JP4431601B2 - パスタイミングを検出する受信装置 - Google Patents

パスタイミングを検出する受信装置 Download PDF

Info

Publication number
JP4431601B2
JP4431601B2 JP2007168869A JP2007168869A JP4431601B2 JP 4431601 B2 JP4431601 B2 JP 4431601B2 JP 2007168869 A JP2007168869 A JP 2007168869A JP 2007168869 A JP2007168869 A JP 2007168869A JP 4431601 B2 JP4431601 B2 JP 4431601B2
Authority
JP
Japan
Prior art keywords
timing
path
power value
power
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007168869A
Other languages
English (en)
Other versions
JP2007259501A (ja
Inventor
昌彦 清水
明 大嶋
雅之 村中
直弥 池田
雄一 野津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007168869A priority Critical patent/JP4431601B2/ja
Publication of JP2007259501A publication Critical patent/JP2007259501A/ja
Application granted granted Critical
Publication of JP4431601B2 publication Critical patent/JP4431601B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、一般に、スペクトラム拡散通信方式における復調方式に関連し、特に、パスタイミング検出装置を備えた受信装置に関する。スペクトラム拡散通信技術を利用した方式としては、例えば、符号分割多重アクセス(CDMA:Code Division Multiple Access)方式が挙げられる。
CDMAの1つであるDS−CDMA(Direct Sequence−CDMA)では、送信情報のデータ系列を、そのシンボル・レート(symbol rate)より高速なユーザに固有の拡散符号を利用して、広帯域の信号に拡散して伝送する。受信側では、送信側で拡散に使用したのと同じ同期した拡散符号を用いて逆拡散して復調を行うことにより、送信情報のデータ系列が再生される。受信信号のうち他のユーザに関するものは、拡散符号が異なるのでノイズとなる。
一方、移動端末が通信を行う場合には、マルチパス伝搬環境の影響を受ける。すなわち、直接波だけでなく地面や建物その他の障害物により反射した後に移動端末に到達する間接波の影響をも移動端末は受信することとなる。しかし、拡散符号を用いて受信信号を逆拡散すると、受信信号は伝搬遅延時間の異なる複数のマルチパス成分に分離することができる。分離された各成分を、例えば最大比合成のような手法で適切に合成すると、パス・ダイバーシチ(path diversity)効果により、S/N比を向上させることが可能になる。このような処理を良好に行う前提となる逆拡散は、受信タイミングに正確に同期して行う必要があるので、各パスの受信タイミングを検出するパス・サーチ(path search)を行う必要がある。
パス・サーチは、整合フィルタ(MF:Mutched Filter)を利用して、あるサンプル数の範囲内で、拡散符号のタイミングを1サンプルずつずらしながら相関を求め、各タイミングにおける電力(電力プロファイル)を計算する。この電力プロファイルに基づいて、電力値の大きなパスの順にパスを必要な数だけ選択する。パス・タイミング(path timing)は、移動端末の移動を含む通信環境の変化によって変動するので、定期的にパス・サーチを行ってパスの検出及び更新を行う必要がある。
図1は、受信信号の振幅レベルと時間の関係を例示するグラフである。例えば10msである期間T1,T2,T3の間にパス・サーチが行われ、各パスに対するタイミングを検出および更新する。更新されたパス・タイミングを利用して、受信信号の復調処理が行われ、次のパス・サーチが始まるまで、更新したパス・タイミングを継続して利用する。パス・サーチは例えば200ms毎の周期(Ts)で行われる。パス・タイミングの検出が精度高く良好に行われるならば、以後の復調も良好に行うことが可能になる。
しかしながら、移動通信環境下ではフェージングの影響を受けるのが一般的である。このため、図1に示されるように受信信号の振幅レベルは激しく変動する。パス・サーチを行う時間にたまたまフェージングの影響を受けた場合は、期間T1に示すように、全体的に振幅レベルの低い受信信号でパス・サーチを行うこととなる。そうなると、適切なパス・タイミングを見出すことができなくなり、以後行われる復調も良好に行われず、受信品質の劣化を招くという問題がある。
期間T2やT3のように、充分に大きな振幅レベルが得られている期間にパス・サーチが行われるならば、パス・サーチも良好に行われ得る。従って、パス・サーチを行う頻度を増やせば、上記の問題を解決することが可能である。しかし、パス・サーチの周期を短くしてパス・タイミングの検出および更新の頻度を増加させることは、それだけ多くの電力を必要とする。このことは、小さなバッテリを使用する携帯機器のような電力消費に配慮しなければならない製品にとって不利であることを意味する。むしろ、電力消費を小さくする観点からは、パスサーチを行う頻度を少なくすることが好ましい。
本願課題は、パス・タイミングの検出周期を短くする手法とは別に、適切なパス・タイミングの検出を可能にすることである。
本発明の一形態では、
拡散コードにより拡散された受信信号と逆拡散コードとの相関をパスサーチ期間毎に各サンプルタイミングについて求め、求めた相関に基づいて該各サンプルタイミングから逆拡散タイミングとして用いるタイミングを選択し、逆拡散部に与えるパスサーチ部を備えた受信装置が使用される。本受信装置は、
前記パスサーチ部は、あるサーチ期間における各サンプルタイミングのうち、該あるパスサーチ期間の直前又はそれ以前のパスサーチにより前記逆拡散タイミングとして用いたサンプルタイミングとの間のタイミング差が所定値以内でずれたサンプルタイミングの検出を行い、該ずれたサンプルタイミングについての相関値に、該ずれたサンプルタイミングとの間のタイミング差が前記所定値以内である前記逆拡散タイミングとして用いたサンプルタイミングについての相関値に2の累乗分の1を乗じた量が上乗せされるように相関値の調整を行い、
前記逆拡散部は、該相関値の調整を行った上で逆拡散タイミングとして採用された逆拡散タイミングに従って、受信信号の逆拡散を行う、
ことを特徴とする受信装置である。
本発明によれば、過去のパスサーチの結果を利用して、適切なパス・タイミングを検出することが可能になる。
図2は、本願実施例によるパス・タイミング検出装置218(パスサーチ部)を含むスペクトラム拡散通信方式(例えば、CDMA通信方式)に対応した受信装置の部分概略図を示す。アンテナ(図示せず)から受信した受信信号はダウンコンバートされ、アナログ・ディジタル変換器202に入力される。アナログ・ディジタル変換器202の出力は、逆拡散部として機能するレイク・フィンガ(Rake finger)204の各々に入力される。各レイク・フィンガ204は、個々のマルチパス伝送路に関連付けられる。
各レイク・フィンガ204はパス・タイミング検出装置218からのタイミング情報に基づいて、受信信号と拡散符号の相関をとるための相関器206と、受信信号と既知信号の相関出力に基づいてフェージング変動を補償するためのチャネル推定器210と、相関器206とチャネル推定器210に結合された乗算器212を有する。これらのレイク・フィンガ204からの出力は、合成部214に入力され、最大比合成(MRC:Maximal Ratio Combining)が行われる。これは、各パスの受信電力に応じた重みを考慮して合成するものであり、例えば、SIR(Signal to Interference Ratio)の大きなパスは信頼度が高いので大きな重みが与えられる。合成部214で合成された信号は、以後、誤り訂正等が行われ送信データ系列が再生される。
一方、アナログ・ディジタル変換器202の出力は、パス・タイミング検出装置218にも入力される。パス・タイミング検出装置218は、逆拡散を行うことによって希望する信号を高いS/N比で検出するための整合フィルタ220と、整合フィルタ220に接続され、逆拡散された信号の電圧レベルを各サンプルタイミング毎に(例えば、図1のパスサーチ期間T1内の各サンプルのタイミング毎に)、所定数だけ加算する電圧加算手段222を有する。パス・タイミング検出装置218は、電圧加算手段222に接続され、所定数だけ加算された電圧レベルを二乗することにより、各タイミングにおける電力値を求める電力加算手段224を有する。パス・タイミング検出装置218は、電力加算手段224に結合され、電力値(相関情報の一種である)の大きい順に所定数のパス・タイミングを選択するパス・タイミング選択手段226を有する。整合フィルタ220ないし電力加算手段224により、受信信号と所定のコードとの相関(相関値)を求めている。選択されるパス・タイミングの数は、使用されるレイク・フィンガ204の数、すなわち想定するマルチパス伝送路の数に対応する。本実施例では、簡単のため3つとする。更に、パス・タイミング検出装置218は、パス・タイミング選択手段226に接続され、パス・タイミングとして選択されたタイミング情報およびそのタイミングにおける電力値を保存するメモリ(保存手段)228を有する。
図3は、本願実施例によるパス・タイミング検出装置218の動作を示すフローチャートを示す。概して、パス・タイミング検出装置は、拡散コードにより拡散された受信信号と逆拡散コードとの相関値を、周期的なパスサーチ期間(例えば、図1におけるT1の期間)毎に、各サンプルタイミングについて求める。これらの相関値に基づいて、各サンプルタイミングから逆拡散タイミングとして用いるタイミングを選択し、それをレイク・フィンガ204に提供する。このフローチャートは、アナログ・ディジタル変換器202の出力を受信するステップ302から始まり、ステップ304において整合フィルタ220による逆拡散が行われる。ステップ306では、逆拡散されたサンプルの振幅レベル(電圧レベル)を各サンプルタイミング毎に(例えば、図1のパスサーチ期間T1の各サンプルタイミング毎に)所定数だけ加算することによって、各タイミングにおける加算された電圧レベルが算出される。ステップ308では、加算された電圧レベルを二乗することにより電力値を計算し、この電力値を各サンプルタイミング毎に(例えば、図1のパスサーチ期間T1の各サンプルタイミング毎に)所定数だけ加算することによって、各タイミングにおける電力値を算出する。従来とは異なり、本実施例では、この加算において更に、過去の(好ましくは直前に)パス・タイミングと同一のサンプル・タイミング、当該タイミングと所定時間内のサンプル・タイミングについての電力値に、当該過去(好ましくは直前に)に選択されたパスタイミングにおける電力値に基づく値が加えられている。
図4,5を参照しながら、この値について説明する。電力計算では、各サンプルタイミングにおける電力が次々と加算され、最終的にピークおよびバレーの起伏を示す電力プロファイルが、例えば図4に示されるように形成される。この例では、4つのパスが示され、電力値は大きい順にP1,P2,P3,P4であり、対応するタイミングはt1,t2,t3,t4である。そして、パス・タイミング選択手段226により、電力値の大きい順に例えば3つのパスが選択される。選択されたパス・タイミングt1,t2,t3およびその電力値P1,P2,P3は、メモリ228に保存される。メモリへのこの保存は、今回のフローが始まる以前に行われる。
次に、今回のフローにおけるステップ308で電力計算を行う際に、このパス・タイミングt1,t2,t3に等しいタイミングに、電力値P1/2,P2/2,P3/2を加える。この様子が図5に示されている。過去にパス・タイミングとして選択されなかったタイミングでは、例えば初期状態の電力値がゼロの状態から順に電力値が加算され、電力プロファイルの一部を形成してゆく。しかし、過去に(好ましくは直前に)パス・タイミングとして選択されたタイミング(t1,t2,t3)では、選択時の電力値の半分が電力値に加えられており、この過去の同一サンプルタイミングについての電力値が上乗せされて電力プロファイルの一部を形成してゆく。その結果、前回パス・タイミングとして選択されたタイミングは、たとえフェージングにより信号レベルが一時的に落ち込んでいたとしても、今回のパス・タイミングとして選択される可能性が高くなる。
ステップ310では、このようにして計算された電力プロファイルに基づいて、パスを選択する。最大の電力値を有するパスタイミングを選択する。(2回目以降の選択では、当該ステップで既に選択されたパスタイミングを除く。)
ステップ312では、既に選択されたパスタイミングとのタイミング差が例えば2サンプル以上離れているか否かを判別し、離れていなければ、それらを除いて電力値の大きい方から所定数の別のパスを選択するようステップ310に戻る。というのは、パスとして選択されるタイミングの近傍は、真に大きな値でなくてもフィルタの影響等に起因して大きくなり得るので、パス・タイミングとして採用することを回避するためである。本実施例では、前後2サンプルのパスについては、電力値が小さい方のパスを選択しないようにしているが、他の数値を採用することも可能である。
ステップ314では、ステップ312で所定のサンプル数以上離れているパスが、ある閾値より大きいか否かが判別される。これにより、有効な信号対干渉雑音比(SIR)を有するパスを選択することが可能になる。パスが閾値を超えなかった場合は、ステップ320に移る。なお、ステップ312および314は、逆の順序で行っても良いし、同時に行うことも可能である。
ステップ316では、ステップ314で閾値を超えることが確認されたパスを、パス・タイミングとして決定する。
ステップ318では、選択したパスが所定数(本実施例では3つ)に達したか否かが判定され、達していなければステップ310に戻って次のパスを選択する。但し、未選択のパスタイミングのいずれの電力値も(ステップ314における)閾値以下であれば、ステップ320に移行する。
ステップ320では、選択した各パス・タイミングを各レイク・フィンガ204に提供する。これにより、各々のマルチパスを介して受信した信号をそれぞれについて適切なタイミングで、精度高く逆拡散を行うことが可能になる。さらに、パス・タイミングとして選択されたタイミングおよびそのタイミングにおける電力値は、メモリ228に保存される。保存された内容は、ステップ322における次回の電力計算に使用される。このようにしてパス・タイミングが選択され、今回のパスタイミング検出のフローはステップ324にて終了する。
図6は、本願実施例によるパス・タイミング検出装置218の動作を示す他のフローチャートを示す。図3のフローチャートで説明したものと同様のステップは、参照番号の下2桁を図3に示すものと同一とした。フローは、ステップ602から始まり、整合フィルタによる逆拡散(ステップ604)、電圧レベルの算出(ステップ606)、電力値および電力プロファイルの算出(ステップ609)が行われる。ただし、この場合における電力プロファイルの算出(ステップ609)では、図3のステップ308とは異なり、過去(例えば、直前)に選択されたパスタイミングに対応する電力値を用いた加算は行わず、ゼロから電力値が次々と加算されてゆく。
ステップ610では、このようにして計算された電力プロファイルに基づいて、パスを選択する。最大値を有するパスタイミングを選択する(2回目以降では、当該ステップで既に選択されたパスタイミングを除く。)。
ステップ612では、既に選択されたパスタイミングとのタイミング差が2サンプル以上離れているか否かを判別し、離れていなければステップ610に戻り、離れていればステップ616に進んでパス・タイミングとして採用することを決定する。
ステップ618では、所定数のパスが採用決定されたか否かが判定され、否であればステップ610に戻り、採用決定されていれば、ステップ619に進む。尚、所定数に至らなくとも、所定の電力値以上のパスタイミングのもので未選択のものがなければ、ステップ619に進む。
ステップ619では、過去の電力値を考慮して再定義された電力値に基づいて、パスが決定されたか否かが判定される。最初の場合は、過去の電力値を考慮せずにパスを決定したので、このステップにおける判定結果はNOであり、ステップ621に進む。
ステップ621では、メモリ228に格納されている過去の(好ましくは直前の)パスサーチ結果を利用して、ステップ610で選択するパス候補となるサンプルタイミング群を再定義する。すなわち、ステップ616で選択された今回のパス・タイミング(si)と、前回のパスサーチで選択されたパス・タイミング(ti)から成る再選択集合を定義する。この再選択集合の中から、所定数のパスを改めて選択するために、ステップ610に戻り、再選択集合に含まれるサンプルタイミングについて上述した手順(ステップ610ないしステップ618)を再度行い、再びステップ619に至る。過去の電力値に基づく再選択集合に基づいてパスを選択したので、ステップ619における判定はYESになり、ステップ620に進む。
ステップ620では、選択されたパス・タイミングを、各レイク・フィンガ204に与え、タイミング情報をメモリ228に保存し、ステップ624にて今回のパスサーチのフローは終了する。
なお、ステップ621における再選択集合は、前回および今回選択したパスタイミングにより形成されるので、最大でレイク・フィンガ数の2倍の集合の要素を有することになる。本実施例では、再選択集合は、6(=3+3)つのパス・タイミングおよび関連する電力値より成る。この場合において、前回および今回のサンプルタイミング差が所定値(a)以下の場合(|si−ti|<a)には、大きな電力値を有するものを残し、小さい方を破棄することによって、再選択集合を形成することは、計算労力を削減する等の観点から有利である。尚、サンプルタイミングtiにおける各電力値には、所定の因子(例えば、1/2)が乗ぜられた値を用いることが望ましい。
本実施例によれば、過去の電力値を利用することなく電力値(電力プロファイル)を計算することができる。このため、例えば単なる反復的な加算を行うにすぎない電圧や電力の計算を行うハードウエアと、電力値の比較や判断を要するパス選択を行うディジタル信号プロセッサ(DSP)とに分けてシステムを構築することが容易になる点で有利である。ただし、図3の実施例では、前回選択されたパス・タイミングは初期値(Pi/2)に更に電力値を上乗せすることによって、パス選択のための電力値が計算されるのに対して、図6の実施例では旧電力値の半分(Pi/2)のみがパス選択の電力値となる。このため、図3の実施例は、前回の状況をより強く反映して今回のパス選択を行う場合に有利であり、図6の実施例は過去の状況を反映しつつ今回の状況に重きをおく場合に有利であると言える。
図3の実施例では、過去(例えば、直前)のパスサーチ(例えば、図1のパスサーチ期間T2の間)で選択したパス・タイミングの電力値(旧電力値)の半分を、今回のパスサーチ(例えば、図1のパスサーチ期間T3)において、同一タイミングの電力値に加算した。
しかしながら、同じタイミングだけでなく、過去(例えば、直前)にパスタイミングとして選択したサンプルタイミングの近傍(例えばその前後2サンプル)のサンプルタイミングの電力値にも、当該過去(例えば、直前)に選択したサンプルタイミングの電力値(旧電力値)の半分を、加算することも有利である。上述したように、過去に選択されたパス・タイミングの近傍は、フィルタの影響によって大きな電力値となる場合もあるが、通信環境の変化によって、今回選択されるべきパスが前回のものから僅かに変動する場合もある。この場合に、同一タイミング間でのみ旧電力値(の半分)を加算したのでは、変動したパス・タイミングの検出(追従)が困難になり得る。同一タイミングだけでなくその前後のサンプルタイミングにも旧電力値(の半分)を加算することによって、真のパスである可能性の高いパスの選択性が高まる。なお、ステップ312またはステップ612により、タイミングが近接するサンプルタイミング間で、最大の電力値を持つサンプルタイミングだけ採用(選択)されることとなる。
また、図3のステップ314で使用する閾値は、次のように設定することもできる。例えば、(1)別途測定した受信品質(例えば、SIR)を基準に設定する、(2)選択済みであって隣接するパスの電力値の20%以上のような選択済みのパスの大きさを基準に設定する、(3)パスとして選択されなかったサンプルタイミングの平均電力の所定数倍、のように設定することが考えられる。いずれにせよ、本実施例によるパス・タイミングの検出は、過去のパスサーチにおいて算出したサンプルタイミングの電力値情報を利用するので、選択されたパスタイミングと同一のタイミングの電力値は大きくなり(特に、図3の実施例)、パスとして選択されなかったサンプルタイミングの電力値との差異がより明瞭になる。このため、設定する閾値を従来のものより大きくすることが可能になり、パスの検出精度を向上させることが可能になる。例えば、従来の閾値を、パスとして選択されなかったタイミングにおける平均電力の4倍としていた場合、本発明を利用することにより例えば6倍に増やすことが可能になる。
以上説明したように、本願実施例によれば、過去に選択された旧パス・タイミングおよびそのタイミングにおける電力値が保存され、保存していた電力値に所定の因子(ウエイト)を乗じることにより得られる電力値を、同一サンプルタイミングにおける電力値に加算する。過去にパス・タイミングとして選択されたサンプルタイミングは今回もパス・タイミングとして選択される可能性が強く、過去のパスサーチ情報を有効に利用して精度の高いパス・タイミングを検出することが可能になる。選択されるべきパス・タイミングがフェージングにより落ち込んでいたとしても、電力値の加算により救済することができるので、適切なパス・タイミングの検出が可能になる。
移動体の移動等により通信環境が変化すると、信号が到達するタイミングも変動する。しかしながら、例えば、移動体があるビルの陰にいる時間を考えると、数100ms以上は同じパス・タイミングが続くことが予想される。したがって、過去に選択したパス・タイミングの情報を利用して、現在のパス・タイミングの状況を表現することは有意義である。また、過去の情報を使うと、フェージングの影響を平均化することにもなるので、フェージングにより受信レベルが一時的に落ち込んだ場合であっても、本来の正しいパスを選択することが可能になる。
本願実施例によれば、各パスサーチ期間における各サンプルタイミングに対して、該各パスサーチ期間の過去の(直前又はそれ以前の)パスサーチにより前記逆拡散タイミングとして採用したサンプルタイミングとタイミング差が所定値以内であるか否かを判定する。本願実施例によるパス・タイミング検出装置は、このタイミング差が所定値以内であるサンプルタイミングは、タイミング差が所定値より大きいサンプルタイミングに比して逆拡散タイミングとして選択され易いように形成されている。
本願実施例(図3)によれば、電力加算手段は、各サンプルタイミングの電力値を算出する際に、過去(直前)のパスサーチにおいてパスタイミングとして選択されたサンプルタイミングの電力値を加算するよう形成される。同一タイミング間で電力値を加算することにより、最終的な電力値が算出されるので、過去(直前)にパスタイミングとして選択されたサンプルタイミングは、パス・タイミングとして選択される可能性が高くなる。
本願実施例によれば、所定の因子が2の累乗分の1であり、例えば部分電力値は旧電力値の半分である。1/2以外の因子を採用することも一般的には可能である。しかし、因子が2の累乗分の1ならば、2進表記における数の始点を適切にシフトすることによって得られるので、計算労力ひいては消費電力を軽減することが可能になる。例えば、10進法の「8」は2進表記で1000であり、「4」は0100であり、「2」は0010であり、「1」は0001である。1桁ずつ右にずらすことにより1/2の値が得られる。
本願実施例(図6)によれば、各パスサーチ期間内の受信信号について算出した現電力値に基づいて第1パス・タイミング候補を選択し、選択したこの候補に過去(直前)のパスサーチでパス・タイミングとして選択したサンプルタイミングの中から、改めて所定数のサンプルタイミングをパス・タイミングとして選択する。電力値を計算する際に過去の電力値を使用する必要はないので、電力加算手段とパス・タイミング選択手段とを別個の回路要素として構築することが可能になる。
本願実施例によれば、電力加算手段は、過去(直前)のパスサーチにおいてパス・タイミングとして選択したサンプルタイミングと所定のタイミング差以内の各サンプルタイミングの電力値に、この選択したサンプルタイミングにおける電力値又は所定の重み付けされた値が加算される。これにより、パスタイミングが僅かに変動したとしても精度良く迅速に追従することが可能になる。
本願実施例によれば、パス・タイミング選択手段が、互いに所定のサンプル数以上離れたサンプルタイミングをパス・タイミングとして選択するよう形成される。これにより、送受信フィルタの応答等の影響で電力値が大きくなってしまった適切なサンプルタイミングに隣接するサンプルタイミングを、パス・タイミングとして選択してしまうことを回避することが可能になり、検出精度を向上させることが可能になる。
以下、本発明が教示する手段を列挙する。
(付記1)
スペクトラム拡散された信号を受信する受信装置におけるパス・タイミング検出装置であって、
逆拡散された複数のサンプルの電圧レベルを加算することにより算出された電圧加算出力に基づいて電力値を算出し、各タイミングにおける現電力値を算出する電力加算手段と、
電力値に基づいて、各タイミングの中から、パス・タイミングを選択するパス・タイミング選択手段と、
過去に選択された旧パス・タイミング、および旧パス・タイミングにおける旧電力値を保存する保存手段
を有し、旧電力値に所定の因子を乗じることにより得られる部分電力値が、旧パス・タイミングに等しいタイミングばかりでなく、近傍の所定サンプルのタイミングにおける電力値に加算されるよう形成されることを特徴とするパス・タイミング検出装置。
(付記2)
付記1記載のパス・タイミング検出装置において、前記電力加算手段が、旧パス・タイミングに等しいタイミングにおける前記現電力値を算出する際の初期値として、前記部分電力値を加算するよう形成されることを特徴とするパス・タイミング検出装置。
(付記3)
付記2記載のパス・タイミング検出装置において、前記所定の因子が2の累乗分の1であることを特徴とするパス・タイミング検出装置。
(付記4)
付記1記載のパス・タイミング検出装置において、前記パス・タイミング選択手段が、前記現電力値に基づいて選択したパス・タイミングおよび前記旧パス・タイミングの中から、前記現電力値および前記部分電力値基づいて、所定数の又は選択可能なパス・タイミングを選択するよう形成されることを特徴とするパス・タイミング検出装置。
(付記5)
付記1記載のパス・タイミング検出装置において、前記パス・タイミング選択手段が、互いに所定のサンプル数以上離れたタイミングをパス・タイミングとして選択するよう形成されることを特徴とするパス・タイミング検出装置。
(付記6)
付記1記載のパス・タイミング検出装置において、旧パス・タイミングに等しいタイミングにおける前記現電力値に前記部分電力値を加算する代わりに、前記パス・タイミング選択手段が、前記現電力値および前記部分電力値のいずれか大きい方を利用してパス・タイミングの選択を行うよう形成されることを特徴とするパス・タイミング検出装置。
(付記7)
拡散コードにより拡散された受信信号と逆拡散コードとの相関を周期的なパスサーチ期間毎に各サンプルタイミングについて求め、求めた相関に基づいて該各サンプルタイミングから逆拡散タイミングとして用いるタイミングを選択し、逆拡散部に与えるパスサーチ部を備えた受信装置において、
前記パスサーチ部は、各パスサーチ期間における各サンプルタイミングのうち、該各パスサーチ期間の直前又はそれ以前のパスサーチにより前記逆拡散タイミングとして用いたサンプルタイミングとの間にタイミング差があるサンプルタイミングであっても該差が所定値以内である場合には、タイミング差が所定値以上であるサンプルタイミングに比して逆拡散タイミングとして選択され易いようにする調整手段を備え、
前記逆拡散部は、選択された逆拡散タイミングに従って、受信信号の逆拡散を行う、
ことを特徴とする受信装置。
時間に対する受信信号の振幅レベルを示すグラフである。 本願実施例によるパス・タイミング検出装置を含む受信装置の部分概略図を示す。 本願実施例によるパス・タイミング検出装置の動作を示すフローチャートを示す。 電力プロファイルの模式図を示す。 電力プロファイルの計算に使用する初期値を示す図である。 本願実施例によるパス・タイミング検出装置の動作を示す他のフローチャートを示す。
符号の説明
T1,T2,T3 パス・サーチ期間
Ts パス・サーチの周期
202 アナログ・ディジタル変換器
204 レイク・フィンガ
206 相関器
208 遅延素子
210 チャネル推定器
212 乗算器
214 合成部
218 パス・タイミング検出装置
220 整合フィルタ
222 電圧加算手段
224 電力加算手段
226 パス・タイミング選択手段
228 保存手段
P1,P2,P3,P4 電力値
t1,t2,t3,t4 タイミング
Q1,Q2,Q3 電力値
s1,s2,s3 タイミング

Claims (1)

  1. 拡散コードにより拡散された受信信号と逆拡散コードとの相関をパスサーチ期間毎に各サンプルタイミングについて求め、求めた相関に基づいて該各サンプルタイミングから逆拡散タイミングとして用いるタイミングを選択し、逆拡散部に与えるパスサーチ部を備えた受信装置において、
    前記パスサーチ部は、あるサーチ期間における各サンプルタイミングのうち、該あるパスサーチ期間の直前又はそれ以前のパスサーチにより前記逆拡散タイミングとして用いたサンプルタイミングとの間のタイミング差が所定値以内でずれたサンプルタイミングの検出を行い、該ずれたサンプルタイミングについての相関値に、該ずれたサンプルタイミングとの間のタイミング差が前記所定値以内である前記逆拡散タイミングとして用いたサンプルタイミングについての相関値に2の累乗分の1を乗じた量が上乗せされるように相関値の調整を行い、
    前記逆拡散部は、該相関値の調整を行った上で逆拡散タイミングとして採用された逆拡散タイミングに従って、受信信号の逆拡散を行う、
    ことを特徴とする受信装置。
JP2007168869A 2007-06-27 2007-06-27 パスタイミングを検出する受信装置 Expired - Fee Related JP4431601B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168869A JP4431601B2 (ja) 2007-06-27 2007-06-27 パスタイミングを検出する受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168869A JP4431601B2 (ja) 2007-06-27 2007-06-27 パスタイミングを検出する受信装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002265433A Division JP4406529B2 (ja) 2002-09-11 2002-09-11 パスタイミング検出装置及び受信装置

Publications (2)

Publication Number Publication Date
JP2007259501A JP2007259501A (ja) 2007-10-04
JP4431601B2 true JP4431601B2 (ja) 2010-03-17

Family

ID=38633170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168869A Expired - Fee Related JP4431601B2 (ja) 2007-06-27 2007-06-27 パスタイミングを検出する受信装置

Country Status (1)

Country Link
JP (1) JP4431601B2 (ja)

Also Published As

Publication number Publication date
JP2007259501A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
EP1719258B1 (en) Method and apparatus for finger placement in a rake receiver
US6556634B1 (en) Maximum likelihood rake receiver for use in a code division, multiple access wireless communication system
US20020181557A1 (en) Communication terminal apparatus and demodulation method
US7505509B2 (en) Receiving communication apparatus using array antenna
US20060203894A1 (en) Method and device for impulse response measurement
US20060072650A1 (en) Method and system for managing, controlling, and combining signals in a frequency selective multipath fading channel
JPH11220774A (ja) 移動速度に基づく通信制御装置および方法
JP3943062B2 (ja) Cdma受信装置、cdma受信方法、cdma受信プログラム、及び、プログラム記録媒体
JP3228405B2 (ja) 直接拡散cdma伝送方式の受信機
JP3369513B2 (ja) 通信端末装置及び無線受信方法
WO2004028018A1 (en) Assessment of delay estimation quality using interference estimates
JP3879595B2 (ja) Cdma復調回路及びそれに用いるcdma移動体通信復調方法
JP4022810B2 (ja) アレーアンテナ無線通信装置及び受信装置
US7724808B2 (en) Efficient delay profile computation with receive diversity
JP4406529B2 (ja) パスタイミング検出装置及び受信装置
EP1704651B1 (en) Method of and apparatus for path-searcher window positioning
AU2004202051B2 (en) Portable Information Communication Terminal, Program, and Recording Medium
JP4431601B2 (ja) パスタイミングを検出する受信装置
JP4081982B2 (ja) Cdma移動通信復調回路及び復調方法
JP2003347968A (ja) パス位置検出方法およびcdma受信装置
JP2001196974A (ja) Cdma無線受信装置および制御方法
JP3719997B2 (ja) 直接スペクトラム拡散通信の受信装置
JP3819874B2 (ja) パスサーチ装置、通信端末装置およびパスサーチ方法
US20080151969A1 (en) Efficient Delay Profile Computation with Receive Diversity
JP4190962B2 (ja) Cdma受信装置、及びそのチャネル推定装置と方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees