JP4431829B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4431829B2
JP4431829B2 JP2004317456A JP2004317456A JP4431829B2 JP 4431829 B2 JP4431829 B2 JP 4431829B2 JP 2004317456 A JP2004317456 A JP 2004317456A JP 2004317456 A JP2004317456 A JP 2004317456A JP 4431829 B2 JP4431829 B2 JP 4431829B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
sub
expander
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004317456A
Other languages
Japanese (ja)
Other versions
JP2006125791A (en
Inventor
賢治 松村
和幹 浦田
憲一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2004317456A priority Critical patent/JP4431829B2/en
Publication of JP2006125791A publication Critical patent/JP2006125791A/en
Application granted granted Critical
Publication of JP4431829B2 publication Critical patent/JP4431829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、空気調和装置において冷房運転時及び暖房運転時共に性能向上を図ることに係り、特に室外機と室内機間の接続配管の長さ等に係わらず効率を良くするものに好適である。   INDUSTRIAL APPLICABILITY The present invention relates to improving the performance of both the air-conditioning apparatus during cooling operation and heating operation, and is particularly suitable for improving efficiency regardless of the length of the connecting pipe between the outdoor unit and the indoor unit. .

オゾン破壊係数がゼロでありかつ地球温暖化係数もフロン類に比べれば格段に小さい、二酸化炭素を冷媒として用いる冷凍サイクル装置が近年着目されている。二酸化炭素冷媒は、臨界温度が31.06℃と低く、この温度よりも高い温度を利用する場合には、冷凍サイクル装置の高圧側(圧縮機出口〜放熱器〜減圧器入口)では二酸化炭素冷媒の凝縮が生じない超臨界状態となり、従来のフロン系冷媒に比べて、冷凍サイクル装置の運転効率が低下するといった特徴を有する。このため、超臨界状態での冷凍サイクルの運転効率向上を図るために、冷凍サイクルの減圧装置として膨張機を設け、この膨張機で回収される膨張動力を圧縮機の駆動力の一部として利用する方法や、膨張機で回収される膨張動力により駆動される副圧縮機を二段圧縮となる位置に設ける方法等が種々提案されている。   In recent years, a refrigeration cycle apparatus using carbon dioxide as a refrigerant, which has an ozone depletion coefficient of zero and a global warming coefficient much smaller than that of fluorocarbons, has attracted attention. The carbon dioxide refrigerant has a critical temperature as low as 31.06 ° C., and when a temperature higher than this temperature is used, the carbon dioxide refrigerant is used on the high pressure side (compressor outlet to radiator to decompressor inlet) of the refrigeration cycle apparatus. This is a supercritical state where no condensation occurs, and the operation efficiency of the refrigeration cycle apparatus is lower than that of conventional chlorofluorocarbon refrigerants. For this reason, in order to improve the operating efficiency of the refrigeration cycle in the supercritical state, an expander is provided as a decompression device for the refrigeration cycle, and the expansion power recovered by the expander is used as part of the compressor driving force. Various methods have been proposed, and a method of providing a sub-compressor driven by expansion power recovered by an expander at a position where two-stage compression is performed.

例えば、電動機(モータ)によって駆動される圧縮機の吐出側圧力を低く抑え、電動機の入力を低減するため、膨張機の膨張動力により駆動される副圧縮機の吸入側と電動機(モータ)によって駆動される圧縮機の吐出側を冷媒回路において直列に配管接続して冷媒の二段圧縮を行うように配設し、電動機(モータ)によって駆動される圧縮機と膨張機の膨張動力により駆動される副圧縮機で圧縮された冷媒は、ガスクーラで冷却され高圧冷媒ガスを膨張機で減圧する際に膨張動力を回収し、この回収動力を軸を伝達して副圧縮機に伝え、膨張機にて減圧された後の冷媒は、蒸発器で加熱され、余分な液冷媒を貯留するアキュムレータを経由して、電動機(モータ)によって駆動される圧縮機の吸入側に戻る冷媒回路で構成することが特許文献1に記載されている。   For example, driven by the suction side of the sub compressor driven by the expansion power of the expander and the motor (motor) in order to keep the discharge side pressure of the compressor driven by the motor (motor) low and reduce the input of the motor The discharge side of the compressor is connected in series in the refrigerant circuit so as to perform two-stage compression of the refrigerant, and is driven by the expansion power of the compressor and the expander driven by an electric motor (motor) The refrigerant compressed by the sub-compressor is cooled by the gas cooler and recovers the expansion power when the high-pressure refrigerant gas is decompressed by the expander, and this recovered power is transmitted to the sub-compressor via the shaft. The refrigerant after decompression is configured by a refrigerant circuit that is heated by an evaporator and returns to the suction side of a compressor driven by an electric motor (motor) via an accumulator that stores excess liquid refrigerant. Sentence It has been described in 1.

また、冷媒流れ(運転モード)による密度比の差異を小さくし、固定密度比として設計されている膨張機での動力回収の効率改善を行うため、室内側熱交換器を蒸発器とする冷媒流れの場合には、副圧縮機の吐出側が圧縮機の吸入側と成るようにし、副圧縮機によって圧縮機に吸入される冷媒を加給(チャージャ)するように構成し、室内側熱交換器を放熱器とする冷媒流れの場合には、圧縮機の吐出側が副圧縮機の吸入側と成るようにし、圧縮機から吐出された冷媒を更に加圧(エクスプレッサ)するように冷凍サイクル装置を構成することが特許文献2に記載されている。   Moreover, in order to reduce the difference in density ratio due to the refrigerant flow (operation mode) and improve the efficiency of power recovery in the expander designed as a fixed density ratio, the refrigerant flow using an indoor heat exchanger as an evaporator In this case, the discharge side of the sub-compressor is set to the suction side of the compressor, and the refrigerant sucked into the compressor by the sub-compressor is supplied (charged), and the indoor heat exchanger is dissipated. In the case of the refrigerant flow used as a compressor, the refrigeration cycle apparatus is configured so that the discharge side of the compressor becomes the suction side of the sub-compressor and the refrigerant discharged from the compressor is further pressurized (expressor). This is described in Patent Document 2.

特開2003−279179号公報(第2図)JP 2003-279179 A (FIG. 2) 特開2004−138332号公報(第1図)JP 2004-138332 A (FIG. 1)

上記従来技術を空気調和装置に適用する場合、膨張機を設置する室外機と室内機の間を接続する配管が大きな減圧装置となる。また、室内機を多数設置する場合、各室内機の負荷が異なるためそれぞれの減圧装置で冷媒の流れに抵抗を設け、流れる冷媒の量を調整しているので、差圧を生じ、単に膨張機を用いた場合、膨張機での差圧が確保できず、動力の回収が不十分になる。   When the above prior art is applied to an air conditioner, the pipe connecting the outdoor unit and the indoor unit in which the expander is installed becomes a large pressure reducing device. Also, when installing a large number of indoor units, the load of each indoor unit is different, so that the pressure reducing device provides resistance to the flow of refrigerant and adjusts the amount of flowing refrigerant. When is used, the differential pressure in the expander cannot be secured, and the power recovery becomes insufficient.

本発明の目的は、上記従来の技術課題を解決し、接続配管、各室内機での減圧装置等に影響されず膨張機での動力回収効果を最大限とすることにある。   An object of the present invention is to solve the above-described conventional technical problems and maximize the power recovery effect in the expander without being affected by the connecting pipe, the decompression device in each indoor unit, and the like.

上記目的を達成するため本発明は、電動機により駆動される主圧縮機、四方弁、室外熱交換器、室外減圧装置、受液器、室内減圧装置、室内熱交換器とが順に接続される空気調和装置において、前記受液器の冷媒の流れを一方向にするための逆止弁によるブリッジ回路と、前記受液器の出口側に設けられた膨張機と、前記膨張機で回収される膨張動力により駆動され、吐出側が前記主圧縮機の吸入側へ接続された副圧縮機と、前記受液器の出口側に主流部が接続され、さらに副流部が設けられた熱交換器と、を備え、前記受液器の後流部で液冷媒の一部を減圧装置で減圧し、前記副流部へ導き前記主流部を通過する冷媒と熱交換し、前記副流部を通過した冷媒は前記膨張機を介して前記副圧縮機へ吸入されるものである。 In order to achieve the above object, the present invention provides a main compressor driven by an electric motor, a four-way valve, an outdoor heat exchanger, an outdoor pressure reducing device, a liquid receiver, an indoor pressure reducing device, and an indoor heat exchanger. In the harmony device, a bridge circuit including a check valve for making the refrigerant flow in the liquid receiver in one direction, an expander provided on the outlet side of the liquid receiver, and expansion recovered by the expander A sub-compressor driven by power and having a discharge side connected to the suction side of the main compressor, a heat exchanger having a main flow part connected to the outlet side of the liquid receiver, and further provided with a sub-flow part; A part of the liquid refrigerant is depressurized by a decompression device at the downstream portion of the receiver, exchanges heat with the refrigerant that passes through the main flow portion, is guided to the subflow portion, and passes through the subflow portion. Is sucked into the sub compressor through the expander .

さらに、上記のものにおいて、前記主圧縮機と前記副圧縮機の位置を交換し、前記副圧縮機が前記主圧縮機の吐出側へ接続されるようにしても良い。   Furthermore, in the above, the positions of the main compressor and the sub compressor may be exchanged, and the sub compressor may be connected to the discharge side of the main compressor.

さらに、上記のものにおいて、前記冷媒をCO2冷媒とすることが望ましい。   Furthermore, in the above, it is desirable that the refrigerant is a CO2 refrigerant.

本発明によれば、室外機と室内機間の接続配管による減圧、室内冷媒の分配による減圧等に影響されることなく、膨張機での動力の回収行うことができる。 According to the present invention can be carried out under reduced pressure by the connection piping between the outdoor unit and the indoor unit without being affected by the reduced pressure due distribution of indoor refrigerant, the recovery of power in the expander.

以下、本発明の一実施の形態を図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の参考例1を示し、図2は示す動力回収を行わない冷凍サイクルの構成を示す。
図2において、10aは電動機によって駆動される圧縮機、20は冷房・暖房を切り替える四方弁、30は室外熱交換器、40は室外減圧装置、50は受液器、500は受液器の冷媒の流れを冷房・暖房で同一方向にするための逆止弁によるブリッジ回路、80は室内減圧装置、90は室内熱交換器であり、70a・70bは室内機と室外機を接続する接続配管、60a・60bは接続配管と室外機とをつなげる阻止弁である。
冷房時、冷媒は図中実線の矢印のように流れ、暖房時は四方弁20を切り替え破線の矢印の流れになり、空気調和を行う。図1ではベースとなる図2のサイクルに対して、膨張機100、副圧縮機10b、冷媒同士を熱交換する熱交換器81が付加される。受液器までの流れは図2のサイクルと同じであるが、受液器後流部の液冷媒の一部、例えば、約20%程度を取り出し、膨張機100へ導く。膨張機100で断熱膨張したあと、低圧低温の冷媒となり熱交換器81で残り約80%の冷媒を冷やし、自身は蒸発し、冷房時は室内熱交換器90、暖房時は室外熱交換器30から戻ってくる冷媒と混合し、副圧縮機10bに吸入される。
副圧縮機10bは膨張機100と軸200で連結され膨張機100で発生した動力で駆動されるため、新たな駆動力がいらない。副圧縮機10bによりある程度昇圧された冷媒が主圧縮機10aに吸入されて圧縮されるため、圧縮機10aの駆動力の低減が行われる。
FIG. 1 shows Reference Example 1 of the present invention, and FIG. 2 shows the configuration of a refrigeration cycle that does not perform the power recovery shown.
In FIG. 2, 10a is a compressor driven by an electric motor, 20 is a four-way valve for switching between cooling and heating, 30 is an outdoor heat exchanger, 40 is an outdoor pressure reducing device, 50 is a liquid receiver, and 500 is a refrigerant of the liquid receiver. Bridge circuit with a check valve for making the flow of air in the same direction by cooling and heating, 80 is an indoor pressure reducing device, 90 is an indoor heat exchanger, 70a and 70b are connection pipes connecting the indoor unit and the outdoor unit, Reference numerals 60a and 60b denote blocking valves that connect the connecting pipe and the outdoor unit.
During cooling, the refrigerant flows as indicated by the solid line arrow in the figure, and during heating, the four-way valve 20 is switched to become the flow indicated by the broken line arrow to perform air conditioning. In FIG. 1, a heat exchanger 81 for exchanging heat between the expander 100, the sub compressor 10b, and the refrigerant is added to the cycle shown in FIG. 2 as a base. The flow up to the liquid receiver is the same as the cycle of FIG. After adiabatic expansion in the expander 100, the refrigerant becomes a low-pressure and low-temperature refrigerant, and the remaining 80% of the refrigerant is cooled in the heat exchanger 81. The refrigerant itself evaporates, and the indoor heat exchanger 90 during cooling and the outdoor heat exchanger 30 during heating. It is mixed with the refrigerant returning from and sucked into the sub compressor 10b.
Since the sub-compressor 10b is connected to the expander 100 by the shaft 200 and driven by the power generated by the expander 100, no new driving force is required. Since the refrigerant whose pressure has been raised to some extent by the sub-compressor 10b is sucked into the main compressor 10a and compressed, the driving force of the compressor 10a is reduced.

冷媒の一部を取り出すことでの能力の低下は熱交換器81で冷熱の回収を行うため、熱量的には損をしないうえ、低圧側へ流れる冷媒の流量を少なくできるので、系としての圧力損失低減が行える。このサイクルの特徴は動力回収を冷媒の主回路で行うのではなく、一部取り出した冷媒で行うため、主回路の冷媒を減圧することがなく、接続配管70a、70bの長さや径による減圧量に依存せず動力回収が行うことができる。   The reduction in capacity due to the extraction of a part of the refrigerant causes the heat exchanger 81 to recover the cold heat, so that the heat quantity is not lost and the flow rate of the refrigerant flowing to the low pressure side can be reduced. Loss can be reduced. The feature of this cycle is that the power recovery is performed not by the refrigerant main circuit but by a partly extracted refrigerant, so that the refrigerant in the main circuit is not depressurized, and the amount of pressure reduction due to the length and diameter of the connection pipes 70a and 70b. Power recovery can be performed without depending on.

また、室内が複数ある場合、各室内機の負荷に合わせて減圧装置80の減圧量を調整し、冷媒の流れの分配比を変えることを行っても、主回路に膨張機100がないため接続配管、減圧装置の影響を受けずに差圧不足を起こさないので、十分な動力回収が行える。 Further, when there are a plurality of indoor units, there is no expander 100 in the main circuit even if the decompression amount of the decompression device 80 is adjusted according to the load of each indoor unit and the distribution ratio of the refrigerant flow is changed. since the connection pipe does not cause a differential pressure foot without being affected by the pressure reducing device, Ru can have enough power recovery.

図3は、本発明の参考例2を示す。図1のものと異なる点は膨張機100へと導かれる冷媒が副圧縮機10bの吐出側へ混合されていることである。これにより、副圧縮機10bで圧縮される冷媒の量が主回路の冷媒のみとなるので、冷媒量が少なく、同一駆動力では昇圧量が大きくなり、主圧縮機10aでの昇圧量が少なくて済み、さらに動力低減が行え、省エネ効果を高くすることができる。 FIG. 3 shows Reference Example 2 of the present invention. 1 is that the refrigerant guided to the expander 100 is mixed to the discharge side of the sub compressor 10b. As a result, the amount of refrigerant compressed by the sub-compressor 10b is only the refrigerant in the main circuit, so the amount of refrigerant is small, the amount of pressure increase is the same with the same driving force, and the amount of pressure increase in the main compressor 10a is small. It requires, and further can be done power reduction, Ru it is possible to increase the energy-saving effect.

図4は、本発明の実施例1を示し、図1のものと異なる点は膨張機100へと導く冷媒が減圧装置110で少し減圧され低温になり、熱交換器81で蒸発し、過熱蒸気となってから膨張機100で断熱膨張することである。これにより、第1と第2の実施形態では膨張機は2相流を膨張していたのに対して、本実施形態では、確実に蒸気を膨張していることになる。つまり、膨張機による動力回収は冷媒の特性から差圧が同じでも状態が液化するほうが回収量が少なく、気化し蒸気量の割合が多くなる場合、あるいは過熱蒸気になる場合ほど回収量が多くなるので、さらに動力回収の効果が高くなる。 FIG. 4 shows Embodiment 1 of the present invention. The difference from FIG. 1 is that the refrigerant guided to the expander 100 is slightly decompressed by the decompression device 110 and becomes low temperature, evaporates in the heat exchanger 81, and is superheated steam. Then, adiabatic expansion is performed by the expander 100. Thereby, in the first and second embodiments, the expander expanded the two-phase flow, whereas in the present embodiment, the steam is reliably expanded. In other words, the power recovery by the expander is less recovered when the state is liquefied due to the characteristics of the refrigerant, even if the differential pressure is the same, and the recovered amount increases as the vaporization rate increases or the ratio of the amount of vapor increases or superheated steam Therefore, the effect of power recovery is further increased.

以上、実施例1に示す実施形態では、副圧縮機の後に主圧縮機の構成としていたが、逆としても良い。そして、この場合は冷媒の物性より圧力が高いほど密度が大きくなることから、副圧縮機をコンパクトにできる利点がある。さらに、冷媒の種類はCO2冷媒のように動力回収量が多い冷媒とすることが良く、性能向上効果が大きくなる。また、主圧縮機を駆動する電動機は、燃料によるエンジン駆動としても良い。 As mentioned above, in embodiment shown in Example 1, although it was set as the structure of the main compressor after the subcompressor, it is good also as the contrary. In this case, since the density increases as the pressure is higher than the physical properties of the refrigerant, there is an advantage that the sub compressor can be made compact. Furthermore, the type of refrigerant is preferably a refrigerant with a large amount of recovered power, such as a CO2 refrigerant, and the performance improvement effect is increased. Further, the electric motor that drives the main compressor may be engine driven by fuel.

本発明の参考例1を示す空気調和装置の冷凍サイクル系統図。The refrigeration cycle system | strain diagram of the air conditioning apparatus which shows the reference example 1 of this invention. ベースとなる空気調和装置の冷凍サイクル系統図。The refrigerating cycle system diagram of the air conditioning apparatus used as a base. 本発明の参考例2を示す空気調和装置の冷凍サイクル系統図。The refrigeration cycle system | strain diagram of the air conditioning apparatus which shows the reference example 2 of this invention. 本発明の実施例1を示す空気調和装置の冷凍サイクル系統図。The refrigeration cycle system | strain diagram of the air conditioning apparatus which shows Example 1 of this invention.

10a…主圧縮機、20…四方弁、30…室外熱交換器、40…室外減圧装置、50…受液器、60a・60b…阻止弁、70a・70b…接続配管、80…室内膨張弁、90…室内熱交換器、500…逆止弁、100…膨張機、10b…副圧縮機、81…冷媒熱交換器、200…動力回収用軸、110…減圧装置。   DESCRIPTION OF SYMBOLS 10a ... Main compressor, 20 ... Four-way valve, 30 ... Outdoor heat exchanger, 40 ... Outdoor decompression device, 50 ... Receiver, 60a, 60b ... Blocking valve, 70a, 70b ... Connection piping, 80 ... Indoor expansion valve, DESCRIPTION OF SYMBOLS 90 ... Indoor heat exchanger, 500 ... Check valve, 100 ... Expander, 10b ... Subcompressor, 81 ... Refrigerant heat exchanger, 200 ... Power recovery shaft, 110 ... Decompression device.

Claims (3)

電動機により駆動される主圧縮機、四方弁、室外熱交換器、室外減圧装置、受液器、室内減圧装置、室内熱交換器とが順に接続される空気調和装置において、
前記受液器の冷媒の流れを一方向にするための逆止弁によるブリッジ回路と、
前記受液器の出口側に設けられた膨張機と、
前記膨張機で回収される膨張動力により駆動され、吐出側が前記主圧縮機の吸入側へ接続された副圧縮機と、
前記受液器の出口側に主流部が接続され、さらに副流部が設けられた熱交換器と、を備え、
前記受液器の後流部で液冷媒の一部を減圧装置で減圧し、前記副流部へ導き前記主流部を通過する冷媒と熱交換し、前記副流部を通過した冷媒は前記膨張機を介して前記副圧縮機へ吸入されることを特徴とする空気調和装置。
In an air conditioner in which a main compressor driven by an electric motor, a four-way valve, an outdoor heat exchanger, an outdoor pressure reducing device, a liquid receiver, an indoor pressure reducing device, and an indoor heat exchanger are connected in order,
A bridge circuit with a check valve for unidirectional flow of refrigerant in the receiver;
An expander provided on the outlet side of the receiver;
A sub-compressor driven by expansion power recovered by the expander and having a discharge side connected to a suction side of the main compressor;
A heat exchanger in which a main flow part is connected to an outlet side of the liquid receiver and a sub flow part is further provided, and
A part of the liquid refrigerant is decompressed by a decompression device at the downstream portion of the receiver, and is exchanged with the refrigerant that is guided to the secondary flow portion and passes through the main flow portion, and the refrigerant that has passed through the secondary flow portion is expanded. An air conditioner that is sucked into the sub-compressor through a compressor.
請求項1に記載のものにおいて、前記主圧縮機と前記副圧縮機の位置を交換し、前記副圧縮機が前記主圧縮機の吐出側へ接続されたことを特徴とする空気調和装置。 2. The air conditioner according to claim 1, wherein positions of the main compressor and the sub compressor are exchanged, and the sub compressor is connected to a discharge side of the main compressor . 請求項1に記載のものにおいて、前記冷媒をCO2冷媒としたことを特徴とする空気調和装置。 2. An air conditioner according to claim 1, wherein the refrigerant is a CO2 refrigerant .
JP2004317456A 2004-11-01 2004-11-01 Air conditioner Expired - Fee Related JP4431829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317456A JP4431829B2 (en) 2004-11-01 2004-11-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317456A JP4431829B2 (en) 2004-11-01 2004-11-01 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006125791A JP2006125791A (en) 2006-05-18
JP4431829B2 true JP4431829B2 (en) 2010-03-17

Family

ID=36720705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317456A Expired - Fee Related JP4431829B2 (en) 2004-11-01 2004-11-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP4431829B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device

Also Published As

Publication number Publication date
JP2006125791A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
US6854283B2 (en) Determining method of high pressure of refrigeration cycle apparatus
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
CN100390475C (en) Air-conditioner with a dual-refrigerant circuit
JP4411349B2 (en) Condensation heat converter and refrigeration system using the same
JP2008541000A (en) Heat pump device and fluid heating method
JP7473833B2 (en) Refrigeration Cycle Equipment
JP2009270745A (en) Refrigerating system
JP5049889B2 (en) Refrigeration equipment
AU2003281797B2 (en) Refrigeration equipment
JP4442237B2 (en) Air conditioner
JP4751851B2 (en) Refrigeration cycle
JP4326004B2 (en) Air conditioner
JP2011153738A (en) Refrigerating cycle device
JP4431829B2 (en) Air conditioner
KR101065501B1 (en) Compressor and air conditioner including the same
Baek et al. Effect of pressure ratios across compressors on the performance of the transcritical carbon dioxide cycle with two-state compression and intercooling
JP2009204243A (en) Refrigerating device
CN114963600B (en) CO switched in multiple modes 2 Heat pipe cooling system and control method
JP2010112618A (en) Air conditioning device
JPH09310925A (en) Air conditioner
JP7526958B2 (en) Refrigeration Cycle Equipment
Baek et al. Theoretical performance of transcritical carbon dioxide cycle with two-stage compression and intercooling
KR100591321B1 (en) Air conditioner
JP4452137B2 (en) Air conditioner
KR20090010398U (en) . multi compressor system for cooling and heating system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

R150 Certificate of patent or registration of utility model

Ref document number: 4431829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees