JP4429348B2 - IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD - Google Patents

IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD Download PDF

Info

Publication number
JP4429348B2
JP4429348B2 JP2007242388A JP2007242388A JP4429348B2 JP 4429348 B2 JP4429348 B2 JP 4429348B2 JP 2007242388 A JP2007242388 A JP 2007242388A JP 2007242388 A JP2007242388 A JP 2007242388A JP 4429348 B2 JP4429348 B2 JP 4429348B2
Authority
JP
Japan
Prior art keywords
image
photoelectric conversion
signal
color
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007242388A
Other languages
Japanese (ja)
Other versions
JP2008042944A (en
Inventor
伸弘 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007242388A priority Critical patent/JP4429348B2/en
Publication of JP2008042944A publication Critical patent/JP2008042944A/en
Application granted granted Critical
Publication of JP4429348B2 publication Critical patent/JP4429348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、被写体像を撮像する撮像装置に関する。   The present invention relates to an imaging apparatus that captures a subject image.

CCDやCMOSセンサ等の固体撮像素子で撮像した静止画像や動画像を電子的、磁気的に各種メディアに記録及び再生するディジタルカメラ等の撮像装置がある。   There are imaging devices such as a digital camera that records and reproduces still images and moving images captured by a solid-state imaging device such as a CCD or CMOS sensor electronically and magnetically on various media.

それら撮像装置の低価格化や性能改善のため、撮像素子に用いられる半導体基板の光吸収係数が光の波長によって異なることに着目した米国特許第5965875号明細書に記載されている如き撮像素子(図6参照)がある。   In order to reduce the price and improve the performance of these image pickup devices, an image pickup device as described in US Pat. No. 5,965,875 focusing on the fact that the light absorption coefficient of a semiconductor substrate used in the image pickup device varies depending on the wavelength of light ( (See FIG. 6).

同特許には、フォトダイオードをトリプルウエル構造で形成した、3層フォトダイオード構造の撮像素子の原理と画素回路が説明されている。同特許によれば、フォトダイオードはp型シリコン基板表面から順次拡散され、n型層、p型層、n型層をこの順に深く形成することで、同一画素にpn接合ダイオードがシリコンの深さ方向に3層形成される。ダイオードに表面側から入射した光は波長の長いものほど深く侵入する。入射波長と吸収係数はシリコン固有の値を示すので、上記3層のダイオードから別々に電流を検出することで、異なる波長帯の光信号を検出できる。   This patent describes the principle and pixel circuit of a three-layer photodiode structure imaging device in which a photodiode is formed in a triple well structure. According to this patent, photodiodes are sequentially diffused from the surface of a p-type silicon substrate, and an n-type layer, a p-type layer, and an n-type layer are formed deeply in this order, so that a pn junction diode is formed at the depth of silicon in the same pixel. Three layers are formed in the direction. Light entering the diode from the surface side penetrates deeper as the wavelength is longer. Since the incident wavelength and the absorption coefficient show values specific to silicon, optical signals in different wavelength bands can be detected by separately detecting current from the three-layer diode.

3層のフォトダイオードは可視光の波長帯をカバーするようにpn接合の深さが設計される。3つの信号を演算処理することで、被写体像をR色、G色、B色の3色に色分解した信号を得ることが出来る。   In the three-layer photodiode, the depth of the pn junction is designed so as to cover the wavelength band of visible light. By calculating the three signals, a signal obtained by color-separating the subject image into three colors of R, G, and B can be obtained.

このような撮像素子を用いることで、被写体像の色分解を行うためのカラーフィルタや空間的サンプリングによるモアレを防止する光学ローパスフィルタ等を削減する事が出来る。また、被写体像を色分解したそれぞれの色において、感度重心が一致しており色モアレが出難い利点がある。
米国特許第5965875号明細書
By using such an image sensor, it is possible to reduce a color filter for color separation of a subject image, an optical low-pass filter for preventing moire due to spatial sampling, and the like. Further, each color obtained by color-separating the subject image has an advantage that the sensitivity centroids coincide with each other and color moiré is difficult to occur.
US Pat. No. 5,965,875

しかしながら、半導体の深さ方向で色分解を行う撮像素子においては、暗電流のように、その発生個所が半導体の深さ方向で一定でないノイズがあると、同一画素であっても色毎に異なったノイズとなり画像を劣化させる。   However, in an image sensor that performs color separation in the depth direction of a semiconductor, if there is noise that is not constant in the depth direction of the semiconductor, such as dark current, even in the same pixel, it differs for each color. Noise and deteriorates the image.

また、上記のような撮像素子においては同一画素のそれぞれの色に対応した3つのフォトダイオードのうち、上下方向に隣接している2つのフォトダイオードがpn接合を通じて互いに容量結合している。また、光電変換により発生した電荷フォトダイオードに蓄積されるにつれ、フォトダイオードの容量が変化する。そのため、ある層フォトダイオードの電位は、他の層のフォトダイオードに蓄積されている電荷量にも影響を受けることになる。さらに、最上層のフォトダイオードが飽和すると、このダイオードで過剰になった電子は、上から2層目のp型層でできたポテンシャル障壁を乗り越えて、最下層のフォトダイオードのn型領域に流入する。したがって、半導体の局部的な結晶欠陥に起因する白キズ等がある場合、欠陥の無い深さの色の信号にも影響を及ぼし画像を劣化させる。   In the imaging device as described above, two photodiodes adjacent in the vertical direction among the three photodiodes corresponding to the respective colors of the same pixel are capacitively coupled to each other through a pn junction. Further, the capacitance of the photodiode changes as it is accumulated in the charge photodiode generated by the photoelectric conversion. Therefore, the potential of a certain layer photodiode is also affected by the amount of charge accumulated in the photodiodes of other layers. Further, when the uppermost photodiode is saturated, the excess electrons in the diode overcome the potential barrier formed by the second p-type layer from the top and flow into the n-type region of the lowermost photodiode. To do. Therefore, when there are white flaws or the like due to local crystal defects in the semiconductor, the color signal without a defect is also affected and the image is deteriorated.

本発明の目的は、半導体の深さ方向で色分解行う固体撮像素子の暗電流ノイズや白キズ等による画質劣化を低減出来る固体撮像装置およびその制御方法を提供することである。   An object of the present invention is to provide a solid-state imaging device and a control method thereof that can reduce image quality degradation due to dark current noise, white scratches, and the like of a solid-state imaging device that performs color separation in the depth direction of a semiconductor.

上記課題を解決するため、本願に係る発明は、半導体の深さ方向に複数の光電変換部を有する画素を複数配列した撮像領域と、前記撮像領域の欠陥画素を検出する検出手段と、前記欠陥画素の補正を行う際に、同一画素内の深さ方向の前記複数の光電変換部からの信号の各々に対して補正を行う補正手段を有し、前記検出手段が同一画素内の一つの光電変換部からの信号に対して補正が必要であることを検出した場合に、前記補正手段が前記同一画素内の他の光電変換部からの信号に対しても補正を行うことを特徴とする撮像装置を提供するものである。   In order to solve the above-described problems, the present invention relates to an imaging region in which a plurality of pixels each having a plurality of photoelectric conversion units are arranged in the depth direction of a semiconductor, detection means for detecting defective pixels in the imaging region, and the defect When performing pixel correction, the pixel has correction means for correcting each of the signals from the plurality of photoelectric conversion units in the depth direction in the same pixel, and the detection means is one photoelectric sensor in the same pixel. An image pickup characterized in that, when it is detected that correction is required for a signal from a conversion unit, the correction unit also corrects a signal from another photoelectric conversion unit in the same pixel. A device is provided.

同様に上記課題を解決するため、本願に係る発明は、半導体の深さ方向に複数の光電変換部を有する画素を複数配列した撮像領域の欠陥画素を検出する検出工程と、前記欠陥画素の補正を行う際に、同一画素内の深さ方向の前記複数の光電変換部からの信号の各々に対して補正を行う補正工程を有し、前記検出工程において同一画素内の一つの光電変換部からの信号に対して補正が必要であることを検出した場合に、前記補正工程において前記同一画素内の他の光電変換部からの信号に対しても補正を行うことを特徴とする撮像装置の制御方法を提供するものである。   Similarly, in order to solve the above-described problem, the present invention relates to a detection step of detecting a defective pixel in an imaging region in which a plurality of pixels having a plurality of photoelectric conversion units are arranged in a semiconductor depth direction, and correction of the defective pixel A correction step of correcting each of the signals from the plurality of photoelectric conversion units in the depth direction in the same pixel, and from the one photoelectric conversion unit in the same pixel in the detection step When it is detected that the signal needs to be corrected, in the correction step, the signal from other photoelectric conversion units in the same pixel is also corrected. A method is provided.

本発明によれば、半導体の深さ方向に複数の光電変換部を有する画素を複数配列した撮像領域を有する撮像装置にて、良好な画像を得ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain a favorable image in the imaging device which has the imaging area which arranged the pixel which has several photoelectric conversion parts in the depth direction of the semiconductor.

(第1の実施の形態)
図1に本発明の第1の実施の形態の撮像装置の構成を示す。
(First embodiment)
FIG. 1 shows the configuration of an imaging apparatus according to the first embodiment of the present invention.

図1において1は撮影光学系、2はシャッター、3は撮像素子、4は増幅回路、5はA/D変換器、6は前信号処理部、7は色分離スイッチ、8は切替スイッチ、9は画像メモリ、10は減算器、11はキズデータメモリ、12はキズ補正処理部、13は後信号処理部、14は記録部、15は表示部である。   In FIG. 1, 1 is a photographing optical system, 2 is a shutter, 3 is an image sensor, 4 is an amplifier circuit, 5 is an A / D converter, 6 is a front signal processing unit, 7 is a color separation switch, 8 is a changeover switch, 9 Is an image memory, 10 is a subtractor, 11 is a flaw data memory, 12 is a flaw correction processing unit, 13 is a post signal processing unit, 14 is a recording unit, and 15 is a display unit.

図1を用いて本発明の第1の実施の形態を説明する。   A first embodiment of the present invention will be described with reference to FIG.

撮像素子3は図6のような半導体の深さ方向に複数の光電変換部であるフォトダイオ−ドを有する画素を複数配列した撮像領域を持つ撮像素子である。キズデータメモリ11には、あらかじめ検出された撮像素子3のキズデータ(欠陥画素の位置)が記憶されている。このキズデータは例えば遮光状態で撮影した画像からある閾値を超えた画素の位置を検出することで求める。   The image pickup device 3 is an image pickup device having an image pickup region in which a plurality of pixels having photodiodes as a plurality of photoelectric conversion units are arranged in the depth direction of a semiconductor as shown in FIG. The flaw data memory 11 stores flaw data (positions of defective pixels) of the image sensor 3 detected in advance. For example, the scratch data is obtained by detecting the position of a pixel that exceeds a certain threshold from an image captured in a light-shielded state.

撮影光学系1で結像された被写体像は、適切な露光量になるように制御駆動されるシャッター2を介して、撮像素子3で電気信号に変換される。増幅回路4では、A/D変換器5の入力レンジに最適になるように増幅、あるいはレベルシフトされる。A/D変換器5で、アナログ信号をデジタル化する。前信号処理部6では、デジタル化された画像データに対しクランプ等の黒レベル調整を行う。この時、3個の切替スイッチ8はそれぞれ、画像メモリ側に接続される。色分離スイッチ7は撮像素子3から出力される画像信号をそれぞれの色に対応した画像メモリに記憶するよう駆動される。つまり、深さ方向で1番浅い位置のフォトダイオ−ドからの信号は画像メモリRに、深さ方向で2番浅い位置のフォトダイオ−ドからの信号は画像メモリGに、深さ方向で一番深い位置のフォトダイオ−ドからの信号は画像メモリBに、記憶される。これで、色分解された被写体像の画像データが画像メモリ9に記憶される。   The subject image formed by the photographing optical system 1 is converted into an electric signal by the image pickup device 3 via the shutter 2 that is controlled and driven so as to obtain an appropriate exposure amount. In the amplifier circuit 4, the signal is amplified or level-shifted so as to be optimal for the input range of the A / D converter 5. The analog signal is digitized by the A / D converter 5. The previous signal processing unit 6 performs black level adjustment such as clamping on the digitized image data. At this time, each of the three change-over switches 8 is connected to the image memory side. The color separation switch 7 is driven to store the image signal output from the image sensor 3 in an image memory corresponding to each color. That is, the signal from the photodiode at the shallowest position in the depth direction is sent to the image memory R, and the signal from the photodiode at the shallowest position in the depth direction is sent to the image memory G in the depth direction. A signal from the photodiode at the deepest position is stored in the image memory B. Thus, the image data of the subject image subjected to color separation is stored in the image memory 9.

その後、シャッター2が閉じた状態、すなわち撮像素子3が遮光された状態で被写体の撮影と同じ蓄積時間の撮影を行う。この時、3個の切替スイッチ8は画像メモリ9と反対方向すなわち減算器10側に接続される。また、画像メモリ9は遮光された画像データと同じ位置の被写体像の画像データを減算器10に出力する。このことにより、減算器10からは撮像素子の暗電流に起因するムラや微小なキズが補正された被写体像の画像データが出力される。また、これらの補正は、撮像素子3で分解されたそれぞれの色毎に独立して行っている。つまり、深さ方向で1番浅い位置のフォトダイオ−ドからの暗電流信号は画像メモリRに記憶された信号との差分処理、深さ方向で2番浅い位置のフォトダイオ−ドからの暗電流信号は画像メモリGに記憶された信号との差分処理、深さ方向で一番深い位置のフォトダイオ−ドからの暗電流信号は画像メモリBに記憶された信号との差分処理が行われる。   Thereafter, shooting is performed for the same accumulation time as shooting of the subject in a state where the shutter 2 is closed, that is, in a state where the image sensor 3 is shielded from light. At this time, the three change-over switches 8 are connected in the opposite direction to the image memory 9, that is, on the subtractor 10 side. Further, the image memory 9 outputs image data of the subject image at the same position as the shielded image data to the subtracter 10. As a result, the subtracter 10 outputs image data of the subject image in which unevenness and minute scratches due to the dark current of the image sensor are corrected. These corrections are performed independently for each color separated by the image sensor 3. That is, the dark current signal from the photodiode at the shallowest position in the depth direction is subjected to differential processing with the signal stored in the image memory R, and the dark current signal from the photodiode at the shallowest position in the depth direction. The current signal is subjected to differential processing with the signal stored in the image memory G, and the dark current signal from the photodiode at the deepest position in the depth direction is subjected to differential processing with the signal stored in the image memory B. .

以上のように、本実施の形態の撮像装置は、半導体の深さ方向に少なくとも第1、第2、第3の光電変換部を有する画素を複数配列した撮像領域と、撮像領域を遮光した状態で前記第1の光電変換部で得られる信号と、撮像領域で被写体像を撮像することにより前記第1の光電変換部で得られる信号との差分処理と、撮像領域を遮光した状態で前記第2の光電変換部で得られる信号と、撮像領域で被写体像を撮像することにより前記第2の光電変換部で得られる信号との差分処理と、撮像領域を遮光した状態で前記第3の光電変換部で得られる信号と、撮像領域で被写体像を撮像することにより前記第3の光電変換部で得られる信号との差分処理とを行う9は画像メモリ及び10は減算器からなる第1の補正手段とを有するため、それぞれの色に異なったノイズがある場合でも補正できる。   As described above, in the imaging device of the present embodiment, the imaging region in which a plurality of pixels having at least the first, second, and third photoelectric conversion units are arranged in the semiconductor depth direction, and the imaging region is shielded from light The difference processing between the signal obtained by the first photoelectric conversion unit and the signal obtained by the first photoelectric conversion unit by capturing a subject image in the imaging region, and the first region while the imaging region is shielded from light. Difference processing between a signal obtained by the second photoelectric conversion unit and a signal obtained by the second photoelectric conversion unit by capturing a subject image in the imaging region, and the third photoelectric conversion in a state where the imaging region is shielded from light. Difference processing between the signal obtained by the conversion unit and the signal obtained by the third photoelectric conversion unit by capturing a subject image in the imaging region is performed. 9 is an image memory and 10 is a first subtractor composed of a subtractor. Each of which has a correction means. It can be corrected, even if there is a different noise.

キズ補正処理部12では、あらかじめキズデータメモリ11に記憶されたキズデータに基づきキズ補正処理を行う。キズ補正された画像データは後信号処理部11で色処理等を行った後、記録部12、表示部13に送られ記録、あるいは表示が行われる。   The scratch correction processing unit 12 performs scratch correction processing based on the scratch data stored in the scratch data memory 11 in advance. The defect-corrected image data is subjected to color processing and the like by the post-signal processing unit 11 and then sent to the recording unit 12 and the display unit 13 for recording or display.

図2、図3、図4を用いてキズ補正処理を説明する。図2は色分解され画像メモリ9に記憶されている被写体像の画像信号のR色のm列n行目付近である。この例では、m列n行目の画素のR色があらかじめキズとして検出されキズデータメモリ11に記憶されている。キズ補正処理部12では、キズデータメモリ11がキズの位置情報を読み出し、キズ位置の画像データを周辺画素の同色の画像データで置き換え補間する。図2の場合、m列n行目の画素のR色がキズであるので、たとえばm−1列n行目の画素のR色の画像データRaとm+1列n行目の画素のR色の画像データRcを用い、その平均値をm列n行目の画素のR色の画像データとする。   The scratch correction process will be described with reference to FIGS. 2, 3, and 4. FIG. 2 shows the vicinity of the m-th column and the n-th row of the R color of the image signal of the subject image that has been color-separated and stored in the image memory 9. In this example, the R color of the pixel in the m-th column and the n-th row is detected as a scratch in advance and stored in the scratch data memory 11. In the flaw correction processing unit 12, the flaw data memory 11 reads flaw position information, and the image data at the flaw position is replaced with the same color image data of the surrounding pixels and interpolated. In the case of FIG. 2, since the R color of the pixel in the m-th column and the n-th row is scratched, for example, the R color image data Ra of the pixel in the (m−1) -th row and the n-th row and the R color of the pixel in the m + 1-th row and the n-th row The image data Rc is used, and the average value is set as the R color image data of the pixel in the m-th column and the n-th row.

図3はG色の、図4B色の被写体像の画像信号のm列n行目付近である。図3、図4のm列n行目の画素Gb、Bbは、あらかじめキズとして検出されていない。しかし、本発明では、図2のように同一画素の他の色がキズである場合、同様にすべての色の画像データにキズ補正を行う。したがって、G色の画像データGbはGaとGcの平均値に置き換えられる。同様にB色の画像データBbはBaとBcの平均値に置き換えられる。このように同一画素のどれか一つの色の画像信号があらかじめキズとして検出されている場合、すべて色の画像信号に対して同様なキズ補正処理を行うことによって、その構造上、欠陥の無い深さの色の信号にも影響を及ぼすことによる画像劣化を防ぐことが出来る。   3 shows the vicinity of the m-th column and the n-th row of the image signal of the subject image of the G color in FIG. 4B. The pixels Gb and Bb in the m-th column and the n-th row in FIGS. 3 and 4 are not detected as scratches in advance. However, in the present invention, when other colors of the same pixel are flawed as shown in FIG. 2, flaw correction is similarly performed on image data of all colors. Accordingly, the G color image data Gb is replaced with an average value of Ga and Gc. Similarly, the B-color image data Bb is replaced with an average value of Ba and Bc. In this way, when an image signal of any one color of the same pixel is detected as a scratch in advance, a similar defect correction process is performed on the image signal of all the colors, so that there is no defect in the structure. It is possible to prevent image deterioration caused by affecting the color signal.

以上のように、本実施の形態の撮像装置では、半導体の深さ方向に複数の光電変換部を有する画素を複数配列した撮像領域と、欠陥画素の補正をする場合に、同一画素内の深さ方向の前記複数の光電変換部からの信号の各々の補正を行うキズデ−タメモリ11とキズ補正処理部からなる第2の補正手段とを有するため、確実にキズ補正が可能となる。   As described above, in the imaging apparatus of this embodiment, when correcting an imaging region in which a plurality of pixels having a plurality of photoelectric conversion units are arranged in the depth direction of a semiconductor and a defective pixel, the depth within the same pixel is corrected. Since the scratch data memory 11 for correcting each of the signals from the plurality of photoelectric conversion units in the vertical direction and the second correction means including the scratch correction processing unit are provided, it is possible to surely perform the scratch correction.

上記で説明した実施の形態では、画像メモリ9の前段は、時系列的に信号が送られてくる構成となっているが、撮像素子から画像メモリR、画像メモリG、画像メモリBに並列に出力されるように、4は増幅回路、5はA/D変換器、6は前信号処理部をそれぞれ並列に設ける構成であってもよい。この場合、撮像素子からは、同一画素の半導体の深さ方向の3つの光電変換部からの信号が並列に読み出される構成となる。   In the embodiment described above, the preceding stage of the image memory 9 is configured to send signals in time series, but in parallel to the image memory R, the image memory G, and the image memory B from the image sensor. 4 may be configured to provide an amplifier circuit, 5 an A / D converter, and 6 a pre-signal processing unit in parallel. In this case, the image sensor has a configuration in which signals from three photoelectric conversion units in the depth direction of the semiconductor of the same pixel are read in parallel.

(第2の実施の形態)
図5に本発明第2の実施の形態の撮像装置の構成を示す。図5において、図1と同一の構成要素には、同一の番号を付し説明を省略する。16はキズ検出回路、17はキズデータ混合回路である。
(Second Embodiment)
FIG. 5 shows a configuration of an imaging apparatus according to the second embodiment of the present invention. In FIG. 5, the same components as those in FIG. Reference numeral 16 denotes a flaw detection circuit, and reference numeral 17 denotes a flaw data mixing circuit.

図5を用いて本発明の第2の実施例を説明する。撮像素子3は従来例で示した3層フォトダイオード構造の撮像素子である。キズ検出回路16は、シャッター2が閉じた状態、すなわち撮像素子3が遮光された状態で撮影された、遮光時の画像データから、暗電流に起因するキズを検出する。その方法は、例えば、検出対象画素の画像データ値と、周辺の画素の画像データの平均値との比あるいは差が規定値以上のものをキズと判断し、キズデータとして出力する。   A second embodiment of the present invention will be described with reference to FIG. The image sensor 3 is an image sensor having a three-layer photodiode structure shown in the conventional example. The flaw detection circuit 16 detects a flaw caused by a dark current from image data when the shutter 2 is closed, that is, in a state where the image sensor 3 is shielded from light, when the light is shielded. In this method, for example, if the ratio or difference between the image data value of the detection target pixel and the average value of the image data of the surrounding pixels is equal to or greater than a specified value, it is determined as a scratch and is output as scratch data.

それぞれの色毎に検出されたキズデータはキズデータ混合回路により、同一画素のどれか一つの色がキズである場合であっても、その画素位置がキズであるデータに合成される。   Scratch data detected for each color is synthesized by the scratch data mixing circuit into data in which the pixel position is scratch even if any one color of the same pixel is scratch.

撮影光学系1で結像された被写体像は、適切な露光量になるように制御駆動されるシャッター2を介して、撮像素子3で電気信号に変換さる。増幅回路4では、A/D変換器5の入力レンジに最適になるように増幅、あるいはレベルシフトされる。A/D変換器5で、アナログ信号をデジタル化する。前信号処理部5では、デジタル化された画像データに対しクランプ等の黒レベル調整を行う。この時、3個の切替スイッチ8はそれぞれ、画像メモリ9側に接続される。色分離スイッチ7は撮像素子3から出力される画像信号をそれぞれの色に対応した画像メモリ9に記憶するよう駆動される。これで、色分解された被写体像の画像データが画像メモリ9に記憶される。その後、シャッター2が閉じた状態、すなわち撮像素子3が遮光された状態で被写体の撮影と同じ蓄積時間の撮影を行う。この時、3個の切替スイッチ8は画像メモリ9と反対方向すなわち減算器10側に接続される。同時に、遮光された画像データは、それぞれの色毎にキズ検出回路16に入力される。キズ検出回路16は前述したキズ検出を行いそれぞれの色毎のキズデータを出力する。また、画像メモリ9は遮光された画像データと同じ位置の被写体像の画像データを減算器10に出力する。このことにより、減算器10からは撮像素子の暗電流に起因するムラや微小なキズが補正された被写体像の画像データが出力される。また、これらの補正は、撮像素子3で分解されたそれぞれの色毎に独立して行っているため、それぞれの色に異なったノイズがある場合でも補正できる。キズ補正処理部12では、3個のキズ検出回路16から出力されるキズデータをキズデータ混合回路17で合成した後のキズデータに基づきキズ補正処理を行う。キズ補正された画像データは後信号処理部11で色処理等を行った後、記録部12、表示部13に送られ記録、あるいは表示が行われる。すべての色のキズデータをキズデータ混合回路17で合成した後、キズ補正処理部12で補正を行うので、その構造上、欠陥の無い深さの色の信号にも影響を及ぼすことによる画像劣化を防ぐことが出来る。また、あらかじめ、キズデータを用意する必要が無く、キズ補正が行える。   The subject image formed by the photographing optical system 1 is converted into an electrical signal by the image sensor 3 via the shutter 2 that is controlled and driven so as to have an appropriate exposure amount. In the amplifier circuit 4, the signal is amplified or level-shifted so as to be optimal for the input range of the A / D converter 5. The analog signal is digitized by the A / D converter 5. The front signal processing unit 5 performs black level adjustment such as clamping on the digitized image data. At this time, each of the three selector switches 8 is connected to the image memory 9 side. The color separation switch 7 is driven to store the image signal output from the image sensor 3 in the image memory 9 corresponding to each color. Thus, the image data of the subject image subjected to color separation is stored in the image memory 9. Thereafter, shooting is performed for the same accumulation time as shooting of the subject in a state where the shutter 2 is closed, that is, in a state where the image sensor 3 is shielded from light. At this time, the three change-over switches 8 are connected in the opposite direction to the image memory 9, that is, on the subtractor 10 side. At the same time, the shaded image data is input to the scratch detection circuit 16 for each color. The flaw detection circuit 16 performs the flaw detection described above and outputs flaw data for each color. Further, the image memory 9 outputs image data of the subject image at the same position as the shielded image data to the subtracter 10. As a result, the subtracter 10 outputs image data of the subject image in which unevenness and minute scratches due to the dark current of the image sensor are corrected. In addition, since these corrections are performed independently for each color separated by the image sensor 3, correction can be performed even when there is a different noise in each color. The flaw correction processing unit 12 performs flaw correction processing based on flaw data after the flaw data output from the three flaw detection circuits 16 are combined by the flaw data mixing circuit 17. The defect-corrected image data is subjected to color processing and the like by the post-signal processing unit 11 and then sent to the recording unit 12 and the display unit 13 for recording or display. Since the defect data mixing circuit 17 combines the defect data of all the colors and the correction is performed by the defect correction processing unit 12, the image deterioration due to the influence on the color signal having a defect-free depth due to its structure. Can be prevented. Further, it is not necessary to prepare scratch data in advance, and scratch correction can be performed.

以上のように、本実施の形態の撮像装置は、半導体の深さ方向に複数の光電変換部を有する画素を複数配列した撮像領域と、欠陥画素の補正をする場合に、同一画素内の深さ方向の前記複数の光電変換部からの信号の各々の補正を行うキズ検出回路16、キズデータ混合回路17、及びキズ補正処理部12からなる第2の補正手段とを有する撮像装置を持つため、確実にキズ補正が可能となる。   As described above, the imaging device according to the present embodiment has an imaging region in which a plurality of pixels each having a plurality of photoelectric conversion units are arranged in the depth direction of a semiconductor, and a depth within the same pixel when correcting defective pixels. In order to have an image pickup apparatus having a second correction unit including a flaw detection circuit 16, a flaw data mixing circuit 17, and a flaw correction processing unit 12 for correcting each of the signals from the plurality of photoelectric conversion units in the vertical direction. Scratch correction can be reliably performed.

上記で説明した実施の形態では、画像メモリ9の前段は、時系列的に信号が送られてくる構成となっているが、撮像素子から画像メモリR、画像メモリG、画像メモリBに並列に出力されるように、4は増幅回路、5はA/D変換器、6は前信号処理部をそれぞれ並列に設ける構成であってもよい。この場合、撮像素子からは、同一画素の半導体の深さ方向の3つの光電変換部からの信号が並列に読み出される構成となる。また、キズデータの検出は被写体画像撮影後としているが、例えば撮像装置の電源投入後、あるいは被写体の撮影前等、撮像装置の制御時間に余裕がある時に行っても良い。   In the embodiment described above, the preceding stage of the image memory 9 is configured to send signals in time series, but in parallel to the image memory R, the image memory G, and the image memory B from the image sensor. 4 may be configured to provide an amplifier circuit, 5 an A / D converter, and 6 a pre-signal processing unit in parallel. In this case, the image sensor has a configuration in which signals from three photoelectric conversion units in the depth direction of the semiconductor of the same pixel are read in parallel. In addition, the flaw data is detected after photographing the subject image, but may be performed when the control time of the imaging device is sufficient, for example, after the imaging device is turned on or before photographing the subject.

なお、上記の実施の形態1、2においては、半導体の深さ方向で色分離する撮像素子の色分解数はR、G、Bの3色としているが、2色あるいは、それ以上何色であっても良い。つまり、半導体の深さ方向に少なくとも第1、第2の光電変換部を持つ構成の撮像素子である。   In the first and second embodiments described above, the number of color separations of the image sensor that performs color separation in the depth direction of the semiconductor is three colors of R, G, and B. However, the number of colors is two or more. There may be. That is, the imaging device has a configuration having at least first and second photoelectric conversion units in the depth direction of the semiconductor.

また、上記の実施の形態1、2においては、暗電流を補正する回路(第1の補正手段)及び欠陥画素を補正する回路(第2の補正手段)のいずれも有する回路を示したが、いずれか一方の回路を持つ構成であってもよい。   In the first and second embodiments, a circuit having both a circuit for correcting dark current (first correction unit) and a circuit for correcting defective pixels (second correction unit) is shown. It may be configured to have either one of the circuits.

本発明の第1の実施の形態の撮像装置の構成図である。It is a block diagram of the imaging device of the 1st Embodiment of this invention. R色のキズ補正を説明する図である。It is a figure explaining the damage correction of R color. G色のキズ補正を説明する図である。It is a figure explaining the defect correction of G color. B色のキズ補正を説明する図である。It is a figure explaining the defect correction of B color. 本発明の第2の実施の形態の撮像装置の構成図である。It is a block diagram of the imaging device of the 2nd Embodiment of this invention. 半導体の深さ方向にフォトダイオードを有する画素を説明する図である。It is a figure explaining the pixel which has a photodiode in the depth direction of a semiconductor.

符号の説明Explanation of symbols

1 撮影光学系
2 シャッター
3 撮像素子
4 増幅回路
5 A/D変換器
6 前信号処理部
7 色分離スイッチ
8 切替スイッチ
9 画像信号メモリ
10 減算器
11 キズデータメモリ
12 キズ補正処理部
13 後信号処理部
14 記録部
15 表示部
16 キズ検出回路
17 キズデータ混合回路
DESCRIPTION OF SYMBOLS 1 Image pick-up optical system 2 Shutter 3 Image pick-up element 4 Amplifying circuit 5 A / D converter 6 Front signal processing part 7 Color separation switch 8 Changeover switch 9 Image signal memory 10 Subtractor 11 Scratch data memory 12 Scratch correction processing part 13 Post signal processing Section 14 Recording section 15 Display section 16 Scratch detection circuit 17 Scratch data mixing circuit

Claims (2)

半導体の深さ方向に複数の光電変換部を有する画素を複数配列した撮像領域と、
前記撮像領域の欠陥画素を検出する検出手段と、
前記欠陥画素の補正を行う際に、同一画素内の深さ方向の前記複数の光電変換部からの信号の各々に対して補正を行う補正手段を有し、
前記検出手段が同一画素内の一つの光電変換部からの信号に対して補正が必要であることを検出した場合に、前記補正手段が前記同一画素内の他の光電変換部からの信号に対しても補正を行うことを特徴とする撮像装置。
An imaging region in which a plurality of pixels having a plurality of photoelectric conversion units are arranged in the depth direction of the semiconductor;
Detecting means for detecting defective pixels in the imaging region;
A correction unit that corrects each of the signals from the plurality of photoelectric conversion units in the depth direction in the same pixel when correcting the defective pixel;
When the detection unit detects that the signal from one photoelectric conversion unit in the same pixel needs to be corrected, the correction unit detects the signal from the other photoelectric conversion unit in the same pixel. Even if it corrects, the imaging device characterized by the above-mentioned.
半導体の深さ方向に複数の光電変換部を有する画素を複数配列した撮像領域の欠陥画素を検出する検出工程と、
前記欠陥画素の補正を行う際に、同一画素内の深さ方向の前記複数の光電変換部からの信号の各々に対して補正を行う補正工程を有し、
前記検出工程において同一画素内の一つの光電変換部からの信号に対して補正が必要であることを検出した場合に、前記補正工程において前記同一画素内の他の光電変換部からの信号に対しても補正を行うことを特徴とする撮像装置の制御方法。
A detection step of detecting defective pixels in an imaging region in which a plurality of pixels having a plurality of photoelectric conversion units are arranged in the depth direction of the semiconductor;
A correction step of correcting each of the signals from the plurality of photoelectric conversion units in the depth direction in the same pixel when correcting the defective pixel;
When it is detected in the detection step that correction is required for a signal from one photoelectric conversion unit in the same pixel, in the correction step, a signal from another photoelectric conversion unit in the same pixel is detected. Even if it corrects, the control method of the imaging device characterized by the above-mentioned.
JP2007242388A 2007-09-19 2007-09-19 IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD Expired - Lifetime JP4429348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242388A JP4429348B2 (en) 2007-09-19 2007-09-19 IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242388A JP4429348B2 (en) 2007-09-19 2007-09-19 IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002108232A Division JP4035356B2 (en) 2002-04-10 2002-04-10 Imaging apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2008042944A JP2008042944A (en) 2008-02-21
JP4429348B2 true JP4429348B2 (en) 2010-03-10

Family

ID=39177370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242388A Expired - Lifetime JP4429348B2 (en) 2007-09-19 2007-09-19 IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP4429348B2 (en)

Also Published As

Publication number Publication date
JP2008042944A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4035356B2 (en) Imaging apparatus and control method thereof
US9071781B2 (en) Image capturing apparatus and defective pixel detection method
JP5526014B2 (en) Imaging device
US8441560B2 (en) Image capturing apparatus and control method therefor
US8497925B2 (en) Solid-state imaging device, color filter arrangement method therefor and image recording apparatus
WO2018198766A1 (en) Solid-state image capturing device and electronic instrument
US8416325B2 (en) Imaging apparatus and color contamination correction method
JP3636046B2 (en) Pixel defect detection method for solid-state image sensor and imaging device using the method
JP2010147785A (en) Solid-state image sensor and imaging apparatus, and image correction method of the same
US7443430B2 (en) Image sensing apparatus and method for correcting signal from image sensing device by using signal correction amount
US20080158397A1 (en) Solid-state imaging apparatus and signal processing method
US20090174801A1 (en) Method and apparatus for identification and correction of aberrant pixels in an image sensor
JP5028371B2 (en) Imaging device
JP2008109639A (en) Imaging device and imaging method
JPH06284346A (en) Automatic defect detector for solid-state image pickup device
JP5411322B2 (en) Imaging apparatus and imaging method
JP4429348B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP2006074172A (en) Image signal processing circuit, camera and image signal processing method
US20230179878A1 (en) Image sensor and camera
JP2007143067A (en) Image sensing device and image sensing system
JP6701269B2 (en) Image processing apparatus and image processing method
JP2009159596A (en) Ccd signal processing device and image sensing device
JP2009303020A (en) Image capturing apparatus and defective pixel correcting method
JP2010178384A (en) Image signal processing circuit, camera and image signal processing method
JP2017208651A (en) Imaging apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4429348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

EXPY Cancellation because of completion of term