JP4426060B2 - Optical three-dimensional modeling method and apparatus - Google Patents

Optical three-dimensional modeling method and apparatus Download PDF

Info

Publication number
JP4426060B2
JP4426060B2 JP2000139540A JP2000139540A JP4426060B2 JP 4426060 B2 JP4426060 B2 JP 4426060B2 JP 2000139540 A JP2000139540 A JP 2000139540A JP 2000139540 A JP2000139540 A JP 2000139540A JP 4426060 B2 JP4426060 B2 JP 4426060B2
Authority
JP
Japan
Prior art keywords
cutting
photocured
resin layer
layer
cutting blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000139540A
Other languages
Japanese (ja)
Other versions
JP2001315215A (en
Inventor
高邦 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2000139540A priority Critical patent/JP4426060B2/en
Publication of JP2001315215A publication Critical patent/JP2001315215A/en
Application granted granted Critical
Publication of JP4426060B2 publication Critical patent/JP4426060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光硬化性樹脂組成物を用いる光学的立体造形方法および光学的立体造形装置に関する。より詳細には、本発明は光硬化性樹脂組成物を用いて、平坦な表面を有し、寸法精度に優れる商品価値の高い立体造形物を、高い光造形速度で円滑に製造するための光学的立体造形方法および光学的立体造形装置に関する。
【0002】
【従来の技術】
近年、三次元CADに入力されたデータに基づいて光硬化性樹脂を硬化させて立体造形物を製造する光学造形方法および装置が実用化されている。この光造形技術は、設計の途中で外観デザインを検証するためのモデル、部品の機能性をチェックするためのモデル、鋳型を製作するための樹脂型、金型を製作するためのベースモデルなどのような複雑な三次元物体を容易に造形できることから注目を集めている。
【0003】
光学造形方法によって造形物を製造するに当たっては、従来、造形浴を用いる方法が汎用されており、その手順としては、造形浴に液状の光硬化性樹脂を入れ、液面に所望のパターンが得られるようにコンピューターで制御された紫外線レーザーなどの光を選択的に照射して所定の厚みに光硬化させて硬化樹脂層を形成し、その硬化樹脂層を造形浴内で下方に移動させて造形浴内の光硬化性樹脂液を該硬化樹脂層上に流動させて光硬化性樹脂液の層を形成させ、その光硬化性樹脂液層に光を照射して硬化樹脂層を形成し、前記の工程を所定の形状および寸法の立体造形物が得られるまで繰り返して行う方法が広く採用されている。
【0004】
しかしながら、上記した従来法による場合は、光硬化性樹脂液の表面張力によって、造形浴内に貯溜された光硬化性樹脂液の液面が盛り上がったり、また前段階で形成された硬化樹脂層上に流動させて積層した光硬化性樹脂液の層の表面が盛り上がって、光硬化させる光硬化性樹脂液の液面が平坦になっていないことが多い。その結果、得られる立体造形物の上部が、例えば、図1の(a)および(b)に示すように丸くなっていて、平坦状になっておらず、寸法精度に劣ったものになり易い。この表面張力による寸法精度の低下の問題を回避するためには、表面張力の低い光硬化性樹脂を選択することも考えられるが、使用する光硬化性樹脂の種類が限られることになり、各々の用途や使用目的に合致した特性(力学的特性、物理的特性、化学的特性など)を有する光学的立体造形物が得られないという欠点がある。
【0005】
しかも、造形浴内の光硬化性樹脂液の液面位は樹脂温度によって変化するため、液面位を一定に保ちにくく、液面位の変化は得られる立体造形物の寸法精度の低下をもたらす。造形浴内の光硬化性樹脂液の液面位を一定に保つ方法としては、センサーによって液面を常に検知し、その検知結果に応じて、造形浴内に配置したカウンターボリュームを上下させる方法などが知られているが、装置的に高価であり、コスト面で不利である。
【0006】
また、光硬化性樹脂液の表面張力による上記した高さ方向の盛り上がりの他に、光硬化性樹脂組成物や光硬化物の昇温、冷却による膨張・収縮によっても造形物の高さ変動を生じて、目的通りの光造形物を寸法精度良く得られないことがある。そして、造形途中の光造形物の表面に高さ変動があると、場合によっては、その部分に光硬化性樹脂組成物の塗布装置などが突き当たって塗布操作が停止し、光造形工程が途中で中断されてしまうというトラブルを発生することがあり、その場合は光造形速度の低下や、製品歩留りの低下などを生ずる。
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記したような欠点がなく、平坦な表面を有し、所定の形状および寸法を有する立体造形物を、造形途中での装置の停止などのトラブルを生ずることなく、高い寸法精度で且つ速い造形速度で、簡単に且つ円滑に製造することのできる光学的立体造形方法および装置を提供することである。
【0008】
【課題を解決するための手段】
上記の目的を達成すべく本発明者は鋭意検討を重ねてきた。その結果、層状にした液状の光硬化性樹脂組成物の表面に制御下に光を照射して所定のパターンおよび厚みを有する光硬化した樹脂層を形成し、該光硬化した樹脂層上に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して所定のパターンおよび厚みを有する光硬化した樹脂層を一体に積層形成する工程を繰り返す光学的立体造形技術において、その全工程または一部の工程において、光硬化した樹脂層の表面部分を該表面部分に線状に接する回転切削刃を用いて切削処理して平坦化し、該平坦化した光硬化した樹脂層の表面に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して光硬化した樹脂層を積層形成させると、液状の光硬化性樹脂組成物の表面張力に伴う光硬化した樹脂層における上記した盛り上がりや、光硬化性樹脂組成物やその硬化物の加熱・冷却に伴う膨張や収縮による盛り上がり、凹凸などが切削処理によって除去されて光硬化した樹脂層の表面が平坦化され、その平坦化された光硬化した樹脂層上に液状の光硬化性樹脂組成物が更に施されて順次光造形が行われることにより、最終的に得られる立体造形物は平坦な表面を有し、寸法精度、特に高さ方向の寸法精度に優れることを見出した。
【0009】
さらに、本発明者は、光硬化した樹脂層の上記した切削処理に当たって、回転切削刃として光硬化した樹脂層面に対して垂直または水平な軸の回りに回転し、且つ所定の刃先先端角度を有するものを使用して切削処理を行うと、光硬化した樹脂層表面の平坦化が一層円滑に行い得ること、また光硬化した樹脂層表面の切削により生じた切削屑を吸引によって除去しながら切削処理を行うと寸法精度に優れる光学的立体造形をより円滑に製造し得ることを見出し、それらの知見に基づいて本発明を完成した。
【0010】
すなわち、本発明は、
(1)(i)層状にした液状の光硬化性樹脂組成物の表面に制御下に光を照射して所定のパターンおよび厚みを有する光硬化した樹脂層を形成する工程;
(ii)前記(i)で形成した光硬化した樹脂層の上に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、該(i)で形成した光硬化した樹脂層上に所定のパターンおよび厚みを有する光硬化した樹脂層を一体に積層形成する工程;および、
(iii)前記(ii)で形成した光硬化した樹脂層の上に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、該(ii)で形成した光硬化した樹脂層上に所定のパターンおよび厚みを有する光硬化した樹脂層を一体に積層形成する工程を有し;
(iv)目的とする立体造形物が形成されるまで前記(iii)の光硬化した樹脂層の積層形成工程を繰り返すことによって立体造形物を製造する方法であって;
前記(i)〜(iv)の全工程または一部の工程において、光硬化した樹脂層の形成後に、該光硬化した樹脂層の表面を、切削屑除去用の吸引フードで覆った回転する切削刃を有する切削手段によって、切削屑を吸引除去しながら切削処理して平坦化し、該平坦化した光硬化した樹脂層の表面に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、光硬化した樹脂層上に所定のパターンおよび厚みを有する光硬化した樹脂層を一体に積層形成する;
ことを特徴とする光学的立体造形物の製造方法である。
【0011】
そして、本発明は、
(2) 切削刃を光硬化した樹脂層の表面に対して垂直または水平な回転軸によって回転させながら切削処理を行う前記(1)の光学的立体造形物の製造方法;
(3) 刃先先端が直線状をなし且つ刃先先端角度θ1が40°以下である切削刃を用い、光硬化した樹脂層表面を切削する際の光硬化した樹脂層面と切削刃の下面のなす角度θ2を0°を超え30°以下とし、且つ光硬化した樹脂層面に対する切削刃のすくい角度θ3を20°〜80°にして、切削刃の刃先先端を光硬化した樹脂層の表面に線状に接触させた状態で、切削刃を光硬化した樹脂層の表面に対して垂直な回転軸によって回転させながら切削処理を行う前記(1)または(2)の光学的立体造形物の製造方法;および、
(4) 刃先先端角度θ1が70°以下である切削刃を用い、光硬化した樹脂層表面を切削する際の光硬化した樹脂層面と切削刃の下面のなす角度θ2を0°を超え70°以下とし、且つ光硬化した樹脂層面に対する切削刃のすくい角度θ3を20°〜80°にして、切削刃を光硬化した樹脂層の表面に対して水平な回転軸によって回転させながら切削処理を行う前記(1)または(2)の光学的立体造形物の製造方法;
を好ましい態様として包含する。
【0012】
また、本発明は、
(5) 切削刃の回転数が200〜20000rpmである前記(1)〜(4)のいずれかの光学的立体造形の製造方法好ましい態様として包含する。
【0013】
さらに、本発明は、
) 載置台上または液状の光硬化性樹脂組成物の硬化により形成した光硬化した樹脂層上に、1層分の液状の光硬化性樹脂組成物を順次供給するための液状の光硬化性樹脂組成物の供給手段;
光硬化性樹脂組成物を液状に保ちながら、最終的な立体造形物が形成されるまで制御下に所定のパターンおよび厚みを有する光硬化した樹脂層の形成・積層を繰り返して行うための光照射装置を備える光造形手段;および、
光造形の全工程または一部の工程において、切削屑を吸引除去しながら光硬化した樹脂層の表面を切削して平坦化するための、切削屑除去用の吸引フードで覆った、光硬化した樹脂層面に対して垂直または水平な回転軸によって回転する切削刃を有する切削手段;
を有することを特徴とする光学的立体造形装置である。
【0014】
そして、本発明は、
) 切削手段が、光硬化した樹脂層面に対して垂直または水平な回転軸または該回転軸と一体に回転する回転体に複数の切削刃を放射状または螺旋状に取り付けてなる切削手段である前記()の光学的立体造形装置;
) 切削手段における切削刃が、光硬化した樹脂層面に対して垂直な回転軸によって回転する切削刃であって、切削刃の刃先先端が直線状をなすと共に且つ該刃先先端角度θ2が40°以下の切削刃である前記()または()の光学的立体造形装置;および、
) 切削刃が光硬化した樹脂層面に対して水平な回転軸によって回転する切削刃であって、その刃先先端角度θ2が70°以下の切削刃である前記()または()の光学的立体造形装置;
を好ましい態様として包含する。
【0015】
【発明の実施の形態】
以下に本発明について詳細に説明する。
本発明では、上記した(i)〜(iv)の一連の工程に従って光学的立体造形物(以下「光造形物」ということがある)を製造する際の改良技術に係るものである。本発明では、上記した(i)〜(iv)の一連の工程に従って光造形物を製造する限りは、工程(i)〜(iv)の内容や方式、それに用いる装置の種類などは特に制限されない。
【0016】
例えば、上記した(i)〜(iv)の一連の工程は、液状の光硬化性樹脂組成物を充填した造形浴中に造形テーブルを配置し、造形テーブルを下降させることによって造形テーブル面に1層分の液状の光硬化性樹脂組成物層を形成させ、それに制御下に光を照射して所定のパターンおよび厚みを有する光硬化した樹脂層(以下「光硬化層」ということがある)を形成した後、造形テーブルを更に下降させて該光硬化層面に1層分の液状の光硬化性樹脂組成物層を形成させて制御下に光を照射して所定のパターンおよび厚みを有する光硬化層を一体に積層形成する工程を繰り返して行う、従来から広く行われている造形浴法を採用して行うことができる。
【0017】
また、上記した(i)〜(iv)の一連の工程は、例えば、気体雰囲気中に造形テーブルを配置し、その造形テーブル面に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して所定のパターンおよび厚みを有する光硬化層を形成した後、該光硬化層面に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して所定のパターンおよび厚みを有する光硬化層を一体に積層形成する工程を繰り返して行う方法を採用して行うこともできる。この方法による場合は、造形テーブルまたは光硬化層を上向きにしておき、その上面に液状の光硬化性樹脂組成物を施し光照射して光硬化層を順次積層形成してゆく方式を採用してもよいし、或いは造形テーブルまたは光硬化層を下向きに配置しておいて造形テーブル面または光硬化層面に液状の光硬化性樹脂層組成物を施し光照射して順次下方に光硬化層を積層形成してゆく方式を採用してもよい。造形テーブル面または光硬化層面に液状の光硬化性樹脂組成物を施すに当たっては、例えば、ブレード塗装、流延塗装、ローラー塗装、転写塗装、ハケ塗り、スプレー塗装などの適当な方法を採用することができる。
【0018】
上記した工程(i)〜(iv)において、光硬化性樹脂組成物層の光硬化に当たっては、光硬化性樹脂組成物層への光照射のしかたは特に制限されず、例えばスポット状の光線を光硬化性樹脂組成物面に照射して描画方式で光硬化層を形成してもよいし、線状になした光線を照射して光硬化層を形成してもよいし、またはマスクなどを使用して光線を面状で照射して光硬化層を形成してもよい。
また、照射する光の種類も特に制限されず、光学的立体造形で使用されている光のいずれも使用でき、例えば、Arレーザー、He−Cdレーザー、LDレーザー(半導体励起固体レーザー)、キセノンランプ、メタルハライドランプ、水銀灯、蛍光灯などから発生される活性エネルギー光線のいずれも使用でき、そのうちでもレーザー光線が造形速度、高集光性による高造形精度などの点から好ましく採用される。
照射する光の強さ、光硬化性樹脂組成物層面と光源の距離なども、各々の状況に応じて適宜設定することができる。
【0019】
本発明では、上記した(i)〜(iv)の一連の工程を行うに当たって、工程(i)〜(iv)の全部の工程または一部の工程において、光硬化層の形成後に、該光硬化層の表面を、切削屑除去用の吸引フードで覆った、回転する切削刃を有する切削手段によって切削処理して光硬化層の表面を平坦化する。
この場合に、工程(i)〜(iv)の全工程で光硬化層の切削・平坦化を行う場合は、1層の光硬化層を形成するごとに、その光硬化層の表面を切削処理して平坦化した後、該平坦化した光硬化層の表面に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、光硬化層上に所定のパターンおよび厚みを有する光硬化層を一体に積層形成し、次いでその積層形成した1層分の光硬化層の表面を切削処理して平坦化するという工程を、目的とする形状およびサイズの光造形物が得られるまで繰り返して行う。
また、工程(i)〜(iv)のうちの一部の工程において光硬化層の切削処理を行う場合は、順次積層形成される多数の光硬化層のうちの一部の光硬化層についてのみ切削処理を行う。例えば、1層の光硬化層を形成し、その光硬化層の表面を切削処理して平坦化した後、該平坦化した光硬化層の表面に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、光硬化層上に所定のパターンおよび厚みを有する光硬化層を一体に積層形成し、次いでその積層形成した光硬化層には切削処理を施さずにそのまま1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、光硬化層上に所定のパターンおよび厚みを有する光硬化層を一体に積層形成し、その光硬化層の表面を切削処理するというようにして行う。また、切削処理を複数の光硬化層に対して続けて行った後に、それに続く複数の光硬化層に対しては切削処理を行わずに光造形のみを行う方法なども採用できる。
【0020】
工程(i)〜(iv)の全工程において該工程で光硬化層が形成されるたびごとに全光硬化層に対して切削処理を行って各光硬化層の表面を平坦化するか、或いは工程(i)〜(iv)のうちの一部の工程のみにおいて光硬化層の切削処理を行って一部の光硬化層の表面を平坦化するかは、製造する光造形物の形状や構造、寸法、光造形物の製造に用いる光硬化性樹脂組成物の種類やその物性(特に表面張力、膨張や収縮特性)などに応じて適当な方式を選択するのがよい。
【0021】
光硬化層の表面を切削処理して平坦化するに当たっては、回転しながら光硬化層の表面を平坦に切削し得る切削刃を有する切削手段を用いて切削処理する方法および装置であればいずれを採用して行ってもよいが、切削刃が光硬化層表面に対して垂直または水平な回転軸によって回転する切削手段を用いて光硬化層の表面の切削処理する方法および装置が好ましく採用される。
その場合に、切削手段としては、1個の切削刃のみを有するものを用いてもよいが、光硬化層表面を高速で短時間に平坦化できることから、光硬化層表面に対して垂直または水平な回転軸または該回転軸に一体に取り付けられた回転体に複数の切削刃を放射状に取り付けてなる切削手段が好ましく用いられる。
【0022】
そこで、本発明で有効に採用し得る上記した切削方法および切削装置のうち、光硬化層表面に対して垂直な回転軸によって回転する切削刃を有する切削手段を用いる場合について、まず説明する。
何ら限定されるものではないが、光硬化層表面に対して垂直な回転軸によって回転する切削刃(以下これを「垂直回転切削刃」ということがある)を有する切削手段としては、例えば、図2に示す切削手段Aを挙げることができる。
図2の切削手段Aにおいては、光硬化層表面1に対して垂直な回転軸2に回転円板3を取り付け、その回転円板3の下面に複数の切削刃4を放射状に取り付けてある。個々の切削刃4の刃先先端5を光硬化層表面1に対して線状に接触させた状態で回転軸2により切削刃4を回転させることによって、光硬化層表面1の切削処理が行われる。
【0023】
特に、図2に示すような切削手段、すなわち切削刃4が回転円板3の下面にその幅Wの方向に亙って取り付けられている構造の切削手段Aは、強度的にも優れており、しかも切削刃4が上下動などを生ずることなく安定した状態で回転されることから、光硬化層表面の切削処理を円滑に行うことができる。
図2の切削手段Aでは、6個の切削刃4を放射状に取り付けてあるが、切削刃4の数は、必ずしも6個である必要はなく、2〜8個程度にしてもよい。
【0024】
垂直回転切削刃を有する切削手段において、垂直回転切削刃の形状、構造、寸法などは、光硬化層表面の平坦化を円滑に行えるものであればいずれでもよいが、その刃先先端が幅Wの方向(図2を参照)に直線状をなし、且つ刃先先端角度θ1(垂直回転切削刃の縦断面図を示す図3を参照)が40°以下であることが好ましく、15〜30°であることがより好ましい。切削刃の刃先先端角度θ1が40°を超えると、垂直回転切削刃を回転させながら光硬化層の表面を切削処理する際に切削される表面部分に無理がかかり、表面の平坦化が行われにくくなる。
また、その際に垂直回転切削刃の刃先先端の幅Wは特に制限されないが、一般的には、5〜300mmであることが、切削が均一になって光硬化層表面の平坦化が円滑に行われることから好ましい。
垂直回転切削刃の材質も特に限定されず、例えば、金属類(工具鋼など)、セラミックなどから形成することができる。
【0025】
垂直回転切削刃によって光硬化層表面を切削するに当たっては、光硬化層表面と垂直回転切削刃の下面のなす角度θ2(図3を参照)は、0°を超え30°以下とすることが好ましく、0°を超え20°以下とすることがより好ましい。光硬化層面と垂直回転切削刃の下面のなす角度θ2が0°であると、垂直回転切削刃の下面全体が光硬化層の表面に接触した状態で切削刃が垂直回転されながら切削処理が行われることとなるため、垂直回転切削刃と光硬化層面との間に摩擦を生じ、光硬化層表面の切削処理が円滑に行われにくくなる。一方、光硬化層面と垂直回転切削刃の下面のなす角度θ2が30°を超えると、切削刃の先端が光硬化層面に突き刺さった状態で切削処理が行われことになり、光硬化層表面を平坦に切削処理することが困難になり易い。
【0026】
さらに、光硬化層表面の切削処理に当たっては、光硬化層面に対する垂直回転切削刃のすくい角度θ3(図3を参照)を20°〜80°にすることが好ましく、30°〜45°にすることがより好ましい。垂直回転切削刃によるすくい角度θ3が20°未満であると垂直回転切削刃の先端が光硬化層面に突き刺さった状態で切削刃が垂直な回転軸によって回転されながら切削処理が行われことになり、光硬化層表面を平坦に切削処理することが困難になり易く、80°を超えると光硬化層表面の切削処理が円滑に進行しにくくなる。
【0027】
垂直回転切削刃の回転数は、光硬化層を形成している光硬化樹脂の種類、硬度、切削刃の種類などに応じて調節し得るが、一般には、200〜20,000rpmであることが好ましく、500〜5,000rpmであるであることがより好ましい。垂直回転切削刃の回転数が200rpm未満であると切削処理に時間がかかり、ひいては光造形全体に長い時間を要するようになり易い。一方、垂直回転切削刃の回転数が20,000rpmを超えると、すべりが起こり、光硬化層表面の摩擦熱などを生じ易くなる。
【0028】
そして、垂直回転切削刃によって光硬化層表面の切削処理を行うに当たっては、光硬化層の最表面から、切削処理を施す1層分の光硬化層の厚さの10分の1〜5分の4までの部分を切削処理して除去することが、光硬化層表面を過度に切削し過ぎずに平坦化を行う点から好ましい。通常の光学的立体造形では、1回の光照射によって形成される1層の光硬化層の厚さは、一般に50μm〜500μm程度であるので、1層の光硬化層の厚さを勘案しながら、光硬化層の最表面から5μm〜400μmの深さまで切削処理することが好ましい。切削処理して除去する表面部分の厚さが厚すぎると、目的の光造形物を得るのに長い時間を要するようになり、望ましくない。
【0029】
垂直回転切削刃を有する切削手段によって光硬化層の表面の切削処理を行うに当たっては、光硬化層を固定した状態で垂直回転切削刃を回転させながら切削手段をその切削方向に順次移動させながら切削処理を行ってもよいし、切削手段を所定の位置に固定した状態で垂直回転切削刃を回転させる一方で光硬化層を移動させながら切削処理を行ってもよいし、または切削手段と光硬化層の両方を移動させながら切削処理を行ってもよい。
【0030】
また、垂直回転切削刃を有する切削手段において、垂直回転切削刃の光硬化層表面との接触部(例えば図2における幅Wの方向)のみに刃先を形成しておくだけでなく、その幅Wの方向の両端にも垂直方向に刃先を形成しておくことが好ましい(例えば図2に示す垂直方向の刃先6aと6b)。その場合には、切削刃によって切削された光硬化層の表面の切削屑が該垂直方向の刃先によって切断されるために、光硬化層表面に無理をかけることなく光硬化層の表面から切削屑を円滑に切り離すことができる。
【0031】
次に、本発明で有効に採用し得る、光硬化層表面に対して水平な回転軸によって回転する切削刃を有する切削手段を用いて光硬化層の表面を切削処理する場合について説明する。
何ら限定されるものではないが、光硬化層表面に対して水平な回転軸によって回転する切削刃(以下これを「水平回転切削刃」ということがある)を有する切削手段としては、例えば、図5に示す切削手段Bを挙げることができる。
図5の(a)は切削手段Bを横方向から見た図であり、図5の(b)は図5の(a)の切断線X−Xによる切断面の図である。
図5の切削手段Bにおいては、光硬化層表面1に対して水平な回転軸7と一体となって回転する円柱体8の表面に複数の畝状の切削刃9を放射状または螺旋状に形成してある。個々の切削刃9の刃先先端を光硬化層表面1に対して接した状態で回転軸7により切削刃9を回転させることによって、光硬化層表面1の切削処理が行われる。
図5の切削手段Bにおいて、切削刃9の個数は特に制限されず、円柱体8の直径などに応じて任意に設定することができる。
【0032】
水平回転切削刃を有する切削手段において、水平回転切削刃の形状、構造、寸法などは、光硬化層表面の平坦化を円滑に行えるものであればいずれでもよいが、その刃先先端が幅Wの方向[図5の(a)を参照]に線状(直線状または曲線状)をなし、且つ刃先先端角度θ1[水平回転切削刃を設けた円柱体8の断面図を示す図5の(b)を参照]が70°以下であることが好ましく、15゜〜45°であることがより好ましい。水平回転切削刃の刃先先端角度θ1が70°を超えると、水平回転切削刃を回転させながら光硬化層の表面を切削処理する際に切削される表面部分に無理がかかり、表面の平坦化が行われにくくなる。
また、その際に水平回転切削刃の刃先先端の幅Wは特に制限されないが、一般的には、5〜300mmであることが、切削が均一になって光硬化層表面の平坦化が円滑に行われることから好ましい。
水平回転切削刃の材質も特に限定されず、例えば、工具鋼などの金属類、セラミックなどから形成することができる。
【0033】
水平回転切削刃によって光硬化層表面を切削するに当たっては、光硬化層表面と水平回転切削刃下面のなす角度θ2[図5の(b)を参照]は、0°を超え30°以下とすることが好ましく、0°を超え20°以下とすることがより好ましい。光硬化層面と水平回転切削刃の下面のなす角度θ2が0°であると、水平回転切削刃の下面の大半が光硬化層の表面に接触した状態で切削刃が水平回転されながら切削処理が行われることとなるため、水平回転切削刃と光硬化層面との間に摩擦を生じ、光硬化層表面の切削処理が円滑に行われにくくなる。一方、光硬化層面と水平回転切削刃の下面のなす角度θ2が30°を超えると、切削刃の先端が光硬化層面に突き刺さった状態で切削処理が行われことになり、光硬化層表面を平坦に切削処理することが困難になり易い。
【0034】
さらに、光硬化層表面の切削処理に当たっては、光硬化層面に対する水平回転切削刃のすくい角度θ3[図5の(b)を参照]を20°〜80°にすることが好ましく、30°〜60°にすることがより好ましい。水平回転切削刃によるすくい角度θ3が20°未満であると水平回転切削刃の先端が光硬化層面に突き刺さった状態で切削刃が垂直な回転軸によって回転されながら切削処理が行われことになり、光硬化層表面を平坦に切削処理することが困難になり易く、80°を超えると光硬化層表面の切削処理が円滑に進行しにくくなる。
【0035】
水平回転切削刃の回転数は、光硬化層を形成している光硬化樹脂の種類、硬度、切削刃の種類などに応じて調節し得るが、一般には、200〜20,000rpmであることが好ましく、500〜5,000rpmであるであることがより好ましい。水平回転切削刃の回転数が200rpm未満であると切削処理に時間がかかり、ひいては光造形全体に長い時間を要するようになり易い。一方、水平回転切削刃の回転数が20,000rpmを超えると、すべりが起こり、光硬化層表面の摩擦熱などを生じ易くなる。
【0036】
そして、水平回転切削刃によって光硬化層表面の切削処理を行うに当たっては、光硬化層の最表面から、切削処理を施す1層分の光硬化層の厚さの10分の1〜5分の4までの部分を切削処理して除去することが、光硬化層表面を過度に切削し過ぎずに平坦化を行う点から好ましい。通常の光学的立体造形では、1回の光照射によって形成される1層の光硬化層の厚さは、一般に50μm〜500μm程度であるので、1層の光硬化層の厚さを勘案しながら、光硬化層の最表面から5μm〜400μmの深さまで切削処理することが好ましい。切削処理して除去する表面部分の厚さが厚すぎると、目的の光造形物を得るのに長い時間を要するようになり、望ましくない。
【0037】
水平回転切削刃を有する切削手段によって光硬化層の表面の切削処理を行うに当たっては、光硬化層を固定した状態で水平回転切削刃を回転させながら切削手段をその切削方向に順次移動させながら切削処理を行ってもよいし、切削手段を所定の位置に固定した状態で水平回転切削刃を回転させる一方で光硬化層を移動させながら切削処理を行ってもよいし、または切削手段と光硬化層の両方を移動させながら切削処理を行ってもよい。
【0038】
本発明では、光硬化層表面の切削処理により生じた切削屑が、切削処理の途中や切削処理に続く後の工程(例えば切削処理した光硬化層の表面に液状の光硬化性樹脂組成物を施す工程)の邪魔になったり、その後に用いる液状の光硬化性樹脂組成物中に混入したりして汚すことがないようにして、寸法精度に優れる光造形物を円滑に製造するため、切削処理により生じた切削屑を吸引除去しながら切削処理を行う。吸引によって切削屑を除去することによって、切削屑による光造形装置の汚染、液状の光硬化性樹脂組成物やそれを充填した造形浴の汚染、光硬化層の汚染などがより円滑に防止できる
【0039】
本発明では、吸引による切削屑の除去方式として、切削屑の吸引除去手段が、切削手段が切削手段と一緒に移動する、切削手段を切削屑除去用の吸引フードで覆う方式を採用する。特に、切削手段(例えば上記した切削手段Aおよび切削手段B)の全体を吸引フードで覆って、切削手段を光硬化層表面上を移動させながら切削処理すると同時にフード内を減圧吸引して切削屑を除去する方式が好ましく採用される。
図2に示した切削手段Aに吸引フードを設けたものの例としては、図4に記載したものを挙げることができ、切削手段Aの全体をその下部を除いて吸引フード10で覆い、吸引フード10内を減圧吸引しながら切削処理することによって、切削屑が、回転円板3の設けた穴11[図2を参照]を通り、更に回転軸2と吸引フード10の上部との間の間隙12を通って、図示していない切削屑吸引ホースにより除去される。
また、図5に示した切削手段Bに吸引フードを設けたものの例としては、図6に記載したものを挙げることができ、切削手段Bの全体をその下部を除いて吸引フード13で覆い、吸引フード13内を減圧吸引しながら切削処理することによって、切削屑が、切削屑吸引ホース14を経て除去される。
【0040】
本発明では、光硬化性樹脂組成物として、光造形に用い得る液状光硬化性樹脂組成物のいずれもが使用できる。
本発明では、光硬化性樹脂組成物として、光造形において従来から用いられている、例えば、ウレタンアクリレートオリゴマー、エポキシアクリレートオリゴマー、エステルアクリレートオリゴマー、多官能エポキシ樹脂などの各種オリゴマー;イソボルニルアクリレート、イソボルニルメタクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニロキシエチルアクリレート、ジシクロペンテニロキシエチルメタクリレート、ジシクロペタニルアクリレート、ジシクロペタニルメタクリレート、ボルニルアクリレート、ボルニルメタクリレート、2−ヒドロキシエチルアクリレート、シクロヘキシルアクリレート、2−ヒドロキシプロピルアクリレート、フェノキシエチルアクリレート、モルホリンアクリルアミド、モルホリンメタクリルアミド、アクリルアミドなどのアクリル系化合物やN−ビニルピロリドン、N−ビニルカプロラクタム、酢酸ビニル、スチレンなどの各種の単官能性ビニル化合物;トリメチロールプロパントリアクリレート、エチレンオキサイド変性トリメチロールプロパントリアクリレート、エチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジシクロペンタニルジアクリレート、ポリエステルジアクリレート、エチレンオキサイド変性ビスフェノールAジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性トリメチロールプロパントリアクリレート、プロピレンオキサイド変性ビスフェノールAジアクリレート、トリス(アクリロキシエチル)イソシアヌレートなど多官能性ビニル化合物;水素添加ビスフェノールAジグリシジルエーテル、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタ−ジオキサン、ビス(3,4−エポキシシクロヘキシルメチル)アジペートなどの各種エポキシ系化合物などの1種または2種以上と、光重合開始剤および必要に応じて増感剤などを含有する液状の光硬化性樹脂組成物を用いることができる。
また、本発明で用いる光硬化性樹脂組成物は、上記した成分以外にも、必要に応じて、レベリング剤、リン酸エステル塩系界面活性剤以外の界面活性剤、有機高分子改質剤、有機可塑剤などを含有していてもよい。
【0041】
本発明で用いる光硬化性樹脂組成物は、必要に応じて、固体微粒子やウィスカーなどの充填材を含有していてもよい。充填材を含有する光硬化性樹脂組成物を用いると、硬化時の体積収縮の低減による寸法精度の向上、機械的物性や耐熱性の向上などを図ることができる。
充填材として用いる固体微粒子としては、例えば、カーボンブラック微粒子などの無機微粒子、ポリスチレン微粒子、ポリエチレン微粒子、ポリプロピレン微粒子、アクリル樹脂微粒子、合成ゴム微粒子などの有機重合体微粒子などを挙げることができ、これらの1種または2種以上を用いることができる。固体微粒子の粒径は特に制限されないが、一般的には平均粒径が200μm以下、特に100μm以下のものが好ましく用いられる。
【0042】
また、ウィスカーとしては、径が0.3〜1μm、特に0.3〜0.7μm、長さが10〜70μm、特に20〜50μmおよびアスペクト比が10〜100、特に20〜70μmのものが好ましく用いられる。なお、ここで言うウイスカーの寸法およびアスペクト比は、レーザー回析/散乱式粒度分布測定装置を用いて測定した寸法およびアスペクト比である。ウイスカーの種類は特に制限されず、例えば、ホウ酸アルミニウム系ウイスカー、酸化アルミニウム系ウイスカー、窒化アルミニウム系ウイスカー水、酸化硫酸マグネシウム系ウイスカー、酸化チタン系ウイスカーなどを挙げることができ、前記したウイスカーの1種または2種以上を用いることができる。
【0043】
固体微粒子および/またはウィスカーを含有する光硬化性樹脂組成物を用いる場合は、固体微粒子を光硬化性樹脂組成物の全容量に基づいて5〜70容量%の割合で含有することが好ましく、またウィスカーの含有量を5〜30容量%とすることが好ましい。固体微粒子とウィスカーの両方を含有する場合は、両者の合計含有量が光硬化層の全容量に基づいて10〜75容量%であることが好ましい。
【0044】
固体微粒子および/またはウィスカーは、シランカップリング剤で表面処理されていても表面処理されていなくてもよいが、表面処理されていることが好ましい。固体微粒子および/またはウイスカーがシランカップリング剤で表面処理されている場合には、熱変形温度、曲げ弾性率、機械的強度の一層高い光硬化物を得ることができる。その場合のシランカップリング剤としては、充填剤の表面処理などに従来から用いられているシランカップリング剤のいずれもが使用でき、好ましいシランカップリング剤としては、アミノシラン、エポキシシラン、ビニルシランおよび(メタ)アクリルシランを挙げることができる。
【0045】
上記した工程(i)〜(iv)を行って光造形物を製造するに当たって、工程(i)〜(iv)の全工程または一部の工程において、光硬化層の表面を切削処理して平坦化し、その平坦化した光硬化層の表面に1層分の液状の光硬化性樹脂組成物を施した後に当該液状の光硬化性樹脂組成物に所定の形状およびパターンで光照射して光硬化層を形成することによって、平坦な表面を有し、寸法精度に優れる立体造形物を、造形途中に光硬化性樹脂組成物の塗布装置の停止などのトラブルを生ずることなく、良好なエネルギー効率および高い光造形速度で円滑に製造することができる。
本発明において、光硬化層の表面の切削処理をも含めて、上記した工程を自動制御方式によって行うようにすると、寸法精度に優れる光学的立体造形を、より高い光造形速度で製造することができる。
【0046】
【実施例】
以下に実施例によって本発明について具体的に説明するが、本発明は実施例により何ら限定されるものではない。
【0047】
《実施例1》
(1) 垂直軸2に固定されている回転円板3に6個の切削刃4を等角度で放射状に取り付けてなる図2に示す切削手段Aを吸引フード10で覆った図4の切削手段を使用した。なお、該切削手段において、切削手段Aと吸引フード10は一体になっ光硬化層面を移動する。また、切削刃は工具鋼製であり、その幅方向Wの寸法は50mm、刃先先端角度θ1は30°である。
(2)(a) 液状の光硬化性樹脂組成物(帝人製機株式会社製「TSR−820」)を充填した造形浴を用いて、超高速光造形システム(帝人製機株式会社製「SOLIFORM500」)を使用して、水冷Arレーザー光(出力500mW;波長333,351,364nm)を表面に対して垂直に照射して、照射エネルギー20〜30mJ/cm2の条件下にスライスピッチ(積層厚み)150μm、1層当たりの平均造形時間3分(光硬化層表面の切削処理時間を含まず)で、上記した一連の工程(i)〜(iv)を行った。
(b) 上記(a)における工程(i)〜(iv)の全工程で、1層分の光硬化層が形成されるたびごとに、上記(1)で準備した切削手段を用いて、光硬化層面と切削刃の下面のなす角度θ2を5°、光硬化層面に対する切削刃のすくい角度θ3を55°にし、切削刃の回転数を1,000rpm、切削手段の移動速度を17mm/secとして、光硬化層の最表面から平均で50μmの深さまで切削処理を行って、最終的に、縦×横×高さが100mm×100mm×50mmである直方体状の光造形物を作製した。
(3) 上記(2)で得られた光造形物において、最も高い部分(最も厚い部分)の高さ寸法(厚み寸法)は50.003mmであり、一方最も低い部分(薄い部分)の高さ寸法は(厚み寸法)49.998mmであって、両寸法間の差が5μmと極めて小さく、平坦な表面を有し、且つ高さ(厚み)が立体造形物全体で均一であり、寸法精度に優れるものであった。
【0048】
《実施例2》
(1) 水平軸7と一体となって回転する円柱体8の表面に8本の畝状の切削刃9を形成した図5の切削手段Bを吸引フード10で覆った図6の切削手段を使用した。なお、該切削手段においては、切削手段Bと吸引フード10は移動せず、光硬化層面が移動する。また、切削刃は工具鋼製であり、その幅方向Wの寸法は200mm、刃先先端角度θ1は30°である。
(2)(a) 液状の光硬化性樹脂組成物(帝人製機株式会社製「TSR−820」)を充填した造形浴を用いて、超高速光造形システム(帝人製機株式会社製「SOLIFORM500」)を使用して、水冷Arレーザー光(出力500mW;波長333,351,364nm)を表面に対して垂直に照射して、照射エネルギー20〜30mJ/cm2の条件下にスライスピッチ(積層厚み)150μm、1層当たりの平均造形時間3分(光硬化層表面の切削処理時間を含まず)で、上記した一連の工程(i)〜(iv)を行った。
(b) 上記(a)における工程(i)〜(iv)の全工程で、1層分の光硬化層が形成されるたびごとに、上記(1)で準備した切削手段を用いて、光硬化層面と切削刃の下面のなす角度θ2を5°、光硬化層面に対する切削刃のすくい角度θ3を55°にし、切削刃の回転数を1,000rpm、光硬化層(造形途中の光造形物)の移動速度を20mm/secとして、光硬化層の最表面から平均で50μmの深さまで切削処理を行って、最終的に、縦×横×高さが100mm×100mm×50mmである直方体状の光造形物を作製した。
(3) 上記(2)で得られた光造形物において、最も高い部分(最も厚い部分)の高さ寸法(厚み寸法)は50.006mmであり、一方最も低い部分(薄い部分)の高さ寸法は(厚み寸法)49.999mmであって、両寸法間の差が7μmと極めて小さく、平坦な表面を有し、且つ高さ(厚み)が立体造形物全体で均一であり、寸法精度に優れるものであった。
【0049】
《比較例1》
(1) 実施例1において、光硬化層の表面の切削処理[上記(2)の(b)の切削処理工程]を行わなかった以外は、実施例1と同様にして光造形を行って、縦×横×高さが100mm×100mm×50mmである直方体状の光造形物を作製した。
(2) 上記(1)で得られた光造形物において、最も高い部分の高さ寸法は50.100mmであり、一方最も低い部分の高さ寸法は50.000mmであって、両寸法間の差が100μmであって、実施例1で得られた立体造形物に比べて、高さ(厚さ)方向の寸法精度が劣っていた。
【0050】
【発明の効果】
本発明の光学的立体造形方法および装置による場合は、平坦な表面を有し、寸法精度、特に高さ方向の寸法精度に優れる光造形物を、光硬化性樹脂組成物の塗布手段の造形途中での停止などのトラブルを生ずることなく、高い光造形速度で円滑に製造することができる。
【図面の簡単な説明】
【図1】従来の自由液面法により得られる光学的立体造形物の表面形状の概略を示す図である。
【図2】本発明で用いる切削手段の一例を示す図である。
【図3】図2の切削手段に切削刃の部分拡大図および切削刃による切削処理時の状態を示す図である。
【図4】図2の切削手段を吸引フードで覆ったものを示す図である。
【図5】本発明で用いる切削手段の別の例を示す図である。
【図6】図5の切削手段を吸引フードで覆ったものを示す図である。
【符号の説明】
A 切削手段
B 切削手段
1 光硬化層表面
2 光硬化層表面に垂直な回転軸
3 回転円板
4 切削刃
5 切削刃の刃先先端
6a 切削刃の垂直方向の刃先
6b 切削刃の垂直方向の刃先
7 光硬化層表面に水平な回転軸
8 円柱体
9 切削刃
10 吸引フード
11 穴
12 間隙
13 吸引フード
14 切削屑吸引ホース
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical three-dimensional modeling method and an optical three-dimensional modeling apparatus using a photocurable resin composition. More specifically, the present invention uses an optical curable resin composition for optically producing a three-dimensional modeled article having a flat surface and excellent in dimensional accuracy at a high optical modeling speed. The present invention relates to a three-dimensional modeling method and an optical three-dimensional modeling apparatus.
[0002]
[Prior art]
In recent years, an optical modeling method and apparatus for manufacturing a three-dimensional model by curing a photocurable resin based on data input to a three-dimensional CAD has been put into practical use. This stereolithography technology includes a model for verifying the appearance design in the middle of design, a model for checking the functionality of parts, a resin mold for manufacturing a mold, a base model for manufacturing a mold, etc. It attracts attention because it can easily form such complex three-dimensional objects.
[0003]
In manufacturing a modeled object by an optical modeling method, a method using a modeling bath has been widely used in the past. As a procedure, a liquid photocurable resin is put in the modeling bath, and a desired pattern is obtained on the liquid surface. And selectively irradiating light such as an ultraviolet laser controlled by a computer so that it is photocured to a predetermined thickness to form a cured resin layer, and then moving the cured resin layer downward in the modeling bath to form The photocurable resin liquid in the bath is caused to flow onto the cured resin layer to form a layer of the photocurable resin liquid, and the photocurable resin liquid layer is irradiated with light to form a cured resin layer, A method in which the above process is repeated until a three-dimensional object having a predetermined shape and size is obtained is widely adopted.
[0004]
However, in the case of the above-described conventional method, the surface level of the photocurable resin liquid stored in the modeling bath rises due to the surface tension of the photocurable resin liquid, or on the cured resin layer formed in the previous stage. In many cases, the surface of the layer of the photo-curing resin liquid that has been fluidized and stacked is raised, and the surface of the photo-curing resin liquid to be photo-cured is not flat. As a result, the upper part of the three-dimensional structure to be obtained is rounded, for example, as shown in FIGS. 1A and 1B, is not flat, and tends to be inferior in dimensional accuracy. . In order to avoid the problem of dimensional accuracy degradation due to this surface tension, it may be possible to select a photocurable resin having a low surface tension, but the type of photocurable resin to be used will be limited. However, there is a drawback that an optical three-dimensional object having characteristics (mechanical characteristics, physical characteristics, chemical characteristics, etc.) that match the application and purpose of use cannot be obtained.
[0005]
In addition, since the liquid level of the photocurable resin liquid in the modeling bath changes depending on the resin temperature, it is difficult to keep the liquid level constant, and the change in the liquid level causes a decrease in the dimensional accuracy of the resulting three-dimensional model. . As a method of keeping the liquid level of the photocurable resin liquid in the modeling bath constant, the liquid level is always detected by a sensor and the counter volume arranged in the modeling bath is raised or lowered according to the detection result. Is known, but it is expensive in terms of apparatus and disadvantageous in terms of cost.
[0006]
In addition to the rise in the height direction described above due to the surface tension of the photocurable resin liquid, the height of the modeled object may also vary due to the temperature rise and cooling of the photocurable resin composition and photocured product. As a result, the intended stereolithography may not be obtained with high dimensional accuracy. And, if there is a height variation on the surface of the optical modeling object in the middle of modeling, depending on the case, the coating apparatus etc. of the photocurable resin composition hits the part and the coating operation stops, and the optical modeling process is in the middle There may be a problem that the process is interrupted. In this case, the optical modeling speed is lowered, the product yield is lowered, and the like.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to provide a three-dimensional structure having a flat surface and having a predetermined shape and dimensions without the above-described drawbacks, without causing troubles such as stoppage of the apparatus in the middle of modeling, and high dimensions. To provide an optical three-dimensional modeling method and apparatus that can be manufactured easily and smoothly with high accuracy and a high modeling speed.
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, the present inventor has intensively studied. As a result, layeredLiquidThe surface of the photocurable resin composition is irradiated with light under control to form a photocured resin layer having a predetermined pattern and thickness, and one layer of the photocurable resin layer is formed on the photocured resin layer.LiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionIn the optical three-dimensional modeling technology that repeats the process of irradiating light to repeatedly laminate and form a photocured resin layer having a predetermined pattern and thickness, the surface of the photocured resin layer in all or some of the steps The portion is flattened by cutting using a rotary cutting blade in linear contact with the surface portion, and one layer is formed on the surface of the flattened photocured resin layer.LiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionWhen a light-cured resin layer is formed by irradiating with light, the above-described rise in the photo-cured resin layer accompanying the surface tension of the liquid photo-curing resin composition, the photo-curing resin composition or its cured product The surface of the light-cured resin layer is flattened by removing cutting and unevenness due to expansion and contraction due to heating / cooling of the film, and the surface of the light-cured resin layer is flattened.LiquidBy further applying the photocurable resin composition and sequentially performing optical modeling, the finally obtained three-dimensional modeled object has a flat surface and is excellent in dimensional accuracy, particularly in the height direction. I found it.
[0009]
  Further, the present inventor rotates the photocured resin layer about the vertical or horizontal axis with respect to the photocured resin layer surface as a rotary cutting blade, and has a predetermined cutting edge tip angle. When cutting using a material, the surface of the photocured resin layer can be smoothed more smoothly, and the cutting waste generated by cutting the surface of the photocured resin layer can be sucked.ByIt has been found that an optical three-dimensional structure with excellent dimensional accuracy can be produced more smoothly by performing a cutting process while removing it, and the present invention has been completed based on these findings.
[0010]
  That is, the present invention
(1) (i) LayeredLiquidIrradiating the surface of the photocurable resin composition with light under control to form a photocured resin layer having a predetermined pattern and thickness;
(Ii) One layer on the photocured resin layer formed in (i)LiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionIrradiating light to integrally laminate a photocured resin layer having a predetermined pattern and thickness on the photocured resin layer formed in (i); and
(Iii) One layer on the photocured resin layer formed in (ii) aboveLiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionIrradiating with light, and integrally forming a photocured resin layer having a predetermined pattern and thickness on the photocured resin layer formed in (ii);
(Iv) A method for producing a three-dimensional object by repeating the layer forming step of the photocured resin layer of (iii) until a target three-dimensional object is formed;
  In all or some of the steps (i) to (iv), after the formation of the photocured resin layer, the surface of the photocured resin layer isCovered with a suction hood to remove cutting wasteBy cutting means with a rotating cutting bladeWhile sucking and removing cutting wasteThe surface of the flattened photocured resin layer is flattened by cutting, and one layer is formed on the surface.LiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionIrradiating with light, and integrally forming a photocured resin layer having a predetermined pattern and thickness on the photocured resin layer;
It is the manufacturing method of the optical three-dimensional molded item characterized by this.
[0011]
And this invention,
(2) The method for producing an optical three-dimensional object according to (1), wherein the cutting blade is rotated while being rotated by a vertical or horizontal rotating shaft with respect to the surface of the photocured resin layer;
(3) Cutting edge tip is linear and cutting edge angle θ1The angle θ formed by the photocured resin layer surface and the lower surface of the cutting blade when cutting the photocured resin layer surface using a cutting blade having an angle of 40 ° or less2Rake angle θ of the cutting blade with respect to the photocured resin layer surfaceThreeWith the rotation axis perpendicular to the surface of the photocured resin layer with the cutting blade in a state where the cutting edge of the cutting blade is in linear contact with the surface of the photocured resin layer The manufacturing method of the optical three-dimensional structure according to (1) or (2), wherein the cutting process is performed while rotating; and
(4) Cutting edge angle θ1The angle θ formed by the photocured resin layer surface and the lower surface of the cutting blade when cutting the photocured resin layer surface using a cutting blade having an angle of 70 ° or less2The rake angle θ of the cutting blade with respect to the photocured resin layer surface is more than 0 ° and not more than 70 °ThreeThe manufacturing of the optical three-dimensional structure according to the above (1) or (2), wherein the cutting process is performed while the cutting blade is rotated by a rotating shaft that is horizontal with respect to the surface of the photocured resin layer. Method;
Is included as a preferred embodiment.
[0012]
  The present invention also provides:
(5) The manufacturing method of optical three-dimensional modeling in any one of said (1)-(4) whose rotation speed of a cutting blade is 200-20000 rpm.TheIt is included as a preferred embodiment.
[0013]
  Furthermore, the present invention provides
(6) On the mounting table orLiquidOn the photocured resin layer formed by curing the photocurable resin composition,LiquidFor sequentially supplying photocurable resin compositionsLiquidMeans for supplying the photocurable resin composition;
  While keeping the photocurable resin composition in a liquid state,An optical modeling means comprising a light irradiation device for repeatedly forming and laminating a photocured resin layer having a predetermined pattern and thickness under control until a final three-dimensional model is formed; and
  In all or part of the stereolithography process,While removing scraps by suctionFor cutting and flattening the surface of the photocured resin layer,Covered with a suction hood for cutting dust removal,Cutting means having a cutting blade rotated by a rotation axis perpendicular or horizontal to the surface of the light-cured resin layer;
It is an optical three-dimensional modeling apparatus characterized by having.
[0014]
  And this invention,
(7The cutting means is a cutting means in which a plurality of cutting blades are attached radially or spirally to a rotating shaft that is perpendicular or horizontal to the photocured resin layer surface or a rotating body that rotates integrally with the rotating shaft.6) Optical three-dimensional modeling apparatus;
(8The cutting blade in the cutting means is a cutting blade that is rotated by a rotation axis perpendicular to the photocured resin layer surface. The cutting edge tip of the cutting blade is linear, and the cutting edge angle θ2Is a cutting blade of 40 ° or less (6) Or (7) Optical three-dimensional modeling apparatus;and,
(9) The cutting blade is rotated by a horizontal rotation axis with respect to the photocured resin layer surface, and the tip angle θ of the blade tip2Is a cutting blade of 70 ° or less (6) Or (7) Optical three-dimensional modeling apparatus;
Is included as a preferred embodiment.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The present invention relates to an improved technique for producing an optical three-dimensional modeled object (hereinafter sometimes referred to as “optical modeled object”) according to the series of steps (i) to (iv) described above. In the present invention, as long as an optically shaped article is manufactured according to the series of steps (i) to (iv) described above, the contents and methods of steps (i) to (iv), the type of apparatus used for the steps, and the like are not particularly limited. .
[0016]
For example, the series of steps (i) to (iv) described above are performed on the surface of the modeling table by placing the modeling table in a modeling bath filled with a liquid photocurable resin composition and lowering the modeling table. A liquid photocurable resin composition layer for a layer is formed, and a photocured resin layer (hereinafter sometimes referred to as “photocured layer”) having a predetermined pattern and thickness by irradiating light under control to the layer is formed. After the formation, the modeling table is further lowered to form a liquid photocurable resin composition layer for one layer on the surface of the photocured layer, and light is cured under control to have a predetermined pattern and thickness. It can be performed by adopting a modeling bath method which has been widely performed conventionally, in which the steps of integrally laminating layers are repeated.
[0017]
  In addition, the series of steps (i) to (iv) described above includes, for example, a modeling table placed in a gas atmosphere, and one layer of the modeling table surface.LiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionAfter irradiating light to form a photocured layer having a predetermined pattern and thickness, one layer worth of the photocured layer surfaceLiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionIt can also be carried out by adopting a method of repeating the step of irradiating light and integrally forming a photocured layer having a predetermined pattern and thickness. When using this method, keep the modeling table or photocuring layer facing upward andLiquidA method of applying a photocurable resin composition, irradiating light and sequentially forming a photocured layer may be adopted,OrPlace the modeling table or light-cured layer face down on the modeling table surface or light-cured layer surface.LiquidYou may employ | adopt the system which gives a photocurable resin layer composition, irradiates light, and laminates | stacks and forms a photocured layer below one by one. Molding table surface or photocured layer surfaceLiquidIn applying the photocurable resin composition, an appropriate method such as blade coating, cast coating, roller coating, transfer coating, brush coating, spray coating, or the like can be employed.
[0018]
In the above-described steps (i) to (iv), in the photocuring of the photocurable resin composition layer, the method of light irradiation to the photocurable resin composition layer is not particularly limited. A photocuring layer may be formed by irradiating the surface of the photocurable resin composition by a drawing method, a photocuring layer may be formed by irradiating a linear light beam, or a mask or the like. It may be used to form a photocured layer by irradiating light in a plane.
Also, the type of light to be irradiated is not particularly limited, and any of the light used in optical three-dimensional modeling can be used. For example, Ar laser, He-Cd laser, LD laser (semiconductor excitation solid state laser), xenon lamp Any active energy beam generated from a metal halide lamp, a mercury lamp, a fluorescent lamp, or the like can be used. Among these, a laser beam is preferably employed from the viewpoints of modeling speed, high modeling accuracy due to high condensing performance, and the like.
The intensity of light to be irradiated, the distance between the photocurable resin composition layer surface and the light source, and the like can be appropriately set according to each situation.
[0019]
  In the present invention, in performing the above-described series of steps (i) to (iv), the photocuring layer is formed after the photocured layer is formed in all or some of the steps (i) to (iv). Layer surface,Covered with a suction hood for cutting dust removal,The surface of the light-cured layer is flattened by cutting with a cutting means having a rotating cutting blade.
  In this case, when the photocured layer is cut and planarized in all steps (i) to (iv), the surface of the photocured layer is cut every time one photocured layer is formed. And then flattening, the surface of the flattened photocured layer is equivalent to one layer.LiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionIrradiating light, a photocured layer having a predetermined pattern and thickness is integrally laminated on the photocured layer, and then the surface of the laminated photocured layer for one layer is cut and planarized. This process is repeated until an optically shaped object having the desired shape and size is obtained.
  Moreover, when performing the cutting process of the photocured layer in some of the steps (i) to (iv), only some of the photocured layers among the many photocured layers that are sequentially stacked are formed. Perform the cutting process. For example, a single photocured layer is formed, the surface of the photocured layer is cut and planarized, and then one layer is formed on the surface of the planarized photocured layer.LiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionIrradiated with light, a photocured layer having a predetermined pattern and thickness is integrally laminated on the photocured layer, and then the laminated photocured layer is subjected to one layer as it is without being subjected to cutting treatment.LiquidControlled by applying photocurable resin compositionIn the liquid photocurable resin compositionIt is performed by irradiating light, integrally forming a photocured layer having a predetermined pattern and thickness on the photocured layer, and cutting the surface of the photocured layer. Moreover, after performing a cutting process with respect to a several photocuring layer continuously, the method of performing only an optical shaping | molding, without performing a cutting process with respect to the several photocuring layer that follows can also be employ | adopted.
[0020]
In each of the steps (i) to (iv), the surface of each photocured layer is planarized by cutting the photocured layer every time the photocured layer is formed in the step, or Whether the photocuring layer is cut in only some of the steps (i) to (iv) to flatten the surface of the photocuring layer depends on the shape and structure of the stereolithography to be manufactured. It is preferable to select an appropriate method according to the dimensions, the type of the photo-curable resin composition used for the production of the optically shaped article, and its physical properties (particularly surface tension, expansion and contraction characteristics).
[0021]
When the surface of the photocured layer is cut and flattened, any method and apparatus can be used as long as it is cut using a cutting means having a cutting blade capable of cutting the surface of the photocured layer flatly while rotating. Although it may be adopted, a method and an apparatus for cutting the surface of the photocured layer using a cutting means in which the cutting blade is rotated by a rotation axis perpendicular or horizontal to the surface of the photocured layer is preferably employed. .
In that case, as the cutting means, one having only one cutting blade may be used, but since the surface of the photocured layer can be flattened at a high speed in a short time, it is perpendicular or horizontal to the surface of the photocured layer. A cutting means in which a plurality of cutting blades are radially attached to a rotating shaft or a rotating body integrally attached to the rotating shaft is preferably used.
[0022]
Therefore, among the above-described cutting methods and cutting apparatuses that can be effectively employed in the present invention, the case of using a cutting means having a cutting blade that rotates with a rotation axis perpendicular to the surface of the photocured layer will be described first.
Although it is not limited at all, as a cutting means having a cutting blade (hereinafter sometimes referred to as a “vertical rotating cutting blade”) rotated by a rotation axis perpendicular to the surface of the photocured layer, for example, FIG. The cutting means A shown in 2 can be mentioned.
In the cutting means A of FIG. 2, a rotating disc 3 is attached to a rotating shaft 2 perpendicular to the surface 1 of the light-curing layer, and a plurality of cutting blades 4 are attached radially to the lower surface of the rotating disc 3. When the cutting blade 4 is rotated by the rotating shaft 2 in a state in which the blade tips 5 of the individual cutting blades 4 are in linear contact with the photocured layer surface 1, the photocured layer surface 1 is cut. .
[0023]
In particular, the cutting means shown in FIG. 2, that is, the cutting means A having a structure in which the cutting blade 4 is attached to the lower surface of the rotating disk 3 in the direction of the width W thereof is excellent in strength. In addition, since the cutting blade 4 is rotated in a stable state without causing vertical movement, the surface of the photocured layer can be smoothly cut.
In the cutting means A of FIG. 2, six cutting blades 4 are attached radially, but the number of cutting blades 4 is not necessarily six, and may be about 2-8.
[0024]
In the cutting means having a vertical rotary cutting blade, the shape, structure, dimensions, etc. of the vertical rotary cutting blade may be any as long as the surface of the photocured layer can be smoothed smoothly. The direction (see Fig. 2) is linear, and the blade tip angle θ1It is preferable that it is 40 degrees or less (refer FIG. 3 which shows the longitudinal cross-sectional view of a vertical rotary cutting blade), and it is more preferable that it is 15-30 degrees. Cutting edge angle of cutting edge θ1When the angle exceeds 40 °, the surface portion to be cut when the surface of the light-cured layer is cut while rotating the vertical rotary cutting blade is overforced, and the surface is hardly flattened.
In this case, the width W of the tip of the vertical rotary cutting blade is not particularly limited. However, generally, the width W is 5 to 300 mm, so that the cutting becomes uniform and the surface of the photocured layer is smoothed. It is preferable because it is performed.
The material of the vertical rotary cutting blade is not particularly limited, and can be formed from, for example, metals (tool steel or the like), ceramic, or the like.
[0025]
When cutting the surface of the light-cured layer with a vertical rotary cutting blade, the angle θ between the surface of the photo-cured layer and the bottom surface of the vertical rotary cutting blade2(See FIG. 3) is preferably greater than 0 ° and not greater than 30 °, and more preferably greater than 0 ° and not greater than 20 °. Angle θ between the photohardened layer surface and the bottom surface of the vertical rotary cutting blade2When the angle is 0 °, the cutting process is performed while the cutting blade is rotated vertically with the entire lower surface of the vertical rotating cutting blade in contact with the surface of the photocuring layer. Friction between the two and the surface of the photocured layer is difficult to be smoothly cut. On the other hand, the angle θ between the light-cured layer surface and the lower surface of the vertical rotary cutting blade2If the angle exceeds 30 °, the cutting process is performed with the tip of the cutting blade pierced into the surface of the photocured layer, and it is difficult to cut the surface of the photocured layer flatly.
[0026]
Furthermore, in the cutting process of the surface of the light-cured layer, the rake angle θ of the vertical rotary cutting blade with respect to the surface of the light-cured layerThree(See FIG. 3) is preferably 20 ° to 80 °, and more preferably 30 ° to 45 °. Rake angle θ with vertical rotating cutting bladeThreeIf the angle is less than 20 °, the cutting process is performed while the cutting blade is rotated by the vertical rotating shaft with the tip of the vertical rotating cutting blade stuck into the surface of the photocuring layer, and the surface of the photocuring layer is cut flat. It becomes difficult to process, and when it exceeds 80 degrees, the cutting process of the surface of a photohardened layer will become difficult to advance smoothly.
[0027]
The rotational speed of the vertical rotary cutting blade can be adjusted according to the type, hardness, type of cutting blade, and the like of the photo-curing resin forming the photo-curing layer, but is generally 200 to 20,000 rpm. Preferably, it is 500-5,000 rpm. When the rotational speed of the vertical rotary cutting blade is less than 200 rpm, it takes time for the cutting process, and as a result, the entire optical modeling tends to take a long time. On the other hand, when the rotational speed of the vertical rotary cutting blade exceeds 20,000 rpm, slipping occurs, and frictional heat on the surface of the photocured layer is likely to be generated.
[0028]
And in performing the cutting process of the photocuring layer surface with the vertical rotating cutting blade, from the outermost surface of the photocuring layer, 1/10 to 5 minutes of the thickness of the photocuring layer for one layer to be cut. It is preferable to remove the portions up to 4 by cutting, from the viewpoint of performing planarization without excessively cutting the surface of the photocured layer. In normal optical three-dimensional modeling, the thickness of one photocured layer formed by one light irradiation is generally about 50 μm to 500 μm, so that the thickness of one photocured layer is taken into consideration. It is preferable to perform cutting treatment from the outermost surface of the photocured layer to a depth of 5 μm to 400 μm. When the thickness of the surface portion to be removed by cutting is too thick, it takes a long time to obtain the desired optically shaped object, which is not desirable.
[0029]
When cutting the surface of the light-cured layer with a cutting means having a vertical rotating cutting blade, the cutting means is sequentially moved in the cutting direction while rotating the vertical rotating cutting blade with the light-curing layer fixed. The cutting process may be performed, or the cutting process may be performed while moving the photocuring layer while rotating the vertical rotary cutting blade while the cutting means is fixed at a predetermined position, or the cutting means and the photocuring are performed. Cutting may be performed while moving both layers.
[0030]
Further, in the cutting means having a vertical rotating cutting blade, not only the cutting edge is formed only at the contact portion (for example, the direction of the width W in FIG. 2) with the surface of the photocuring layer of the vertical rotating cutting blade, but also the width W It is preferable to form cutting edges in the vertical direction at both ends in the direction (for example, vertical cutting edges 6a and 6b shown in FIG. 2). In that case, since the cutting waste on the surface of the light-cured layer cut by the cutting blade is cut by the vertical blade edge, the cutting waste from the surface of the light-cured layer is not forced on the surface of the light-cured layer. Can be cut off smoothly.
[0031]
Next, the case where the surface of a photocuring layer is cut using the cutting means which has a cutting blade rotated with a rotating shaft horizontal with respect to the photocuring layer surface which can be employ | adopted effectively by this invention is demonstrated.
Although it is not limited at all, as a cutting means having a cutting blade (hereinafter sometimes referred to as a “horizontal rotating cutting blade”) that rotates by a rotation axis that is horizontal with respect to the surface of the photocured layer, for example, FIG. The cutting means B shown in FIG.
5A is a view of the cutting means B viewed from the lateral direction, and FIG. 5B is a view of a cut surface taken along the cutting line XX of FIG. 5A.
In the cutting means B of FIG. 5, a plurality of bowl-shaped cutting blades 9 are formed radially or spirally on the surface of a cylindrical body 8 that rotates integrally with a rotating shaft 7 that is horizontal with respect to the surface 1 of the photocured layer. It is. By cutting the cutting blade 9 with the rotating shaft 7 in a state where the cutting edge tips of the individual cutting blades 9 are in contact with the photocuring layer surface 1, the cutting processing of the photocuring layer surface 1 is performed.
In the cutting means B of FIG. 5, the number of cutting blades 9 is not particularly limited, and can be arbitrarily set according to the diameter of the cylindrical body 8 and the like.
[0032]
In the cutting means having a horizontal rotary cutting blade, the shape, structure, dimensions, etc. of the horizontal rotary cutting blade may be any as long as the surface of the photocured layer can be smoothed smoothly. It is linear (straight or curved) in the direction [see (a) of FIG. 5], and the blade tip angle θ1[See (b) of FIG. 5 showing a cross-sectional view of the cylindrical body 8 provided with a horizontal rotary cutting blade] is preferably 70 ° or less, and more preferably 15 ° to 45 °. Cutting edge angle θ of horizontal rotary cutting blade1If the angle exceeds 70 °, the surface portion to be cut when the surface of the light-cured layer is cut while rotating the horizontal rotary cutting blade is forced, and the surface is hardly flattened.
In this case, the width W of the tip of the horizontal rotary cutting blade is not particularly limited, but generally, it is 5 to 300 mm so that the cutting becomes uniform and the surface of the photocured layer is smoothed smoothly. It is preferable because it is performed.
The material of the horizontal rotary cutting blade is not particularly limited, and can be formed from, for example, metals such as tool steel, ceramics, and the like.
[0033]
When cutting the surface of the light-cured layer with a horizontal rotary cutting blade, the angle θ between the surface of the light-cured layer and the bottom surface of the horizontal rotary cutting blade2[Refer to (b) of FIG. 5] is preferably greater than 0 ° and not greater than 30 °, and more preferably greater than 0 ° and not greater than 20 °. Angle θ between the light-cured layer surface and the bottom surface of the horizontal rotary cutting blade2When the angle is 0 °, the cutting process is performed while the cutting blade is horizontally rotated in a state where most of the lower surface of the horizontal rotating cutting blade is in contact with the surface of the light-curing layer. Friction is generated between the layer surface and the surface of the photocured layer is difficult to be smoothly cut. On the other hand, the angle θ between the light-cured layer surface and the lower surface of the horizontal rotary cutting blade2If the angle exceeds 30 °, the cutting process is performed with the tip of the cutting blade pierced into the surface of the photocured layer, and it is difficult to cut the surface of the photocured layer flatly.
[0034]
Furthermore, in the cutting treatment of the surface of the light-cured layer, the rake angle θ of the horizontal rotary cutting blade with respect to the surface of the light-cured layerThree[See (b) of FIG. 5] is preferably 20 ° to 80 °, more preferably 30 ° to 60 °. Rake angle θ by horizontal rotating cutting bladeThreeIf the angle is less than 20 °, the cutting process is performed while the cutting blade is rotated by the vertical rotation axis with the tip of the horizontal rotating cutting blade piercing the surface of the light-curing layer, and the surface of the light-curing layer is cut flat. It becomes difficult to process, and when it exceeds 80 degrees, the cutting process of the surface of a photohardened layer will become difficult to advance smoothly.
[0035]
The rotational speed of the horizontal rotary cutting blade can be adjusted according to the type, hardness, type of cutting blade, and the like of the photo-curing resin forming the photo-curing layer, but is generally 200 to 20,000 rpm. Preferably, it is 500-5,000 rpm. When the rotational speed of the horizontal rotary cutting blade is less than 200 rpm, it takes time for the cutting process, and as a result, the entire optical modeling tends to take a long time. On the other hand, when the rotational speed of the horizontal rotary cutting blade exceeds 20,000 rpm, slipping occurs, and frictional heat on the surface of the photocured layer is likely to be generated.
[0036]
And in performing the cutting process of the photocuring layer surface with a horizontal rotating cutting blade, from the outermost surface of the photocuring layer, 1/10 to 5 minutes of the thickness of the photocuring layer for one layer to be cut. It is preferable to remove the portions up to 4 by cutting, from the viewpoint of performing planarization without excessively cutting the surface of the photocured layer. In normal optical three-dimensional modeling, the thickness of one photocured layer formed by one light irradiation is generally about 50 μm to 500 μm, so that the thickness of one photocured layer is taken into consideration. It is preferable to perform cutting treatment from the outermost surface of the photocured layer to a depth of 5 μm to 400 μm. When the thickness of the surface portion to be removed by cutting is too thick, it takes a long time to obtain the desired optically shaped object, which is not desirable.
[0037]
When cutting the surface of the photocured layer with a cutting means having a horizontal rotating cutting blade, the cutting means is sequentially moved in the cutting direction while rotating the horizontal rotating cutting blade while the photocured layer is fixed. The cutting process may be performed, or the cutting process may be performed while moving the photocuring layer while rotating the horizontal rotating cutting blade while the cutting means is fixed at a predetermined position, or the cutting means and the photocuring are performed. Cutting may be performed while moving both layers.
[0038]
  In the present invention,Cutting waste generated by the cutting treatment on the surface of the light-cured layer is removed in the middle of the cutting treatment or after the cutting treatment (for example, on the surface of the light-cured layer that has been subjected to the cutting treatment).LiquidStep of applying photocurable resin composition)Become, Then useLiquidDirty by mixing in the photocurable resin compositionSo that there is nothingTo smoothly produce stereolithography with excellent dimensional accuracyInThe cutting waste generated by the cutting processSuctionCutting while removingDo. By removing the cutting waste by suction, contamination of the stereolithography equipment by the cutting waste,LiquidContamination of photocurable resin composition and modeling bath filled with it, and contamination of photocured layer can be prevented more smoothly.it can.
[0039]
  In the present invention,As a method of removing scraps by suctionThe suction removal means for cutting wasteThe cutting means moves with the cutting meansA method of covering the cutting means with a suction hood for removing cutting waste is adopted. In particularThe entire cutting means (for example, the above-described cutting means A and cutting means B) is covered with a suction hood, and the cutting means is,A method is preferably employed in which cutting is performed while moving on the surface of the light-curing layer, and at the same time, the inside of the hood is sucked under reduced pressure to remove cutting waste.
  As an example of the cutting means A shown in FIG. 2 provided with a suction hood, the one shown in FIG. 4 can be cited. The entire cutting means A is covered with the suction hood 10 except for its lower part, and the suction hood is obtained. By performing a cutting process while sucking the inside of the vacuum 10 under reduced pressure, the cutting waste passes through a hole 11 [see FIG. 2] provided in the rotary disk 3 and further, a gap between the rotary shaft 2 and the upper portion of the suction hood 10. 12 is removed by a cutting waste suction hose (not shown).
  Moreover, as an example of what provided the suction hood in the cutting means B shown in FIG. 5, what was described in FIG. 6 can be mentioned, the whole cutting means B is covered with the suction hood 13 except the lower part, By performing a cutting process while suctioning the inside of the suction hood 13 under reduced pressure, the cutting waste is removed through the cutting waste suction hose 14.
[0040]
  The present inventionThen, Photo-curable resin compositionAsLiquid that can be used for stereolithographyofAny of the photocurable resin compositions can be used.
  In the present invention, as a photocurable resin composition, conventionally used in stereolithography, for example, urethane acrylate oligomer, epoxy acrylate oligomer, ester acrylate oligomer, various oligomers such as polyfunctional epoxy resin; isobornyl acrylate, Isobornyl methacrylate, dicyclopentenyl acrylate, dicyclopentenyl methacrylate, dicyclopentenyloxyethyl acrylate, dicyclopentenyloxyethyl methacrylate, dicyclopetanyl acrylate, dicyclopetanyl methacrylate, bornyl acrylate, bornyl methacrylate , 2-hydroxyethyl acrylate, cyclohexyl acrylate, 2-hydroxypropyl acrylate, phenoxyethyl acrylate, mole Acrylic compounds such as phosphorus acrylamide, morpholine methacrylamide and acrylamide, and various monofunctional vinyl compounds such as N-vinyl pyrrolidone, N-vinyl caprolactam, vinyl acetate and styrene; trimethylolpropane triacrylate, ethylene oxide modified trimethylolpropane Triacrylate, ethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, dicyclopentanyl diacrylate, Polyester diacrylate, ethylene oxide modified bisphenol A diacrylate, pentaerythritol triacryl , Pentaerythritol tetraacrylate, propylene oxide modified trimethylolpropane triacrylate, propylene oxide modified bisphenol A diacrylate, tris (acryloxyethyl) isocyanurate, etc .; hydrogenated bisphenol A diglycidyl ether, 3, 4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxy 1 type or 2 types or more of various epoxy compounds such as (cyclohexylmethyl) adipate, a photopolymerization initiator, and a sensitizer if necessaryLiquidA photocurable resin composition can be used.
  In addition to the components described above, the photocurable resin composition used in the present invention, if necessary, a leveling agent, a surfactant other than the phosphate ester surfactant, an organic polymer modifier, It may contain an organic plasticizer.
[0041]
The photocurable resin composition used in the present invention may contain a filler such as solid fine particles and whiskers, as necessary. When a photocurable resin composition containing a filler is used, it is possible to improve dimensional accuracy by reducing volume shrinkage at the time of curing, improve mechanical properties and heat resistance, and the like.
Examples of the solid fine particles used as the filler include inorganic fine particles such as carbon black fine particles, and organic polymer fine particles such as polystyrene fine particles, polyethylene fine particles, polypropylene fine particles, acrylic resin fine particles, and synthetic rubber fine particles. 1 type (s) or 2 or more types can be used. The particle size of the solid fine particles is not particularly limited, but generally those having an average particle size of 200 μm or less, particularly 100 μm or less are preferably used.
[0042]
The whisker preferably has a diameter of 0.3 to 1 μm, particularly 0.3 to 0.7 μm, a length of 10 to 70 μm, particularly 20 to 50 μm, and an aspect ratio of 10 to 100, particularly 20 to 70 μm. Used. In addition, the dimension and aspect ratio of a whisker here are the dimension and aspect ratio measured using the laser diffraction / scattering type particle size distribution measuring apparatus. The type of whisker is not particularly limited, and examples thereof include aluminum borate whisker, aluminum oxide whisker, aluminum nitride whisker water, magnesium oxide whisker, titanium oxide whisker, and the like. Species or two or more can be used.
[0043]
When using a photocurable resin composition containing solid fine particles and / or whiskers, it is preferable to contain solid fine particles in a proportion of 5 to 70% by volume based on the total volume of the photocurable resin composition. The whisker content is preferably 5 to 30% by volume. When both solid fine particles and whiskers are contained, the total content of both is preferably 10 to 75% by volume based on the total volume of the photocured layer.
[0044]
The solid fine particles and / or whiskers may or may not be surface-treated with a silane coupling agent, but are preferably surface-treated. When the solid fine particles and / or whiskers are surface-treated with a silane coupling agent, a photocured product with higher heat deformation temperature, flexural modulus, and mechanical strength can be obtained. In this case, as the silane coupling agent, any of silane coupling agents conventionally used for filler surface treatment and the like can be used. Preferred silane coupling agents include aminosilane, epoxy silane, vinyl silane, and ( Mention may be made of (meth) acrylic silanes.
[0045]
  In producing the optically shaped article by performing the above steps (i) to (iv), the surface of the photocured layer is cut and flattened in all or some of the steps (i) to (iv). On the surface of the flattened photocured layer.LiquidAfter applying the photocurable resin compositionIn the liquid photocurable resin compositionBy irradiating light with a predetermined shape and pattern to form a photocured layer, a three-dimensional modeled object with a flat surface and excellent dimensional accuracy is stopped during the modeling process, etc. Can be smoothly produced with good energy efficiency and high stereolithography speed without causing any trouble.
  In the present invention, when the above-described process is performed by an automatic control method including the cutting process of the surface of the photocured layer, an optical three-dimensional modeling having excellent dimensional accuracy can be manufactured at a higher optical modeling speed. it can.
[0046]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
[0047]
Example 1
(1) The cutting means shown in FIG. 4 in which the cutting means A shown in FIG. 2 formed by attaching six cutting blades 4 radially to the rotating disk 3 fixed to the vertical shaft 2 is covered with a suction hood 10. It was used. In the cutting means, the cutting means A and the suction hood 10 move together on the surface of the photocured layer. In addition, the cutting blade is made of tool steel, the dimension in the width direction W is 50 mm, the blade tip angle θ1Is 30 °.
(2) (a) Using a modeling bath filled with a liquid photocurable resin composition (“TSR-820” manufactured by Teijin Seiki Co., Ltd.), an ultrahigh-speed optical modeling system (“SOLIFORM 500 manufactured by Teijin Seiki Co., Ltd.) )) Is used to irradiate water-cooled Ar laser light (output 500 mW; wavelength 333, 351, 364 nm) perpendicular to the surface, with an irradiation energy of 20-30 mJ / cm2The above-described series of steps (i) to (iv) were performed with a slice pitch (lamination thickness) of 150 μm and an average modeling time of 3 minutes per layer (not including the time for cutting the photocured layer). It was.
(B) In every step (i) to (iv) in (a) above, each time a photocured layer for one layer is formed, light is cut using the cutting means prepared in (1) above. Angle θ between the hardened layer surface and the lower surface of the cutting blade25 °, the rake angle θ of the cutting blade with respect to the photocured layer surfaceThreeWas set to 55 °, the rotation speed of the cutting blade was 1,000 rpm, the moving speed of the cutting means was 17 mm / sec, and the cutting process was performed from the outermost surface of the photocured layer to an average depth of 50 μm. A rectangular parallelepiped-shaped optically shaped object having a width × height of 100 mm × 100 mm × 50 mm was produced.
(3) In the optically shaped article obtained in (2) above, the height (thickness) of the highest part (thickest part) is 50.003 mm, while the height of the lowest part (thin part) The dimension (thickness dimension) is 49.998 mm, the difference between the two dimensions is as small as 5 μm, it has a flat surface, and the height (thickness) is uniform throughout the three-dimensional modeled object. It was excellent.
[0048]
Example 2
(1) The cutting means of FIG. 6 in which the cutting means B of FIG. 5 in which eight scissors-like cutting blades 9 are formed on the surface of a cylindrical body 8 that rotates integrally with the horizontal shaft 7 is covered with a suction hood 10. used. In the cutting means, the cutting means B and the suction hood 10 do not move, but the photocured layer surface moves. In addition, the cutting blade is made of tool steel, the dimension in the width direction W is 200 mm, the blade tip angle θ1Is 30 °.
(2) (a) Using a modeling bath filled with a liquid photocurable resin composition (“TSR-820” manufactured by Teijin Seiki Co., Ltd.), an ultrahigh-speed optical modeling system (“SOLIFORM 500 manufactured by Teijin Seiki Co., Ltd.) )) Is used to irradiate water-cooled Ar laser light (output: 500 mW; wavelength: 333, 351, 364 nm) perpendicular to the surface, with an irradiation energy of 20 to 30 mJ / cm.2The above-described series of steps (i) to (iv) were performed with a slice pitch (lamination thickness) of 150 μm and an average modeling time of 3 minutes per layer (not including the time for cutting the photocured layer). It was.
(B) In every step (i) to (iv) in (a) above, each time a photocured layer for one layer is formed, light is cut using the cutting means prepared in (1) above. Angle θ between the hardened layer surface and the lower surface of the cutting blade25 °, the rake angle θ of the cutting blade with respect to the photocured layer surfaceThreeIs set to 55 °, the rotation speed of the cutting blade is 1,000 rpm, and the moving speed of the photocuring layer (the photofabrication product in the middle of modeling) is 20 mm / sec, and cutting is performed from the outermost surface of the photocuring layer to an average depth of 50 μm Finally, a rectangular parallelepiped optically shaped object having a length × width × height of 100 mm × 100 mm × 50 mm was produced.
(3) In the optically shaped article obtained in (2) above, the height (thickness) of the highest part (thickest part) is 50.006 mm, while the height of the lowest part (thin part). The dimension (thickness dimension) is 49.999 mm, the difference between the two dimensions is as small as 7 μm, it has a flat surface, and the height (thickness) is uniform throughout the three-dimensional modeled object. It was excellent.
[0049]
<< Comparative Example 1 >>
(1) In Example 1, except that the cutting process of the surface of the photocured layer [the cutting process of (b) in (2) above] was not performed, stereolithography was performed in the same manner as in Example 1, A rectangular parallelepiped-shaped optically shaped object having a length × width × height of 100 mm × 100 mm × 50 mm was produced.
(2) In the optically shaped article obtained in (1) above, the height of the highest part is 50.100 mm, while the height of the lowest part is 50.000 mm, The difference was 100 μm, and the dimensional accuracy in the height (thickness) direction was inferior to that of the three-dimensional structure obtained in Example 1.
[0050]
【The invention's effect】
In the case of the optical three-dimensional modeling method and apparatus of the present invention, an optical modeling object having a flat surface and excellent in dimensional accuracy, particularly dimensional accuracy in the height direction, is being formed during the modeling of the application means of the photocurable resin composition. It is possible to manufacture smoothly at a high stereolithography speed without causing trouble such as stoppage.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of the surface shape of an optical three-dimensional object obtained by a conventional free liquid level method.
FIG. 2 is a diagram showing an example of cutting means used in the present invention.
3 is a partial enlarged view of a cutting blade in the cutting means of FIG. 2 and a diagram showing a state during a cutting process by the cutting blade.
4 is a view showing the cutting means of FIG. 2 covered with a suction hood. FIG.
FIG. 5 is a diagram showing another example of the cutting means used in the present invention.
6 is a view showing the cutting means of FIG. 5 covered with a suction hood. FIG.
[Explanation of symbols]
A Cutting means
B Cutting means
1 Photocured layer surface
2 Axis of rotation perpendicular to the surface of the photocuring layer
3 Rotating disc
4 Cutting blade
5 Cutting edge tip of cutting blade
6a Cutting edge in the vertical direction of the cutting blade
6b Cutting edge in the vertical direction of the cutting blade
7 Horizontal rotation axis on photocured layer surface
8 cylinder
9 Cutting blade
10 Suction hood
11 holes
12 gap
13 Suction hood
14 Cutting waste suction hose

Claims (9)

(i)層状にした液状の光硬化性樹脂組成物の表面に制御下に光を照射して所定のパターンおよび厚みを有する光硬化した樹脂層を形成する工程;
(ii)前記(i)で形成した光硬化した樹脂層の上に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、該(i)で形成した光硬化した樹脂層上に所定のパターンおよび厚みを有する光硬化した樹脂層を一体に積層形成する工程;および、
(iii)前記(ii)で形成した光硬化した樹脂層の上に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、該(ii)で形成した光硬化した樹脂層上に所定のパターンおよび厚みを有する光硬化した樹脂層を一体に積層形成する工程を有し;
(iv)目的とする立体造形物が形成されるまで前記(iii)の光硬化した樹脂層の積層形成工程を繰り返すことによって立体造形物を製造する方法であって;
前記(i)〜(iv)の全工程または一部の工程において、光硬化した樹脂層の形成後に、該光硬化した樹脂層の表面を、切削屑除去用の吸引フードで覆った回転する切削刃を有する切削手段によって、切削屑を吸引除去しながら切削処理して平坦化し、該平坦化した光硬化した樹脂層の表面に1層分の液状の光硬化性樹脂組成物を施して制御下に当該液状の光硬化性樹脂組成物に光を照射して、光硬化した樹脂層上に所定のパターンおよび厚みを有する光硬化した樹脂層を一体に積層形成する;
ことを特徴とする光学的立体造形物の製造方法。
(I) a step of irradiating light on the surface of the layered liquid photocurable resin composition to form a photocured resin layer having a predetermined pattern and thickness;
(Ii) A liquid photocurable resin composition for one layer is applied on the photocured resin layer formed in (i), and the liquid photocurable resin composition is irradiated with light under control. A step of integrally laminating a photocured resin layer having a predetermined pattern and thickness on the photocured resin layer formed in (i); and
(Iii) A liquid photocurable resin composition for one layer is applied on the photocured resin layer formed in (ii), and the liquid photocurable resin composition is irradiated with light under control. A step of integrally laminating a photocured resin layer having a predetermined pattern and thickness on the photocured resin layer formed in (ii);
(Iv) A method for producing a three-dimensional object by repeating the layer forming step of the photocured resin layer of (iii) until a target three-dimensional object is formed;
In all or a part of the steps (i) to (iv), after the photocured resin layer is formed, the surface of the photocured resin layer is covered with a suction hood for removing cutting waste. A cutting means having a blade performs a cutting process while removing cutting waste by suction and flattening, and applying a liquid photocurable resin composition for one layer to the surface of the flattened photocured resin layer, under control. And irradiating the liquid photocurable resin composition with light to integrally form a photocured resin layer having a predetermined pattern and thickness on the photocured resin layer;
A method for producing an optical three-dimensional structure characterized by the above.
切削刃を光硬化した樹脂層の表面に対して垂直または水平な回転軸によって回転させながら切削処理を行う請求項1に記載の光学的立体造形物の製造方法。  The manufacturing method of the optical three-dimensional molded item of Claim 1 which performs a cutting process, rotating a cutting blade with the rotating shaft perpendicular | vertical or horizontal with respect to the surface of the resin layer photocured. 刃先先端が直線状をなし且つ刃先先端角度θ1が40°以下である切削刃を用い、光硬化した樹脂層表面を切削する際の光硬化した樹脂層面と切削刃の下面のなす角度θ2を0°を超え30°以下とし、且つ光硬化した樹脂層面に対する切削刃のすくい角度θ3を20°〜80°にして、切削刃の刃先先端を光硬化した樹脂層の表面に線状に接触させた状態で、切削刃を光硬化した樹脂層の表面に対して垂直な回転軸によって回転させながら切削処理を行う請求項1または2に記載の光学的立体造形物の製造方法。The angle θ 2 formed by the photocured resin layer surface and the lower surface of the cutting blade when the photocured resin layer surface is cut using a cutting blade having a straight edge and a blade edge angle θ 1 of 40 ° or less. was less 30 ° beyond the 0 °, and with a rake angle theta 3 of the cutting blade with respect to the light curing resin layer surface to 20 ° to 80 °, the cutting edge tip of the cutting edge linearly on the surface of the photocurable resin layer The manufacturing method of the optical three-dimensional molded item of Claim 1 or 2 which performs a cutting process, rotating the cutting blade with the rotating shaft perpendicular | vertical with respect to the surface of the resin layer photocured in the state contacted. 刃先先端角度θ1が70°以下である切削刃を用い、光硬化した樹脂層表面を切削する際の光硬化した樹脂層面と切削刃の下面のなす角度θ2を0°を超え70°以下とし、且つ光硬化した樹脂層面に対する切削刃のすくい角度θ3を20°〜80°にして、切削刃を光硬化した樹脂層の表面に対して水平な回転軸によって回転させながら切削処理を行う請求項1または2に記載の光学的立体造形物の製造方法。Using a cutting blade with a blade tip angle θ 1 of 70 ° or less, the angle θ 2 formed by the photocured resin layer surface and the lower surface of the cutting blade when cutting the photocured resin layer surface exceeds 0 ° and is 70 ° or less. In addition, the rake angle θ 3 of the cutting blade with respect to the photocured resin layer surface is set to 20 ° to 80 °, and the cutting blade is rotated by a horizontal rotation axis with respect to the surface of the photocured resin layer. The manufacturing method of the optical three-dimensional molded item of Claim 1 or 2. 切削刃の回転数が200〜20,000rpmである請求項1〜4のいずれか1項に記載の光学的立体造形の製造方法。  The manufacturing method of the optical three-dimensional modeling of any one of Claims 1-4 whose rotation speed of a cutting blade is 200-20,000 rpm. 載置台上または液状の光硬化性樹脂組成物の硬化により形成した光硬化した樹脂層上に、1層分の液状の光硬化性樹脂組成物を順次供給するための液状の光硬化性樹脂組成物の供給手段;
光硬化性樹脂組成物を液状に保ちながら、最終的な立体造形物が形成されるまで制御下に所定のパターンおよび厚みを有する光硬化した樹脂層の形成・積層を繰り返して行うための光照射装置を備える光造形手段;および、
光造形の全工程または一部の工程において、切削屑を吸引除去しながら光硬化した樹脂層の表面を切削して平坦化するための、切削屑除去用の吸引フードで覆った、光硬化した樹脂層面に対して垂直または水平な回転軸によって回転する切削刃を有する切削手段;
を有することを特徴とする光学的立体造形装置。
On the resin layer photocured formed by curing on the table or a liquid photo-curable resin composition, sequential light-curable resin composition of the liquid for supplying the photocurable resin composition of one layer of liquid Means for supplying goods;
Light irradiation for repeatedly forming and laminating a photocured resin layer having a predetermined pattern and thickness under control until the final three-dimensional structure is formed while keeping the photocurable resin composition in a liquid state Stereolithography means comprising the apparatus; and
In all or some of the steps of stereolithography, photocured , covered with a suction hood for cutting dust removal , which cuts and flattens the surface of the photocured resin layer while suctioning and removing cutting dust . Cutting means having a cutting blade rotated by a rotation axis perpendicular or horizontal to the resin layer surface;
An optical three-dimensional modeling apparatus characterized by comprising:
切削手段が、光硬化した樹脂層面に対して垂直または水平な回転軸または該回転軸と一体に回転する回転体に複数の切削刃を放射状または螺旋状に取り付けてなる切削手段である請求項に記載の光学的立体造形装置。Cutting means, claim a cutting means formed by attaching a plurality of cutting blades radially or spirally rotating body which rotates together with vertical or horizontal rotation axis or the rotation axis with respect to the light curing resin layer surface 6 The optical three-dimensional modeling apparatus described in 1. 切削手段における切削刃が、光硬化した樹脂層面に対して垂直な回転軸によって回転する切削刃であって、切削刃の刃先先端が直線状をなすと共に且つ該刃先先端角度θ2が40°以下の切削刃である請求項またはに記載の光学的立体造形装置。The cutting blade in the cutting means is a cutting blade rotated by a rotation axis perpendicular to the photocured resin layer surface, the cutting edge tip of the cutting blade is linear, and the cutting edge angle θ 2 is 40 ° or less. stereolithography apparatus according to claim 6 or 7 which is a cutting edge. 切削刃が光硬化した樹脂層面に対して水平な回転軸によって回転する切削刃であって、その刃先先端角度θ2が70°以下の切削刃である請求項またはに記載の光学的立体造形装置。The optical three-dimensional object according to claim 6 or 7 , wherein the cutting blade is a cutting blade rotated by a rotation axis that is horizontal with respect to the photocured resin layer surface, and the cutting edge tip angle θ 2 is 70 ° or less. Modeling equipment.
JP2000139540A 2000-05-12 2000-05-12 Optical three-dimensional modeling method and apparatus Expired - Fee Related JP4426060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000139540A JP4426060B2 (en) 2000-05-12 2000-05-12 Optical three-dimensional modeling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000139540A JP4426060B2 (en) 2000-05-12 2000-05-12 Optical three-dimensional modeling method and apparatus

Publications (2)

Publication Number Publication Date
JP2001315215A JP2001315215A (en) 2001-11-13
JP4426060B2 true JP4426060B2 (en) 2010-03-03

Family

ID=18646965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000139540A Expired - Fee Related JP4426060B2 (en) 2000-05-12 2000-05-12 Optical three-dimensional modeling method and apparatus

Country Status (1)

Country Link
JP (1) JP4426060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220161323A1 (en) * 2020-11-26 2022-05-26 S.A.S 3Dceram-Sinto Machine for manufacturing green parts from ceramic or metallic material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599054B2 (en) * 2002-09-30 2004-12-08 松下電工株式会社 Manufacturing method of three-dimensional shaped object
JP3599059B2 (en) * 2003-02-25 2004-12-08 松下電工株式会社 Method and apparatus for manufacturing three-dimensional shaped object
JP7038549B2 (en) * 2015-05-15 2022-03-18 デンツプライ シロナ インコーポレイテッド 3D manufacturing method for rapid production of objects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220161323A1 (en) * 2020-11-26 2022-05-26 S.A.S 3Dceram-Sinto Machine for manufacturing green parts from ceramic or metallic material
US11794249B2 (en) * 2020-11-26 2023-10-24 S.A.S 3Dceram-Sinto Machine for manufacturing green parts from ceramic or metallic material with rectangular parallelepiped applicator

Also Published As

Publication number Publication date
JP2001315215A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
TWI729208B (en) Method and system for additive-ablative fabrication
TWI480924B (en) Nanoimprinting method and method of manufacturing substrate using the same
TWI479277B (en) Method for removing foreign particles adhered to molds
JP6925423B2 (en) Optical layer configuration in the imprint lithography process
KR20010051780A (en) Method and apparatus for forming three-dimensional laminated product from photo-curable liquid
CN101573659A (en) Method for expelling gas positioned between a substrate and a mold
TW201936365A (en) Processing apparatus, processing method, marking method, modeling method, computer program and recording medium
JP4426059B2 (en) Optical three-dimensional modeling method and apparatus
JP4426060B2 (en) Optical three-dimensional modeling method and apparatus
JP2014110367A (en) Nanoimprint method and method for manufacturing patterned substrate using the method
CN1154174A (en) Optical disk and production method thereof
JP6792835B2 (en) Stereolithography tray
JPH0788966A (en) Method for forming three-dimensional shape
JP4728468B2 (en) Photocurable resin composition for optical three-dimensional modeling
JPH09168840A (en) Molding method of sand mold by stacking method
JPH0768647A (en) Method and apparatus for forming laminated layer
JP4925945B2 (en) Optical three-dimensional modeling apparatus and optical three-dimensional modeling method
JP2006043953A (en) Optical three-dimensional shaping method and apparatus therefor
JP2004042546A (en) Method for lamination-molding functional material
JP4033987B2 (en) Optical 3D modeling method
JPH0295831A (en) Forming method and apparatus of three dimensional shape
JP3698340B2 (en) 3D shape creation method by film additive manufacturing method and 3D shape creation device by this method
JP2001205708A (en) Method and device for optical stereo shaping
JP2000094453A (en) Mold for molding resin and manufacture thereof
JPH08281809A (en) Three-dimensional molding apparatus and method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Ref document number: 4426060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees