frames, even if there is an assembly support member, the heat insulating performance is not impaired, and a cold insulating layer having a good cold insulating performance can be obtained.
[0037]
In addition, the assembly support member has a predetermined rigidity and strength so as to support the weight of the storage liquid and the inner tank by a plurality of standing columns, and also prevents stress propagation against bending load due to the mutual shaking between the inner and outer tanks. It disperses and escapes at the inner surface of the body-shaped opening, and flexibly absorbs and relaxes twists and deflections, thus improving durability against vibration and shaking such as earthquakes and strong winds. Further, since the frame body has a small vibration transmission cross section, it is possible to swing and attenuate. An assembly support member composed of at least a plurality of vertical material columns and a plurality of horizontal material beams is less likely to reach total damage even if a part of the vertical material or horizontal material is damaged. It is safe. In addition, in the case of an assembly support member provided with a substantially circular through-hole in a flat plate material, the bending load is dispersed and released at the curved inner end of the substantially circular through-hole, so stress propagation does not concentrate on one point. It is easy to absorb and relax twisting and bending, and durability is obtained. Further, since the substantially circular through-hole has a crack propagation stop hole function, the structure has an excellent crack propagation stop function.
[0038]
In addition, the assembly support member is made of wood such as coffin or cork, foam glass material or foam concrete material whose surface is hardened, rectangular or molded material made into a rod, pipe material, round bar, or flat plate These materials are made non-combustible by using materials such as materials, processed into composite materials and laminated materials by crimping and heat welding, etc., curved by hot press processing, etc., bonded and assembled, bolted, etc. As a result of being assembled into a three-dimensional frame body, the supporting force, the rigidity strength and the durability are excellent, the weight is reduced, and it can be easily manufactured.
[0039]
In addition, since the assembly support member is assembled and formed in a frame-like structure with a heat-insulating strength member, the amount of heat transmitted through the assembly support member is small, and a short path of heat between the inner and outer tanks is prevented, and good cold insulation performance is achieved. Can be maintained.
[0040]
In addition, a space maintaining member having heat insulation is provided on the side part or upper part between the inner and outer tanks, and the inner tank support structure formed by suspending the space maintaining member without being fixed to the inner and outer tank wall surfaces includes the distance maintaining member . Since the amount of heat transferred is small, there is little short path of heat from the side to the top between the inner and outer tanks, maintaining good cold insulation performance, and following displacement without restraining the lateral and upward movement between the inner and outer tanks. Since the contact portion is not deformed or damaged, the safety is further improved against a lateral load or an upward load due to an earthquake, a strong wind, a change in stored liquid, or the like.
[0041]
Also, an elastic base isolation material is provided on the assembly support member, or an elastic base isolation material is provided on the interval maintaining member , thereby supporting the inner shell of the double shell storage tank having the earthquake resistance of the base isolation structure. The structure is a packing material that the elastic seismic isolation material fits into the curvature shape of the inner and outer tanks and fills the gap between the inner and outer tank wall surfaces, and can absorb vibration and displacement and transmit the load to the average, Seismic isolation against shaking and vibration due to earthquakes and strong winds is obtained, further improving durability and safety.
[0042]
[Brief description of the drawings]
FIG. 1 is a side cross-sectional explanatory view showing an assembly support member and an interval maintaining member provided between inner and outer tanks of a double-shell spherical storage tank in an embodiment of the inner-shell support structure of a double-shell storage tank according to the present invention. is there.
FIG. 2 is a perspective explanatory view in which a part of an embodiment of an assembly support member provided at the bottom between the inner and outer tanks is omitted.
FIG. 3 is a perspective explanatory view showing an embodiment of a distance maintaining member provided on a side part or an upper part in a cold insulation layer formed between an inner and outer tank.
FIG. 4 is an explanatory perspective view showing another embodiment of the assembly support member provided at the bottom between the inner and outer tanks.
5 (a), (b), and (c) are side cross-sectional explanatory views showing an inner tank support structure of a conventional double shell storage tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Spherical storage tank 2 Outer tank 3 Cooling layer 4 Inner tank 5 Foundation 6, 6A, 6B, 6C Support leg 7, 8, 9 Support member 10 Assembly support member 11 Spacing maintenance member (separation member)
12, 12A, 12B Seismic isolation material 13, 14 Annular body 15 Column 16, 17 Annular body 18, 19 Frame 20, 21 Buffer member 22 Connecting member 23A, 23B Buffer member 24A, 24B Mounting bracket 25 Annular flat plate 27 Assembly plate 28, 29 Through-hole

Claims (3)

互いに間隔をおいて設けられた内槽と外槽の間に、断熱性を有する断熱材を充填して保冷層を形成し、低温液体を貯蔵する内槽を外槽によって支持し、基礎上に設置した支持脚にてこの外槽を支持してなる二重殻球形貯槽であって、
上記断熱材による保冷層の形成を阻害しないように、断熱性を有する強度部材にて枠体状構造に組立支持部材を形成し、この組立支持部材は、内外槽の湾曲面形状に適合する形状に形成し、上部を内槽底部外壁面に面接触させて下部を外槽底部内壁面に面接触させてこの組立支持部材を内外槽壁面に固着することなく上記外槽内底部に載置してこの組立支持部材にて上記内槽の底部を支承するように形成し、この組立支持部材が内外槽間を移動しても元の位置に復することを特徴とする二重殻球形貯槽の内槽支持構造。
Between the inner tub and outer tub provided at a distance from each other, a heat insulating material is filled to form a cold insulation layer, and the inner tub for storing the low-temperature liquid is supported by the outer tub on the foundation. It is a double shell spherical storage tank that supports this outer tank with installed support legs,
An assembly support member is formed in the frame-like structure with a heat-insulating strength member so that the formation of the cold insulation layer by the heat insulation material is not hindered, and this assembly support member has a shape that matches the curved surface shape of the inner and outer tanks. The upper part is in surface contact with the outer wall surface of the inner tank bottom and the lower part is in surface contact with the inner wall surface of the outer tank bottom. A double-shell spherical storage tank , wherein the assembly support member is formed to support the bottom of the inner tub, and the assembly support member returns to its original position even if it moves between the inner and outer tubs . Inner tank support structure.
上記内外槽間に形成する保冷層内の側部乃至上部に、断熱性を有する間隔維持部材を設け、この間隔維持部材は内外槽壁面に固着することなく懸け渡して形成したことを特徴とする請求項1記載の二重殻球形貯槽の内槽支持構造。A space maintaining member having a heat insulating property is provided on a side portion or an upper portion in the cold insulation layer formed between the inner and outer tanks, and the space maintaining member is formed to be suspended without being fixed to the inner and outer tank wall surfaces. The inner shell support structure for a double-shell spherical storage tank according to claim 1. 上記組立支持部材に弾力性を有する免震材を設け、或いは上記間隔維持部材に弾力性を有する免震材を設けて、免震構造で耐震性を有する内槽支持構造に形成したことを特徴とする請求項1又は2記載の二重殻球形貯槽の内槽支持構造。A seismic isolation material having elasticity is provided in the assembly support member, or a seismic isolation material having elasticity is provided in the interval maintaining member, and the inner tank support structure having a seismic isolation structure is formed. An inner tank support structure for a double shell spherical storage tank according to claim 1 or 2.
JP10187298A 1998-03-31 1998-03-31 Inner tank support structure of double shell spherical storage tank Expired - Fee Related JP4431842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10187298A JP4431842B2 (en) 1998-03-31 1998-03-31 Inner tank support structure of double shell spherical storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10187298A JP4431842B2 (en) 1998-03-31 1998-03-31 Inner tank support structure of double shell spherical storage tank

Publications (2)

Publication Number Publication Date
JPH11278584A JPH11278584A (en) 1999-10-12
JP4431842B2 true JP4431842B2 (en) 2010-03-17

Family

ID=14312077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10187298A Expired - Fee Related JP4431842B2 (en) 1998-03-31 1998-03-31 Inner tank support structure of double shell spherical storage tank

Country Status (1)

Country Link
JP (1) JP4431842B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804789B1 (en) 2007-03-19 2008-02-20 주식회사 엔케이 Storage tank for low-pressure liquefied hydrogen
FR2944087B1 (en) * 2009-04-03 2011-04-08 Gaztransp Et Technigaz IMPROVEMENT FOR A WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED IN A CARRIER STRUCTURE
CN106697634B (en) * 2016-12-23 2019-06-11 北汽福田汽车股份有限公司 Oil tank, tank unit and vehicle
CN108674777A (en) * 2018-05-17 2018-10-19 湖北恒贸茶油有限公司 Double-deck camellia oil hold-up tank
JP7178262B2 (en) * 2018-12-27 2022-11-25 川崎重工業株式会社 double shell tank
CN113825942B (en) * 2019-04-05 2024-02-02 川崎重工业株式会社 Liquefied gas storage structure and liquefied gas carrier
WO2020202579A1 (en) * 2019-04-05 2020-10-08 川崎重工業株式会社 Liquefied gas tank and liquefied gas carrying vessel
EP3951243A4 (en) * 2019-04-05 2022-11-16 Kawasaki Jukogyo Kabushiki Kaisha Double-shell tank and liquefied gas carrier
CN112061781A (en) * 2020-09-04 2020-12-11 劳业鸿 Cold sealing net packed ball for collecting and transporting metal lithium waste residues
CN114111168B (en) * 2021-09-01 2022-09-20 山东恒昌新材料科技股份有限公司 Intelligent refrigeration house construction system
JP7157890B1 (en) * 2022-05-13 2022-10-20 川崎重工業株式会社 Construction method of multi-shell tank
WO2024062624A1 (en) * 2022-09-22 2024-03-28 川崎重工業株式会社 Multiple-wall tank and vessel
WO2024069747A1 (en) * 2022-09-27 2024-04-04 川崎重工業株式会社 Heat-blocking structure of tank, and multi-shell tank
CN116293387B (en) * 2023-03-01 2023-11-07 大连理工大学 Active cold-preserving type inner floating roof spherical liquid hydrogen/liquid nitrogen storage tank

Also Published As

Publication number Publication date
JPH11278584A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4431842B2 (en) Inner tank support structure of double shell spherical storage tank
CN102713109B (en) Method and structure for damping movement in buildings
CN102782227B (en) Damping system
KR102007938B1 (en) earth-quake-resistant construction between the slabs and Wall in Buildings
KR101372087B1 (en) Strengthen method for steel frame structure using seismic control device
KR101403125B1 (en) Seismic control device and strengthen method for steel frame structure using thereof
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
CN113123491A (en) Shear wall frame and shear wall
JP3827115B2 (en) Seismic isolation structure
JP4419218B2 (en) Energy absorption structure of beam-column joint
CN211597081U (en) Compound shock attenuation isolation bearing
CN210263562U (en) Interlayer isolation structure of multi-layer steel structure board room with anti-seismic and silencing functions
CN211923014U (en) Assembled wall body shock insulation structure
CN213682822U (en) Assembled panel structure
KR101841927B1 (en) Seismic Unit for fixed water tanks
JP4874478B2 (en) Seismic isolated building and its construction method
KR101242972B1 (en) Method for constructing partition wall using seismic control device
US20040010991A1 (en) Steel structure system
JP4828053B2 (en) Structure damping device
KR101874818B1 (en) Seismic Unit for fixed water tanks
EP4170102A1 (en) Modular structure for houses
JP6426973B2 (en) Vibration control equipment
CN216042165U (en) Steel-encased concrete combined coupling beam
CN213332771U (en) Anti-seismic support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080201

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees