JP4427439B2 - Manufacturing method for hollow forging steel and cylindrical forging - Google Patents

Manufacturing method for hollow forging steel and cylindrical forging Download PDF

Info

Publication number
JP4427439B2
JP4427439B2 JP2004350277A JP2004350277A JP4427439B2 JP 4427439 B2 JP4427439 B2 JP 4427439B2 JP 2004350277 A JP2004350277 A JP 2004350277A JP 2004350277 A JP2004350277 A JP 2004350277A JP 4427439 B2 JP4427439 B2 JP 4427439B2
Authority
JP
Japan
Prior art keywords
steel
steel ingot
ingot
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004350277A
Other languages
Japanese (ja)
Other versions
JP2006159213A (en
Inventor
元裕 長尾
克茂 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004350277A priority Critical patent/JP4427439B2/en
Publication of JP2006159213A publication Critical patent/JP2006159213A/en
Application granted granted Critical
Publication of JP4427439B2 publication Critical patent/JP4427439B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、中空状の鍛造用鋼材の製法と筒状鍛造品の製法に関するものである。   The present invention relates to a method for producing a hollow forging steel material and a method for producing a cylindrical forged product.

筒状の鍛造品は、鋳型に真空鋳造法または下注ぎ鋳造法で溶鋼を鋳込んだ後、該鋳型内で凝固させて鋼塊を得、この鋼塊を圧縮し、次いで圧縮方向に沿って中心部を軸方向に抜いた後、鍛造して製造される。このとき用いられる鋳型には一般的に押湯部が設けられている。押湯部は外部から加熱されており押湯部内の溶鋼は保温されている。そのため押湯部内の溶鋼は最終凝固部となり、引け巣等の欠陥や成分偏析が集中しているため、品質が悪い。そこで鍛造品の品質を確保するため、凝固後に鋼塊から押湯部を切断・除去する必要がある。しかし押湯部の質量は、鋼塊全体の質量に対して10%以上を占めるため、押湯部に相当する部分を切断除去すると歩留まりが低下する。しかも押湯部を切断するため加工コストも必要となる。こうしたことから押湯部の無い鋳型を用いて鍛造用鋼材を製造する方法が望まれていた。   A cylindrical forged product is obtained by casting molten steel into a mold by vacuum casting or down-casting, then solidifying the mold to obtain a steel ingot, compressing the steel ingot, and then along the compression direction. It is manufactured by forging the center part in the axial direction and then forging. The mold used at this time is generally provided with a feeder part. The feeder part is heated from the outside, and the molten steel in the feeder part is kept warm. Therefore, the molten steel in the feeder part becomes the final solidified part, and defects such as shrinkage and component segregation are concentrated, so the quality is poor. Therefore, in order to ensure the quality of the forged product, it is necessary to cut and remove the feeder part from the steel ingot after solidification. However, since the mass of the feeder part occupies 10% or more with respect to the mass of the entire steel ingot, the yield decreases when the portion corresponding to the feeder part is cut and removed. In addition, the cutting cost is also required to cut the feeder part. For these reasons, there has been a demand for a method for producing a steel for forging using a mold having no feeder.

押湯部の無い鋳型を用いた鍛造用インゴットの製造方法として、特許文献1の技術が提案されている。この技術では、インゴットの高さ/インゴットの直径比を1.3以下とすると共に、下注鋳造時から溶湯が固化するまでの間、溶湯上面の冷却を遅らせるために断熱材で溶湯の上面を覆っている。しかしこの技術は、板状製品や中空製品に適合した形態のインゴットを製造するものであり、インゴット内に生成する引け巣等の欠陥や成分偏析については考慮されていなかった。そのため本発明者らが検討したところインゴット内には欠陥や成分偏析が生じており、こうした部分を除去して筒状の鍛造品を製造するにはインゴットの中心部の大部分を抜き取らなければならず、歩留まりが著しく低下する。   As a method for manufacturing a forging ingot using a mold without a feeder part, the technique of Patent Document 1 has been proposed. In this technique, the ingot height / ingot diameter ratio is set to 1.3 or less, and the top surface of the molten metal is covered with a heat insulating material in order to delay the cooling of the molten metal upper surface from the time of casting to solidification of the molten metal. Covering. However, this technique manufactures an ingot in a form suitable for a plate-like product or a hollow product, and has not taken into account defects such as shrinkage nests generated in the ingot and component segregation. Therefore, as a result of investigations by the present inventors, defects and component segregation are generated in the ingot, and in order to produce a cylindrical forged product by removing such a portion, it is necessary to extract most of the central portion of the ingot. Therefore, the yield is significantly reduced.

また上記特許文献1では、下注鋳造時からインゴットの上面を断熱材で覆っている。しかし下注鋳造時にインゴットの上面を断熱材で覆うと、断熱材が溶鋼に巻きこまれて燃焼することがありボイリングの原因となる。そのため結果として鋼塊に介在物を生成させたり、浸炭性ガスが発生して浸炭を引き起こすことがあった。
特開昭55−22490号公報(特許請求の範囲、第2頁右上欄参照)
Moreover, in the said patent document 1, the upper surface of the ingot is covered with the heat insulating material from the time of subcast casting. However, if the upper surface of the ingot is covered with a heat insulating material during the subcast casting, the heat insulating material may be wound around the molten steel and burnt, which causes boiling. As a result, inclusions may be generated in the steel ingot, and carburizing gas may be generated to cause carburization.
Japanese Patent Laid-Open No. 55-22490 (see claims, upper right column on page 2)

本発明は、この様な状況に鑑みてなされたものであり、その目的は、押湯部の無い鋳型を用いて鋳込んだ鋼塊の中心部を抜いて中空状の鍛造用鋼材を製造するに当たり、鋼塊から抜く部分を少なくすることによって歩留まりを高めると共に、抜く部分を少なくしても引け巣等の欠陥や成分偏析が少ない高品質の中空状の鍛造用鋼材を製造できる方法を提供することにある。また、他の目的は、こうした製法で得られた中空状の鍛造用鋼材を鍛造することにより、高品質な筒状の鍛造品を製造する方法を提供することにある。   This invention is made | formed in view of such a condition, The objective is drawing the center part of the steel ingot cast using the casting_mold | template without a feeder part, and manufacturing the hollow steel material for forging. At the same time, the yield is improved by reducing the number of parts extracted from the steel ingot, and a method for producing a high-quality hollow forging steel with less defects such as shrinkage and component segregation is provided even if the number of extracted parts is reduced. There is. Another object is to provide a method for producing a high-quality cylindrical forged product by forging a hollow forging steel material obtained by such a production method.

本発明者らは、中空状の鍛造用鋼材を製造する際に、歩留まりを高めると共に、中空状の鍛造用鋼材の品質を高めるべく鋭意検討を重ねた。その結果、鋳型に鋳込んだ溶鋼の表面を保温する条件を規定すると共に、凝固して得られる鋼塊の形状を厳密に特定してやれば、上記課題が見事に解決されることを見出し、本発明を完成した。   The inventors of the present invention have earnestly studied to increase the yield and the quality of the hollow forging steel material when manufacturing the hollow forging steel material. As a result, it has been found that the above problem can be solved brilliantly if the conditions for keeping the surface of the molten steel cast in the mold are specified and the shape of the steel ingot obtained by solidification is specified strictly. Was completed.

即ち、本発明に係る中空状の鍛造用鋼材の製法とは、中空状の鍛造用鋼材を製造する方法であって、押湯部の無い鋳型に、真空鋳造法または下注ぎ鋳造法で溶鋼を鋳込む工程、溶鋼を鋳込んだ後、該溶鋼の表面を保温材で覆って溶鋼を凝固させる工程、得られた鋼塊を圧縮する工程、および該圧縮方向に沿って中心部を軸方向に抜く工程を含み、前記凝固鋼塊の形状を高さHと直径Dの比(H/D比)が1.3〜2とし、前記保温材の厚みを50〜500mmとし、前記抜く工程では、圧縮後の鋼塊の直径をDpとしたとき、直径0.1×Dp〜0.5×Dpの円柱を中心部として抜く点に要旨を有する。前記鋳型の形状は特に限定されないが、円柱状や菊型形状のものを用いることができる。   That is, the method for producing a hollow forging steel material according to the present invention is a method for producing a hollow forging steel material, in which molten steel is applied to a mold without a feeder part by a vacuum casting method or a down-pour casting method. A casting step, after casting the molten steel, a step of solidifying the molten steel by covering the surface of the molten steel with a heat insulating material, a step of compressing the obtained steel ingot, and a central portion in the axial direction along the compression direction Including the step of removing, the ratio of the height H to the diameter D (H / D ratio) of the shape of the solidified steel ingot is 1.3 to 2, the thickness of the heat insulating material is 50 to 500 mm, When the diameter of the steel ingot after compression is set to Dp, it has a gist in that a cylinder having a diameter of 0.1 × Dp to 0.5 × Dp is extracted as a central part. The shape of the mold is not particularly limited, but a columnar or chrysanthemum shape can be used.

本発明に係る筒状鍛造品の製法とは、上記中空状の鍛造用鋼材の製法で得られた中空状の鍛造用鋼材を鍛造して筒状に成形する点に要旨を有する。   The manufacturing method of the cylindrical forged product according to the present invention has a gist in that the hollow forging steel material obtained by the manufacturing method of the hollow forging steel material is forged into a cylindrical shape.

本発明によれば、鋳型に鋳込んだ溶鋼の表面を保温する条件を規定すると共に、鋳型に鋳込む鋼塊の形状を厳密に特定することによって、中空状の鍛造用鋼材を製造する際における歩留まりを高めることができ、中空状の鍛造用鋼材の品質をも高めることができる。こうした製法で得られた中空状の鍛造用鋼材を用いれば、高品質な筒状鍛造品を製造できる。   According to the present invention, the conditions for maintaining the surface of the molten steel cast into the mold are specified, and the shape of the steel ingot to be cast into the mold is strictly specified, thereby producing a hollow forging steel material. The yield can be increased, and the quality of the hollow forging steel can also be improved. If the hollow steel for forging obtained by such a manufacturing method is used, a high-quality cylindrical forged product can be manufactured.

本発明に係る中空状の鍛造用鋼材の製法は、
(a)押湯部の無い鋳型に、真空鋳造法または下注ぎ鋳造法で溶鋼を鋳込む工程、
(b)溶鋼を鋳込んだ後、該溶鋼の表面を保温材で覆って溶鋼を凝固させる工程、
(c)得られた鋼塊を圧縮する工程、および
(d)圧縮方向に沿って中心部を軸方向に抜く工程
を含むところに特徴を有し、得られる凝固鋼塊の形状は、高さHと直径Dの比(H/D比)を1.3〜2とし、前記保温材の厚みを50〜500mmとする他、前記抜く工程では、圧縮後の鋼塊の直径をDpとしたとき、直径0.1×Dp〜0.5×Dpの円柱を中心部として抜くことが重要である。
The method for producing the hollow forging steel according to the present invention is as follows:
(A) a step of casting molten steel into a mold without a feeder part by a vacuum casting method or a bottom casting method,
(B) After casting the molten steel, a step of solidifying the molten steel by covering the surface of the molten steel with a heat insulating material;
(C) the step of compressing the obtained steel ingot, and (d) the step of removing the central portion in the axial direction along the compression direction. When the ratio of H to diameter D (H / D ratio) is 1.3 to 2, the thickness of the heat insulating material is 50 to 500 mm, and in the extracting step, the diameter of the steel ingot after compression is Dp It is important to pull out a cylinder having a diameter of 0.1 × Dp to 0.5 × Dp as a central portion.

まず、溶鋼を凝固させた鋼塊の形状について説明する。溶鋼を凝固させた鋼塊の形状は、高さをH、直径をDとしたとき、H/D比が1.3〜2の円柱状とする。こうした形状にすることによって、溶鋼が凝固するときにおける半径方向の冷却速度を大きくでき、素早く凝固させることができる。そのため鋼塊内に生じる引け巣等の欠陥や成分偏析は、鋼塊の中心軸近傍に集中する。その結果、欠陥や成分偏析が生じた中心部を抜き取ったとしても、抜き取る部分の半径方向の大きさを小さくできるため、歩留まりを高めることができる。好ましいH/D比は1.3超であり、より好ましくは1.4以上である。しかしH/D比が2を超えると、鋼塊のうち上方部の広範囲に亘って欠陥が発生ため、欠陥を含む部分を完全に除去できない。好ましいH/D比は1.9以下であり、より好ましくは1.8以下である。   First, the shape of a steel ingot obtained by solidifying molten steel will be described. The shape of the steel ingot obtained by solidifying the molten steel is a cylindrical shape having an H / D ratio of 1.3 to 2 where the height is H and the diameter is D. By adopting such a shape, it is possible to increase the cooling rate in the radial direction when the molten steel solidifies and to solidify quickly. For this reason, defects such as shrinkage and component segregation occurring in the steel ingot are concentrated in the vicinity of the central axis of the steel ingot. As a result, even if the central portion where defects or component segregation occurs is extracted, the radial size of the extracted portion can be reduced, so that the yield can be increased. A preferred H / D ratio is greater than 1.3, more preferably 1.4 or greater. However, if the H / D ratio exceeds 2, a defect occurs over a wide range of the upper part of the steel ingot, and the part including the defect cannot be completely removed. The preferred H / D ratio is 1.9 or less, more preferably 1.8 or less.

ここで鋼塊の直径は、鋳型の内径から算出した値であり、鋳型が円柱状の場合はその鋳型の直径を、円柱状以外(例えば、菊型形状)の場合はその鋳型の内接円相当径を指す。以下、本発明について圧縮前・圧縮後問わず同じ意味。また、鋼塊の高さは、鋳型に鋳込む溶鋼の量を調整すれば制御できる。   Here, the diameter of the steel ingot is a value calculated from the inner diameter of the mold. When the mold is cylindrical, the diameter of the mold is used. When the mold is not cylindrical (for example, chrysanthemum), the inscribed circle of the mold is used. Refers to equivalent diameter. Hereinafter, the same meaning is applied to the present invention regardless of before and after compression. Further, the height of the steel ingot can be controlled by adjusting the amount of molten steel cast into the mold.

なお、上記特許文献1では板状製品または中空製品に適合した形態のインゴット(鋼塊)を製造するために、鋼塊の高さ/直径比を1.3以下としている。鋼塊の高さ/直径比を1.3以下にすると、鋼塊は半径方向に大きく、高さ方向に小さくなる。この場合、溶鋼の凝固は表面から内側に向かって進行するため、鋼塊の半径方向における冷却速度が小さくなる。その結果、欠陥や成分偏析は鋼塊の中央部に広範囲に亘って生成することになる。そのためこうした欠陥や成分偏析が生成した部分を完全に除去するには、鋼塊の中心部を半径方向に大きく除去しなければならず、歩留まりが悪くなる。   In Patent Document 1, the height / diameter ratio of the steel ingot is set to 1.3 or less in order to manufacture an ingot (steel ingot) having a form suitable for a plate-like product or a hollow product. When the height / diameter ratio of the steel ingot is 1.3 or less, the steel ingot is large in the radial direction and small in the height direction. In this case, since solidification of the molten steel proceeds from the surface toward the inside, the cooling rate in the radial direction of the steel ingot is reduced. As a result, defects and component segregation are generated over a wide range in the center of the steel ingot. Therefore, in order to completely remove the portion where such defects and component segregation are generated, the central portion of the steel ingot must be largely removed in the radial direction, resulting in poor yield.

次に、本発明に係る中空状の鍛造用鋼材の製法について順を追って説明する。   Next, the manufacturing method of the hollow forging steel material according to the present invention will be described in order.

(a)押湯部の無い鋳型に、真空鋳造法または下注ぎ鋳造法で溶鋼を鋳込む工程
本発明では、押湯部の無い鋳型を用いて溶鋼を鋳込んで鋼塊を得ることで、該鋼塊から押湯部を切断除去する必要がない。そのため歩留まりが向上すると共に、押湯部を切断するための加工コストが不要となる。
(A) Step of casting molten steel in a mold without a feeder part by vacuum casting method or bottom casting method In the present invention, by casting a molten steel using a mold without a feeder part, obtaining a steel ingot, There is no need to cut and remove the feeder from the steel ingot. For this reason, the yield is improved and the processing cost for cutting the feeder is not required.

鋳型の形状は特に限定されず、例えば、円柱状または菊型形状、多角型鋳型(多角とは5角以上の意味)等の鋳型を用いることができる。また、鋳型の大きさも特に限定されず、該鋳型で鋳込んで得られる鋼塊の形状が上記要件を満たせばよい。一般的には、鋳型底面の大きさは、直径:700〜2800mm程度である。   The shape of the mold is not particularly limited. For example, a mold such as a columnar or chrysanthemum shape or a polygonal mold (polygon means five or more corners) can be used. Further, the size of the mold is not particularly limited as long as the shape of the steel ingot obtained by casting with the mold satisfies the above requirements. Generally, the size of the mold bottom is about 700 to 2800 mm in diameter.

前記鋳型には、真空鋳造法または下注ぎ鋳造法で溶鋼を鋳込む。真空鋳造法では、中間鍋(タンディッシュ)を介して鋳込むため、極低水素で、かつ大型のインゴットを鋳込むことができる。また、下注ぎ鋳造法を採用すれば、鋳型壁面に溶鋼が付着することによって発生するヘゲ等の欠陥を防止できる。ちなみに上注ぎ鋳造法では、鋳型底面で跳ね返った溶鋼が鋳型壁面に付着してヘゲ等の欠陥を発生することがある。   Molten steel is cast into the mold by vacuum casting or bottom casting. In the vacuum casting method, since casting is performed through an intermediate pan (tundish), it is possible to cast a very large hydrogen ingot with extremely low hydrogen. In addition, if the downcasting method is employed, defects such as baldness caused by molten steel adhering to the mold wall surface can be prevented. By the way, in the top pouring method, the molten steel that bounces off the bottom of the mold may adhere to the mold wall surface and cause defects such as lashes.

(b)溶鋼を鋳込んだ後、該溶鋼の表面を保温材で覆って溶鋼を凝固させる工程
溶鋼を凝固させて上記形状の鋼塊を製造する際には、溶鋼の表面を保温材で覆い保温しながら凝固させる必要がある。溶鋼の表面を保温材で覆うことによって、欠陥や成分偏析が発生する部分を鋼塊の上方部に集中させることができる。即ち、溶鋼の表面を保温材で覆うことによって溶鋼の上方は保温されるため、該溶鋼の冷却速度が小さくなる。その結果、保温された溶鋼が最終凝固部となり、欠陥や成分偏析はこの最終凝固部に集中して生成する。
(B) After casting the molten steel, the step of covering the surface of the molten steel with a heat insulating material and solidifying the molten steel When the molten steel is solidified to produce the ingot of the above shape, the surface of the molten steel is covered with a heat insulating material. It is necessary to solidify while keeping warm. By covering the surface of the molten steel with a heat insulating material, the portion where defects and component segregation occur can be concentrated on the upper part of the steel ingot. That is, since the upper part of the molten steel is kept warm by covering the surface of the molten steel with a heat insulating material, the cooling rate of the molten steel is reduced. As a result, the heated molten steel becomes the final solidified portion, and defects and component segregation are concentrated in the final solidified portion.

このとき溶鋼の表面を保温材で覆うタイミングは、溶鋼を鋳型に鋳込んだ後とする。鋳型に溶鋼を鋳込んでいる途中で溶鋼を保温材で覆うと、鋳込まれている間に溶鋼が保温材を巻き込み、鋼塊中に介在物等の欠陥を生じる原因になるからである。   At this time, the timing of covering the surface of the molten steel with the heat insulating material is after casting the molten steel into the mold. This is because if the molten steel is covered with a heat insulating material while the molten steel is being cast into the mold, the molten steel entrains the heat insulating material while being cast and causes defects such as inclusions in the steel ingot.

溶鋼の表面を覆う保温材の厚みを50〜500mmとすることも重要である。保温材の厚みが50mm未満では保温効果が不充分となって、溶鋼の最終凝固部が鋼塊の中心部になり、欠陥や成分偏析の生成位置を鋼塊の上方部に集中させることができなくなる。好ましくは保温材の厚みを100mm以上とする。一方、溶鋼が凝固して凝固殻を形成する際には、凝固収縮を起こすため鋳型と凝固殻との間にエアギャップを生じるが、このとき保温材の厚みが大きすぎると、溶鋼の上方は過剰に保温されて凝固殻が再溶融することがある。再溶融した箇所から溶鋼が流れ出すと二重肌を発生させるため、保温材の厚みは500mm以下とする。好ましくは400mm以下である。   It is also important that the heat insulating material covering the surface of the molten steel has a thickness of 50 to 500 mm. If the thickness of the heat insulation material is less than 50 mm, the heat insulation effect is insufficient, the final solidified part of the molten steel becomes the center of the steel ingot, and the generation position of defects and component segregation can be concentrated on the upper part of the steel ingot. Disappear. Preferably, the thickness of the heat insulating material is 100 mm or more. On the other hand, when the molten steel is solidified to form a solidified shell, an air gap is formed between the mold and the solidified shell due to solidification shrinkage. If the heat insulating material is too thick at this time, The solidified shell may be remelted due to excessive heat retention. When the molten steel flows out from the remelted portion, double skin is generated, so the thickness of the heat insulating material is set to 500 mm or less. Preferably it is 400 mm or less.

本発明で使用できる保温材の種類は特に限定されず、公知のものを用いることができる。例えば、籾殻や焼き籾殻、発熱性の保温材、断熱性の保温材などである。なお、使用する保温材の種類によって溶鋼の保温効果は多少異なるが、こうした効果は無視できる程度であり、本発明の製法では保温材の厚みを上記範囲に設定することが重要である。   The kind of heat insulating material that can be used in the present invention is not particularly limited, and known materials can be used. For example, rice husks and grilled rice husks, exothermic heat insulating materials, and heat insulating heat insulating materials. In addition, although the heat retention effect of molten steel is somewhat different depending on the type of heat insulation material to be used, such an effect is negligible. In the production method of the present invention, it is important to set the thickness of the heat insulation material within the above range.

溶鋼の表面を覆う際の保温材の形態についても特に限定されず、例えば、板状や造粒状、粉末状などの保温材を用いることができる。   The form of the heat insulating material at the time of covering the surface of the molten steel is not particularly limited, and for example, a heat insulating material such as a plate shape, a granulated shape, and a powder shape can be used.

なお、溶鋼を凝固させて得る鋼塊の形状は、上述したように、鋼塊の高さHと直径Dの比(H/D比)を1.3〜2とする。   In addition, as for the shape of the steel ingot obtained by solidifying molten steel, the ratio (H / D ratio) of the height H and the diameter D of an ingot is set to 1.3-2 as mentioned above.

(c)得られた鋼塊を圧縮する工程
上記鋳型で鋳込んで得られた鋼塊を圧縮する。圧縮することで引け巣欠陥を低減できる。鋼塊を圧縮するときの条件は特に限定されないが、圧縮率は5〜30(%)程度である。圧縮率は下記式で算出できる。
圧縮率(%)=(1−圧縮後の鋼塊高さ/圧縮前の鋼塊高さ)×100
(C) The process of compressing the obtained steel ingot The steel ingot obtained by casting with the said mold is compressed. Shrinkage defects can be reduced by compressing. Although the conditions when compressing a steel ingot are not specifically limited, a compression rate is about 5-30 (%). The compression rate can be calculated by the following formula.
Compression rate (%) = (1-height of steel ingot after compression / height of steel ingot before compression) × 100

(d)圧縮方向に沿って中心部を軸方向に抜く工程
圧縮された鋼塊から、圧縮方向に沿って中心部を軸方向に抜き取るが、本発明を実施する際には、圧縮後の鋼塊の直径をDpとしたとき、圧縮後の鋼塊から抜き取る中心部の形状を直径0.1×Dp〜0.5×Dpの円柱とする。即ち上述したように、溶鋼を凝固させる際に溶鋼を特定の厚みの保温材で覆うと共に、凝固して得られる鋼塊の形状を特定することによって、欠陥や成分偏析の生成箇所を、鋼塊の中心軸近傍で、且つ鋼塊の上方に集中させることができる。そのため圧縮後の鋼塊から抜き取る中心部の半径方向の大きさを小さくした場合でも欠陥や成分偏析を鋼塊から除去し易く、つまり、圧縮後の鋼塊の直径をDpとしたとき、該鋼塊から抜き取る中心部の領域を、直径が0.5×Dp以下の小さな円柱状とすることができる。そのため歩留まりを向上させることができる。好ましくは0.4×Dp以下である。なお、製品の形状や、鍛錬比等によっては直径が0.5×Dpを超える円柱を中心部として抜いても構わないが、抜き取る量が多くなると歩留まりが悪くなる。
(D) Step of axially removing the central portion along the compression direction From the compressed steel ingot, the central portion is extracted along the compression direction in the axial direction. When the diameter of the lump is Dp, the shape of the center part extracted from the steel lump after compression is a cylinder having a diameter of 0.1 × Dp to 0.5 × Dp. That is, as described above, when solidifying molten steel, the molten steel is covered with a heat insulating material having a specific thickness, and by specifying the shape of the steel ingot obtained by solidification, defects and component segregation generation sites can be identified. In the vicinity of the central axis of the steel plate and above the steel ingot. Therefore, even when the radial size of the central portion extracted from the steel ingot after compression is reduced, defects and component segregation can be easily removed from the steel ingot, that is, when the diameter of the steel ingot after compression is Dp, The central region extracted from the lump can be formed into a small cylindrical shape having a diameter of 0.5 × Dp or less. Therefore, the yield can be improved. Preferably, it is 0.4 × Dp or less. Depending on the shape of the product, the forging ratio, etc., a cylinder having a diameter of more than 0.5 × Dp may be extracted as the center, but the yield decreases when the extracted amount increases.

一方、後述する実施例でも明らかにする如く、圧縮後の鋼塊から抜き取る中心部の大きさは、圧縮後の鋼塊の直径をDpとしたとき、少なくとも直径が0.1×Dpの円柱とする。抜き取る部分の大きさが小さすぎると、鋼塊の中心軸近傍に生成している欠陥や成分偏析を完全に除去できないため、鍛造用鋼材の品質が悪くなる。好ましくは0.2×Dp以上である。   On the other hand, as will be clarified in the examples described later, the size of the central portion extracted from the steel ingot after compression is a cylinder having a diameter of at least 0.1 × Dp, where Dp is the diameter of the steel ingot after compression. To do. If the size of the portion to be extracted is too small, defects and component segregation generated in the vicinity of the central axis of the steel ingot cannot be completely removed, so that the quality of the forging steel material is deteriorated. Preferably it is 0.2 × Dp or more.

以上の通り、圧縮された鋼塊から、圧縮方向に沿って中心部を軸方向に抜くことによって、中空状の鍛造用鋼材が得られる。   As described above, a hollow steel material for forging can be obtained from the compressed steel ingot by removing the central portion in the axial direction along the compression direction.

次に、得られた鍛造用鋼材を鍛造して筒状に成形すると、筒状の鍛造品が得られる。鍛造用鋼材を鍛造する方法は公知の方法を採用できる。例えば、中心部を抜いた鋼材に芯金を挿入し、この芯金を支持台に取り付け、芯金を回転させる。このとき平金板を用いて中空状の鍛造用鋼材を芯金で挟みつつ荷重を加えて鍛造し、徐々に孔を広げることにより筒状の鍛造品とする。   Next, when the obtained steel for forging is forged and formed into a cylindrical shape, a cylindrical forged product is obtained. A well-known method can be adopted as a method for forging the steel for forging. For example, a cored bar is inserted into a steel material from which the central part is removed, the cored bar is attached to a support base, and the cored bar is rotated. At this time, using a flat metal plate, forging is performed by applying a load while sandwiching a hollow forging steel material with a cored bar, and gradually expanding the hole to obtain a cylindrical forged product.

本発明で対象とする鋼の成分組成は、鍛造品の素材として用いられるものであれば特に限定されず、例えば、C:0.01〜0.5質量%やSi:0.10〜0.8質量%等を含む鋼である。   The component composition of steel to be used in the present invention is not particularly limited as long as it is used as a raw material for forged products. For example, C: 0.01 to 0.5% by mass or Si: 0.10 to 0.0. Steel containing 8% by mass or the like.

以下、本発明を実験例によって更に詳細に説明するが、下記実験例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to experimental examples, but the following experimental examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

実験例1
押湯部の無い円柱状の鋳型に、下注ぎ法でC:0.15質量%含有する溶鋼を鋳込んだ後、該溶鋼の表面を保温材で覆った状態で溶鋼を凝固させて鋼塊を得た。保温材としては発熱性の保温材と断熱性の保温材を併用した。保温材の形状は粉末状であり、保温材の厚みは150mmとした。鋼塊の大きさは、鋼塊の高さをH、直径をDとしたとき、H/D比を0.2〜2.5に変化させた。
Experimental example 1
After casting molten steel containing 0.15% by mass of C: 0.15% by mass in a cylindrical mold without a feeder, the molten steel is solidified in a state where the surface of the molten steel is covered with a heat insulating material. Got. As the heat insulating material, an exothermic heat insulating material and a heat insulating heat insulating material were used in combination. The shape of the heat insulating material was powdery, and the thickness of the heat insulating material was 150 mm. The size of the steel ingot was such that the H / D ratio was changed from 0.2 to 2.5, where H was the height of the steel ingot and D was the diameter.

得られた鋼塊を、中心軸を通るように長手方向に切断し、切断面をマクロエッチングしたものとサルファプリントしたものを比較観察してマクロエッチングしたものについて成分偏析が発生している部分を分析して成分偏析の発生位置を調べた。   The obtained steel ingot was cut in the longitudinal direction so as to pass through the central axis, and the part where the component segregation occurred was observed in the macro-etched one by comparing the cut surface with the macro-etched one and the sulfur-printed one. The position of occurrence of component segregation was examined by analysis.

成分偏析が発生している位置とは、鋼塊Top部側の中心付近について、CやSi等の正偏析する成分が約20%以上濃化している位置を指す。成分偏析が発生している位置のうち、鋼塊の高さ方向に対し最も下に発生している成分偏析部を通るように鋼塊の高さ方向に対して垂直に切断した場合に、鋼塊の高さに対する成分偏析を含む部分(即ち、鋼塊の上方部)の高さ比を、下記(1)式を用いて算出した。鋼塊の形状(H/D比)と成分偏析を含む部分の高さ比との関係を図1に示す。
成分偏析を含む部分の高さ比=成分偏析を含む部分の高さ/鋼塊の高さ …(1)
The position where the component segregation occurs refers to a position where the component that positive segregates such as C and Si is concentrated about 20% or more around the center of the steel ingot Top portion side. When cutting perpendicular to the height direction of the steel ingot so that it passes through the component segregation part that occurs at the bottom of the height direction of the steel ingot at the position where the component segregation has occurred, The height ratio of the portion including component segregation with respect to the height of the lump (that is, the upper portion of the steel ingot) was calculated using the following equation (1). The relationship between the shape of the steel ingot (H / D ratio) and the height ratio of the portion including component segregation is shown in FIG.
Height ratio of the portion including component segregation = height of the portion including component segregation / height of the steel ingot (1)

図1から次のように考察できる。H/D比が1.3以上では鋼塊の高さに対して成分偏析を含む部分の高さ比が小さくなるため、偏析は鋼塊の上方部に集中して生成している。一方、H/D比が1.3未満では、鋼塊の高さに対して成分偏析を含む部分の高さ比が大きくなるため、成分偏析は鋼塊の高さに対して上方から中央部に亘って拡散して生成している。   The following can be considered from FIG. When the H / D ratio is 1.3 or more, the height ratio of the portion including component segregation with respect to the height of the steel ingot is small, so that segregation is concentrated in the upper part of the steel ingot. On the other hand, when the H / D ratio is less than 1.3, the height ratio of the portion including the component segregation with respect to the height of the steel ingot is increased, so that the component segregation is from the top to the center of the steel ingot. And diffused over the entire area.

実験例2
押湯部の無い菊型形状の鋳型に、真空鋳造法でC:0.130質量%含有する溶鋼を鋳込んだ後、該溶鋼の表面を保温材で覆って溶鋼を凝固させて鋼塊を得た。保温材としては発熱性の保温材と断熱性の保温材を併用した。保温材の形状は粉末状と粒状のものを併用し、保温材の厚みは200mmとした。鋼塊の大きさは、鋼塊の高さをH、直径をDとしたとき、H/D比を2.0とした。
Experimental example 2
After casting molten steel containing 0.130% by mass of C in a chrysanthemum mold without a feeder part, the surface of the molten steel is covered with a heat insulating material, and the molten steel is solidified to form a steel ingot. Obtained. As the heat insulating material, an exothermic heat insulating material and a heat insulating heat insulating material were used in combination. The shape of the heat insulating material was a combination of powder and granular materials, and the thickness of the heat insulating material was 200 mm. The size of the steel ingot was such that the H / D ratio was 2.0 when the height of the steel ingot was H and the diameter was D.

得られた鋼塊を、中心軸を通るように長手方向に切断し、切断面をマクロエッチングしたものとサルファプリントしたものを比較観察してC:0.160質量%の成分偏析が発生している位置を測定した。成分偏析が発生している位置を図2に示す。   The obtained steel ingot was cut in the longitudinal direction so as to pass through the central axis, and the cut surface was macro-etched and Sulfur-printed, and C: 0.160 mass% component segregation occurred. We measured the position. The position where component segregation occurs is shown in FIG.

図2中、横軸は半径方向の測定位置であり、鋼塊の中心軸位置を0(零)とし、横軸の数値は鋼塊の半径に対する中心軸位置と測定位置の距離の比(中心軸位置と測定位置の距離/鋼塊の半径)を示している。縦軸は高さ方向の測定位置であり、鋼塊の最下点を0(零)、鋼塊の最上点を2.0とし、縦軸の数値は鋼塊の高さに対する鋼塊の最下点から測定位置までの距離の比(鋼塊の最下点から測定位置までの距離/鋼塊の高さ)を示している。   In FIG. 2, the horizontal axis is the measurement position in the radial direction, the central axis position of the steel ingot is 0 (zero), and the numerical value on the horizontal axis is the ratio of the distance between the central axis position and the measurement position to the radius of the steel ingot (center The distance between the shaft position and the measurement position / the radius of the steel ingot). The vertical axis is the measurement position in the height direction, the lowest point of the steel ingot is 0 (zero), the highest point of the steel ingot is 2.0, and the numerical value on the vertical axis is the highest value of the steel ingot relative to the height of the steel ingot. The ratio of the distance from the lower point to the measurement position (distance from the lowest point of the steel ingot to the measurement position / height of the steel ingot) is shown.

図2から次のように考察できる。鋼塊の中心軸近傍では、鋼塊の高さに対して中央部または下方に成分偏析が発生しているが、鋼塊の外側に向かうに連れて成分偏析は鋼塊の上方部に集中して発生している。しかもその領域は半径方向の0.1以内にほぼ集中している。   It can be considered as follows from FIG. In the vicinity of the center axis of the steel ingot, component segregation occurs at the center or downward with respect to the height of the steel ingot, but as the steel ingot moves toward the outside, the component segregation concentrates on the upper part of the steel ingot. Has occurred. Moreover, the region is almost concentrated within 0.1 in the radial direction.

実験例3
上記実験例2において、鋼塊の大きさを、H/D比:1.3とする以外は、同じ条件で鋼塊を得、得られた鋼塊の成分偏析を観察した。成分偏析が発生している位置を図3に示す。
Experimental example 3
In Experimental Example 2, a steel ingot was obtained under the same conditions except that the size of the steel ingot was set to H / D ratio: 1.3, and component segregation of the obtained steel ingot was observed. The position where component segregation occurs is shown in FIG.

図3から次のように考察できる。上記実験例2と同様に、鋼塊の中心軸近傍では、鋼塊の高さに対して中央部または下方に発生しているが、鋼塊の外側に向かうに連れて成分偏析は鋼塊の上方部に集中して発生している。しかもその領域は半径方向の0.1以内にほぼ集中している。   The following can be considered from FIG. Similar to Experimental Example 2 above, in the vicinity of the center axis of the steel ingot, it occurs at the center or below with respect to the height of the steel ingot. It is concentrated in the upper part. Moreover, the region is almost concentrated within 0.1 in the radial direction.

実験例4
押湯部の無い円柱状の鋳型に、下注ぎ法でC:0.30質量%含有する溶鋼を鋳込んだ後、該溶鋼の表面を厚みの異なる保温材で覆いながら溶鋼を凝固させて鋼塊を得た。保温材としては発熱性の保温材、断熱性の保温材、および焼き籾殻を併用した。保温材の形状は粉末状と板状のものを併用し、保温材の厚みは0〜600mmとした。鋼塊の大きさは、鋼塊の高さをH、直径をDとしたとき、H/D比を1.7とした。
Experimental Example 4
After casting molten steel containing 0.30% by mass of C in a cylindrical mold without a feeder, the molten steel is solidified while covering the surface of the molten steel with a heat insulating material having a different thickness. A lump was obtained. As the heat insulating material, an exothermic heat insulating material, a heat insulating heat insulating material, and grilled rice husk were used in combination. The shape of the heat insulating material was a powder and a plate, and the thickness of the heat insulating material was 0 to 600 mm. The size of the steel ingot was such that the H / D ratio was 1.7 when the height of the steel ingot was H and the diameter was D.

得られた鋼塊を、中心軸を通るように長手方向に切断し、切断面をマクロエッチングしたものとサルファプリントしたものを比較観察して、引け巣欠陥が発生している位置と、二重肌が発生している領域を測定した。   The obtained steel ingot is cut in the longitudinal direction so as to pass through the central axis, and the cross-cut surface is macro-etched and the sulfa-printed one is compared, and the position where the shrinkage defect is generated is doubled. The area where skin was generated was measured.

鋼塊の縦断面を観察したときに、引け巣欠陥が発生している位置のうち、鋼塊の高さ方向に対して最も下に発生している引け巣欠陥を通るように鋼塊の高さ方向に対して垂直に切断した場合に、鋼塊の高さに対する引け巣欠陥を含む部分(即ち、鋼塊の上方部)の高さ割合を、下記(2)式を用いて算出する。
引け巣欠陥発生位置の高さ(%)=(引け巣欠陥を含む部分の高さ/鋼塊の高さ)×100・・・(2)
When observing the longitudinal cross section of the steel ingot, the height of the steel ingot passes through the shrinkage defect occurring at the lowest position in the height direction of the steel ingot, among the positions where the shrinkage defect occurs. When cutting perpendicularly to the vertical direction, the height ratio of the portion including the shrinkage defect relative to the height of the steel ingot (that is, the upper portion of the steel ingot) is calculated using the following equation (2).
Height of shrinkage defect occurrence position (%) = (height of the portion including the shrinkage defect / height of the steel ingot) × 100 (2)

二重肌が発生している領域は、鋼塊の縦断面を観察したときに、二重肌が発生している位置のうち、鋼塊の高さ方向に対し最も下に発生している二重肌を通るように鋼塊の高さ方向に対して垂直に切断した場合に、鋼塊の高さに対する二重肌を含む部分(即ち、鋼塊の上方部)の高さ割合として、下記(3)式を用いて算出する。
二重肌発生領域(%)=(二重肌を含む部分の高さ/鋼塊の高さ)×100・・・(3)
The area where the double skin occurs is the bottom of the position where the double skin is generated when the longitudinal cross section of the steel ingot is observed. When cut perpendicular to the height direction of the steel ingot so as to pass through the heavy skin, the height ratio of the portion including the double skin to the height of the steel ingot (ie, the upper part of the steel ingot) is as follows: (3) Calculate using the formula.
Double skin generation area (%) = (height of the portion including double skin / height of the steel ingot) × 100 (3)

保温材の厚みを変化させたときにおける引け巣欠陥発生位置の高さと二重肌発生領域を算出した結果を図4に示す。図4中、引け巣欠陥が発生している位置高さの結果を●、二重肌発生領域の結果を◆で示す。   FIG. 4 shows the result of calculating the height of the shrinkage defect generation position and the double skin generation area when the thickness of the heat insulating material is changed. In FIG. 4, the result of the position height where the shrinkage defect is generated is indicated by ●, and the result of the double skin occurrence region is indicated by ◆.

図4から次のように考察できる。保温材の厚みを50〜500mmに制御すると、引け巣欠陥の発生位置を鋼塊の上方部に集中させることができ、しかも二重肌発生領域を小さくできる。これに対し、保温材の厚みが50mm未満では溶鋼の保温効果が得られず、引け巣欠陥の発生位置を鋼塊の上方部に集中させることができない。保温材の厚みが500mmを超えると、保温過多となって凝固殻割れを生じ、二重肌が広範囲に亘って発生する。   It can be considered as follows from FIG. When the thickness of the heat insulating material is controlled to 50 to 500 mm, the generation position of the shrinkage defect can be concentrated on the upper part of the steel ingot, and the double skin generation region can be reduced. On the other hand, if the thickness of the heat retaining material is less than 50 mm, the heat retaining effect of the molten steel cannot be obtained, and the occurrence position of the shrinkage defect cannot be concentrated on the upper part of the steel ingot. When the thickness of the heat insulating material exceeds 500 mm, excessive heat retention is caused to cause solidified shell cracking, and double skin is generated over a wide range.

実験例5
押湯部の無い円柱状の鋳型に、真空鋳造法でC:0.18質量%含有する溶鋼を鋳込んだ後、該溶鋼の表面を保温材で覆いながら溶鋼を凝固させて鋼塊を得た。保温材としては発熱性の保温材と断熱性の保温材を併用した。保温材の形状は粒状と粉末状のものを併用し、保温材の厚みは200mmとした。鋼塊の大きさは高さ3765mm、直径2670mmであり、高さ/直径比は1.55である(140T相当)。
Experimental Example 5
After casting molten steel containing 0.18% by mass of C in a cylindrical mold without a feeder, the molten steel is solidified while covering the surface of the molten steel with a heat insulating material to obtain a steel ingot. It was. As the heat insulating material, an exothermic heat insulating material and a heat insulating heat insulating material were used in combination. The shape of the heat insulating material was a combination of granular and powder, and the thickness of the heat insulating material was 200 mm. The size of the steel ingot is 3765 mm in height and 2670 mm in diameter, and the height / diameter ratio is 1.55 (equivalent to 140T).

得られた鋼塊を、中心軸を通るように長手方向に切断し、切断面をマクロエッチングしたものとサルファプリントしたものを比較観察して、成分偏析と引け巣欠陥が発生している位置を測定した。その結果、成分偏析は、鋼塊の中心軸を中心として半径方向に8%の範囲内に集中しており、引け巣欠陥は、鋼塊の中心軸を中心として半径方向に4%の範囲内に集中していた。なお、成分偏析が発生している位置とは、C濃度が0.20質量%を超える領域を指す。   The obtained steel ingot is cut in the longitudinal direction so as to pass through the central axis, and the cross-cut surface is macro-etched and the sulfa-printed one is comparatively observed to determine the position where the component segregation and shrinkage defect occur. It was measured. As a result, the component segregation is concentrated in the range of 8% in the radial direction around the central axis of the steel ingot, and the shrinkage defect is in the range of 4% in the radial direction around the central axis of the steel ingot. Concentrated on. In addition, the position where the component segregation occurs refers to a region where the C concentration exceeds 0.20 mass%.

次に、同様にして得られた鋼塊を縦方向に圧縮(圧縮率:35%)し、直径を3000mmとした後、圧縮方向に沿って鋼塊の中心部をポンチで軸方向に抜いた。このとき鋼塊の中心部を抜くための治具は、直径が300mmのものを使用した。従って、直径が3000mmの圧縮後の鋼塊から直径300mmの中心部を抜いているため、圧縮後の鋼塊の直径をDpとしたとき、直径:0.1×Dpの円柱を中心部として抜いたことになる。   Next, the steel ingot obtained in the same manner was compressed in the longitudinal direction (compression rate: 35%) to make the diameter 3000 mm, and then the center of the steel ingot was axially pulled out with a punch along the compression direction. . At this time, a jig having a diameter of 300 mm was used as a jig for removing the central portion of the steel ingot. Therefore, since the central part of 300 mm in diameter is extracted from the steel ingot after compression having a diameter of 3000 mm, when the diameter of the steel ingot after compression is Dp, the cylinder of diameter: 0.1 × Dp is extracted as the central part. That's right.

得られた中空状の鍛造用鋼材を観察したところ、成分偏析も引け巣欠陥も無かった。よって、この鍛造用鋼材を鍛造して筒状に成形された筒状鍛造品は成分偏析も引け巣欠陥も無く、高品質なものであった。   When the obtained hollow steel for forging was observed, neither component segregation nor shrinkage defects were found. Therefore, the cylindrical forged product formed by forging the forging steel material into a cylindrical shape is free from component segregation and shrinkage defects and is of high quality.

実験例6
押湯部の無い円柱状の鋳型に、真空鋳造法でC:0.15質量%含有する溶鋼を鋳込んだ後、該溶鋼の表面を保温材で覆いながら溶鋼を凝固させて鋼塊を得た。保温材としては発熱性の保温材と断熱性の保温材を併用した。保温材の形状は粒状と粉末状のものを用い、保温材の厚みは150mmとした。鋼塊の大きさは高さ1370mm、直径1020mmであり、高さ/直径比は1.34である(20T相当)。
Experimental Example 6
After casting molten steel containing 0.15% by mass of C in a cylindrical mold without a feeder, the molten steel is solidified while covering the surface of the molten steel with a heat insulating material to obtain a steel ingot. It was. As the heat insulating material, an exothermic heat insulating material and a heat insulating heat insulating material were used in combination. The shape of the heat insulating material was granular or powder, and the thickness of the heat insulating material was 150 mm. The steel ingot has a height of 1370 mm and a diameter of 1020 mm, and a height / diameter ratio of 1.34 (equivalent to 20T).

得られた鋼塊を、中心軸を通るように長手方向に切断し、切断面をマクロエッチングしたものとサルファプリントしたものを比較観察して、成分偏析と引け巣欠陥が発生している位置を測定した。その結果、成分偏析は、鋼塊の中心軸を中心に半径方向に10%の範囲内に集中しており、引け巣欠陥は、鋼塊の中心軸を中心に半径方向に4%の範囲内に分散して集中していた。なお、成分偏析が発生している位置とは、C濃度が0.18質量%以上の領域を指す。   The obtained steel ingot is cut in the longitudinal direction so as to pass through the central axis, and the cross-cut surface is macro-etched and the sulfa-printed one is comparatively observed to determine the position where the component segregation and shrinkage defect occur. It was measured. As a result, component segregation is concentrated in the range of 10% in the radial direction around the central axis of the steel ingot, and shrinkage defects are in the range of 4% in the radial direction around the central axis of the steel ingot. It was distributed and concentrated. The position where component segregation occurs refers to a region where the C concentration is 0.18% by mass or more.

次に、同様にして得られた鋼塊を縦方向に圧縮(圧縮率:30%)し、直径を1200mmとした後、圧縮方向に沿って鋼塊の中心部をポンチで軸方向に抜いた。このとき鋼塊の中心部を抜くための治具は、直径が480mmのものを使用した。従って、直径が1200mmの圧縮後の鋼塊から直径480mmの中心部を抜いているため、圧縮後の鋼塊の直径をDpとしたとき、直径が0.40×Dpの円柱を中心部として抜いたことになる。   Next, the steel ingot obtained in the same manner was compressed in the longitudinal direction (compression rate: 30%) to a diameter of 1200 mm, and then the center of the steel ingot was axially pulled out with a punch along the compression direction. . At this time, a jig having a diameter of 480 mm was used as a jig for removing the central portion of the steel ingot. Therefore, since the central part of 480 mm in diameter is extracted from the steel ingot after compression with a diameter of 1200 mm, when the diameter of the steel ingot after compression is Dp, a cylinder with a diameter of 0.40 × Dp is extracted as the central part. That's right.

得られた中空状の鍛造用鋼材を観察したところ、成分偏析も引け巣欠陥も無かった。よって、この鍛造用鋼材を鍛造して筒状に成形された筒状鍛造品は成分偏析も引け巣欠陥も無く、高品質なものであった。   When the obtained hollow steel for forging was observed, neither component segregation nor shrinkage defects were found. Therefore, the cylindrical forged product formed by forging the forging steel material into a cylindrical shape is free from component segregation and shrinkage defects and is of high quality.

鋼塊の形状(H/D比)と、成分偏析を含む部分の高さ比との関係を示すグラフである。It is a graph which shows the relationship between the shape (H / D ratio) of a steel ingot, and the height ratio of the part containing a component segregation. 成分偏析が発生している位置を示すグラフである。It is a graph which shows the position where component segregation has occurred. 成分偏析が発生している位置を示すグラフである。It is a graph which shows the position where component segregation has occurred. 保温材の厚みを変化させたときに、引け巣欠陥が発生している位置の高さと、二重肌が発生している領域を測定した結果を示すグラフである。It is a graph which shows the result of having measured the height of the position where the shrinkage nest defect has occurred, and the region where the double skin has occurred when the thickness of the heat insulating material is changed.

Claims (3)

中空状の鍛造用鋼材を、頭部加熱造塊法または一方向凝固鋳造法によらずに製造する方法であって、
押湯部の無い鋳型に、真空鋳造法または下注ぎ鋳造法で溶鋼を鋳込む工程、
溶鋼を鋳込んだ後、該溶鋼の表面を保温材で覆って欠陥や成分偏析が発生する部分を鋼塊の上方部に集中させつつ、溶鋼を半径方向に向かって凝固させる工程、
得られた鋼塊を圧縮する工程、および
該圧縮方向に沿って中心部を軸方向に抜く工程を含み、
前記凝固鋼塊の形状を高さHと直径Dの比(H/D比)が1.4〜2とし、
前記保温材の厚みを100〜500mmとし、
前記抜く工程では、圧縮後の鋼塊の直径をDpとしたとき、直径0.1×Dp〜0.5×Dpの円柱を中心部として抜くことを特徴とする中空状の鍛造用鋼材の製法。
A method for producing a hollow forging steel material without using a head heating ingot method or a unidirectional solidification casting method,
The process of casting molten steel into a mold without a feeder using vacuum casting or bottom pouring,
A process of solidifying the molten steel in the radial direction while casting the molten steel and concentrating the portion where defects and component segregation occur on the upper part of the steel ingot by covering the surface of the molten steel with a heat insulating material;
Compressing the obtained steel ingot, and extracting the central portion in the axial direction along the compression direction,
The shape of the solidified steel ingot is a ratio of height H to diameter D (H / D ratio) of 1.4 to 2,
The thickness of the heat insulating material is 100 to 500 mm,
In the extracting step, when the diameter of the steel ingot after compression is Dp, a hollow forging steel material is extracted with a cylinder having a diameter of 0.1 × Dp to 0.5 × Dp as a central portion .
前記鋳型として、円柱状または菊型形状の鋳型を用いる請求項1に記載の製法。   The method according to claim 1, wherein a cylindrical or chrysanthemum mold is used as the mold. 請求項1または2に記載の製法で得られた中空状の鍛造用鋼材を鍛造して筒状に成形することを特徴とする筒状鍛造品の製法。   A method for producing a cylindrical forged product, comprising forging a hollow forging steel material obtained by the production method according to claim 1 or 2 into a tubular shape.
JP2004350277A 2004-12-02 2004-12-02 Manufacturing method for hollow forging steel and cylindrical forging Expired - Fee Related JP4427439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350277A JP4427439B2 (en) 2004-12-02 2004-12-02 Manufacturing method for hollow forging steel and cylindrical forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350277A JP4427439B2 (en) 2004-12-02 2004-12-02 Manufacturing method for hollow forging steel and cylindrical forging

Publications (2)

Publication Number Publication Date
JP2006159213A JP2006159213A (en) 2006-06-22
JP4427439B2 true JP4427439B2 (en) 2010-03-10

Family

ID=36661785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350277A Expired - Fee Related JP4427439B2 (en) 2004-12-02 2004-12-02 Manufacturing method for hollow forging steel and cylindrical forging

Country Status (1)

Country Link
JP (1) JP4427439B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048279A1 (en) * 2009-10-21 2011-04-28 Arcelormittal Investigacion Y Desarrollo, S.L. Method for manufacturing a metal ingot comprising a bore, and associated ingot and molding device
KR101202388B1 (en) * 2010-05-19 2012-11-16 포스코특수강 주식회사 Manufacturing method of hollow ingot and forging method of ring in using the hollow ingot
CN102581189B (en) * 2012-01-12 2014-04-02 太原科技大学 Method for forging annular cylinder by aid of electroslag remelted hollow blank
JP6208062B2 (en) * 2014-03-25 2017-10-04 株式会社神戸製鋼所 Crank throw forging method and crank throw manufacturing method
CN110993040B (en) * 2019-11-28 2023-03-14 太原科技大学 Method for determining critical value of 30Cr2Ni4MoV steel converted from cast state to forged state
CN114769481B (en) * 2022-05-05 2023-12-26 无锡派克新材料科技股份有限公司 Forging process for improving impact of stainless steel

Also Published As

Publication number Publication date
JP2006159213A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP5027844B2 (en) Method for producing aluminum alloy molded product
CN104073689A (en) Aluminum alloy forged material for automobile and method for manufacturing the same
EP2329899B1 (en) Method for producing light alloy vehicle wheel
JP2006138015A (en) Method for manufacturing copper based precipitation hardenable alloy
JP2010121165A (en) Magnesium alloy sheet and method for producing the same
JP4427439B2 (en) Manufacturing method for hollow forging steel and cylindrical forging
JP4359231B2 (en) Method for producing aluminum alloy molded product, and aluminum alloy molded product
JP3657217B2 (en) Method for producing magnesium alloy slab for hot rolling and method for hot rolling magnesium alloy
CN107075689A (en) Hot rolling titanium strand and its manufacture method
EP3561095B1 (en) Method for manufacturing magnesium alloy sheet
CN106715755A (en) Cast titanium slab for use in hot rolling and unlikely to exhibit surface defects, and method for producing same
EP3250722B1 (en) Process for obtaining a low silicon aluminium alloy part
US2829410A (en) Ingot mold
US7070735B2 (en) Aluminum alloy material for forging and continuous casting process therefor
Trifonov et al. Liquid forging processing of automobile wheels
RU2353683C2 (en) Method of preforming from ingots of high-tin bronze
JPH08279B2 (en) Manufacturing method of steel forgings
JP6862723B2 (en) Continuously cast steel slabs and continuous casting methods
CN107075688B (en) Hot rolling titanium slab and its manufacturing method
JP3319379B2 (en) Continuous casting method of steel billet
CN115870461B (en) Continuous casting crystallizer for quick change of high and low carbon steel, design method of continuous casting crystallizer and quick change continuous casting method of high and low carbon steel
JP2002346710A (en) Continuous casting and rolling method
JP2011121073A (en) Method of manufacturing large section steel
KR100856097B1 (en) Production method by means of liquid forging and hot shaping
JP3329305B2 (en) Continuous casting method of round billet slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4427439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees