JP4431302B2 - Magnetic domain controlled soft magnetic thin film, method for producing the same, and high frequency magnetic device - Google Patents

Magnetic domain controlled soft magnetic thin film, method for producing the same, and high frequency magnetic device Download PDF

Info

Publication number
JP4431302B2
JP4431302B2 JP2002200609A JP2002200609A JP4431302B2 JP 4431302 B2 JP4431302 B2 JP 4431302B2 JP 2002200609 A JP2002200609 A JP 2002200609A JP 2002200609 A JP2002200609 A JP 2002200609A JP 4431302 B2 JP4431302 B2 JP 4431302B2
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
film
magnetic thin
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002200609A
Other languages
Japanese (ja)
Other versions
JP2004015038A (en
Inventor
究 白川
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Original Assignee
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS filed Critical THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority to JP2002200609A priority Critical patent/JP4431302B2/en
Publication of JP2004015038A publication Critical patent/JP2004015038A/en
Application granted granted Critical
Publication of JP4431302B2 publication Critical patent/JP4431302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thin Magnetic Films (AREA)

Description

【0001】
【産業上の利用分野】
本発明はインダクタ、トランス等のデバイスに用いる軟磁性材料の薄型化、量産化および高周波磁気特性の向上に関する。
【0002】
【従来の技術】
インダクタにおいて高いインダクタンス値を得るには、軟磁性体に励磁用コイルを巻きつける方法がとられる。チップインダクタを例にあげれば、現在は塗布型のフェライト材料と塗布型の導体材料が用いられている。コイルがスパイラル型やトロイダル型を形成するようにパターニングして塗布し、これらのコイルによって、軟磁性体が励磁されるように、フェライトを塗布する。最後に、これらを焼結して作製している。例えば、トロイダル型のインダクタでは、フェライトと導体を交互にパターン化して塗布する工程で行われている。しかし、これらのインダクタに用いられている軟磁性材料は、透磁率が低いため、高いインダクタンスが得られにくく、これを補うために、多量の磁性体を用いることになる。従って、これらの方法では、インダクタの低背化、小型化にはおのずと限界がある。
【0003】
【発明が解決しようとする課題】
このように、塗布を繰り返し行い、更に高温で焼結を行う方法においては、高インダクタンスで小型化、低背化は困難である。近年、移動体通信機器をはじめとして、携帯機器の薄型化に伴い各部品の薄型化が必須になっている。この観点から、インダクタの磁心としてフェライトを用いた場合には、透磁率が低いため、高インダクタンスで小型薄型化には向いていないことは明白である。そこで、インダクタの磁心材料として、高透磁率を有する軟磁性膜を使用する必要がある。しかし、高透磁率を有する軟磁性膜は、一般には硬い基板上に成膜することにより、良い特性が得られている。基板材料の厚さを含めて考えた場合に、現状の磁心材料を用いて、低背化は困難である。
【0004】
本発明は、上記問題を解決するために、厚さが薄く、加工しやすい材料を基板として用い、これらの上に、高透磁率軟磁性膜を積層して磁心材料として用いることにより、結果的に低背化したデバイスを提供することにある。
【0005】
一方、一般に軟磁性膜を高周波領域で使用する場合に、軟磁性膜に異方性をつけ、その磁化困難方向に励磁する方法がとられるが、磁性膜の特性は材料、製造条件、寸法および形状で決まる磁区構造と密接な関係がある。高周波で損失を抑えるためには、それぞれの軟磁性膜に応じた最適幅がある。薄膜デバイスで軟磁性膜を用いる場合には、レジスト等でフォトリソグラフィー技術を用いてパターニングすることにより、磁区制御を行っている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は軟磁性膜の基板として、薄い高分子フィルムを用いた。この高分子フィルムに、磁区制御するための溝を設け、その上に軟磁性薄膜を成膜して、高性能の軟磁性薄膜フィルムを作製することを目的とする。
【0007】
本発明の特徴とすることは、次の通りである。
軟磁性材料からなる薄膜(以下「軟磁性薄膜」という)の厚さの1倍以上の楔型溝を施した高分子フィルム上に、前記軟磁性薄膜が存在しない前記楔型溝で分断された前記軟磁性薄膜を成膜してなり、磁区制御されたことを特徴とする軟磁性薄膜フィルムである。
【0008】
第2の発明は、溝間の距離が200μm以上500μm以下であることを特徴とする軟磁性薄膜フィルムである。
【0009】
第3の発明はこれらの楔型溝を高分子フィルムの両面に施し、両面に軟磁性薄膜を成膜することを特徴とする軟磁性薄膜フィルムである。
【0010】
第4の発明は、これらの軟磁性薄膜フィルムにおける軟磁性薄膜として磁性薄膜と絶縁薄膜を交互に積層する多層薄膜を用いることを特徴とする軟磁性薄膜フィルムである。
【0011】
第5の発明は軟磁性フィルムの製造方法であって、フィルムに連続的に楔型溝加工する連続製造方法である。
【0012】
第6の発明は、軟磁性薄膜フィルムを含む高周波磁気デバイスである。
【0014】
【作用】
本発明は軟磁性膜の基板として、薄い高分子フィルムを用い、このフィルムに、磁区制御するための溝を設け、その上に軟磁性薄膜を成膜することにより、磁区制御された高性能の軟磁薄膜フィルムを作製することができる。
【0015】
【実施例】
次に本発明の実施例について図面に基づき説明する。
【実施例1】
図1には、本実施形態の軟磁性薄膜フィルムの基板となる高分子フィルムを溝加工した、基板形状の一例を示す斜視図である。厚さ20〜40μmの高分子フィルム(1)上に、刃物で溝(2)を縦および横方向に入れてある。溝の形状は楔型で、溝の深さは平均して約10μm、上面の幅が平均して約20μmである。縦と横の溝で囲まれた矩形部分の寸法は2mm×300μmである。
【0016】
【実施例2】
図2は、本実施形態の軟磁性薄膜フィルムの構成斜視図である。図1に示した高分子フィルム基板の上に、軟磁性膜を成膜している。
軟磁性膜(3)は、高分子フィルム(1)に刻まれた溝(2)で分断されている。軟磁性薄膜フィルムは、以下に示す工程で作成した。▲1▼高分子フィルム上に溝加工し、高分子フィルム基板を作製する。▲2▼アセトンおよびイソプロピルアル洗浄する。この作製工程において、Ti膜を下地成膜するのは、磁性膜と高分子膜の密着性を良くするためである。また、溝部分で磁性膜が分断されるのは、溝が深いため、Ti膜成膜時に、溝の傾斜部分にTi膜が成膜されないためである。その後工程で成膜する磁性膜が、この部分で高分子フィルムと密着しないため、超音波で洗浄する際に、溝部分の磁性膜は剥離するためと考えられる。
【0017】
【実施例3】
図3は、本実施形態の軟磁性薄膜フィルムにおいて、高分子フィルム(1)の片面または両面に溝加工した場合の、溝(2)の構成を示す断面図である。(a)は片面溝フィルムの断面、(b)は両面溝フィルムの一例を示す断面図である。両面溝フィルムにおいて、溝の位置は表裏で同じ位置であっても良いが、高分子フィルムの厚さが薄い場合には、溝の位置を(b)図に示すようにずらして溝加工することにより、軟磁性薄膜フィルムの強度を保つことができる。
【0018】
【実施例4】
図4には、本実施形態の軟磁性薄膜フィルムが用いられる高周波磁気デバイスの一例として、薄型インダクタの斜視図が示されている。軟磁性薄膜フィルム(4)を数枚重ね、その外周をホルマル銅線(5)でトロイダル状に巻き励磁する構成になっている。 斜視図は円断面の銅線を用いているが、低背化のために平角断面の物を用いることが好ましい。図において、コイルは一層であるが、2,3層重ねて巻いて高インダクタンスを得ることができる。所望の厚さ、大きさのインダクタにするために、インダクタンス値に応じて、磁性膜の膜厚、軟磁性薄膜フィルムの枚数、コイル巻き数、コイルの太さは最適な組み合わせが取られる。
【0019】
【実施例5】
図5には、本実施形態の軟磁性薄膜フィルムの磁区模様が示されている。溝間の距離は300μm、軟磁性膜の膜厚は1μmである。軟磁性膜はCo77FeSi8.69.4アモルファス膜である。磁区幅は約50μmである。この磁区幅は石英ガラス基板上に、レジストを用いフォトリソグラフィーで形成した幅300μmの同じアモルファス膜と同等である。このことは、溝加工した高分子膜上に成膜することにより、磁区制御された軟磁性膜フィルムが形成できることを意味している。
【0020】
【実施例6】
図6には、本実施形態の軟磁性薄膜フィルムおいて、基板となる高分子フィルム両面に溝を形成するための加工機の側面図が示されている。ロール(6)に巻かれた高分子フィルムはA−B−C−D−E−Fを通り、巻き取りロール(8)に巻き取られる。高分子フィルムはカッター群(7)で両面に溝を形成される。
【0021】
【実施例7】
図7には本実施形態の軟磁性薄膜フィルムを磁心として用いた2mm×2mm×1mmの薄膜磁心インダクタの特性を示す。用いた軟磁性薄膜フィルムの構成は25μm膜厚のポリイミドフィルムに両面溝加工を行った基板を用い、軟磁性膜は、膜厚0.1μmのアモルファスCo77FeSi8.69.4膜と膜厚0.05μmのSiO膜を交互に10層積層した多層膜である。インダクタの構成は、両面に磁性膜のある軟磁性薄膜フィルム(4)を20枚重ね合わせ、100μmΦの銅線(5)でロイダル状に巻いた構造である。巻き数は30ターンである。
【0022】
【発明の効果】
以上説明したように、本発明によれば、磁区制御された優れた軟磁気特性を有する軟磁性フィルムを作製できる。
【図面の簡単な説明】
【図1】は溝加工後の高分子フィルムの斜視図
【図2】は軟磁性薄膜フィルムの構成斜視図
【図3】は高分子フィルムの溝加工断面図
【図4】は軟磁性薄膜フィルムを用いたインダクタの斜視図
【図5】は軟磁性薄膜フィルムの磁区模様
【図6】は溝加工装置の側面図
【図7】は薄膜磁心インダクタの特性
【符号の説明】
1 高分子フィルム
2 溝
3 軟磁性膜
4 軟磁性薄膜フィルム
5 銅線
6 ロール
7 カッター群
8 巻き取りロール
[0001]
[Industrial application fields]
The present invention relates to thinning and mass production of soft magnetic materials used for devices such as inductors and transformers, and improvement of high-frequency magnetic characteristics.
[0002]
[Prior art]
In order to obtain a high inductance value in an inductor, a method of winding an exciting coil around a soft magnetic material is used. Taking a chip inductor as an example, at present, a coated ferrite material and a coated conductor material are used. The coil is patterned and applied so as to form a spiral type or a toroidal type, and ferrite is applied so that the soft magnetic material is excited by these coils. Finally, these are sintered. For example, in a toroidal type inductor, it is performed in a process in which ferrite and a conductor are alternately patterned and applied. However, since the soft magnetic material used for these inductors has a low magnetic permeability, it is difficult to obtain a high inductance, and a large amount of magnetic material is used to compensate for this. Therefore, these methods naturally have limitations in reducing the inductor height and size.
[0003]
[Problems to be solved by the invention]
As described above, in a method in which coating is repeated and sintering is performed at a high temperature, it is difficult to reduce the size and height with high inductance. 2. Description of the Related Art In recent years, it has become essential to reduce the thickness of each component as mobile devices and other portable devices become thinner. From this point of view, it is obvious that when ferrite is used as the magnetic core of the inductor, the magnetic permeability is low, so that it is not suitable for miniaturization and thinning with high inductance. Therefore, it is necessary to use a soft magnetic film having high permeability as the magnetic core material of the inductor. However, a soft magnetic film having a high magnetic permeability generally has good characteristics when formed on a hard substrate. When considering the thickness of the substrate material, it is difficult to reduce the height using the current magnetic core material.
[0004]
In order to solve the above-mentioned problems, the present invention uses a thin and easy-to-process material as a substrate, and a high permeability soft magnetic film is laminated on these as a magnetic core material. It is to provide a low profile device.
[0005]
On the other hand, in general, when a soft magnetic film is used in a high frequency region, anisotropy is applied to the soft magnetic film, and excitation is performed in the direction in which magnetization is difficult. The characteristics of the magnetic film include the material, manufacturing conditions, dimensions and There is a close relationship with the magnetic domain structure determined by the shape. In order to suppress loss at a high frequency, there is an optimum width corresponding to each soft magnetic film. When a soft magnetic film is used in a thin film device, magnetic domain control is performed by patterning with a photolithography technique using a resist or the like.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses a thin polymer film as the substrate of the soft magnetic film. An object of the present invention is to produce a high-performance soft magnetic thin film by providing a groove for controlling a magnetic domain in the polymer film and forming a soft magnetic thin film thereon.
[0007]
The features of the present invention are as follows.
On a polymer film provided with a wedge-shaped groove having a thickness of 1 or more times the thickness of a thin film made of a soft magnetic material (hereinafter referred to as “soft magnetic thin film”) , the film was divided by the wedge-shaped groove without the soft magnetic thin film . The soft magnetic thin film is characterized in that the soft magnetic thin film is formed and the magnetic domain is controlled.
[0008]
2nd invention is a soft-magnetic thin film characterized by the distance between grooves being 200 micrometers or more and 500 micrometers or less.
[0009]
A third invention is a soft magnetic thin film characterized in that these wedge-shaped grooves are formed on both sides of a polymer film, and a soft magnetic thin film is formed on both sides.
[0010]
A fourth invention is a soft magnetic thin film characterized by using a multilayer thin film in which a magnetic thin film and an insulating thin film are alternately laminated as the soft magnetic thin film in these soft magnetic thin film.
[0011]
5th invention is a manufacturing method of a soft-magnetic film, Comprising : It is a continuous manufacturing method which carries out a wedge-shaped groove process continuously on a film.
[0012]
A sixth invention is a high-frequency magnetic device including a soft magnetic thin film.
[0014]
[Action]
In the present invention, a thin polymer film is used as a substrate of a soft magnetic film, a groove for controlling a magnetic domain is provided on the film, and a soft magnetic thin film is formed on the film, thereby performing a high-performance magnetic domain control. A soft magnetic thin film can be produced.
[0015]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings.
[Example 1]
FIG. 1 is a perspective view showing an example of a substrate shape obtained by grooving a polymer film to be a substrate of a soft magnetic thin film of this embodiment. On the polymer film (1) having a thickness of 20 to 40 μm, grooves (2) are put in the vertical and horizontal directions with a blade. The shape of the groove is a wedge shape, the depth of the groove is about 10 μm on average, and the width of the upper surface is about 20 μm on average. The size of the rectangular portion surrounded by the vertical and horizontal grooves is 2 mm × 300 μm.
[0016]
[Example 2]
FIG. 2 is a structural perspective view of the soft magnetic thin film of the present embodiment. A soft magnetic film is formed on the polymer film substrate shown in FIG.
The soft magnetic film (3) is divided by a groove (2) carved in the polymer film (1). The soft magnetic thin film was prepared by the following process. (1) Groove processing on a polymer film to produce a polymer film substrate. (2) Wash with acetone and isopropyl alcohol. In this manufacturing process, the Ti film is formed as a base film in order to improve the adhesion between the magnetic film and the polymer film. The reason why the magnetic film is divided at the groove portion is that the groove is deep, so that the Ti film is not formed on the inclined portion of the groove when the Ti film is formed. Since the magnetic film formed in the subsequent process does not adhere to the polymer film at this portion, it is considered that the magnetic film in the groove portion peels off when cleaning with ultrasonic waves.
[0017]
[Example 3]
FIG. 3 is a cross-sectional view showing the structure of the groove (2) when the soft magnetic thin film of the present embodiment is grooved on one or both sides of the polymer film (1). (A) is a cross section of a single-sided groove film, (b) is a cross-sectional view showing an example of a double-sided groove film. In the double-sided groove film, the groove position may be the same on the front and back, but when the polymer film is thin, the groove position is shifted as shown in FIG. Thus, the strength of the soft magnetic thin film can be maintained.
[0018]
[Example 4]
FIG. 4 shows a perspective view of a thin inductor as an example of a high-frequency magnetic device in which the soft magnetic thin film of this embodiment is used. Several soft magnetic thin film (4) is piled up, and the outer periphery thereof is wound in a toroidal shape with a formal copper wire (5) and excited. The perspective view uses a copper wire with a circular cross section, but it is preferable to use a flat cross section for a low profile. In the figure, although the coil is a single layer, a high inductance can be obtained by winding two or three layers. In order to obtain an inductor having a desired thickness and size, an optimum combination of the thickness of the magnetic film, the number of soft magnetic thin films, the number of coil turns, and the thickness of the coil is taken according to the inductance value.
[0019]
[Example 5]
FIG. 5 shows a magnetic domain pattern of the soft magnetic thin film of this embodiment. The distance between the grooves is 300 μm, and the thickness of the soft magnetic film is 1 μm. The soft magnetic film is a Co 77 Fe 5 Si 8.6 B 9.4 amorphous film. The magnetic domain width is about 50 μm. This magnetic domain width is equivalent to the same amorphous film having a width of 300 μm formed by photolithography using a resist on a quartz glass substrate. This means that a magnetic domain-controlled soft magnetic film can be formed by forming a film on the grooved polymer film.
[0020]
[Example 6]
FIG. 6 shows a side view of a processing machine for forming grooves on both surfaces of a polymer film serving as a substrate in the soft magnetic thin film of the present embodiment. The polymer film wound around the roll (6) passes through A-B-C-D-E-F and is wound around the winding roll (8). The polymer film is formed with grooves on both sides by the cutter group (7).
[0021]
[Example 7]
FIG. 7 shows the characteristics of a 2 mm × 2 mm × 1 mm thin film magnetic inductor using the soft magnetic thin film of this embodiment as a magnetic core. The structure of the soft magnetic thin film used was a substrate obtained by performing double-sided groove processing on a polyimide film with a thickness of 25 μm, and the soft magnetic film was an amorphous Co 77 Fe 5 Si 8.6 B 9.4 film with a thickness of 0.1 μm. This is a multilayer film in which 10 layers of SiO 2 films having a thickness of 0.05 μm are alternately laminated. The structure of the inductor is a structure in which 20 soft magnetic thin films (4) having magnetic films on both sides are overlapped and wound in a loyal shape with a copper wire (5) of 100 μmΦ. The number of turns is 30 turns.
[0022]
【The invention's effect】
As described above, according to the present invention, a soft magnetic film having excellent soft magnetic properties under magnetic domain control can be produced.
[Brief description of the drawings]
FIG. 1 is a perspective view of a polymer film after groove processing. FIG. 2 is a perspective view of a structure of a soft magnetic thin film. FIG. 3 is a cross sectional view of a polymer film. FIG. 4 is a soft magnetic thin film. Fig. 5 is a magnetic domain pattern of a soft magnetic thin film. Fig. 6 is a side view of a groove processing device. Fig. 7 is a characteristic of a thin film magnetic inductor.
DESCRIPTION OF SYMBOLS 1 Polymer film 2 Groove 3 Soft magnetic film 4 Soft magnetic thin film 5 Copper wire 6 Roll 7 Cutter group 8 Winding roll

Claims (6)

軟磁性材料からなる薄膜(以下「軟磁性薄膜」という)の厚さの1倍以上の楔型溝を施した高分子フィルム上に、前記軟磁性薄膜が存在しない前記楔型溝で分断された前記軟磁性薄膜を成膜してなり、磁区制御されたことを特徴とする軟磁性薄膜フィルム。 On a polymer film provided with a wedge-shaped groove having a thickness of 1 or more times the thickness of a thin film made of a soft magnetic material (hereinafter referred to as “soft magnetic thin film”) , the film was divided by the wedge-shaped groove without the soft magnetic thin film . A soft magnetic thin film formed by forming the soft magnetic thin film and controlled in a magnetic domain. 請求項1の溝間の距離が200μm以上500μm以下であることを特徴とする軟磁性
薄膜フィルム。
2. The soft magnetic thin film according to claim 1, wherein the distance between the grooves is 200 μm or more and 500 μm or less.
請求項1又は2に記載の軟磁性薄膜フィルムにおいて、前記高分子フィルムの両面に前記楔型溝を施し、両面に前記軟磁性薄膜を成膜することを特徴とする軟磁性薄膜フィルム。3. The soft magnetic thin film according to claim 1 or 2, wherein the wedge-shaped grooves are provided on both surfaces of the polymer film, and the soft magnetic thin film is formed on both surfaces. 請求項1から3までの何れか1項に記載の軟磁性薄膜フィルムにおいて、前記軟磁性薄膜が磁性薄膜と絶縁薄膜を交互に積層する多層薄膜を用いることを特徴とする軟磁性薄膜フィルム。  4. The soft magnetic thin film according to claim 1, wherein the soft magnetic thin film is a multilayer thin film in which a magnetic thin film and an insulating thin film are alternately laminated. 軟磁性薄膜フィルムの製造方法であって、請求項1から4までの何れか1項に記載の軟磁性薄膜フィルムにおける前記高分子フィルムに前記楔型溝を連続作製する製造方法。5. A manufacturing method of a soft magnetic thin film, wherein the wedge-shaped grooves are continuously formed in the polymer film of the soft magnetic thin film according to claim 1. 請求項1から4までの何れか1項に記載された軟磁性薄膜フィルムを含む高周波磁気デバイス。  5. A high-frequency magnetic device comprising the soft magnetic thin film according to claim 1.
JP2002200609A 2002-06-05 2002-06-05 Magnetic domain controlled soft magnetic thin film, method for producing the same, and high frequency magnetic device Expired - Fee Related JP4431302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200609A JP4431302B2 (en) 2002-06-05 2002-06-05 Magnetic domain controlled soft magnetic thin film, method for producing the same, and high frequency magnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200609A JP4431302B2 (en) 2002-06-05 2002-06-05 Magnetic domain controlled soft magnetic thin film, method for producing the same, and high frequency magnetic device

Publications (2)

Publication Number Publication Date
JP2004015038A JP2004015038A (en) 2004-01-15
JP4431302B2 true JP4431302B2 (en) 2010-03-10

Family

ID=30437244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200609A Expired - Fee Related JP4431302B2 (en) 2002-06-05 2002-06-05 Magnetic domain controlled soft magnetic thin film, method for producing the same, and high frequency magnetic device

Country Status (1)

Country Link
JP (1) JP4431302B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041224A1 (en) * 2003-10-23 2005-05-06 Kabushiki Kaisha Toshiba Inductive device and method for manufacturing same
DE102005015745A1 (en) * 2005-04-06 2006-10-12 Forschungszentrum Karlsruhe Gmbh Ferro- or ferrimagnetic layer, process for their preparation and their use
WO2007032252A1 (en) * 2005-09-12 2007-03-22 Kabushiki Kaisha Toshiba Soft magnetic film, electromagnetic wave countermeasure part using such soft magnetic film, and electronic device
CN111403168A (en) * 2020-03-25 2020-07-10 电子科技大学 Manufacturing method of magnetic film annular inductor

Also Published As

Publication number Publication date
JP2004015038A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3686908B2 (en) Multilayer coil component and manufacturing method thereof
Xu et al. A microfabricated transformer for high-frequency power or signal conversion
US5801521A (en) Planar magnetic element
JPH08227814A (en) High-q value integrated inductor and integrated circuit using it
TWM287496U (en) Bulk amorphous metal magnetic components
WO2019168158A1 (en) Magnetic core and method for manufacturing same, and coil component
TW200814100A (en) Transformer
JP4431302B2 (en) Magnetic domain controlled soft magnetic thin film, method for producing the same, and high frequency magnetic device
JP2001085233A (en) Semi-closed magnetic path inductor and its manufacture
JPH0963844A (en) Multilayered magnetic film and thin film magnetic element employing it
JP3162692B2 (en) Inductors and transformers
JP2000133520A (en) Thin film coil
CN113140385A (en) Laminated core
JP2003133136A (en) Magnetic part and its manufacturing method
US20020057172A1 (en) Method for increasing the operating of a magnetic circuit and corresponding magnetic circuit
JPH11121237A (en) Planar magnetic element
JP2535819B2 (en) Method of manufacturing thin film magnetic head
JP4851640B2 (en) Amorphous core for accelerator and accelerator using the same
JPH04291708A (en) Electromagnetic device
JPH05299282A (en) Manufacture of thin film magnetic element
JPS5832218A (en) Production of magnetic head
JPH02132616A (en) Thin film magnetic head
JP2003318028A (en) Laminated transformer and its manufacturing method
JP2004063952A (en) Laminated transformer and its manufacturing method
JPH0684141A (en) Thin film magnetic head

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees