JP4425518B2 - Automatic offset correction integration circuit - Google Patents

Automatic offset correction integration circuit Download PDF

Info

Publication number
JP4425518B2
JP4425518B2 JP2002117657A JP2002117657A JP4425518B2 JP 4425518 B2 JP4425518 B2 JP 4425518B2 JP 2002117657 A JP2002117657 A JP 2002117657A JP 2002117657 A JP2002117657 A JP 2002117657A JP 4425518 B2 JP4425518 B2 JP 4425518B2
Authority
JP
Japan
Prior art keywords
integration
input
time
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002117657A
Other languages
Japanese (ja)
Other versions
JP2003318668A (en
Inventor
孝徳 青木
彩雲 張
英範 槙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP2002117657A priority Critical patent/JP4425518B2/en
Publication of JP2003318668A publication Critical patent/JP2003318668A/en
Application granted granted Critical
Publication of JP4425518B2 publication Critical patent/JP4425518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Analogue/Digital Conversion (AREA)
  • Networks Using Active Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本件の発明は,電子回路の積分や全波整流・同期整流におけるオフセット(以下ゼロ点ずれという)を自動的に調整する積分回路に関する。
【0002】
【従来の技術】
電子回路で用いるオペアンプなど直流増幅器では入力がないにもかかわらず出力側の電位にずれが生じるいわゆるゼロ点ずれがある。その場合,増幅器に入力があると,入力に応じた出力+ゼロ点ずれが出力に現れる。したがって,ゼロ点ずれをキャンセルしないと,正しい測定ができない。
ゼロ点ずれの影響を無くすため従来は,半固定抵抗などを用いてオフセットを調整したり,ゼロ点ずれの少ない特性のよいオペアンプを使用したりしていた。
【0003】
【発明が解決しようとする課題】
しかしながら従来の方法では,コストが高くなるという問題点があった。
半固定抵抗でゼロ点ずれを合わせる場合,半固定抵抗のコストや調整の手間のコストがかかっていた。例えば20円のオペアンプに対し半固定抵抗を1個追加する度に300円のコストアップになっていた。更にオペアンプにはゼロ点ずれの経年変化があり,精度を維持するためには定期的な調整が必要であった。
ゼロ点ずれが少なく特性のよいオペアンプを使用する場合,高価であった。例えば通常特性の20円のオペアンプに対し特性のよいものは2000円であって,複数個使用すると非常に高価になる。
また,ゼロ点ずれがあるままの回路を用い,入力信号端子をショートしてそのときの出力値を読み,入力信号を加えたときの出力値から差し引いてゼロ点ずれをキャンセルする方法があるが計測器などに用いる場合,通常レンジ毎の測定精度はレンジ毎の最大値に対して±何%というように定められるが,ゼロ点ずれの方が入力信号の大きさより相対的に大きな場合は,測定したい入力信号に対し適正な測定レンジより大きなレンジで計測しなければならなくなり, 大きなレンジで測定すると入力信号に対する測定精度が低下することになる。したがって入力信号に対する測定誤差をレンジを変えても同一にしようとすると使用部品や回路構成を1ランク上の精度で設計する必要があり高価になっていた。
【0004】
そこで本件の発明は,安価なオペアンプを使用しても,ゼロ点ずれを自動調整してしまうような自動ゼロ点補正積分回路を安価に提供することを課題としている。
【0005】
【課題を解決するための手段】
上述の目的を達成するために,本発明の請求項1では,差動増幅器を用いて構成した積分回路において,
該差動増幅器の反転入力端子(−入力端子)に積分入力抵抗を介して入力する入力信号として,
測定入力信号InSと入力ゼロ側の信号In0を,
これらの測定入力信号InSと入力ゼロ側の信号In0とを所定の時間毎に切り替えて選択できる入力切替手段を介して入力し
前記差動増幅器の出力端子及び前記−入力端子間を流れる前記入力信号に比例した電流の経路に,
少なくとも第一の経路切替スイッチと,積分用コンデンサC1と,第二の経路切替スイッチとを直列に接続し,
該第1の経路切替スイッチ及び第2の経路切替スイッチを切替えることにより,前記積分用コンデンサC1に流れる電流の方向を,所定の時間毎に第1の方向(順方向)と第2の方向(逆方向)に切替えて,
各々の電流方向において第1の積分回路状態と第2の積分回路状態を形成して,積分用コンデンサC1の両端電圧を積分結果として得るように積分回路を形成し
前記差動増幅器自体における非反転入力端子(+入力端子)と前記−入力端子との間に生ずる(差動増幅器の−入力端子の電圧)と(差動増幅器の+入力端子の電圧)の差
で表される第一のオフセット電圧(V1)と,
前記入力ゼロ側と前記差動増幅器の+入力端子が接続される電子回路のグラウンドとの間に生ずる(電子回路のグラウンドの電圧)と(入力ゼロ側の電圧)の差
で表される第二のオフセット電圧(V2)とを,
前記入力切替手段が測定入力信号InSを選択した場合には,前記差動増幅器に積分用コンデンサC1を順方向に接続して前記測定入力信号InSと前記積分入力抵抗を通って流れるところの,(測定入力信号InSの電圧−V2−V1)に比例した電流を流して積分時間T2で積分する第二の積分回路状態を形成し,
前記入力切替手段が信号In0を選択した場合には,前記差動増幅器に積分用コンデンサC1を逆方向に接続して前記信号In0と前記積分入力抵抗を通って流れるところの,(信号In0の電圧−V2−V1)に比例した電流を流して積分時間T1で積分する第一の積分回路状態を形成して
前記積分用コンデンサC1の電荷を放電した後,積分時間がT1=T2となるように,前記第一の積分回路状態と前記第二の積分回路状態において,同じ時間だけ積分を行うことにより前記第一のオフセット電圧及び第二のオフセット電圧を除去した積分結果を得て,前記積分用コンデンサC1の両端電圧に,測定入力信号InSの電圧と入力ゼロ側の信号In0の電圧との差に比例した,前記第一及び第二のオフセット電圧が除去された電圧を得ることを特徴とする自動オフセット補正積分回路を提供したものである。
【0006】
また請求項2においては,前記積分時間T1およびT2をそれぞれ同じ偶数で分割し,該分割された個々の時間を時間順にTHおよびTLとし,時間THの間は入力信号をそのまま積分し,時間TLの間は差動増幅器による極性反転回路により入力信号を反転して積分を行い,TH時間とTL時間が交互に繰り返すようにしたことを特徴とする請求項1記載の自動オフセット補正積分回路を提供したものである。
【0007】
また請求項3では,前記積分時間T1およびT2をそれぞれ同じ偶数で分割し,該分割された個々の時間を時間順にTHおよびTLとし,該時間THと時間TLを1組として2組有し,一方のTH,TLと他方のTH,TLの信号反転のタイミングを前記時間TH,TLの半分の時間ずらし,T1およびT2の切り替わりのタイミングに同期して一方のTHとTLの切り替わりが起こるようにし,それぞれ積分回路を設け,積分回路の入力選択はそれぞれの時間THの間は入力信号をそのまま選択し,それぞれの時間TLの間は差動増幅器による極性反転回路により入力信号を反転した信号を選択するようにし,2つの積分回路の積分コンデンサの切り替えは2つ同時に行って同時に積分することを特徴とした請求項2記載の自動オフセット補正積分回路を提供したものである。
【0008】
【発明の実施の形態】
以下,本発明の実施の形態について,図面を用いて詳細に説明する。
【0009】
図1に積分回路を示し,通常差動増幅器(オペアンプ)とコンデンサを組み合わせて構成される。
【0010】
図2は従来の積分回路の積分出力を示している。太い線は測定入力信号がないときの積分出力であり積分終了時における値がいわゆるオフセット(ゼロ点ずれ)によるものである。細い線は測定入力信号があるときのの積分出力であり,前述のゼロ点ずれによる積分値を結果に含んでいる。
【0011】
図4は本件発明の第一の発明の実施例である。図4においてA1,A2は差動増幅器であり,SW1からSW4は切替スイッチで電子的に制御される。C1は増幅器A2に接続される積分用コンデンサで,C1,R2,A2で積分器を構成している。A1はいわゆるバッファ(緩衝)増幅器で,SW1の内部抵抗などの積分器への影響を遮断している。最初SW1からSW4は図の位置に切り替えられていてC1とR2の両端はSW2〜SW4を通じて電荷を放電する。ついで,SW1は入力信号In0(入力ゼロ)側に接続したまま,SW2を図の下側に切り替える。この場合,C1とR2の両端のショート回路は切り離されるので積分が開始されるが,入力はゼロであるから,出力にはオフセットによるゼロ点ずれが発生する。T1時間その状態で積分を行った後,切替スイッチSW3,SW4を制御信号DIRで反転させて,積分用コンデンサをA2に対して逆接続すると同時に切替SW1を測定入力信号InSに切り換えてT2時間積分を行う。
【0012】
このときのT1時間とT2時間における出力Outの状態を図3に示す。T1時間の終了時点では,オフセット分による積分値が,A2に対するC1の接続極性が切り替えられたことで反転して現れ,T2時間では,オフセット分とInSの入力信号を含んで積分される。オフセット分は同一であるので,T1とT2を同一の時間にすれば,T1の始まりとT2の終了時点ではオフセット分はキャンセルされて純粋にInSの入力信号分のT2時間における積分値のみが得られる。
【0013】
図5は本件発明の第二の発明の実施例である。図5における実施例では,A1とA2の差動増幅器の間に,A11とA12の差動増幅器による回路と切替スイッチSW11を挿入してある。A11は差動増幅器による極性反転回路で,A12はA1に同じバッファとして機能している。図7は図5に示す実施例の図3に相当するOut端子の出力とT1とT2の時間との関係を示している。SW1〜SW4の切替とT1,T2の時間の関係は図4に示す第一の実施例と同一であるので説明を省略する。図5におけるSW11は図7に示したようにT1時間およびT2時間をそれぞれ偶数である2ケずつTHとTLに分割し,個々の時間で接続を切替え時間THの間は選択信号をそのまま積分し,時間TLの間は選択信号を反転して積分を行う。このような切替は同期整流回路として用いられるものでT1とT2においてTH時間とTL時間を交互に連続的に繰り返すように同期制御によって入力信号と,入力信号の反転信号とを選択しており,THとTLを交流信号の半波分の周期に選定されて用いられる。同期のタイミングを交流信号のゼロ点にとれば,A12の出力は全波整流波形となり,A2の出力値は交流信号の大きさに比例する直流電圧を得ることができる。反転オペアンプにもゼロ点ずれがあるとし,T1時間の積分中とT2時間の積分中は全く同じ制御が行われる。したがってコンデンサC1に流れ込む電荷の量は同じである。ところが,C1が逆接続されるので,流れ込んだだけ,出ていき,ゼロ点ずれが補正される。
【0014】
図6は本件発明による第三の発明の実施例である。図5に示すSW11から右の回路を二組設けた構成とし,図8に示したように,SW11による切替時間TH1,TL1と,SW21による切替時間TH2,TL2の切替のタイミングをTH,TLの1/2の時間ずらすようにしてそれぞれでゼロ点ずれが補正を行うようにしている。このような回路は,交流電圧に抵抗と容量が合成されて接続された場合流れる交流電流のうち,抵抗成分による電流がいくら,容量成分による電流がいくらというように分離して測定するような同期整流に用いることが可能である。
【0015】
図9は本件発明の第一の発明に改善を加えた実施例である。図4の第一の実施例と異なるところは,図4のA1の部分が内部回路に置き換わってSW2とA2の間にSW32が入ったことである。内部回路は図4のA1を含んでその他の周辺回路を含んだものとなっている。このような例では,SW1を切り替える都度,過渡現象的に信号が不安定になることがあり,入力信号に応じた回路状態に安定するまで多少時間を要することがある。そこで,本実施例では図3のT1からT2に状態を切りかえる際に,Outの出力値をホールドするようSW32を切り離し,その後SW1をIn0からInSに切り換えてしばらくその状態を維持(ホールド)した後T2の状態に入るようにして,安定してから積分を行い正しい値を得ることができるようにしている。そのOutの出力状態を図10に示す。
【0016】
図11は理想的な全波整流波形を示したものである。前述のように全波整流は交流の大きさを測定するために用いられる。測定器などで正確な全波整流波形を得るためには,オペアンプを用いた回路がよく知られているが,冒頭述べたようにオペアンプではオフセットによるゼロ点ずれが必ず発生する。
【0017】
図12は通常のオペアンプによる回路でゼロ点ずれがあるときの全波整流波形である。
本来の交流の±の中心レベルで−側の波形を反転する必要があるのに対し,ゼロ点ずれ分反転するレベルがずれて,+側と−側の波形が均等にならない。図12のような整流波形を積分した場合,積分出力は,図11のような正確な全波整流波形を積分した場合に比べかけ離れた値となって正しい交流信号の大きさを得られない。正しく交流信号の大きさを測定するためには,全波整流回路にゼロ点ずれがあってはならない。
【0018】
図13は本発明の第二の実施例である図5の回路におけるA12の出力波形を表した図であって,A1からA12の差動増幅器および測定入力信号InSにゼロ点ずれがある場合を示している。図13の波形は,図11に示す理想的な全波整流と,図14に示すゼロ点ずれによる電圧ドリフト(直流電圧)を同期整流した場合の波形の合成波形である。そのうち,図14に示す波形を図5に示す回路で積分すると,直流分はキャンセルされてゼロになる。したがって,図13の波形の積分は図11の理想的な全波整流の積分と等しくなる。したがって図5の回路を全波整流回路として使用すると,ゼロ点ずれがなく,しかも測定入力信号InSのゼロ点ずれまでキャンセルする全波整流回路となる。
【0019】
本件発明の第三の発明を用いると,漏れ電流を抵抗成分の漏れ電流と,対地静電容量成分の漏れ電流を測定できるとともに,漏れ電流の絶対値も測定することができる。
本件発明の第二の発明を用いると,漏れ電流のうちの対地静電容量静電の影響を無くし,抵抗成分の漏れ電流だけを測定する漏れ電流計が実現できる。
【0020】
本発明では,T1=T2,TH=TL,TH1=TL1,TH2=TL2としているが,本発明の求めるのは実用上等しくすることである。というのは,厳密に等しくするのが困難な場合があるからである。例えばタイマで実現する場合,一方が奇数になり,他方が偶数になるなど等しくできない場合がある。
【0021】
本発明により複数の入力信号を選択する構成のオートゼロ積分回路が簡単に実現できる。本発明のT1時間とT2時間は,T1時間の次にT2時間がくるような順序で説明してきた。この順序の方が,積分値の最大値が小さく,飽和の可能性が少なくなるからである。ただし,請求項では,二つの積分の順序にふれておらず,どちらでも良いとしている。というのは,積分の途中で飽和しないようにさえすれば,T2時間の次にT1時間がくるようにしても全く同じようにゼロ点を補正できるからである。
【0022】
積分時間T1,T2を雑音の周期の整数倍にすることにより,入力信号InSに含まれる雑音がキャンセルされる。例えば100msの倍数の間積分することにより,電力線の周波数である50Hzの影響も60Hzの影響も受けない測定を行うことができる。
【0023】
【発明の効果】
以上のように請求項1の発明によりゼロ点ずれの無い自動オフセット補正積分回路を提供できる。図4の例ではSW3,SW4の追加だけの20円程度のコストアップでゼロ点ずれをなくすことができるので経済的である。しかも精度が良い。コンデンサや抵抗の値が変わっても対応できる。図9の例における内部回路がどんな回路であっても対応できる。ゼロ点ずれの経年変化にも自動的に対応する。このように本発明の第一の発明によれば,安価な部品を用いながら,ゼロ点ずれの問題を完全に解決し,しかも精度のよい自動オフセット補正積分回路を提供することができる。
【0024】
また請求項2,3の発明により,ゼロ点ずれのある交流も自動的にキャンセルして測定する同期整流機能付き自動オフセット補正積分回路と直交同期整流機能付き自動オフセット補正積分回路を提供することができる。全波整流に使った場合,ゼロ点ずれの影響が全くなくなる。
【図面の簡単な説明】
【図1】 積分回路を示した図
【図2】 従来の積分回路の積分出力を示した図
【図3】 請求項1のオートゼロ積分回路の積分出力波形を示した図
【図4】 第一の実施例の図
【図5】 第二の実施例の図
【図6】 第三の実施例の図
【図7】 第二の実施例の積分出力波形を示した図
【図8】 第三の実施例の積分出力波形を示した図
【図9】 第四の実施例の図
【図10】 第四の実施例の積分出力波形を示した図
【図11】 理想的な全波整流波形の図
【図12】 ゼロ点ずれがあるときの全波整流波形の図
【図13】 同期整流の波形の図
【図14】 同期整流で加わる直流成分の図
【符号の説明】
InS 測定入力信号
In0 ゼロ入力信号
C1 積分用コンデンサ
a C1の端子
b C1の端子
A 積分回路の端子
B 積分回路の端子
IA ゼロ点ずれによる電流
A1〜A22 差動増幅器(オペアンプ)
SW1〜SW31 切替スイッチ
R1〜R21 抵抗
DIR C1の接続を変更する制御信号
R2 抵抗
I1 SW3,SW4を図とは逆の側に切り替えたときの電流の向き
I2 SW3,SW4を図のように接続したときの電流の向き
Out 積分出力
TH,TL 同期整流の時間
SW32 HOLD付きアナログスイッチ
HOLD ホールドを行う制御信号
内部回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an integration circuit for automatically adjusting an offset (hereinafter referred to as zero point deviation) in integration of an electronic circuit or full-wave rectification / synchronous rectification.
[0002]
[Prior art]
In a DC amplifier such as an operational amplifier used in an electronic circuit, there is a so-called zero point shift that causes a shift in potential on the output side even though there is no input. In that case, if there is an input to the amplifier, an output corresponding to the input + zero point deviation appears in the output. Therefore, correct measurement cannot be performed without canceling the zero point deviation.
In order to eliminate the influence of the zero point deviation, conventionally, the offset was adjusted by using a semi-fixed resistor, etc., or an operational amplifier with good characteristics with little zero point deviation was used.
[0003]
[Problems to be solved by the invention]
However, the conventional method has a problem of high cost.
When adjusting the zero point deviation with a semi-fixed resistor, the cost of the semi-fixed resistor and the labor of adjustment were incurred. For example, every time a semi-fixed resistor is added to a 20 yen operational amplifier, the cost increases by 300 yen. In addition, the operational amplifier has a zero point shift over time, and regular adjustment is necessary to maintain accuracy.
When using an op amp with good characteristics with little zero point deviation, it was expensive. For example, an operational amplifier with a normal characteristic of 20 yen has a good characteristic of 2000 yen, and using a plurality of operational amplifiers is very expensive.
There is also a method of canceling the zero point deviation by using a circuit with zero point deviation, shorting the input signal terminal, reading the output value at that time, and subtracting it from the output value when the input signal is added. When used for measuring instruments, the measurement accuracy for each range is usually set to ±% of the maximum value for each range. If the zero point deviation is relatively larger than the input signal, The input signal to be measured must be measured in a range larger than the appropriate measurement range, and measurement in a large range will reduce the measurement accuracy for the input signal. Therefore, if the measurement error for the input signal is to be made the same even if the range is changed, it is necessary to design the parts and circuit configuration to be used with an accuracy of one rank, which is expensive.
[0004]
Accordingly, an object of the present invention is to provide an automatic zero-point correction integration circuit that automatically adjusts the zero-point deviation even if an inexpensive operational amplifier is used.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in claim 1 of the present invention, in an integrating circuit configured using a differential amplifier,
As an input signal that is input to the inverting input terminal (−input terminal) of the differential amplifier via an integral input resistor,
Measurement input signal InS and input zero side signal In0
The measurement input signal InS and the input zero-side signal In0 are input via input switching means that can be switched and selected at predetermined time intervals .
In a current path proportional to the input signal flowing between the output terminal of the differential amplifier and the negative input terminal ,
At least the first path selector switch, the integrating capacitor C1, and the second path selector switch are connected in series,
By switching the route switching switches and the second path switching switch of the first, the direction of current flowing through the integrating capacitor C1, a first direction (forward direction) at predetermined time intervals a second direction ( Switch to the opposite direction)
In each current direction, a first integration circuit state and a second integration circuit state are formed, and an integration circuit is formed so that the voltage across the capacitor C1 for integration is obtained as an integration result.
The difference between (the voltage at the −input terminal of the differential amplifier) and (the voltage at the + input terminal of the differential amplifier) between the non-inverting input terminal (+ input terminal) and the −input terminal in the differential amplifier itself.
The first offset voltage (V1) represented by
Difference between (voltage of the electronic circuit ground) and (voltage of the input zero side) generated between the input zero side and the ground of the electronic circuit to which the positive input terminal of the differential amplifier is connected
The second offset voltage (V2) represented by
When said input switching means selects the measured input signal InS side, at which the flow through the measurement input signal InS and the integral input resistor integral capacitor C1 to the differential amplifier connected in a forward direction, A second integration circuit state is formed in which a current proportional to (the voltage of the measurement input signal InS −V2−V1 ) is passed and integration is performed at the integration time T2.
When said input switching means selects the signal In0 side, at which the flow through the integral input resistor and the signal In0 connecting the integrating capacitor C1 to the differential amplifier in the reverse direction, the (signal In0 voltage - V2-V1) to form a first integration circuit state integrated by the integration time T1 by supplying a current proportional,
After discharging the charges of the integration capacitor C1, so that the integration time is T1 = T2, in the second integration circuit with said first integrating circuit condition, it said by performing integration by the same time the An integration result obtained by removing the first offset voltage and the second offset voltage is obtained, and the voltage across the integration capacitor C1 is proportional to the difference between the voltage of the measurement input signal InS and the voltage of the input zero side signal In0. it is obtained by providing an automatic offset correction integration circuit, characterized in Rukoto obtain the first and the voltage which the second offset voltage is removed.
[0006]
Further, in claim 2, the integration times T1 and T2 are divided by the same even number, the divided individual times are set to TH and TL in time order, and the input signal is integrated as it is during the time TH, and the time TL 2. An automatic offset correction integration circuit according to claim 1 , wherein the integration is performed by inverting the input signal by a polarity inverting circuit using a differential amplifier during the interval, and the TH time and the TL time are alternately repeated. It is a thing.
[0007]
Further, in claim 3, the integration times T1 and T2 are each divided by the same even number, the divided individual times are TH and TL in time order, and the time TH and the time TL are one set, and two sets are provided. The signal inversion timing of one TH, TL and the other TH, TL is shifted by half the time TH, TL so that the switching of one TH and TL occurs in synchronization with the switching timing of T1 and T2. Each of the integration circuits is provided, and the input selection of the integration circuit selects the input signal as it is during each time TH, and selects the signal obtained by inverting the input signal by the polarity inversion circuit using a differential amplifier during each time TL. 3. The automatic offset compensation according to claim 2, wherein two integration capacitors of the two integration circuits are switched simultaneously and integrated at the same time. A positive integration circuit is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0009]
FIG. 1 shows an integration circuit, which is usually configured by combining a differential amplifier (op amp) and a capacitor.
[0010]
FIG. 2 shows an integration output of a conventional integration circuit. The thick line is the integration output when there is no measurement input signal, and the value at the end of the integration is due to a so-called offset (zero point deviation). The thin line is the integrated output when there is a measurement input signal, and includes the integrated value due to the zero point shift described above.
[0011]
FIG. 4 shows an embodiment of the first invention of the present invention. In FIG. 4, A1 and A2 are differential amplifiers, and SW1 to SW4 are electronically controlled by a changeover switch. C1 is an integrating capacitor connected to the amplifier A2, and C1, R2, and A2 constitute an integrator. A1 is a so-called buffer amplifier that blocks the influence of the internal resistance of SW1 on the integrator. Initially, SW1 to SW4 are switched to the positions shown in the figure, and both ends of C1 and R2 discharge electric charges through SW2 to SW4. Next, SW2 is switched to the lower side of the figure while being connected to the input signal In0 (input zero) side. In this case, the short circuit at both ends of C1 and R2 is disconnected and integration is started. However, since the input is zero, a zero point shift due to the offset occurs in the output. After integration for the T1 time, the changeover switches SW3 and SW4 are inverted by the control signal DIR, and the integration capacitor is reversely connected to A2, and at the same time, the switch SW1 is switched to the measurement input signal InS and the integration is performed for T2 time. I do.
[0012]
FIG. 3 shows the state of the output Out at time T1 and time T2. At the end of the T1 time, the integral value due to the offset appears inverted as the connection polarity of C1 with respect to A2 is switched. At the time T2, the integrated value is integrated including the offset and the InS input signal. Since the offset is the same, if T1 and T2 are set to the same time, the offset is canceled at the beginning of T1 and at the end of T2, and only the integrated value at the time T2 corresponding to the input signal of InS is obtained. It is done.
[0013]
FIG. 5 shows an embodiment of the second invention of the present invention. In the embodiment shown in FIG. 5, a circuit composed of the differential amplifiers A11 and A12 and a changeover switch SW11 are inserted between the differential amplifiers A1 and A2. A11 is a polarity inversion circuit using a differential amplifier, and A12 functions as the same buffer as A1. FIG. 7 shows the relationship between the output of the Out terminal corresponding to FIG. 3 of the embodiment shown in FIG. 5 and the times T1 and T2. The relationship between the switching of SW1 to SW4 and the time of T1 and T2 is the same as in the first embodiment shown in FIG. As shown in FIG. 7, SW11 in FIG. 5 divides T1 time and T2 time into two even numbers, TH and TL, and integrates the selection signal as it is during switching time TH at each time. During the time TL, the selection signal is inverted and integration is performed. Such switching is used as a synchronous rectifier circuit. In T1 and T2, an input signal and an inverted signal of the input signal are selected by synchronous control so that TH time and TL time are alternately and continuously repeated. TH and TL are selected and used as a half-wave period of the AC signal. If the synchronization timing is set to the zero point of the AC signal, the output of A12 becomes a full-wave rectified waveform, and the output value of A2 can obtain a DC voltage proportional to the magnitude of the AC signal. Assuming that the inverting operational amplifier also has a zero point shift, the same control is performed during the integration of the T1 time and the integration of the T2 time. Accordingly, the amount of charge flowing into the capacitor C1 is the same. However, since C1 is reversely connected, it just exits and flows out, and the zero point deviation is corrected.
[0014]
FIG. 6 shows an embodiment of the third invention according to the present invention. As shown in FIG. 8, the switching timings TH1 and TL1 by SW11 and the switching times TH2 and TL2 by SW21 are switched to TH and TL as shown in FIG. The zero point shift is corrected by shifting the time by half. Such a circuit is a synchronous circuit that measures separately the alternating current that flows when the resistance and capacitance are combined with the AC voltage and how much the current due to the resistance component and how much the current due to the capacitance component is. It can be used for rectification.
[0015]
FIG. 9 shows an embodiment obtained by improving the first invention of the present invention. The difference from the first embodiment of FIG. 4 is that the part A1 in FIG. 4 is replaced with an internal circuit and SW32 is inserted between SW2 and A2. The internal circuit includes A1 in FIG. 4 and other peripheral circuits. In such an example, each time SW1 is switched, the signal may become unstable due to a transient phenomenon, and it may take some time to stabilize the circuit state according to the input signal. Therefore, in this embodiment, when switching the state from T1 to T2 in FIG. 3, the SW32 is disconnected so as to hold the output value of Out, and then the state is maintained (held) for a while after switching SW1 from In0 to InS. By entering the state of T2, integration is performed after stabilization, so that a correct value can be obtained. The output state of Out is shown in FIG.
[0016]
FIG. 11 shows an ideal full-wave rectified waveform. As described above, full-wave rectification is used to measure the magnitude of alternating current. In order to obtain an accurate full-wave rectified waveform with a measuring instrument or the like, a circuit using an operational amplifier is well known. However, as described at the beginning, an operational amplifier always causes a zero point shift due to an offset.
[0017]
FIG. 12 shows a full-wave rectified waveform when there is a zero point shift in a circuit using a normal operational amplifier.
While the negative side waveform needs to be inverted at the original AC ± center level, the level to be inverted shifts by the zero point deviation, and the positive side and negative side waveforms do not become equal. When the rectified waveform as shown in FIG. 12 is integrated, the integrated output becomes a value far from that when the accurate full-wave rectified waveform as shown in FIG. 11 is integrated, and the correct AC signal size cannot be obtained. In order to correctly measure the magnitude of the AC signal, the full-wave rectifier circuit must not have a zero point shift.
[0018]
FIG. 13 is a diagram showing an output waveform of A12 in the circuit of FIG. 5 which is the second embodiment of the present invention, and shows a case where the differential amplifier of A1 to A12 and the measurement input signal InS have a zero point shift. Show. The waveform in FIG. 13 is a combined waveform of the ideal full-wave rectification shown in FIG. 11 and the waveform in the case of synchronous rectification of the voltage drift (DC voltage) due to the zero point shift shown in FIG. Among these, if the waveform shown in FIG. 14 is integrated by the circuit shown in FIG. 5, the DC component is canceled and becomes zero. Therefore, the waveform integration of FIG. 13 is equal to the ideal full-wave rectification integration of FIG. Therefore, when the circuit of FIG. 5 is used as a full-wave rectifier circuit, a full-wave rectifier circuit that cancels up to the zero-point deviation of the measurement input signal InS without any zero-point deviation is obtained.
[0019]
By using the third invention of the present invention, it is possible to measure the leakage current of the resistance component and the leakage current of the capacitance component to the ground as well as the absolute value of the leakage current.
By using the second invention of the present invention, it is possible to realize a leakage ammeter that measures only the leakage current of the resistance component by eliminating the influence of the electrostatic capacitance of the leakage current.
[0020]
In the present invention, T1 = T2, TH = TL, TH1 = TL1, and TH2 = TL2, but what the present invention requires is to make them practically equal. This is because it may be difficult to be exactly equal. For example, when implemented with a timer, one may be odd and the other may be even.
[0021]
According to the present invention, an auto-zero integration circuit configured to select a plurality of input signals can be easily realized. The T1 time and T2 time of the present invention have been described in the order in which the T2 time comes after the T1 time. This order is because the maximum value of the integral value is smaller and the possibility of saturation is reduced. However, in the claims, the order of the two integrals is not touched, and either is acceptable. This is because the zero point can be corrected in exactly the same way even if the T1 time comes after the T2 time as long as the saturation does not occur during the integration.
[0022]
By making the integration times T1 and T2 an integer multiple of the noise period, the noise contained in the input signal InS is canceled. For example, by integrating for a multiple of 100 ms, it is possible to perform measurement that is not affected by the power line frequency 50 Hz or 60 Hz.
[0023]
【The invention's effect】
As described above, according to the first aspect of the present invention, an automatic offset correction integration circuit free from zero point deviation can be provided. In the example of FIG. 4, the zero point deviation can be eliminated with a cost increase of about 20 yen only by adding SW3 and SW4, which is economical. Moreover, the accuracy is good. It is possible to cope with changes in the value of capacitors and resistors. Any circuit can be used as the internal circuit in the example of FIG. Automatically responds to secular change of zero point deviation. As described above, according to the first aspect of the present invention, it is possible to provide an automatic offset correction integration circuit that completely solves the problem of zero point deviation and uses a low-cost component and that is highly accurate.
[0024]
According to the second and third aspects of the present invention, there are provided an automatic offset correction integration circuit with a synchronous rectification function and an automatic offset correction integration circuit with a quadrature synchronous rectification function that automatically cancels and measures alternating current with zero point deviation. it can. When used for full-wave rectification, the effect of zero point deviation is completely eliminated.
[Brief description of the drawings]
FIG. 1 is a diagram showing an integration circuit. FIG. 2 is a diagram showing an integration output of a conventional integration circuit. FIG. 3 is a diagram showing an integration output waveform of an auto-zero integration circuit according to claim 1. FIG. FIG. 5 is a diagram of the second embodiment. FIG. 6 is a diagram of the third embodiment. FIG. 7 is a diagram showing an integrated output waveform of the second embodiment. FIG. 9 is a diagram showing an integrated output waveform of the fourth embodiment. FIG. 9 is a diagram showing the integrated output waveform of the fourth embodiment. FIG. 11 is an ideal full-wave rectified waveform. [Figure 12] Diagram of full-wave rectification waveform when there is a zero point shift [Fig. 13] Diagram of waveform of synchronous rectification [Fig. 14] Diagram of DC component added by synchronous rectification [Explanation of symbols]
InS Measurement input signal In0 Zero input signal C1 Integration capacitor a C1 terminal b C1 terminal A Integration circuit terminal B Integration circuit terminal IA Current A1 to A22 due to zero point deviation Differential amplifier (op amp)
SW1 to SW31 changeover switch R1 to R21 Control signal R2 for changing the connection of the resistor DIR C1 The current direction I2 when the resistors I1 SW3 and SW4 are switched to the opposite side of the figure I2 SW3 and SW4 are connected as shown in the figure Current direction Out integral output TH, TL synchronous rectification time SW32 HOLD analog switch HOLD control signal internal circuit for holding

Claims (3)

差動増幅器を用いて構成した積分回路において,
該差動増幅器の反転入力端子(−入力端子)に積分入力抵抗を介して入力する入力信号として,
測定入力信号InSと入力ゼロ側の信号In0を,
これらの測定入力信号InSと入力ゼロ側の信号In0とを所定の時間毎に切り替えて選択できる入力切替手段を介して入力し
前記差動増幅器の出力端子及び前記−入力端子間を流れる前記入力信号に比例した電流の経路に,
少なくとも第一の経路切替スイッチと,積分用コンデンサC1と,第二の経路切替スイッチとを直列に接続し,
該第1の経路切替スイッチ及び第2の経路切替スイッチを切替えることにより,前記積分用コンデンサC1に流れる電流の方向を,所定の時間毎に第1の方向(順方向)と第2の方向(逆方向)に切替えて,
各々の電流方向において第1の積分回路状態と第2の積分回路状態を形成して,積分用コンデンサC1の両端電圧を積分結果として得るように積分回路を形成し
前記差動増幅器自体における非反転入力端子(+入力端子)と前記−入力端子との間に生ずる(差動増幅器の−入力端子の電圧)と(差動増幅器の+入力端子の電圧)の差
で表される第一のオフセット電圧(V1)と,
前記入力ゼロ側と前記差動増幅器の+入力端子が接続される電子回路のグラウンドとの間に生ずる(電子回路のグラウンドの電圧)と(入力ゼロ側の電圧)の差
で表される第二のオフセット電圧(V2)とを,
前記入力切替手段が測定入力信号InSを選択した場合には,前記差動増幅器に積分用コンデンサC1を順方向に接続して前記測定入力信号InSと前記積分入力抵抗を通って流れるところの,(測定入力信号InSの電圧−V2−V1)に比例した電流を流して積分時間T2で積分する第二の積分回路状態を形成し,
前記入力切替手段が信号In0を選択した場合には,前記差動増幅器に積分用コンデンサC1を逆方向に接続して前記信号In0と前記積分入力抵抗を通って流れるところの,(信号In0の電圧−V2−V1)に比例した電流を流して積分時間T1で積分する第一の積分回路状態を形成して
前記積分用コンデンサC1の電荷を放電した後,積分時間がT1=T2となるように,前記第一の積分回路状態と前記第二の積分回路状態において,同じ時間だけ積分を行うことにより前記第一のオフセット電圧及び第二のオフセット電圧を除去した積分結果を得て,前記積分用コンデンサC1の両端電圧に,測定入力信号InSの電圧と入力ゼロ側の信号In0の電圧との差に比例した,前記第一及び第二のオフセット電圧が除去された電圧を得ることを特徴とする自動オフセット補正積分回路。
In an integrating circuit configured using a differential amplifier,
As an input signal that is input to the inverting input terminal (−input terminal) of the differential amplifier via an integral input resistor,
Measurement input signal InS and input zero side signal In0
The measurement input signal InS and the input zero-side signal In0 are input via input switching means that can be switched and selected at predetermined time intervals .
In a current path proportional to the input signal flowing between the output terminal of the differential amplifier and the negative input terminal ,
At least the first path selector switch, the integrating capacitor C1, and the second path selector switch are connected in series,
By switching the route switching switches and the second path switching switch of the first, the direction of current flowing through the integrating capacitor C1, a first direction (forward direction) at predetermined time intervals a second direction ( Switch to the opposite direction)
In each current direction, a first integration circuit state and a second integration circuit state are formed, and an integration circuit is formed so that the voltage across the capacitor C1 for integration is obtained as an integration result.
The difference between (the voltage at the −input terminal of the differential amplifier) and (the voltage at the + input terminal of the differential amplifier) between the non-inverting input terminal (+ input terminal) and the −input terminal in the differential amplifier itself.
The first offset voltage (V1) represented by
Difference between (voltage of the electronic circuit ground) and (voltage of the input zero side) generated between the input zero side and the ground of the electronic circuit to which the positive input terminal of the differential amplifier is connected
The second offset voltage (V2) represented by
When said input switching means selects the measured input signal InS side, at which the flow through the measurement input signal InS and the integral input resistor integral capacitor C1 to the differential amplifier connected in a forward direction, A second integration circuit state is formed in which a current proportional to (the voltage of the measurement input signal InS −V2−V1 ) is passed and integration is performed at the integration time T2.
When said input switching means selects the signal In0 side, at which the flow through the integral input resistor and the signal In0 connecting the integrating capacitor C1 to the differential amplifier in the reverse direction, the (signal In0 voltage - V2-V1) to form a first integration circuit state integrated by the integration time T1 by supplying a current proportional,
After discharging the charges of the integration capacitor C1, so that the integration time is T1 = T2, in the second integration circuit with said first integrating circuit condition, it said by performing integration by the same time the An integration result obtained by removing the first offset voltage and the second offset voltage is obtained, and the voltage across the integration capacitor C1 is proportional to the difference between the voltage of the measurement input signal InS and the voltage of the input zero side signal In0. It said first and second automatic offset correction integration circuit, characterized in Rukoto obtain a voltage offset voltage is removed.
前記積分時間T1およびT2をそれぞれ同じ偶数で分割し,該分割された個々の時間を時間順にTHおよびTLとし,時間THの間は入力信号をそのまま積分し,時間TLの間は差動増幅器による極性反転回路により入力信号を反転して積分を行い,TH時間とTL時間が交互に繰り返すようにしたことを特徴とする請求項1記載の自動オフセット補正積分回路。The integration times T1 and T2 are divided by the same even number, and the divided individual times are set to TH and TL in time order, and the input signal is integrated as it is during the time TH, and during the time TL, the differential amplifier is used. 2. The automatic offset correction integration circuit according to claim 1, wherein the input signal is inverted by a polarity inversion circuit to perform integration, and TH time and TL time are alternately repeated. 前記積分時間T1およびT2をそれぞれ同じ偶数で分割し,該分割された個々の時間を時間順にTHおよびTLとし,該時間THと時間TLを1組として2組有し,一方のTH,TLと他方のTH,TLの信号反転のタイミングを前記時間TH,TLの半分の時間ずらし,T1およびT2の切り替わりのタイミングに同期して一方のTHとTLの切り替わりが起こるようにし,
それぞれ積分回路を設け,積分回路の入力選択はそれぞれの時間THの間は入力信号をそのまま選択し,それぞれの時間TLの間は差動増幅器による極性反転回路により入力信号を反転した信号を選択するようにし,
2つの積分回路の積分コンデンサの切り替えは2つ同時に行って同時に積分することを特徴とした請求項2記載の自動オフセット補正積分回路。
The integration times T1 and T2 are divided by the same even number, and the divided individual times are TH and TL in time order, and the time TH and the time TL are set as one set, and two TH, TL, The timing of signal inversion of the other TH and TL is shifted by half the time TH and TL so that the switching of one TH and TL occurs in synchronization with the switching timing of T1 and T2.
Each integration circuit is provided, and the input selection of the integration circuit selects an input signal as it is during each time TH, and selects a signal obtained by inverting the input signal by a polarity inversion circuit using a differential amplifier during each time TL. Like
3. The automatic offset correction integration circuit according to claim 2, wherein the integration capacitors of the two integration circuits are switched simultaneously and integrated at the same time.
JP2002117657A 2002-04-19 2002-04-19 Automatic offset correction integration circuit Expired - Lifetime JP4425518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117657A JP4425518B2 (en) 2002-04-19 2002-04-19 Automatic offset correction integration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117657A JP4425518B2 (en) 2002-04-19 2002-04-19 Automatic offset correction integration circuit

Publications (2)

Publication Number Publication Date
JP2003318668A JP2003318668A (en) 2003-11-07
JP4425518B2 true JP4425518B2 (en) 2010-03-03

Family

ID=29534785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117657A Expired - Lifetime JP4425518B2 (en) 2002-04-19 2002-04-19 Automatic offset correction integration circuit

Country Status (1)

Country Link
JP (1) JP4425518B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243281B2 (en) * 2014-04-15 2017-12-06 日本電信電話株式会社 Sensor circuit
JP7089182B2 (en) * 2018-11-19 2022-06-22 日本電信電話株式会社 Variable reference voltage source

Also Published As

Publication number Publication date
JP2003318668A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
KR101919256B1 (en) Calibration of current sensors by means of a reference current during the current measurement
US7656164B2 (en) Method of voltage measurement and apparatus for same
US4217546A (en) Electronic energy consumption meter and system with automatic error correction
JP2007240299A (en) Flying capacitor system voltage measuring device
JP2005504286A (en) Circuit for measuring distance interval
US20150109155A1 (en) Semiconductor device and electronic control device
JP2012047630A (en) Offset cancel circuit
JP4425518B2 (en) Automatic offset correction integration circuit
KR20050054449A (en) Battery cell voltage and impedance measuring circuit
EP2998755A1 (en) Signal monitoring systems
JPH08327677A (en) Detection circuit and detection method for capacitive sensor
US9300314B2 (en) Arrangement for reading out an analog voltage signal
JP2008249351A (en) Temperature measuring circuit
JP2913395B2 (en) Capacitive sensor
KR900008302B1 (en) Power factor measuring circuit and method of power meter
JP3361480B2 (en) Watt hour meter using Hall element
JPS61251232A (en) Analog-digital converter
CN103460604B (en) For reading the device of analog voltage signal
JP2671343B2 (en) Capacity measuring device
KR840002851Y1 (en) Electronic electric-energy meter
SU663021A1 (en) Asymmetry sensor
JPH0374324B2 (en)
JPWO2004093311A1 (en) Differential voltage amplifier circuit
JP2022043657A (en) Battery monitoring system
JPH0425771A (en) Capacitance detecting circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Ref document number: 4425518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141218

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term