JP4430363B2 - Combined air conditioner - Google Patents

Combined air conditioner Download PDF

Info

Publication number
JP4430363B2
JP4430363B2 JP2003323209A JP2003323209A JP4430363B2 JP 4430363 B2 JP4430363 B2 JP 4430363B2 JP 2003323209 A JP2003323209 A JP 2003323209A JP 2003323209 A JP2003323209 A JP 2003323209A JP 4430363 B2 JP4430363 B2 JP 4430363B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
refrigerant
output
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003323209A
Other languages
Japanese (ja)
Other versions
JP2005090825A (en
Inventor
健治 山崎
武 望月
一郎 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2003323209A priority Critical patent/JP4430363B2/en
Publication of JP2005090825A publication Critical patent/JP2005090825A/en
Application granted granted Critical
Publication of JP4430363B2 publication Critical patent/JP4430363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、燃料電池等の温熱および電気を同時に出力する熱電出力装置(分散電源機器とも呼ばれる)と、この熱電出力装置で出力される電力と温熱を利用する蒸気圧縮式ヒートポンプ装置および吸着式冷凍機から構成される複合式空気調和装置に関する。   The present invention relates to a thermoelectric output device (also referred to as a distributed power supply device) that simultaneously outputs heat and electricity, such as a fuel cell, and a vapor compression heat pump device and adsorption refrigeration using electric power and heat output from the thermoelectric output device. The present invention relates to a composite air conditioner composed of a machine.

近年、燃料電池の開発改良が盛んに行われている。この燃料電池は、水素と酸素が化合して水ができるときのエネルギーを電気に変換するものであって、燃料である水素を供給し続ける限り発電させることができ、燃料から電気への変換効率も高い利点がある。そして、この燃料電池による発電システムを利用して空気調和運転をなすことの開発も併せて行われている。   In recent years, development and improvement of fuel cells have been actively performed. This fuel cell converts the energy when hydrogen and oxygen combine to form water into electricity, and can generate electricity as long as hydrogen as a fuel is continuously supplied, and the conversion efficiency from fuel to electricity There are also high advantages. And development of making an air conditioning operation using this power generation system by a fuel cell is also performed.

たとえば、[特許文献1]においては、燃料電池と、この燃料電池のエネルギーを利用する作動機器とを備えて、燃料電池または作動機器を制御する燃料電池発電システムが開示されている。作動機器の一例として温熱を利用する空気調和機があり、さらに空気調和機は蓄熱機器の温熱によって吸収液を再生する吸収式冷凍機、あるいは吸着剤を再生する吸着式冷凍機が示されている。
特開2001−68126号公報
For example, [Patent Document 1] discloses a fuel cell power generation system that includes a fuel cell and an operating device that uses the energy of the fuel cell, and controls the fuel cell or the operating device. There is an air conditioner that uses heat as an example of an operating device, and an air conditioner is an absorption refrigerator that regenerates an absorbing liquid by the heat of a heat storage device, or an adsorption refrigerator that regenerates an adsorbent. .
JP 2001-68126 A

このように、燃料電池等の熱電出力装置による温熱出力を利用する空気調和システムとして、上述した吸収式冷凍機および吸着式冷凍機(これらを総称して、AHPとも呼ばれる)が一般的であり、あるいは冷房運転と暖房運転との切換えが可能な蒸気圧縮式ヒートポンプ装置(EHPとも呼ばれる)の適用も考えられる。   Thus, as the air conditioning system using the thermal output by the thermoelectric output device such as a fuel cell, the above-described absorption refrigerator and adsorption refrigerator (generically referred to as AHP) are generally used, Alternatively, an application of a vapor compression heat pump device (also called EHP) capable of switching between a cooling operation and a heating operation is also conceivable.

しかしながら上記吸収式冷凍機は、温熱出力の温度が低くなるにしたがって冷凍能力が低下し、温熱出力が80℃以下ではほとんど使用できないのが現状である。上記吸着式冷凍機では、温熱出力の温度が比較的低温の70℃前後まで利用可能であるが、温熱を冷熱に変換する成績係数(COP=冷熱出力/温熱入力)が低い。また、燃料電池の熱電比(温熱出力/電気出力)は他の分散電源機器と比較して小さく、空調に必要な冷熱出力に合わせてAHPを選択すると、燃料電池に求められる出力が大きくなってしまい、システムとしてのトータルコストが高くなる。   However, the absorption chiller has a refrigeration capacity that decreases as the temperature of the thermal output decreases, and the current situation is that it cannot be used at a thermal output of 80 ° C. or less. The adsorption refrigerator can be used up to a relatively low temperature of about 70 ° C., but has a low coefficient of performance (COP = cool output / heat input) for converting the heat into cold. Moreover, the thermoelectric ratio (thermal output / electric output) of the fuel cell is small compared to other distributed power supply devices, and if AHP is selected according to the cold output required for air conditioning, the output required for the fuel cell increases. As a result, the total cost of the system increases.

一方、燃料電池と上記蒸気圧縮式ヒートポンプ装置との組合せでは、特に冷房シーズンにおいて温熱出力の使い道が給湯以外には少ない。システムとしての総合効率が、市中電源を利用する一般的な空気調和機および給湯機よりも悪くなる等の理由で、燃料電池自体が普及し難い事情がある。しかも、給湯の使用状況として燃料電池からの出力温度が60℃前後と比較的低く、貯湯タンクが大きくなってしまい、追い炊き用機器が追加で必要となり、コスト的・スペース的にも課題が多い。   On the other hand, in the combination of the fuel cell and the vapor compression heat pump device, there are few uses for the thermal output other than hot water supply, particularly in the cooling season. There is a situation in which the fuel cell itself is difficult to spread because the overall efficiency of the system is worse than that of a general air conditioner or hot water heater that uses a city power supply. In addition, the temperature of the hot water supply is relatively low, around 60 ° C, the hot water storage tank becomes large, additional cooking equipment is required, and there are many problems in terms of cost and space. .

本発明は上記事情に着目してなされたものであり、その目的とするところは、燃料電池等の熱電出力装置と、蒸気圧縮式ヒートポンプ装置および吸着式冷凍機とから構成して、装置相互間で出力の増大化を得られ、総合効率の向上化を図った複合式空気調和装置を提供しようとするものである。   The present invention has been made paying attention to the above circumstances, and the object of the present invention is to comprise a thermoelectric output device such as a fuel cell, a vapor compression heat pump device, and an adsorption refrigeration machine. Thus, an increase in output can be obtained and an attempt is made to provide a composite air conditioner that improves overall efficiency.

本発明の複合式空気調和装置は上述の目的を満足するためになされたものであり、燃料電池等の熱電出力装置と、この熱電出力装置による電気出力をもって駆動される圧縮機、四方切換え弁、凝縮器、減圧装置および蒸発器を備え、冷房運転と暖房運転との切換えが可能な蒸気圧縮式ヒートポンプ装置と、この蒸気圧縮式ヒートポンプ装置による冷房運転時に熱電出力装置の温熱出力を導いて吸着剤の再生脱着をなす吸着器、蒸発器および凝縮器とで構成される吸着式冷凍機と、この吸着式冷凍機の蒸発器で発生する冷熱出力と蒸気圧縮式ヒートポンプ装置の凝縮器の下流側冷媒とを熱交換させ、凝縮器の下流側冷媒を冷却する(第1の)熱交換手段と、吸着式冷凍機の凝縮器から導かれる冷媒を冷却する空冷式熱交換器と、この空冷式熱交換器の出口の冷媒と蒸気式ヒートポンプ装置の圧縮機に吸込まれる冷媒とを熱交換させ、空冷式熱交換器出口の冷媒を冷却する(第4の)熱交換手段とを具備する。
The composite air conditioner of the present invention is made to satisfy the above-described object, and includes a thermoelectric output device such as a fuel cell, a compressor driven by an electric output from the thermoelectric output device, a four-way switching valve, A vapor compression heat pump device that includes a condenser, a decompression device, and an evaporator and that can be switched between a cooling operation and a heating operation, and an adsorbent that guides the thermal output of the thermoelectric output device during the cooling operation by the vapor compression heat pump device Adsorption refrigerating machine composed of an adsorber, an evaporator and a condenser for regenerating and desorbing the refrigerant, the cold output generated in the evaporator of this adsorption refrigerating machine, and the refrigerant downstream of the condenser of the vapor compression heat pump device Heat exchange means for cooling the refrigerant downstream of the condenser, an air-cooled heat exchanger for cooling the refrigerant guided from the condenser of the adsorption refrigeration machine, and this air-cooled heat Exchange And a refrigerant sucked into the compressor of the refrigerant and vapor heat pump apparatus of the outlet of the vessel to heat exchange, the refrigerant in the air-cooled heat exchanger outlet for cooling (fourth); and a heat exchange means.

本発明によれば、熱電出力装置の電気出力により蒸気圧縮式ヒートポンプ装置を駆動し、熱電出力装置の温熱出力により吸着式冷凍機を介して蒸気圧縮式ヒートポンプ装置の出力を増加させ、よってシステム全体の総合効率の向上化を図れるなどの効果を奏する。   According to the present invention, the vapor compression heat pump device is driven by the electric output of the thermoelectric output device, and the output of the vapor compression heat pump device is increased by the thermal output of the thermoelectric output device via the adsorption refrigeration machine. There are effects such as improving the overall efficiency of the system.

[実施例1]
以下、本発明の実施例1を図1にもとずいて説明する。図1は、複合式空気調和装置のシステム系統図であって、冷房運転状態を示している。この複合式空気調和装置は、熱電出力装置である燃料電池1と、貯湯タンク2と、吸着式冷凍機(AHP)3および蒸気圧縮式ヒートポンプ装置(EHP)4とから構成される。
[Example 1]
The first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a system diagram of the composite air conditioner and shows a cooling operation state. This composite air conditioner includes a fuel cell 1 that is a thermoelectric output device, a hot water storage tank 2, an adsorption refrigeration machine (AHP) 3, and a vapor compression heat pump apparatus (EHP) 4.

上記燃料電池1は、燃料電池1の排熱を回収する蓄熱機器としての貯湯タンク2と水配管P1を介して連通され、これらで循環回路を構成している。貯湯タンク2内部には水が充填されるとともに、加熱部を備えた加熱配管(図示しない)が収容されていて、この加熱配管に燃料電池1の排熱が与えられ貯湯タンク2内の水を加熱するようになっている。さらに、水配管P1には貯湯タンク2の水または湯を循環させる図示しないポンプを備えている。   The fuel cell 1 communicates with a hot water storage tank 2 as a heat storage device for recovering the exhaust heat of the fuel cell 1 via a water pipe P1 and constitutes a circulation circuit. The hot water storage tank 2 is filled with water and a heating pipe (not shown) provided with a heating unit is accommodated, and the exhaust heat of the fuel cell 1 is given to the heating pipe so that the water in the hot water storage tank 2 is drained. It comes to heat. Further, the water pipe P1 is provided with a pump (not shown) that circulates the water in the hot water storage tank 2 or hot water.

上記吸着式冷凍機3は、冷凍機本体3A内に、シリカゲルやゼオライト等の吸着剤が充填される吸着器Aと、熱交換パイプからなる凝縮器Bおよび蒸発器Cが収容配置され、冷凍機本体3A外部には空冷式熱交換器Dが配置されてなる。   The adsorption refrigeration machine 3 accommodates and arranges an adsorber A filled with an adsorbent such as silica gel or zeolite, and a condenser B and an evaporator C composed of heat exchange pipes in a refrigerator main body 3A. An air-cooled heat exchanger D is arranged outside the main body 3A.

吸着器Aと凝縮器Bとは図示しない切換え弁を備えた回路を介して連通されている。吸着器A内の吸着剤を後述する手段によって加熱し、吸着剤に吸着された水やアルコールなどの吸着質(蒸気冷媒とも呼ばれる)を脱着して吸着剤を再生させる。脱着した吸着質を凝縮器Bに導き後述する手段によって冷却して、凝縮液化させる。   The adsorber A and the condenser B are communicated with each other through a circuit having a switching valve (not shown). The adsorbent in the adsorber A is heated by means to be described later, and adsorbate (also called vapor refrigerant) such as water and alcohol adsorbed on the adsorbent is desorbed to regenerate the adsorbent. The desorbed adsorbate is guided to the condenser B, cooled by means described later, and condensed and liquefied.

蒸発器Cは、凝縮器Bおよび吸着器Aと図示しない切換え弁を備えた回路を介して連通され、凝縮器Bで液化した吸着質を導いて後述する手段によって蒸発させ、蒸発した吸着質を吸着器Aに導びいて吸着剤に吸着させる。したがって、上記蒸発器Cで吸着質が蒸発する際に、蒸発潜熱による冷熱が出力される。空冷式熱交換器Dでは冷却水(冷媒)の熱を放熱し、凝縮器Bでの凝縮作用の補助をなす。   The evaporator C is communicated with the condenser B and the adsorber A through a circuit having a switching valve (not shown), guides the adsorbate liquefied by the condenser B, evaporates it by means described later, and removes the evaporated adsorbate. It leads to the adsorber A and is adsorbed by the adsorbent. Accordingly, when the adsorbate evaporates in the evaporator C, cold heat due to latent heat of vaporization is output. In the air-cooled heat exchanger D, the heat of the cooling water (refrigerant) is radiated to assist the condensing action in the condenser B.

上記蒸気圧縮式ヒートポンプ装置4は、圧縮機4aと、四方切換え弁4bと、室外熱交換器4cと、減圧装置(膨張弁)4dおよび室内熱交換器4eが冷媒管Paを介して順に接続され、四方切換え弁4bに対する切換え作用によって冷房運転と暖房運転の切換えが可能なヒートポンプ式冷凍サイクルが構成されている。   In the vapor compression heat pump device 4, a compressor 4a, a four-way switching valve 4b, an outdoor heat exchanger 4c, a decompression device (expansion valve) 4d, and an indoor heat exchanger 4e are sequentially connected via a refrigerant pipe Pa. A heat pump refrigeration cycle is configured that can be switched between a cooling operation and a heating operation by a switching action on the four-way switching valve 4b.

上記蒸気圧縮式ヒートポンプ装置4における室外熱交換器4cと減圧装置4dとの間には、室外熱交換器4cと減圧装置4dとの間に導かれる液冷媒と、上記吸着式冷凍機3の蒸発器Cで発生する冷熱出力とを熱交換させる第1の熱交換器(第1の熱交換手段)6が設けられる。   Between the outdoor heat exchanger 4c and the decompression device 4d in the vapor compression heat pump device 4, the liquid refrigerant guided between the outdoor heat exchanger 4c and the decompression device 4d and the evaporation of the adsorption refrigerator 3 are provided. A first heat exchanger (first heat exchanging means) 6 for exchanging heat with the cold output generated in the vessel C is provided.

上記圧縮機4aの吐出部と四方切換え弁4bとの間には、圧縮機4aから吐出される冷媒ガスと、燃料電池1で生成される温熱出力とを熱交換させる第2の熱交換器(第2の熱交換手段)5が設けられる。さらに、圧縮機4aの吸込み部と四方切換え弁4bとの間には、吸込み部に導かれる蒸発冷媒ガスと、吸着式冷凍機3で吸着器Aに充填される吸着剤を再生脱着した後の温熱とを熱交換させる第3の熱交換器(第3の熱交換手段)7が設けられる。   Between the discharge part of the said compressor 4a and the four-way switching valve 4b, the 2nd heat exchanger (with which heat exchange of the refrigerant | coolant gas discharged from the compressor 4a and the thermal output produced | generated by the fuel cell 1 is carried out. Second heat exchange means) 5 is provided. Further, between the suction part of the compressor 4a and the four-way switching valve 4b, the evaporated refrigerant gas guided to the suction part and the adsorbent filled in the adsorber A by the adsorption refrigeration machine 3 are regenerated and desorbed. A third heat exchanger (third heat exchanging means) 7 for exchanging heat with the heat is provided.

これら第1の熱交換器6と、第2の熱交換器5および、第3の熱交換器7は、燃料電池1と第2の水配管P2を介して連通されていて、この第2の水配管P2における第1の熱交換器6と第2の熱交換器5との間には、三方切換え弁構造の流路切換え弁8が設けられている。   The first heat exchanger 6, the second heat exchanger 5, and the third heat exchanger 7 are in communication with each other via the fuel cell 1 and the second water pipe P2. Between the first heat exchanger 6 and the second heat exchanger 5 in the water pipe P2, a flow path switching valve 8 having a three-way switching valve structure is provided.

このように構成された複合式空気調和装置において、冷房運転時には、流路切換え弁8が吸着式冷凍機3を構成する吸着器A側に切換えられている。燃料電池1で得られる電気出力をもって蒸気圧縮式ヒートポンプ装置4の圧縮機4aが駆動される。同時に、燃料電池1の排熱により加熱され温度上昇した温熱出力が第2の熱交換器5に導かれ、圧縮機4aから吐出される高温高圧ガスによってさらに加熱される。   In the composite air conditioner configured as described above, the flow path switching valve 8 is switched to the side of the adsorber A constituting the adsorption refrigeration machine 3 during the cooling operation. The compressor 4a of the vapor compression heat pump device 4 is driven with the electrical output obtained from the fuel cell 1. At the same time, the heat output that has been heated by the exhaust heat of the fuel cell 1 and increased in temperature is led to the second heat exchanger 5 and further heated by the high-temperature and high-pressure gas discharged from the compressor 4a.

温度上昇した高温水が吸着式冷凍機3の吸着器Aに導かれ、吸着器Aに充填される吸着剤を加熱し、吸着剤に吸着されている吸着質を吸着剤から脱着させる。脱着された吸着質は凝縮器Bに導かれ、空冷式熱交換器Dで放熱した低温の水と熱交換して凝縮液化する。凝縮器Bで液化した吸着質は蒸発器Cに導かれ、蒸発して冷熱が出力される。蒸発器Cで蒸発した吸着質は吸着器Aに導かれて、ここに充填されている吸着剤に吸着される。   The high-temperature water whose temperature has risen is led to the adsorber A of the adsorption refrigerator 3, and the adsorbent filled in the adsorber A is heated to desorb the adsorbate adsorbed on the adsorbent from the adsorbent. The desorbed adsorbate is guided to the condenser B, and is heat-exchanged with the low-temperature water radiated by the air-cooled heat exchanger D to be condensed and liquefied. The adsorbate liquefied by the condenser B is led to the evaporator C, where it is evaporated and cold heat is output. The adsorbate evaporated in the evaporator C is guided to the adsorber A and is adsorbed by the adsorbent filled therein.

吸着質は吸着器Aに導かれる燃料電池1の温熱出力によって加熱され、再び上述したサイクルを循環する。一方、蒸発器Cで発生した冷熱出力は第1の熱交換器6に導かれ、蒸気圧縮式ヒートポンプ装置4の室外熱交換器(凝縮器である)4cの下流側冷媒と熱交換し、下流側冷媒が冷却される。   The adsorbate is heated by the thermal output of the fuel cell 1 guided to the adsorber A, and circulates the cycle described above again. On the other hand, the cold output generated in the evaporator C is guided to the first heat exchanger 6 to exchange heat with the downstream refrigerant of the outdoor heat exchanger (condenser) 4c of the vapor compression heat pump device 4 and downstream. The side refrigerant is cooled.

吸着式冷凍機3の吸着器Aで吸着剤から吸着質を脱着した後の温熱が第3の熱交換器7に導かれ、ここで圧縮機4aの吸込み部を流通する蒸発冷媒ガスと熱交換する。吸着質を脱着した後の温熱が冷却され、この冷却された温熱が燃料電池1に戻って再び燃料電池1内で加熱昇温され、さらに第2の水配管P2を循環する。   The heat after the adsorbate is desorbed from the adsorbent by the adsorber A of the adsorption refrigerator 3 is guided to the third heat exchanger 7, where it exchanges heat with the evaporated refrigerant gas flowing through the suction portion of the compressor 4a. To do. The heat after desorption of the adsorbate is cooled, and the cooled heat returns to the fuel cell 1 and is heated again in the fuel cell 1, and further circulates through the second water pipe P2.

このようにして、燃料電池1と、蒸気圧縮式ヒートポンプ装置4と、吸着式冷凍機3との組合せで構成される複合式空気調和装置であり、燃料電池1の電気出力で蒸気圧縮式ヒートポンプ装置4を駆動し、燃料電池1の温熱出力で吸着式冷凍機3の蒸発器Cにおける冷熱出力を増大させる。その結果、蒸気圧縮式ヒートポンプ装置4の出力を増大させることになり、複合式空気調和装置として総合効率の向上化を得られる。   In this way, the combined air conditioner is configured by the combination of the fuel cell 1, the vapor compression heat pump device 4, and the adsorption refrigeration machine 3, and the vapor compression heat pump device according to the electric output of the fuel cell 1. 4 is driven to increase the cold output in the evaporator C of the adsorption refrigerator 3 by the hot output of the fuel cell 1. As a result, the output of the vapor compression heat pump device 4 is increased, and the overall efficiency can be improved as a combined air conditioner.

第1の熱交換器6を備えて、吸着式冷凍機3の蒸発器Cで出力される冷熱と、蒸気圧縮式ヒートポンプ装置4の凝縮器(室外熱交換器4c)の下流側冷媒とを熱交換させた。したがって、蒸気圧縮式ヒートポンプ装置4においては、図6のモリエル線図に示すように、外気温度以下の過冷却温度(ΔH1)が実現して、過冷却度を大きくとることができ、冷凍サイクル効率の向上が図れ、能力増大化が得られる。   The first heat exchanger 6 is provided to heat the cold output from the evaporator C of the adsorption refrigeration machine 3 and the downstream refrigerant of the condenser (outdoor heat exchanger 4c) of the vapor compression heat pump device 4. I exchanged it. Therefore, in the vapor compression heat pump device 4, as shown in the Mollier diagram of FIG. 6, a supercooling temperature (ΔH1) equal to or lower than the outside air temperature can be realized, and the degree of supercooling can be increased. Can be improved and the capacity can be increased.

同時に、吸着式冷凍機3の蒸発器Cによる冷熱で、蒸気圧縮式ヒートポンプ装置4の室外熱交換器(凝縮器)4c下流側冷媒を冷却するため、吸着式冷凍機3における蒸発器Cの冷熱を直接冷房に使用する方式(10〜15℃)に比べて高く(20〜30℃程度)設定でき、冷凍能力の増大化とともにCOPの向上化も図れる。   At the same time, in order to cool the refrigerant on the downstream side of the outdoor heat exchanger (condenser) 4c of the vapor compression heat pump device 4 by the cold heat of the evaporator C of the adsorption refrigerator 3, the cold heat of the evaporator C in the adsorption refrigerator 3 Can be set higher (about 20 to 30 ° C.) than the method (10 to 15 ° C.) that directly uses for cooling, and the COP can be improved as the refrigeration capacity increases.

特に、能力可変方式の圧縮機の場合は、運転周波数の低減化を得られて、同一能力基準ではCOP向上化を実現できる。燃料電池1のDC出力を直接、インバータに持ってくることも可能であり、この場合は、DC−AC変換や、AC−DC変換する際の電力変換ロスの低減を得られる。トータルとして、高効率のコージェネレーションシステムを構築することができる。   In particular, in the case of a variable capacity type compressor, a reduction in operating frequency can be obtained, and COP improvement can be realized with the same capacity standard. It is also possible to bring the DC output of the fuel cell 1 directly to the inverter. In this case, it is possible to reduce DC-AC conversion and power conversion loss when performing AC-DC conversion. Overall, a highly efficient cogeneration system can be constructed.

第2の熱交換器5を備えて、蒸気圧縮式ヒートポンプ装置4を構成する圧縮機4aから吐出される冷媒ガスと、燃料電池1の温熱出力とを熱交換させるようにしたから、燃料電池1の温熱出力の高温化を図ることができるとともに、吸着式冷凍機3における冷凍能力の増大化と効率の向上化が得られる。   Since the second heat exchanger 5 is provided to exchange heat between the refrigerant gas discharged from the compressor 4a constituting the vapor compression heat pump device 4 and the thermal output of the fuel cell 1, the fuel cell 1 As a result, it is possible to increase the refrigeration capacity and the efficiency of the adsorption refrigeration machine 3.

第3の熱交換器7を備えて、吸着式冷凍機3の吸着器Aで吸着剤から吸着質を脱着した後の温熱と、蒸気圧縮式ヒートポンプ装置4の圧縮機4aに吸込まれる蒸発冷媒ガスとを熱交換させるようにしたから、吸着器Aで吸着質を脱着した後の温熱を冷却でき、蒸気圧縮式ヒートポンプ装置4のサイクルCOPを保持した状態で燃料電池1の温熱の高温化が可能となる。そして、吸着式冷凍機3の戻り水温が冷却されるので、燃料電池1の冷却用として再利用できることになる。   The third heat exchanger 7 is provided, and the heat after the adsorbate is desorbed from the adsorbent by the adsorber A of the adsorption refrigeration machine 3, and the evaporative refrigerant sucked into the compressor 4a of the vapor compression heat pump device 4 Since the heat exchange with the gas is performed, the heat after the adsorbate is desorbed by the adsorber A can be cooled, and the temperature of the fuel cell 1 can be increased while the cycle COP of the vapor compression heat pump device 4 is maintained. It becomes possible. And since the return water temperature of the adsorption type refrigerator 3 is cooled, it can be reused for cooling the fuel cell 1.

なお、上述の構成では燃料電池1の温熱出力を吸着式冷凍機3の吸着器Aに直接導くようにしたが、これに限定されるものではなく、図1に破線で示すように、燃料電池1の温熱出力をもって加熱された貯湯タンク2の温水を上記吸着器Aに導く回路P3を備えてもよい。   In the above-described configuration, the thermal output of the fuel cell 1 is directly guided to the adsorber A of the adsorption refrigeration machine 3. However, the present invention is not limited to this, and as shown by a broken line in FIG. A circuit P3 that guides the hot water in the hot water storage tank 2 heated with a thermal output of 1 to the adsorber A may be provided.

図2(A)(B)は、吸着式冷凍機3の具体的構成で、かつ互いに異なる状態を示している。ここでは、第1の吸着器A1と第1の凝縮器B1および第1の蒸発器C1を収容するとともに吸着質を充填する第1の吸着塔E1と、第2の吸着器A2と第2の凝縮器B2および第2の蒸発器C2を収容するとともに吸着質を充填する第2の吸着塔E2を備え、別途、空冷式熱交換器Dが配置される。さらに、上述の各構成部品は水回路Wによって連通されていて、この水回路Wには構成部品に対して切換え操作をなす四方切換え弁F1,F2および三方切換え弁F3〜F6が設けられ、循環ポンプ9が接続される。   2A and 2B show a specific configuration of the adsorption refrigerator 3 and different states. Here, the first adsorber A1, the first condenser B1 and the first evaporator C1 are accommodated, and the first adsorber E1, which is filled with the adsorbate, the second adsorber A2, and the second adsorber. A second adsorption tower E2 that houses the condenser B2 and the second evaporator C2 and is filled with an adsorbate is provided, and an air-cooled heat exchanger D is disposed separately. Furthermore, the above-described components are communicated with each other by a water circuit W. The water circuit W is provided with four-way switching valves F1 and F2 and three-way switching valves F3 to F6 for switching the components. A pump 9 is connected.

上記四方切換え弁F1,F2と三方切換え弁F3〜F6の流路切換えによって、第1の吸着器A1と第2の吸着器A2に燃料電池1の温熱出力である高温水を交互に導くことができ、それによって、吸着器A1,A2において交互に吸着作用が行われて、連続的な冷凍出力を可能にしている。   By switching the flow paths of the four-way switching valves F1 and F2 and the three-way switching valves F3 to F6, high-temperature water as the thermal output of the fuel cell 1 can be alternately guided to the first adsorber A1 and the second adsorber A2. Thus, the adsorbing action is alternately performed in the adsorbers A1 and A2, thereby enabling continuous refrigeration output.

なお説明すると、図2(A)では、燃料電池1の温熱出力を第1の吸着器A1に導いて加熱し、吸着剤の脱着再生をなす。さらに、空冷式熱交換器Dで冷却された冷却水を第1の凝縮器B1に導いて熱交換させ脱着した吸着質を凝縮する。同時に、空冷式熱交換器Dで冷却された冷却水を第2の吸着器A2に導き、吸着剤を冷却して吸着質を吸着させるとともに、第2の蒸発器C2で吸着質を蒸発させ上記第1の熱交換器6に導かれる冷却水に冷熱を出力する。   2A, the thermal output of the fuel cell 1 is guided to the first adsorber A1 and heated to desorb and regenerate the adsorbent. Further, the cooling water cooled by the air-cooled heat exchanger D is guided to the first condenser B1 to exchange heat and condense the adsorbed desorbed. At the same time, the cooling water cooled by the air-cooled heat exchanger D is guided to the second adsorber A2, the adsorbent is cooled to adsorb the adsorbate, and the adsorbate is evaporated by the second evaporator C2. Cold heat is output to the cooling water led to the first heat exchanger 6.

図2(B)では、四方切換え弁F1,F2と三方切換え弁F3〜F6を切換えることにより、図2(A)とは全く逆の状態を示している。すなわち、燃料電池1の温熱出力を第2の吸着器A2に導いて加熱し、吸着剤の脱着再生をなす。空冷式熱交換器Dで冷却された冷却水を第2の凝縮器B2に導いて熱交換させ吸着質を凝縮する。同時に、空冷式熱交換器Dで冷却された冷却水を第1の吸着器A1に導き、吸着剤を冷却して吸着質を吸着させるとともに、第1の蒸発器C1で吸着質を蒸発させ上記第1の熱交換器6に導かれる冷却水に冷熱を出力する。   In FIG. 2B, by switching the four-way switching valves F1 and F2 and the three-way switching valves F3 to F6, a state completely opposite to that in FIG. That is, the thermal output of the fuel cell 1 is guided to the second adsorber A2 and heated to desorb and regenerate the adsorbent. The cooling water cooled by the air-cooling heat exchanger D is guided to the second condenser B2 to exchange heat and condense the adsorbate. At the same time, the cooling water cooled by the air-cooled heat exchanger D is led to the first adsorber A1, the adsorbent is cooled to adsorb the adsorbate, and the adsorbate is evaporated by the first evaporator C1. Cold heat is output to the cooling water led to the first heat exchanger 6.

なお、ここでは第1,第2の吸着器A1,A2と、第1,第2の凝縮器B1,B2および第1,第2の蒸発器C1,C2を同じ第1,第2の吸着塔E1,E2内に配置しているが、それぞれ別の吸着塔内に収納してバルブで接続する方式を採用してもよい。   Here, the first and second adsorbers A1 and A2, the first and second condensers B1 and B2, and the first and second evaporators C1 and C2 are the same as the first and second adsorption towers. Although arranged in E1 and E2, a method of storing in separate adsorption towers and connecting with valves may be adopted.

図3は、図1に示した複合式空気調和装置と同一のサイクル構成で、蒸気圧縮式ヒートポンプ装置4において四方切換え弁4bを暖房運転に切換えた状態を示している。この暖房運転時には、吸着式冷凍機3の運転は行われず、流路切換え弁8は除霜運転時など必要に応じて吸着式冷凍機3の蒸発器C側に切換えられている。   FIG. 3 shows a state in which the four-way switching valve 4b is switched to the heating operation in the vapor compression heat pump device 4 with the same cycle configuration as that of the combined air conditioner shown in FIG. During this heating operation, the adsorption refrigeration machine 3 is not operated, and the flow path switching valve 8 is switched to the evaporator C side of the adsorption refrigeration machine 3 as necessary, such as during a defrosting operation.

しかして、燃料電池1の温熱出力と、蒸気圧縮式ヒートポンプ装置4の圧縮機4aから吐出されるガスとが第2の熱交換器5において熱交換され、温熱出力が加熱される。この加熱された温熱出力は流路切換え弁8を介して吸着式冷凍機3の蒸発器C側に導かれ、暖房運転時に凝縮器となる室内熱交換器4eを介して減圧装置4dを通過したあとの、蒸発器となる室外熱交換器4c上流側の冷媒と、第1の熱交換器6において熱交換する。   Thus, the heat output of the fuel cell 1 and the gas discharged from the compressor 4a of the vapor compression heat pump device 4 are heat-exchanged in the second heat exchanger 5, and the heat output is heated. The heated thermal output is guided to the evaporator C side of the adsorption refrigeration machine 3 through the flow path switching valve 8, and passes through the pressure reducing device 4d through the indoor heat exchanger 4e that becomes a condenser during heating operation. Heat exchange is performed in the first heat exchanger 6 with the refrigerant on the upstream side of the outdoor heat exchanger 4c, which becomes the evaporator.

室内熱交換器4eを介して減圧装置4dを通過した冷媒は、第1の熱交換器6で温度上昇した温熱出力によって加熱され、温度上昇した状態で室外熱交換器4cに導かれる。したがって、室外熱交換器4cに霜が付着している場合であっても、温度上昇した冷媒が室外熱交換器4cを加熱して除霜をなし、除霜時間の短縮化を図れる。通常の除霜運転のように、四方切換え弁4bを冷房運転サイクルに切換える必要がなく、切換え時の騒音低下と、室温変動の低減を図り、快適性の向上化を得られる。   The refrigerant that has passed through the decompression device 4d through the indoor heat exchanger 4e is heated by the thermal output that has risen in temperature in the first heat exchanger 6, and is guided to the outdoor heat exchanger 4c in a state in which the temperature has risen. Therefore, even when frost is attached to the outdoor heat exchanger 4c, the refrigerant whose temperature has increased can heat the outdoor heat exchanger 4c to perform defrosting and shorten the defrosting time. Unlike the normal defrosting operation, it is not necessary to switch the four-way switching valve 4b to the cooling operation cycle, and noise reduction at the time of switching and room temperature fluctuation can be reduced, thereby improving comfort.

具体的には、燃料電池1の低温出力(約60℃)が第2の熱交換器5において圧縮機4aの吐出ガス温度(約105℃)により加熱昇温(〜約80℃)され、吸着式冷凍機3に出力されるので、吸着式冷凍機3の冷凍能力が大になるとともに、蒸気圧縮式ヒートポンプ装置4の性能向上が得られて、暖房運転時も高温の湯を供給でき、除霜時間が短縮化する。   Specifically, the low temperature output (about 60 ° C.) of the fuel cell 1 is heated and heated (up to about 80 ° C.) by the discharge gas temperature (about 105 ° C.) of the compressor 4a in the second heat exchanger 5 and adsorbed. Output to the refrigerating machine 3, the refrigerating capacity of the adsorption refrigerating machine 3 is increased, the performance of the vapor compression heat pump device 4 is improved, and hot water can be supplied even during heating operation. The frost time is shortened.

蒸気圧縮式ヒートポンプ装置4側では、図6のモリエル線図におけるΔH2に示すように吸込み温度のスーパーヒート量が増加し、吐出温度も高温化して、圧縮仕事の増加なしに暖房能力アップおよび給湯追い炊きなどに利用可能となる。   On the vapor compression heat pump device 4 side, as shown by ΔH2 in the Mollier diagram of FIG. 6, the superheat amount of the suction temperature increases, the discharge temperature also rises, and the heating capacity is increased and the hot water supply is increased without increasing the compression work. It can be used for cooking.

[実施例2]
つぎに、実施例2を図4にもとづいて説明する。後述する部位を除いて他の構成は全て同一であり、同一構成部品には同番号を付して新たな説明は省略する。
[Example 2]
Next, Example 2 will be described with reference to FIG. Except for the parts to be described later, all other configurations are the same, and the same components are denoted by the same reference numerals, and a new description is omitted.

ここでは、蒸気圧縮式ヒートポンプ装置4を構成する圧縮機4aの吸込み部に吸込まれる蒸発冷媒ガスと、吸着式冷凍機3の空冷式熱交換器Dにおいて放熱した後の冷媒(冷水)とを熱交換する、第4の熱交換器(第4の熱交換手段)10を備えている。
Here, the evaporative refrigerant gas sucked into the suction portion of the compressor 4a constituting the vapor compression heat pump device 4 and the refrigerant (cold water) after releasing heat in the air-cooled heat exchanger D of the adsorption refrigerator 3 A fourth heat exchanger (fourth heat exchange means) 10 is provided for heat exchange .

そして、上記空冷式熱交換器Dにおいて放熱した後の冷媒(冷水)が第4の熱交換器10に導かれ、圧縮機4aの吸込み部に吸込まれる蒸発冷媒ガスと熱交換し、そのあと、吸着式冷凍機3を構成する凝縮器Bに導かれる回路P4を備えている。   Then, the refrigerant (cold water) after radiating heat in the air-cooled heat exchanger D is guided to the fourth heat exchanger 10 to exchange heat with the evaporated refrigerant gas sucked into the suction portion of the compressor 4a, and then The circuit P4 led to the condenser B constituting the adsorption refrigerator 3 is provided.

このような構成をなしているので、空冷式熱交換器Dにおいて放熱した後の冷媒(冷水)が、第4の熱交換器10において圧縮機4aの吸込み部に吸込まれる蒸発冷媒ガスによって冷却される。その冷却された冷媒(冷水)が吸着式冷凍機3を構成する凝縮器Bに導かれるので、外気温度が高い条件下にあっても、吸着式冷凍機3における凝縮能力が向上することとなり、冷凍能力の増大に繋げられ、併せて空冷式熱交換器Dの小型化が可能となる。   With this configuration, the refrigerant (cold water) after radiating heat in the air-cooled heat exchanger D is cooled by the evaporated refrigerant gas sucked into the suction portion of the compressor 4a in the fourth heat exchanger 10. Is done. Since the cooled refrigerant (cold water) is guided to the condenser B constituting the adsorption refrigeration machine 3, the condensing capacity in the adsorption refrigeration machine 3 is improved even under a high outside air temperature condition. This leads to an increase in the refrigerating capacity, and at the same time, the air-cooled heat exchanger D can be downsized.

[実施例3]
つぎに実施例3を図5にもとづいて説明する。ここでは、燃料電池1と貯湯タンク2および蒸気圧縮式ヒートポンプ装置4とで複合式空気調和装置を構成しており、先に説明した吸着式冷凍機は備えていないことを特徴としている。
[Example 3]
Next, Embodiment 3 will be described with reference to FIG. Here, the fuel cell 1, the hot water storage tank 2, and the vapor compression heat pump device 4 constitute a combined air conditioner, and the above-described adsorption refrigeration machine is not provided.

そして、蒸気圧縮式ヒートポンプ装置4の圧縮機4aから吐出される冷媒ガスと、上記燃料電池1の温熱出力とを熱交換させる第5の熱交換器(第5の熱交換手段)20を備え、かつ圧縮機4aに吸込まれる蒸発冷媒ガスと、燃料電池1の温熱出力とを熱交換させる第6の熱交換器(第6の熱交換手段)30を備えている。   And it is provided with a fifth heat exchanger (fifth heat exchanging means) 20 for exchanging heat between the refrigerant gas discharged from the compressor 4a of the vapor compression heat pump device 4 and the thermal output of the fuel cell 1. In addition, a sixth heat exchanger (sixth heat exchange means) 30 that exchanges heat between the evaporated refrigerant gas sucked into the compressor 4a and the warm output of the fuel cell 1 is provided.

したがって、第6の熱交換器30において燃料電池1の温熱出力を利用して圧縮機4aに吸込まれる冷媒を、図6のモリエル線図でΔH3に示すように加熱でき、その結果、圧縮機4aから吐出される冷媒ガスの温度上昇を得られる。そして、第5の熱交換器20において圧縮機4aから吐出される冷媒ガスで燃料電池1からの温熱出力を再加熱し昇温させる。このようにして、貯湯タンク2に貯湯される温水に対して追い炊きが可能となり、しかも蒸気圧縮式ヒートポンプ装置4における効率には何らの影響もない。   Therefore, the refrigerant sucked into the compressor 4a using the thermal output of the fuel cell 1 in the sixth heat exchanger 30 can be heated as shown by ΔH3 in the Mollier diagram of FIG. 6, and as a result, the compressor The temperature rise of the refrigerant gas discharged from 4a can be obtained. And in the 5th heat exchanger 20, the thermal output from the fuel cell 1 is reheated and heated up with the refrigerant gas discharged from the compressor 4a. In this way, the hot water stored in the hot water storage tank 2 can be reheated, and the efficiency of the vapor compression heat pump device 4 is not affected.

さらに、本発明は前記実施例の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施できることは勿論である。   Furthermore, the present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the present invention.

本発明の実施例1に係る、複合式空気調和装置のサイクル構成図で冷房運転状態を表している。The cooling operation state is represented by the cycle configuration diagram of the composite air conditioner according to the first embodiment of the present invention. 同実施例1に係る、吸着式冷凍機の具体的な構成と、互いに異なる作用状態を示す図。The figure which shows the specific structure of an adsorption | suction type refrigerator based on the Example 1, and an action state which is mutually different. 同実施例1に係る、暖房運転状態を表す図。The figure showing the heating operation state based on the Example 1. FIG. 本発明の実施例2に係る、複合式空気調和装置のサイクル構成図。The cycle block diagram of the composite air conditioner based on Example 2 of this invention. 本発明の実施例3に係る、複合式空気調和装置のサイクル構成図。The cycle block diagram of the composite air conditioner based on Example 3 of this invention. 本発明の複合式空気調和装置に係るモリエル線図。The Mollier diagram which concerns on the composite air conditioner of this invention.

符号の説明Explanation of symbols

1…燃料電池(熱電出力装置)、4a…圧縮機、4…蒸気圧縮式ヒートポンプ装置、A…吸着器、3…吸着式冷凍機、C…蒸発器、4c…室外熱交換器(冷房運転時の凝縮器)、6…第1の熱交換器(第1の熱交換手段)、4e…室内熱交換器(暖房運転時の凝縮器)、5…第2の熱交換器(第2の熱交換手段)、7…第3の熱交換器(第3の熱交換手段)、D…空冷式熱交換器、10…第4の熱交換器(第4の熱交換手段)、2…貯湯タンク、20…第5の熱交換器(第5の熱交換手段)、30…第6の熱交換器(第6の熱交換手段)。   DESCRIPTION OF SYMBOLS 1 ... Fuel cell (thermoelectric output device), 4a ... Compressor, 4 ... Vapor compression heat pump device, A ... Adsorber, 3 ... Adsorption refrigeration machine, C ... Evaporator, 4c ... Outdoor heat exchanger (at the time of cooling operation) ), 6... 1st heat exchanger (first heat exchanging means), 4 e... Indoor heat exchanger (condenser during heating operation), 5... Second heat exchanger (second heat) Exchange means), 7 ... third heat exchanger (third heat exchange means), D ... air-cooled heat exchanger, 10 ... fourth heat exchanger (fourth heat exchange means), 2 ... hot water storage tank , 20 ... fifth heat exchanger (fifth heat exchange means), 30 ... sixth heat exchanger (sixth heat exchange means).

Claims (1)

燃料電池等の熱電出力装置と、
この熱電出力装置による電気出力をもって駆動される圧縮機、四方切換え弁、凝縮器、減圧装置および蒸発器を備え、冷房運転と暖房運転との切換えが可能な蒸気圧縮式ヒートポンプ装置と、
上記熱電出力装置の温熱出力を導いて吸着剤に吸着された吸着質を脱着させる吸着器と、この吸着器で脱着した吸着質を導いて凝縮液化する凝縮器および液化した吸着質を導いて蒸発させ冷熱を出力する蒸発器とで構成される吸着式冷凍機と、
上記蒸気圧縮式ヒートポンプ装置による冷房運転時に、吸着式冷凍機の蒸発器で発生する冷熱出力と、上記蒸気圧縮式ヒートポンプ装置の凝縮器の下流側冷媒とを熱交換させ、凝縮器の下流側冷媒を冷却する熱交換手段と、
上記吸着式冷凍機の凝縮器から導かれる冷媒を冷却する空冷式熱交換器と、
この空冷式熱交換器の出口の冷媒と、上記蒸気式ヒートポンプ装置の圧縮機に吸込まれる冷媒とを熱交換させ、上記空冷式熱交換器出口の冷媒を冷却する熱交換手段と、を具備することを特徴とする複合式空気調和装置。
A thermoelectric output device such as a fuel cell;
A vapor compression heat pump device that includes a compressor driven by an electric output by the thermoelectric output device, a four-way switching valve, a condenser, a decompression device, and an evaporator, and capable of switching between a cooling operation and a heating operation;
An adsorber for desorbing the adsorbate adsorbed on the adsorbent by guiding the thermal output of the thermoelectric output device, a condenser for guiding the adsorbate desorbed by this adsorber to condense and liquefying, and an adsorbate for liquefying the adsorbate An adsorption refrigeration machine composed of an evaporator that outputs cold heat and
During the cooling operation by the vapor compression heat pump device, the cold output generated in the evaporator of the adsorption refrigeration machine and the downstream refrigerant of the condenser of the vapor compression heat pump device are heat-exchanged, and the downstream refrigerant of the condenser Heat exchange means for cooling ,
An air-cooled heat exchanger that cools the refrigerant led from the condenser of the adsorption refrigerator,
Heat exchange means for exchanging heat between the refrigerant at the outlet of the air-cooled heat exchanger and the refrigerant sucked into the compressor of the steam heat pump device to cool the refrigerant at the outlet of the air-cooled heat exchanger. A combined air conditioner.
JP2003323209A 2003-09-16 2003-09-16 Combined air conditioner Expired - Fee Related JP4430363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003323209A JP4430363B2 (en) 2003-09-16 2003-09-16 Combined air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003323209A JP4430363B2 (en) 2003-09-16 2003-09-16 Combined air conditioner

Publications (2)

Publication Number Publication Date
JP2005090825A JP2005090825A (en) 2005-04-07
JP4430363B2 true JP4430363B2 (en) 2010-03-10

Family

ID=34454351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003323209A Expired - Fee Related JP4430363B2 (en) 2003-09-16 2003-09-16 Combined air conditioner

Country Status (1)

Country Link
JP (1) JP4430363B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1714792A1 (en) 2005-03-28 2006-10-25 Konica Minolta Holdings, Inc. Inkjet recording medium and method for producing the same
US9593872B2 (en) 2009-10-27 2017-03-14 Mitsubishi Electric Corporation Heat pump
JP5362618B2 (en) * 2010-02-25 2013-12-11 アイシン精機株式会社 Air conditioner
JP5974541B2 (en) * 2012-02-29 2016-08-23 株式会社富士通ゼネラル Air conditioning system
JP6015123B2 (en) * 2012-05-18 2016-10-26 アイシン精機株式会社 Combined cold heat generator
US10551097B2 (en) 2014-11-12 2020-02-04 Carrier Corporation Refrigeration system
DE102015118736B4 (en) * 2015-11-02 2021-10-07 Fachhochschule Stralsund Method and device for energy supply and air conditioning and stationary or mobile application for this
WO2017103939A1 (en) * 2015-12-18 2017-06-22 Bry-Air [Asia] Pvt. Ltd. Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
WO2019069598A1 (en) * 2017-10-06 2019-04-11 株式会社デンソー Adsorber and adsorption-type refrigerator
JP2019070509A (en) * 2017-10-06 2019-05-09 株式会社デンソー Adsorber and adsorptive refrigeration machine
KR102339927B1 (en) * 2021-05-28 2021-12-17 삼중테크 주식회사 Hybrid absorption heat pump with Improved cooling and heating efficiency

Also Published As

Publication number Publication date
JP2005090825A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4407082B2 (en) Heating element cooling system and thermal management system
JP5379137B2 (en) Two-stage low-temperature air-cooled adsorption cooling equipment and method for operating the cooling equipment
JP5757796B2 (en) Solar thermal air conditioning system
JP4430363B2 (en) Combined air conditioner
KR101360975B1 (en) Adsorption cooling system using marine engine waste heat
KR100827570B1 (en) Heatpump for waste heat recycle of adsorption type refrigerator
JP2011208828A (en) Air conditioning system using steam adsorbent
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
JP5240040B2 (en) Refrigeration equipment
JP2002250573A (en) Air conditioner
JP6613404B2 (en) Refrigeration system
JP2005098586A (en) Air conditioner
JP4086011B2 (en) Refrigeration equipment
JP2015151093A (en) Air conditioner
JP2005331147A (en) Power generating and air-conditioning system
JP3918239B2 (en) Adsorption refrigeration system
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP4069691B2 (en) Air conditioner for vehicles
JP5310224B2 (en) Refrigeration equipment
JP2002130738A (en) Air conditioner
JP5402187B2 (en) Refrigeration equipment
JPH11223415A (en) Refrigerating device
JPH11223416A (en) Refrigerating device
JP2000111196A (en) Cooling/heating and hot water supply system
JPH11281190A (en) Double adsorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees