JP4425073B2 - Cast-in-place concrete construction method - Google Patents

Cast-in-place concrete construction method Download PDF

Info

Publication number
JP4425073B2
JP4425073B2 JP2004193546A JP2004193546A JP4425073B2 JP 4425073 B2 JP4425073 B2 JP 4425073B2 JP 2004193546 A JP2004193546 A JP 2004193546A JP 2004193546 A JP2004193546 A JP 2004193546A JP 4425073 B2 JP4425073 B2 JP 4425073B2
Authority
JP
Japan
Prior art keywords
concrete
pile
cast
pile body
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004193546A
Other languages
Japanese (ja)
Other versions
JP2006016787A (en
Inventor
紘一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2004193546A priority Critical patent/JP4425073B2/en
Publication of JP2006016787A publication Critical patent/JP2006016787A/en
Application granted granted Critical
Publication of JP4425073B2 publication Critical patent/JP4425073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

本発明は場所打ちコンクリート杭の施工方法に関する。 The present invention relates to facilities coating method of cast-in-place concrete piles.

場所打ちコンクリート杭には、掘削方式により(1)回転バケット安定液正循環方式[アースドリル工法]、(2)回転ビット掘削泥水逆循環方式[リバース工法]、(3)ハンマーグラブ掴み出し方式[オールケーシング工法]、(4)人力もしくは専用クラムシェルなどの機械掘削方式[深礎]の4種が代表的工法として挙げられる。
これらの場所打ちコンクリート杭は、所定の断面を所定の精度で掘削した後、スライム処理を実施して鉄筋かごを建て込み、トレミー工法により掘削孔底部よりコンクリートを順次上方に打ち上げてその杭躯体が構築されている。
For cast-in-place concrete piles, depending on the excavation method, (1) rotating bucket stable liquid normal circulation method [earth drill method], (2) rotating bit drilling mud reverse circulation method [reverse method], (3) hammer grab picking method [ There are four types of typical construction methods: “all casing construction method” and (4) mechanical excavation method [deep foundation] such as manpower or dedicated clamshell.
These cast-in-place concrete piles are excavated with a predetermined cross-section with a predetermined accuracy, and then subjected to slime treatment to build a reinforcing steel cage, and concrete is sequentially launched upward from the bottom of the excavation hole by the tremmy method. Has been built.

場所打ちコンクリート杭は、建造物の大型化、高層化に伴い、大口径(直径が2〜4m)、大深度(深さが50〜70m)のものも地盤条件より計画され、杭体頭部(通常、杭径の3〜5倍の深度範囲)に作用する曲げ、せん断応力により杭径を以深の杭軸部より大きくする拡頭杭、この拡頭杭に厚肉鋼管を鉄筋かご外部に設置する鋼管巻き場所打ち杭、さらに杭先端部を拡幅し杭耐力を増大させる拡底杭など負担する荷重度に応じて杭方式、形状が合理的に選定されている。
上述の場所打ちコンクリート杭は、従来、杭頭部で最大となる曲げ、せん断応力によりコンクリート強度が定められ、軸圧縮力のみ作用する杭底部まで同一のコンクリート調合(配合)、強度のものが打設されている(例えば、特許文献1)。
特開2004−124368号公報
With cast-in-place concrete piles, large diameter (2-4 m in diameter) and large depth (50-70 m in depth) are planned from the ground conditions as the size and height of the building grows. Expanded piles that make the pile diameter larger than the pile shaft deeper due to bending and shearing stress (usually a depth range of 3 to 5 times the pile diameter), and install a thick-walled steel pipe outside this reinforcing bar Pile methods and shapes are rationally selected according to the degree of load to be borne, such as steel-pipe cast-in-place piles and widened piles that widen the pile tip and increase the pile bearing strength.
In the conventional cast-in-place concrete piles, the concrete strength is conventionally determined by the bending and shearing stress that is maximum at the pile head, and the same concrete mix (mixing) and strength are applied to the pile bottom where only the axial compression force acts. (For example, Patent Document 1).
JP 2004-124368 A

そのため、従来の場所打ちコンクリート杭では、最も大きな値の曲げ、せん断応力が作用する杭頭部を基準としてコンクリート強度を定めており、そのため、杭頭部よりも下方の杭軸部や杭底部では必要充分な強度をはるかに上回る不必要な強度を持つことになり、その分コスト高となる不具合を有していた。
本発明は前記事情に鑑み案出されたものであって、本発明の目的は、杭頭部から杭底部までその深さ方向の全長にわたって必要充分な強度を有ししかもコストダウンを図ることができる場所打ちコンクリートの施工方法を提供することにある。
Therefore, in conventional cast-in-place concrete piles, the concrete strength is determined based on the pile head where the bending and shear stress of the largest value acts, and therefore, at the pile shaft and the pile bottom below the pile head. It has an unnecessary strength far exceeding the necessary and sufficient strength, and has a disadvantage that the cost increases accordingly.
The present invention has been devised in view of the above circumstances, and an object of the present invention is to have a necessary and sufficient strength over the entire length in the depth direction from the pile head to the pile bottom and to reduce the cost. It is to provide a facilities application method of cast-in-place concrete as possible.

前記目的を達成するため本発明は、掘削孔へトレミー管を挿入し、トレミー管から掘削孔へコンクリートを打設するに際して、トレミー管の先端を既打設コンクリート中に埋没させつつトレミー管を引き上げて行なう場所打ちコンクリート杭の施工方法において、杭体底部、杭体中間部、杭体頭部へといくにつれ打設するコンクリート中のセメント量を増加させるようにし、かつ、コンクリート打設時における打設コンクリートのスランプ値を、杭体底部よりも杭体中間部のほうを大きく、また、杭体中間部よりも杭体頭部のほうを大きくして上部ほど打設コンクリートの流動性を高めるように変化させ、
さらに、杭頭部においてコンクリートを打設する際に、バイブレータを稼動させて打設コンクリートを締め固め、密実性を高めるようにしたことを特徴とする。
The order to achieve the object the present invention inserts a tremie pipe to drilling drilling, upon which concrete is cast into the wellbore from tremie pipe, while buried the tip of the tremie tube in existing punch set concrete tremie pipe In the construction method of cast-in-place concrete piles to be pulled up, the amount of cement in the concrete to be placed is increased as it goes to the bottom of the pile body, the middle part of the pile body, and the head of the pile body , and at the time of concrete placement The slump value of the cast concrete in the pile body is larger in the middle part of the pile body than in the bottom part of the pile body, and larger in the head part of the pile body than in the middle part of the pile body. Change to increase,
Furthermore, when placing concrete in the pile head, the vibrator is operated to compact the placed concrete so as to improve the solidity .

本発明によれば、場所打ちコンクリート杭の各部位に応じて必要強度が発揮されるように、コンクリートの調合を変化させるので、必要な強度を確保しつつ材料費の点で合理的な杭体構築が可能となる。   According to the present invention, the concrete mix is changed so that the required strength is exhibited according to each part of the cast-in-place concrete pile. Therefore, the pile body is rational in terms of material costs while ensuring the necessary strength. Construction is possible.

本発明は、杭体底部、杭体中間部、杭体頭部へといくにしたがいコンクリート中のセメント量を増加させることで上記の目的を達成した。
以下、本発明の場所打ちコンクリート杭の施工方法を図面にしたがって説明する。
The present invention achieves the above object by increasing the amount of cement in the concrete as it goes to the pile bottom, the middle pile, and the pile head.
Hereinafter will be described the construction how the place concrete piles of the present invention according to FIG surface.

図1は、実施例1の場所打ちコンクリート杭の施工方法の説明図で、トレミー工法によるコンクリート打設時の流動状況を示している。
図1において符号10は地盤、符号12は地盤に掘削された掘削孔12、符号14は地表面、符号16はトレミー管を示す。
場所打ちコンクリート杭20は、掘削孔12にコンクリートが打設されることで形成されている。
本実施例の場所打ちコンクリート杭20は、杭体底部20A、杭体中間部20B、杭体頭部20Cへといくにしたがいコンクリート中のセメント量が増加している。
場所打ちコンクリート杭20の施工に際しては、掘削孔12へトレミー管16を挿入し、トレミー管16から掘削孔12へコンクリートを打設し、その際、トレミー管16の先端を既打設コンクリート中に埋没させつつ、かつ、段階的にトレミー管16を引き上げつつ行なう。
そして、杭体底部20A、杭体中間部20B、杭体頭部20Cへといくにつれ打設するコンクリート中のセメント量を増加させる。
コンクリート打設に用いるトレミー管16の内径、長さは次の通りである。すなわち、トレミー管16の内径は、杭径に応じて通常、8吋(203mm)、10吋(254mm)、12吋(305mm)のものが用いられる。トレミー管16の長さは、単体1m、2m、3m、5mものなどがあり、杭底部、中間部、杭頭部にわたり杭底より20cm程上げたところから施工地盤高さまで、それら単体1m、2m、3m、5mなどのものが適宜組み合わせて用いられる。
FIG. 1 is an explanatory view of a method for constructing a cast-in-place concrete pile according to Example 1, and shows a flow state at the time of placing concrete by the tremy method.
In FIG. 1, reference numeral 10 denotes the ground, reference numeral 12 denotes a drilling hole 12 excavated in the ground, reference numeral 14 denotes the ground surface, and reference numeral 16 denotes a tremy tube.
The cast-in-place concrete pile 20 is formed by placing concrete in the excavation hole 12.
As for the cast-in-place concrete pile 20 of a present Example, the cement amount in concrete is increasing as it goes to the pile bottom 20A, the pile intermediate part 20B, and the pile head 20C.
When the cast-in-place concrete pile 20 is constructed, the tremy pipe 16 is inserted into the excavation hole 12, and concrete is cast from the tremy pipe 16 into the excavation hole 12. At that time, the tip of the tremy pipe 16 is placed in the already-cast concrete. While burying, the tremy tube 16 is pulled up step by step.
Then, the amount of cement in the concrete to be placed is increased as it goes to the pile body bottom portion 20A, the pile body intermediate portion 20B, and the pile body head portion 20C.
The inner diameter and length of the tremmy pipe 16 used for placing concrete are as follows. That is, the inner diameter of the tremy tube 16 is usually 8 mm (203 mm), 10 mm (254 mm), or 12 mm (305 mm) depending on the pile diameter. The length of the tremmy pipe 16 is 1m, 2m, 3m, 5m, etc., and the height of the pile bottom, middle, and pile heads is about 20cm above the pile bottom to the height of the construction ground. Those of 3 m, 5 m, etc. are used in appropriate combination.

上述のトレミー管16を用いた場所打ちコンクリート杭20の施工に際して、まず、トレミー管16に充填されたコンクリートは、安定液もしくは泥水を押し上げて掘削孔12の底部に打設される。
次に、打設するコンクリートは、トレミー管16の先部の周部より既打設コンクリートを水平に押しやり、被さるように打設され、そのコンクリート打設面は、トレミー管16の先部の周部がやや低く掘削孔12の内壁に至るにつれてなだらかに上昇する形状となる。より詳細には、掘削孔12内においてその中央部から外周部に至るにつれてなだらかに上昇する形状で、コンクリートのワーカビリティにより中央部と外周部との高さの差は20〜50cm程度となる。
コンクリートの打設は、トレミー管16の先端を既打設コンクリート中に常に2〜5m程度埋没させながら順次設計杭天まで連続的に打設される。
打設コンクリートは、それより上に打設されたコンクリートの自重(杭径吋法の5倍程度の高さ)を受けながら順次硬化が始まり、2〜5時間経過後に自立する程度まで硬化が進行する。
In the construction of the cast-in-place concrete pile 20 using the above-described tremy pipe 16, first, the concrete filled in the tremy pipe 16 is driven to the bottom of the excavation hole 12 by pushing up a stabilizing liquid or mud water.
Next, the concrete to be placed is placed so that the already placed concrete is pushed horizontally from the peripheral portion of the tip portion of the tremmy pipe 16 so as to cover the concrete. The shape of the peripheral part is slightly lower and gradually rises as it reaches the inner wall of the excavation hole 12. More specifically, the shape of the borehole 12 gradually rises from the center to the outer periphery, and the height difference between the center and the outer periphery is about 20 to 50 cm due to the workability of the concrete.
The concrete is continuously cast to the designed pile ceiling while the tip of the tremy pipe 16 is always buried in the cast concrete by about 2 to 5 m.
The cast concrete begins to harden sequentially under the weight of concrete placed above it (5 times the height of the pile diameter method) and hardens until it becomes self-supporting after 2 to 5 hours. To do.

トレミー工法によるコンクリート打設では、このようにコンクリート打設高さに応じてトレミー管16の既打設コンクリート中への埋没深さを管理しつつトレミー管16を引き上げる(トレミー管16の先端を抜き去る)ことから層状に打設がなされている。
このようなコンクリート打設状況から、杭体コンクリートの調合(配合)は必要強度に応じたものにすることで、より合理的な杭体構築が可能となる。
杭体打設コンクリートの調合(配合)を、杭体底部20A、杭体中間部20B、杭体頭部20Cへといくにつれ、セメント量を増加させ、連続的に打ち分けて必要な強度を有する杭躯体を構築する。そのためには、下記の3項が重要となる。
(1)コンクリート打ち上がり面をレベル(高低差30cm内外)に近づけるように打設する。
そのためには、トレミー管16の径を杭径に応じて適正に定める。例えば、杭径が2000mm未満の場合には管径が10吋のトレミー管16を用い、杭径が2000mm以上の場合には管径が12吋のトレミー管16を用い、打設コンクリートの流動圧を確保する。
また、打設コンクリートのワーカビリティを適正に管理する。例えば、杭体底部20Aではスランプ値を17〜18cmとし、杭体中間部20Bではスランプ値を18〜19cmとし、杭体頭部20Cではスランプ値を19〜20cmとし、上部ほど流動性を高める。
(2)打設コンクリートの調合(配合)変化計画部位の2mほど下部より、調合(配合)を変化させる。すなわち、杭体底部20Aと杭体中間部20Bとの境の部分、および杭体中間部20Bと杭体頭部20Cとの境の部分のそれぞれ2mほど下部より、コンクリートの調合を変化させる。
これは、打設コンクリートの調合(配合)変化計画部位で確実に計画通りの調合(配合)とするためであり、トレミー管16の既打設コンクリート中への管入長さも2m内外となるように、トレミー管16の構成を事前に計画しておく。
(3)杭体頭部20Cのコンクリート打設では、バイブレータを用いる。
これは杭体頭部20Cでは、打設コンクリートの自重圧密作用、コンクリートの流動性が減少することなどから、コンクリート強度が低下傾向となるためであり、そのため、この部位の打設コンクリートを締め固め、密実性を高めるため、コンクリート打設完了後に、事前に設置した高周波バイブレータを稼動させる。
In concrete pouring by the trememy method, the tremely pipe 16 is pulled up while controlling the depth of burying of the tremy pipe 16 in the cast concrete according to the concrete pouring height (extracting the tip of the tremy pipe 16). It has been cast in layers.
From such a concrete placement situation, it is possible to construct a more rational pile body by blending (mixing) the pile body concrete according to the required strength.
As the composition (mixing) of pile-casting concrete goes to the pile bottom 20A, pile intermediate 20B, and pile head 20C, the amount of cement is increased, and the necessary strength is obtained by continuously casting. Build a pile structure. For that purpose, the following three items are important.
(1) The concrete launch surface is placed so as to be close to the level (inside / outside difference of 30 cm).
For this purpose, the diameter of the tremy tube 16 is appropriately determined according to the pile diameter. For example, when the pile diameter is less than 2000 mm, the tremey pipe 16 having a pipe diameter of 10 mm is used, and when the pile diameter is 2000 mm or more, the tremey pipe 16 having a pipe diameter of 12 mm is used, To secure.
In addition, workability of cast concrete will be properly managed. For example, the slump value is set to 17 to 18 cm in the pile body bottom 20A, the slump value is set to 18 to 19 cm in the pile intermediate part 20B, the slump value is set to 19 to 20 cm in the pile body head 20C, and the fluidity is increased toward the top.
(2) Mixing (mixing) of the cast concrete is changed from about 2 m below the planned change site (mixing). That is, the mixing of the concrete is changed from the lower part of the boundary part between the pile body bottom part 20A and the pile intermediate part 20B and the boundary part between the pile intermediate part 20B and the pile head part 20C from the lower part.
This is to ensure that the mixing (mixing) change planned portion of the cast concrete is set as planned (mixing) as planned, and the tube insertion length of the tremy pipe 16 into the cast concrete is also within 2 m. In addition, the configuration of the tremy tube 16 is planned in advance.
(3) A vibrator is used in the concrete placement of the pile head 20C.
This is because, in the pile head 20C, the concrete strength tends to decrease due to the self-weight compaction action of the cast concrete and the fluidity of the concrete being reduced. Therefore, the cast concrete of this part is compacted. In order to increase the solidity, the high frequency vibrator installed in advance is operated after the concrete placement is completed.

上記の(1)乃至(3)を実施しつつトレミー工法により杭径が2m、長さが17.5mの場所打ちコンクリート杭20を表1に示す条件のもとで施工した。
また、使用した高性能AE減水剤、AE減水剤、使用可能なAE減水剤を表2に示す。
A cast-in-place concrete pile 20 having a pile diameter of 2 m and a length of 17.5 m was constructed under the conditions shown in Table 1 by the tremy method while carrying out the above (1) to (3).
Table 2 shows the high-performance AE water reducing agent, AE water reducing agent, and usable AE water reducing agent.

Figure 0004425073
Figure 0004425073

Figure 0004425073
Figure 0004425073

得られたコンクリート杭の強度を表3に示す。   Table 3 shows the strength of the obtained concrete piles.

Figure 0004425073
Figure 0004425073

表1および表3から明らかなように、本実施例によれば、杭体底部20Aから杭体頭部20Cまでその深さ方向の全長にわたって必要充分な強度を有しており、したがって、場所打ちコンクリート杭20において所望の強度を確保しつつ使用するセメント量を減少させることが可能となり、材料費を削減することが可能となる。すなわち、場所打ちコンクリート杭20を用いた基礎工事のコストダウンを図ることが可能となり、場所打ちコンクリート杭20を用いた構造物のコストダウンを図る上で極めて有利となる。   As is apparent from Tables 1 and 3, according to this example, the pile has a necessary and sufficient strength over the entire length in the depth direction from the pile body bottom 20A to the pile body head 20C. It is possible to reduce the amount of cement to be used while securing a desired strength in the concrete pile 20, and it is possible to reduce material costs. That is, it is possible to reduce the cost of foundation work using the cast-in-place concrete pile 20, which is extremely advantageous in reducing the cost of the structure using the cast-in-place concrete pile 20.

場所打ちコンクリート杭の施工方法の説明図である。It is explanatory drawing of the construction method of a cast-in-place concrete pile.

符号の説明Explanation of symbols

10……地盤、12……掘削孔、14……地表面、16……トレミー管、20……場所打ちコンクリート杭、20A……杭体底部、20B……杭体中間部、20C……杭体頭部。

DESCRIPTION OF SYMBOLS 10 ... Ground, 12 ... Excavation hole, 14 ... Ground surface, 16 ... Tremy pipe, 20 ... Cast-in-place concrete pile, 20A ... Pile body bottom part, 20B ... Pile body middle part, 20C ... Pile Body head.

Claims (2)

掘削孔へトレミー管を挿入し、トレミー管から掘削孔へコンクリートを打設するに際して、トレミー管の先端を既打設コンクリート中に埋没させつつトレミー管を引き上げて行なう場所打ちコンクリート杭の施工方法において、
杭体底部、杭体中間部、杭体頭部へといくにつれ打設するコンクリート中のセメント量を増加させるようにし、
かつ、コンクリート打設時における打設コンクリートのスランプ値を、杭体底部よりも杭体中間部のほうを大きく、また、杭体中間部よりも杭体頭部のほうを大きくして上部ほど打設コンクリートの流動性を高めるように変化させ、
さらに、杭頭部においてコンクリートを打設する際に、バイブレータを稼動させて打設コンクリートを締め固め、密実性を高めるようにした、
ことを特徴とする場所打ちコンクリート杭の施工方法。
In the cast-in-place concrete pile construction method, when inserting the tremely pipe into the excavation hole and placing concrete from the tremey pipe into the excavation hole, the tremely pipe is pulled up while the tip of the tremee pipe is buried in the already placed concrete. ,
Increase the amount of cement in the concrete to be placed as you go to the bottom of the pile, the middle of the pile, and the head of the pile ,
In addition, the slump value of the cast concrete at the time of placing the concrete is set so that the pile body middle part is larger than the pile body bottom part, and the pile body head part is larger than the pile body middle part and the upper part is driven. Change to improve the fluidity of concrete,
In addition, when placing concrete in the pile head, the vibrator was operated to compact the placed concrete, increasing the solidity.
The construction method of the cast-in-place concrete pile characterized by this.
コンクリート打設時におけるトレミー管の既打設コンクリート中への管入長さを2m内外に維持し、前記杭体底部と杭体中間部との境の部分、および前記杭体中間部と杭体頭部との境の部分のそれぞれ2mほど下部より、コンクリートの調合を変化させることを特徴とする請求項記載の場所打ちコンクリート杭の施工方法。 The length of the tremely pipe inserted into the cast concrete at the time of concrete placement is maintained at 2 m inside and outside, the boundary part between the bottom of the pile body and the intermediate part of the pile body, and the intermediate part of the pile body and the pile body construction method of in-place concrete piles of claim 1, wherein the lower portion each as 2m bordering parts of the head, to change the formulation of the concrete.
JP2004193546A 2004-06-30 2004-06-30 Cast-in-place concrete construction method Expired - Lifetime JP4425073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193546A JP4425073B2 (en) 2004-06-30 2004-06-30 Cast-in-place concrete construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193546A JP4425073B2 (en) 2004-06-30 2004-06-30 Cast-in-place concrete construction method

Publications (2)

Publication Number Publication Date
JP2006016787A JP2006016787A (en) 2006-01-19
JP4425073B2 true JP4425073B2 (en) 2010-03-03

Family

ID=35791315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193546A Expired - Lifetime JP4425073B2 (en) 2004-06-30 2004-06-30 Cast-in-place concrete construction method

Country Status (1)

Country Link
JP (1) JP4425073B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119303A (en) * 2017-01-25 2018-08-02 清水建設株式会社 Method for constructing cast-in-place concrete pile
JP7145682B2 (en) * 2018-08-02 2022-10-03 大成建設株式会社 Concrete structure construction method
JP7187743B2 (en) * 2018-11-26 2022-12-13 大成建設株式会社 Confirmation method of concrete pouring and construction method of concrete structure
JP7503518B2 (en) 2021-04-20 2024-06-20 大成建設株式会社 Cast-in-place concrete pile construction method

Also Published As

Publication number Publication date
JP2006016787A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
KR100762991B1 (en) Precast piling method injected with high-strength mortar
KR20110041391A (en) Pile structure
CN104711975B (en) Construction technology for long spiral cast-in-situ bored pile
JP2008231810A (en) Underground structure construction method
KR101977791B1 (en) Construction method of pile with Soil Cement mixing Foundation
JP3752560B2 (en) Basic structure for constructing a new building in an existing basement and its construction method
KR20100035349A (en) Construction method of retaining wall using cast-in-place pile
JP4425073B2 (en) Cast-in-place concrete construction method
KR101081343B1 (en) Compaction grouting system
JP5075090B2 (en) Cast-in-place pile construction method and cast-in-place pile
JPH02289718A (en) Drilling method of expanded head pile hole, constructing method of expanded head pile and pile hole drill
JP5075094B2 (en) Construction method and foundation structure of foundation structure in structure
JP2008031772A (en) Construction method of precast pile, and cover for use in the construction method
JP2005282063A (en) Composite field preparation pile, its construction method and device for preparing composite field preparation pile
CN204780943U (en) H type precast concrete pile and excavation supporting device
JPH05106222A (en) Embedding method for wooden pile
JP2004316118A (en) Immersion method for caisson
JPS59195925A (en) Construction of on-site concrete pile
KR101080160B1 (en) Construction work apparatus for enlarged endbearing capacity foundation with clothoid screw
KR101080159B1 (en) Enlarged endbearing capacity foundation using cone and it's construction work method
JPH05247936A (en) Inside excavation bottom widening method of pile
JP4867044B2 (en) Column replacement construction method
JP4344733B2 (en) Seismic reinforcement structure for existing pile foundation structures
JP4183041B2 (en) Pile internal filling method
JP2002201635A (en) Replacing construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4425073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250