JP4425056B2 - EDM power supply - Google Patents

EDM power supply Download PDF

Info

Publication number
JP4425056B2
JP4425056B2 JP2004149432A JP2004149432A JP4425056B2 JP 4425056 B2 JP4425056 B2 JP 4425056B2 JP 2004149432 A JP2004149432 A JP 2004149432A JP 2004149432 A JP2004149432 A JP 2004149432A JP 4425056 B2 JP4425056 B2 JP 4425056B2
Authority
JP
Japan
Prior art keywords
switching element
power supply
voltage
electric discharge
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004149432A
Other languages
Japanese (ja)
Other versions
JP2005329498A (en
Inventor
岳彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP2004149432A priority Critical patent/JP4425056B2/en
Publication of JP2005329498A publication Critical patent/JP2005329498A/en
Application granted granted Critical
Publication of JP4425056B2 publication Critical patent/JP4425056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は放電加工電源装置に関し、特に微細加工に適した放電加工電源装置に関する。   The present invention relates to an electric discharge machining power supply device, and more particularly to an electric discharge machining power supply device suitable for fine machining.

一般に放電加工装置は、電極とワークとの極間に直流高電圧を連続的に印加するか、高電圧のパルスを周期的に印加し、これら電極とワークとの極間のギャップに放電を誘発する放電誘発と絶縁破壊させてワークを加工する放電加工とに両用されるパルス発生電源を有する。絶縁破壊により放電が開始すると、加工屑が溜まり短絡状態となるので、これを防止すべく電極とワーク間に電圧を印加しない休止時間を設けている。   In general, an electric discharge machine applies a DC high voltage continuously between the electrode and the workpiece or periodically applies a high voltage pulse to induce a discharge in the gap between the electrode and the workpiece. A pulse generating power source that is used for both electrical discharge induction and electrical discharge machining that breaks down and processes a workpiece. When electric discharge starts due to dielectric breakdown, machining waste accumulates and a short circuit occurs, so that a pause is provided in which no voltage is applied between the electrode and the workpiece to prevent this.

放電加工では、一般に荒加工後、仕上げ加工が行われ、ワークの面粗度を上げている。面粗度と放電加工用パルスとの関係について、特許文献1には、ワークの面粗度は放電加工時のパルスの印加時間(パルス幅)PW(=τON)と放電電流Iの積に依存して粗くなるので、ワークの面粗度を向上させるにはパルス幅PWまたは放電電流Iを小さくすればよいことが開示されている。 In electric discharge machining, finishing is generally performed after rough machining to increase the surface roughness of the workpiece. Regarding the relationship between the surface roughness and the pulse for electric discharge machining, Patent Document 1 discloses that the surface roughness of the workpiece is the product of the pulse application time (pulse width) PW (= τ ON ) and the electric discharge current I during electric discharge machining. Therefore, it is disclosed that the pulse width PW or the discharge current I may be reduced to improve the surface roughness of the workpiece.

特開昭58−28054号公報(明細書の第2頁、第3〜5行、第7頁、表1および図面の図1参照)。JP-A-58-28054 (refer to the second page of the specification, lines 3 to 5, page 7, Table 1 and FIG. 1 of the drawings).

特許文献1に記載されているように、ワークの面粗度を向上させるため、パルス幅PWを小さくする場合、電極とワークとの極間にパルス電圧を周期的に印加するよう電源と電極またはワークとの極間に配置されたスイッチング素子は、そのオン時間がパルス幅となるため、スイッチング素子の応答時間より短いパルス幅のパルスを生成できず、素子の高速応答特性には製造限界があるので、パルス幅PWを小さくするにも限界がある。
また、従来技術による放電加工装置は、大容量の放電加工専用電源のみで放電誘発も行うものと、放電加工専用電源の他に小容量の放電誘発用電源を備えたものとがある。電源は、放電を誘発し絶縁破壊させるため、加工条件に応じて、低電圧のものでは70V、高電圧のものでは100〜300Vの直流電圧が要求される。すなわち、従来技術による放電加工装置は、高い電圧のパルスを供給する特殊な電源を必要としコスト高になるという問題がある。
As described in Patent Document 1, in order to improve the surface roughness of the workpiece, when the pulse width PW is reduced, the power source and the electrode or the electrode or the electrode or the electrode is periodically applied between the electrode and the workpiece. Since the switching element arranged between the workpiece and the workpiece has an on-time pulse width, a pulse having a pulse width shorter than the response time of the switching element cannot be generated, and the high-speed response characteristic of the element has a manufacturing limit. Therefore, there is a limit to reducing the pulse width PW.
In addition, there are two types of electric discharge machining apparatuses according to the prior art that induce electric discharge using only a large-capacity electric discharge machining power source, and one that includes a small-capacity electric power supply for electric discharge machining. Since the power source induces electric discharge and causes dielectric breakdown, a DC voltage of 70 V is required for low voltage and 100 to 300 V is required for high voltage depending on processing conditions. That is, the electric discharge machining apparatus according to the conventional technique has a problem that a special power source for supplying a high voltage pulse is required and the cost is increased.

本発明は上記問題を解決するため、特に仕上げ加工時に、電極とワークとの極間に高い電圧のパルスを供給せず、かつ短いパルス幅PWのパルスを供給することによりワークの面粗度を向上させた加工を可能とする放電加工電源装置の提供を目的とする。   In order to solve the above-described problem, the present invention does not supply a high voltage pulse between the electrode and the workpiece, and supplies a pulse having a short pulse width PW, particularly during finishing, thereby reducing the surface roughness of the workpiece. An object of the present invention is to provide an electric discharge machining power supply device that enables improved machining.

上記目的を達成する本発明による放電加工電源装置は、電極とワークとの極間にパルス電圧を印加して前記ワークを放電加工する放電加工電源装置において、前記極間に直流電圧を印加する電源と、前記電源に並列接続された第1スイッチング素子と、前記第1スイッチング素子と前記極間の一端との間に直列接続された第2スイッチング素子と、前記電源の陽極と前記第1スイッチング素子との間に直列接続されたインダクタンスをもつ線路又はインダクタと、前記第1スイッチング素子及び第2スイッチング素子の開閉を制御する制御回路であって、前記第2スイッチング素子をオフとしたままで、前記第1スイッチング素子をオフからオンに切り換え、前記第2スイッチング素子をオフとしたままで、前記第1スイッチング素子をオンからオフに瞬時に切り換え、前記電源の直流電圧を昇圧変換したパルス電圧を前記極間に印加して該極間を絶縁破壊し該極間を通った放電電流を該極間の一端に接続された線路に生じる浮遊容量に充電し、前記第スイッチング素子をオフとしたままで前記第スイッチング素子をオフからオンに所定時間切り換え、前記浮遊容量に充電した電荷を放電するように制御し、前記第1スイッチング素子の応答時間より短いパルス幅のパルスを生成する制御回路と、を具備して構成される。
上記構成により、第1スイッチング素子の開閉制御で電源の直流電圧を昇圧した短いパルス幅のパルス電圧を上記極間に印加することができ、第2スイッチング素子の開閉制御で放電加工電源装置の線路の浮遊容量に充電した電荷を放電する。
An electric discharge machining power supply apparatus according to the present invention that achieves the above object is an electric discharge machining power supply apparatus that applies a pulse voltage between an electrode and a workpiece to perform electric discharge machining on the workpiece, and the power supply that applies a DC voltage between the electrodes. A first switching element connected in parallel to the power source, a second switching element connected in series between the first switching element and one end between the poles, an anode of the power source, and the first switching element And a control circuit for controlling the opening and closing of the first switching element and the second switching element, wherein the second switching element is turned off, switches on the first switching element from oFF, while the second switching element is turned off, turning on the first switching element Then, the pulse voltage obtained by boosting and converting the DC voltage of the power source is applied between the electrodes to break the insulation between the electrodes, and the discharge current passing between the electrodes is connected to one end between the electrodes. was charged in the floating capacitance generated line, the switching predetermined time to turn on the second switching element from the off the first switching element remains turned off, the control so as to discharge electrostatic charges charged in the stray capacitance And a control circuit for generating a pulse having a pulse width shorter than the response time of the first switching element .
With the above configuration, a pulse voltage having a short pulse width obtained by boosting the DC voltage of the power supply by the switching control of the first switching element can be applied between the electrodes, and the line of the electric discharge machining power supply apparatus can be controlled by the switching control of the second switching element. The charge charged in the stray capacitance is discharged.

上記放電加工電源装置において、前記第2スイッチング素子に並列接続されたコンデンサを備える。インダクタンスをもつ線路又はインダクタのインダクタンスとコンデンサのキャパシタンスの値は可変であることが望しい。
上記インダクタにより、上記極間に印加するパルス電圧のパルス幅をより大きくでき、結局、極間に供給する電力を増大でき、種々の加工対象に適用可能となる。また、上記コンデンサを付加することにより、上記極間の絶縁破壊時の印加電圧は一定であるので、絶縁破壊開始の前までにコンデンサの電荷を空にしておけば、絶縁破壊後の放電加工時にパルス電圧が同一条件で印加されることになり、放電痕の均一化が可能となる。
上記放電加工電源装置において、前記パルス電圧のピーク値が可変である。これにより、電極、ワーク、加工液等の加工条件により異なる絶縁破壊電圧に応じた設定ができる。
In the electric discharge machining power supply apparatus comprises a pre-Symbol parallel connected capacitor to the second switching element. It is desirable that the inductance value of the line or inductor having the inductance and the capacitance value of the capacitor are variable.
More the inductor, can increase the pulse width of the pulse voltage applied between the electrode and eventually can increase the power supplied to the machining gap, and can be applied to various processing object. In addition, by adding the capacitor, the applied voltage at the time of dielectric breakdown between the electrodes is constant, so if the capacitor charge is emptied before the start of dielectric breakdown, at the time of electric discharge machining after dielectric breakdown Since the pulse voltage is applied under the same conditions, the discharge traces can be made uniform.
In the electric discharge machining power supply device, the peak value of the pulse voltage is variable. Thereby, the setting according to the dielectric breakdown voltage which changes with process conditions, such as an electrode, a workpiece | work, and a process liquid, can be performed.

本発明によれば、第1スイッチング素子の開閉制御で電源の直流電圧を昇圧した短いパルス幅のパルス電圧を極間に印加することができ、第2スイッチング素子の開閉制御で放電加工電源装置の線路の浮遊容量、又は第2スイッチング素子に並列接続されたコンデンサに充電した電荷を放電することができる。このステップを繰返し実行することにより、電極とワークとの間に高い電圧のパルスを供給せずに、スイッチング素子の応答時間より短いパスル幅のパルスを供給することができ、ワークの面粗度を向上させた微細加工が実現する。
また、電圧を昇圧したパルス電圧のピーク値を加工条件により異なる絶縁破壊電圧に応じて設定でき、ワークの微細加工が実現する。
According to the present invention, a pulse voltage having a short pulse width obtained by boosting the DC voltage of the power source by the opening / closing control of the first switching element can be applied between the electrodes, and It is possible to discharge the electric charge charged in the stray capacitance of the line or the capacitor connected in parallel to the second switching element. By repeatedly executing this step, a pulse having a pulse width shorter than the response time of the switching element can be supplied without supplying a high voltage pulse between the electrode and the workpiece, and the surface roughness of the workpiece can be reduced. Improved microfabrication is realized.
Further, the peak value of the pulse voltage obtained by boosting the voltage can be set in accordance with the dielectric breakdown voltage that varies depending on the machining conditions, thereby realizing fine machining of the workpiece.

図1は本発明の第一実施形態に係る放電加工電源装置の電気回路図である。図1に示す放電加工電源装置は、加工用の電極1と被加工物であるワーク2との極間に例えば十数ボルトの低い電圧のパルスを印加するための直流電圧源V1と、例えばFET等の半導体からなる高速なスイッチング素子S1、S2と、スイッチング素子S1、S2の開閉(オンオフ)を制御する制御回路(不図示)とを有する。ワーク2は電極1に対向して加工槽3内に載置され、加工槽3内には加工液4として油が注入されている。加工液として電離しやすい水を用いるより、油の方が絶縁度を上げることができる。電極1はワーク2との放電間隙GAPが所定の長さとなるようにサーボモータ(不図示)の駆動によりワーク2の加工箇所に向けて送られる。 FIG. 1 is an electric circuit diagram of an electric discharge machining power supply apparatus according to the first embodiment of the present invention. The electric discharge machining power supply device shown in FIG. 1 includes a DC voltage source V 1 for applying a pulse having a low voltage of, for example, several tens of volts between the electrode 1 for machining and a workpiece 2 that is a workpiece, It has high-speed switching elements S1 and S2 made of a semiconductor such as an FET, and a control circuit (not shown) for controlling opening and closing (on / off) of the switching elements S1 and S2. The workpiece 2 is placed in the processing tank 3 so as to face the electrode 1, and oil is injected into the processing tank 3 as a processing liquid 4. The degree of insulation can be increased with oil rather than with water that is easily ionized as the working fluid. The electrode 1 is fed toward the machining location of the workpiece 2 by driving a servo motor (not shown) so that the discharge gap GAP with the workpiece 2 has a predetermined length.

荒加工後の仕上げ加工時における制御回路によるスイッチング素子S1、S2のオンオフ制御は、次のように行われる。最初、S1、S2は共にオフである。第1ステップで、S2をオフにしたまま、S1をオンにする。すると、直流電圧源V1からS1を通して電流が流れる。   The on / off control of the switching elements S1 and S2 by the control circuit during the finishing process after the roughing is performed as follows. Initially, both S1 and S2 are off. In the first step, S1 is turned on while S2 is turned off. Then, a current flows from the DC voltage source V1 through S1.

第2ステップで、S2をオフにしたまま、S1を瞬時にオフにする。すると、直流電圧源V1からS1を流れた電流が瞬時に遮断されるためV1の+端子とS1の開放端側との間の線路LINE(インダクタンスL0をもつ)にV1の電圧と比べて数倍〜数十倍高いピーク値を有するパルス電圧VPが誘起され電極1に印加される。このパルス電圧VPのピ−ク値をより高くし、パルス幅をより長くするためには、S1をオンにする時間を長くとればよい。このピーク値とパルス幅は、遮断時のパルス電圧、遮断電流、遮断前の閉回路のインダクタンス、スイッチング素子S1のターンオフ応答特性によって決定される。   In the second step, S1 is turned off instantaneously while S2 is turned off. Then, since the current flowing through S1 from the DC voltage source V1 is instantaneously interrupted, the line LINE (having inductance L0) between the positive terminal of V1 and the open end side of S1 is several times as large as the voltage of V1. A pulse voltage VP having a peak value ˜several times higher is induced and applied to the electrode 1. In order to increase the peak value of the pulse voltage VP and increase the pulse width, it is necessary to increase the time for turning on S1. The peak value and the pulse width are determined by the pulse voltage at the time of interruption, the interruption current, the inductance of the closed circuit before interruption, and the turn-off response characteristic of the switching element S1.

第3ステップで、パルス電圧VPにより放電間隙GAPが絶縁破壊すると、ワーク2と直流電圧源V1の負極間に浮遊容量Cfが発生し、この浮遊容量Cfに放電間隙GAPを通った放電電流が充電する。S1をオフしたままS2をオンにする。するとCfに充電した電荷がS2を流れて放電する。
このように、第1〜第3ステップを繰返し実行することにより、従来技術のように電極1とワーク2との極間に高い電圧のパルスを供給せずに、スイッチング素子の応答時間より短いパルス幅のパルスを供給することによりワーク2の面粗度を向上させた微細加工が実現できる。
In the third step, when the discharge gap GAP breaks down due to the pulse voltage VP, a stray capacitance Cf is generated between the work 2 and the negative electrode of the DC voltage source V1, and the discharge current passing through the discharge gap GAP is charged into the stray capacitance Cf. To do. S2 is turned on while S1 is turned off. Then, the charge charged in Cf flows through S2 and is discharged.
As described above, by repeatedly executing the first to third steps, a pulse having a shorter voltage than the response time of the switching element can be obtained without supplying a high voltage pulse between the electrode 1 and the workpiece 2 as in the prior art. By supplying a pulse having a width, fine processing with improved surface roughness of the workpiece 2 can be realized.

図2は、第一実施形態の変形例を示す放電加工電源装置の電気回路図である。図1のスイッチング素子S2が直流電圧源V1の陽極と電極1との間に設けられている。この場合も、放電間隙GAPを通った放電電流が浮遊容量Cfに充電した後、S2をオンにする。すると図1の場合と同様に、浮遊容量Cfに充電した電荷がS2を流れて放電し、ワーク1の面粗度を向上させた微細加工が実現する。   FIG. 2 is an electric circuit diagram of an electric discharge machining power supply device showing a modification of the first embodiment. The switching element S2 of FIG. 1 is provided between the anode of the DC voltage source V1 and the electrode 1. Also in this case, S2 is turned on after the discharge current passing through the discharge gap GAP is charged to the stray capacitance Cf. Then, as in the case of FIG. 1, the electric charge charged in the stray capacitance Cf flows through S2 and is discharged, and fine processing with improved surface roughness of the workpiece 1 is realized.

図3は本発明の第二実施形態に係る放電加工電源装置の電気回路図である。図1に示した第一実施形態に係る放電加工電源装置の電気回路とは、図1の線路LINEにインダクタL1を挿入し、図1のスイッチング素子S2に並列にコンデンサC1を接続した点が異なる。図3において、スイッチング素子S1、S2の両端の電圧をそれぞれVS1、VS2と記し、スイッチング素子S1を流れる電流をIS1と記し、電極1とワーク2との放電間隙GAPを流れる電流をIGと記す。次に、荒加工後の仕上げ加工時において、図3に示す回路におけるスイッチング素子S1、S2をオンオフ制御する手順を以下に図を用いて説明する。   FIG. 3 is an electric circuit diagram of the electric discharge machining power supply apparatus according to the second embodiment of the present invention. 1 is different from the electric circuit of the electric discharge machining power supply apparatus according to the first embodiment shown in FIG. 1 in that an inductor L1 is inserted into the line LINE in FIG. 1 and a capacitor C1 is connected in parallel to the switching element S2 in FIG. . In FIG. 3, voltages at both ends of the switching elements S1 and S2 are denoted as VS1 and VS2, respectively, current flowing through the switching element S1 is denoted as IS1, and current flowing through the discharge gap GAP between the electrode 1 and the work 2 is denoted as IG. Next, the procedure for on / off control of the switching elements S1 and S2 in the circuit shown in FIG. 3 during the finishing process after the roughing will be described with reference to the drawings.

図4は図3に示す電気回路の動作のタイムチャートである。図4において、横軸は時間を示し、縦軸は、スイッチング素子S1、S2についてはオンをハイレベルでオフをローレベルで示し、IS1については電流を、VS1については電圧を示す。図4のS1がオンのパルス印加時間は、例えば100〜500nSの一定時間に設定され、S1がオフの休止時間は、例えば100μSの一定時間に設定される。S2をオンにするタイミングはS1がオフの期間に設定され、S2がオンの時間は、例えば100nSの一定時間に設定される。   FIG. 4 is a time chart of the operation of the electric circuit shown in FIG. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates switching elements S1 and S2 with on being high and off with low level, IS1 with current and VS1 with voltage. The pulse application time when S1 is on in FIG. 4 is set to a constant time of 100 to 500 nS, for example, and the pause time when S1 is off is set to a constant time of 100 μS, for example. The timing for turning on S2 is set in a period in which S1 is off, and the time in which S2 is on is set to, for example, a constant time of 100 nS.

最初の時刻t0では、スイッチング素子S1、S2は共にオフである。
時刻t1では、S1をオフにしたままS2を所定時間オンにする。すると、コンデンサC1に充電された電荷がS2を流れて放電する。
時刻t2(第1ステップ)では、S2をオフにしたまま、S1をオンにする。すると、直流電圧源V1からインダクタL1、スイッチング素子S1を通して電流IS1が流れる。
At the first time t0, the switching elements S1 and S2 are both off.
At time t1, S2 is turned on for a predetermined time while S1 is turned off. Then, the electric charge charged in the capacitor C1 flows through S2 and is discharged.
At time t2 (first step), S1 is turned on while S2 is turned off. Then, a current IS1 flows from the DC voltage source V1 through the inductor L1 and the switching element S1.

時刻t4(第2ステップ)では、S2をオフにしたまま、S1を瞬時にオフにする。すると、直流電圧源V1からS1を流れた電流IS1が瞬時に遮断されるためV1の+端子とS1の開放端側との間のインダクタL1にV1の電圧と比べて数倍〜数十倍高いピーク値を有するパルス電圧VPが誘起され電極1に印加される。このパルス電圧VPのピ−ク値をより高くし、パルス幅をより長くするためには、S1をオンにする時間を長くとればよい。このピーク値とパルス幅は、遮断時のパルス電圧、遮断電流、遮断前の閉回路のインダクタンス、スイッチング素子S1のターンオフ応答特性によって決定される。   At time t4 (second step), S1 is turned off instantaneously while S2 is turned off. Then, since the current IS1 flowing through S1 from the DC voltage source V1 is instantaneously cut off, the inductor L1 between the positive terminal of V1 and the open end side of S1 is several times to several tens of times higher than the voltage of V1. A pulse voltage VP having a peak value is induced and applied to the electrode 1. In order to increase the peak value of the pulse voltage VP and increase the pulse width, it is necessary to increase the time for turning on S1. The peak value and the pulse width are determined by the pulse voltage at the time of interruption, the interruption current, the inductance of the closed circuit before interruption, and the turn-off response characteristic of the switching element S1.

時刻t11(第3ステップ)では、S1をオフにしたままS2を所定時間オンにする。すると、コンデンサC1に充電された電荷がS2を流れて放電する。
このように、第1〜第3ステップを繰返し実行することにより、従来技術のように電極1とワーク2との間に高い電圧のパルスを供給せずに、スイッチング素子の応答時間より短いパルス幅のパルスを供給することによりワーク2の面粗度を向上させた微細加工が実現できる。
At time t11 (third step), S2 is turned on for a predetermined time while S1 is turned off. Then, the electric charge charged in the capacitor C1 flows through S2 and is discharged.
In this way, by repeatedly executing the first to third steps, a pulse width shorter than the response time of the switching element without supplying a high voltage pulse between the electrode 1 and the workpiece 2 as in the prior art. By supplying this pulse, fine processing with improved surface roughness of the workpiece 2 can be realized.

時刻t51〜t54の間では、スイッチング素子S1がターンオン時に過渡応答とインダクタL1のインダクタンスにより電流IS1が飽和するまで連続的に変化する。より詳しくは、電流IS1の増加率が、時刻t52からt53までは一定であるが、時刻t53から徐々に減少し時刻t54で飽和する。この飽和時にIS1は最高になり、この直後にS1をオフにしている。このことを利用してスイッチング素子の開閉タイミングを制御すれば、遮断電流が可変でき、任意のサージ電圧を有するパルス電圧を得ることができる。
この第2実施形態において、コンデンサC1およびインダクタL1の最小値の場合が、第1実施形態における浮遊容量Cfおよび線路LINEに相当する。
Between times t51 and t54, when the switching element S1 is turned on, it continuously changes until the current IS1 is saturated due to the transient response and the inductance of the inductor L1. More specifically, the rate of increase of current IS1 is constant from time t52 to t53, but gradually decreases from time t53 and saturates at time t54. At the time of saturation, IS1 is highest, and immediately after this, S1 is turned off. By utilizing this fact to control the switching timing of the switching element, the cutoff current can be varied, and a pulse voltage having an arbitrary surge voltage can be obtained.
In the second embodiment, the minimum values of the capacitor C1 and the inductor L1 correspond to the stray capacitance Cf and the line LINE in the first embodiment.

以上説明したように、本発明の放電加工電源装置によれば、仕上げ加工時に、電極とワークとの間に高い電圧のパルスを供給せず、かつ短いパルス幅PWのパルスを供給することによりワークの面粗度を向上させた微細加工ができる。
放電加工電源装置において、パルス電圧のパルス幅が十ナノ秒〜数十ナノ秒であることが望しい。これにより微細加工に好適となる。
尚、本実施形態では、直流電圧源の陽極に加工用の電極を陰極にワークを接続したが、電極材質、ワーク材質等の加工条件によっては逆極性の接続もある。
As described above, according to the electric discharge machining power supply apparatus of the present invention, the workpiece is not supplied by supplying a pulse having a short pulse width PW without supplying a high voltage pulse between the electrode and the workpiece during finishing machining. Fine processing with improved surface roughness can be achieved.
In the electric discharge machining power supply device, it is desirable that the pulse width of the pulse voltage is 10 nanoseconds to several tens of nanoseconds. This is suitable for fine processing.
In this embodiment, the machining electrode is connected to the anode of the DC voltage source and the workpiece is connected to the cathode. However, depending on the machining conditions such as the electrode material and the workpiece material, there is a connection of reverse polarity.

本発明の第一実施形態に係る放電加工電源装置の電気回路図である。It is an electric circuit diagram of the electric discharge machining power supply device according to the first embodiment of the present invention. 図1の変形例を示す放電加工電源装置の電気回路図である。It is an electric circuit diagram of the electric discharge machining power supply device showing a modification of FIG. 本発明の第二実施形態に係る放電加工電源装置の電気回路図である。It is an electric circuit diagram of the electric discharge machining power supply device concerning a second embodiment of the present invention. 図3に示す電気回路の動作のタイムチャートである。It is a time chart of operation | movement of the electric circuit shown in FIG.

符号の説明Explanation of symbols

1…電極
2…ワーク
3…加工槽
4…加工液
V1…直流電圧源
S1、S2…スイッチング素子
GAP…放電間隙
LINE…線路
Cf…浮遊容量
L1…インダクタ
C1…コンデンサ
DESCRIPTION OF SYMBOLS 1 ... Electrode 2 ... Work piece 3 ... Processing tank 4 ... Processing liquid V1 ... DC voltage source S1, S2 ... Switching element GAP ... Discharge gap LINE ... Line Cf ... Stray capacitance L1 ... Inductor C1 ... Capacitor

Claims (4)

電極とワークとの極間にパルス電圧を印加して前記ワークを放電加工する放電加工電源装置において、
前記極間に直流電圧を印加する電源と、
前記電源に並列接続された第1スイッチング素子と、
前記第1スイッチング素子と前記極間の一端との間に直列接続された第2スイッチング素子と、
前記電源の陽極と前記第1スイッチング素子との間に直列接続されたインダクタンスをもつ線路又はインダクタと、
前記第1スイッチング素子及び第2スイッチング素子の開閉を制御する制御回路であって、
前記第2スイッチング素子をオフとしたままで、前記第1スイッチング素子をオフからオンに切り換え、
前記第2スイッチング素子をオフとしたままで、前記第1スイッチング素子をオンからオフに瞬時に切り換え、前記電源の直流電圧を昇圧変換したパルス電圧を前記極間に印加して該極間を絶縁破壊し該極間を通った放電電流を該極間の一端に接続された線路に生じる浮遊容量に充電し、
前記第スイッチング素子をオフとしたままで前記第スイッチング素子をオフからオンに所定時間切り換え、前記浮遊容量に充電した電荷を放電するように制御し、前記第1スイッチング素子の応答時間より短いパルス幅のパルスを生成する制御回路と、
を具備することを特徴とした放電加工電源装置。
In an electric discharge machining power supply apparatus that applies a pulse voltage between the electrode and the workpiece to perform electric discharge machining on the workpiece,
A power source for applying a DC voltage between the electrodes;
A first switching element connected in parallel to the power source;
A second switching element connected in series between the first switching element and one end between the poles;
A line or inductor having an inductance connected in series between the anode of the power source and the first switching element;
A control circuit for controlling opening and closing of the first switching element and the second switching element,
Switching the first switching element from off to on while keeping the second switching element off;
With the second switching element turned off, the first switching element is instantaneously switched from on to off, and a pulse voltage obtained by boosting the DC voltage of the power supply is applied between the electrodes to insulate the electrodes from each other Charging the stray capacitance generated in the line connected to one end between the poles, and the discharge current passing through between the poles,
Wherein while the first off the switching element switching the second switching element a predetermined time from OFF to ON, controls so as to discharge electrostatic charges charged in the stray capacitance, than the response time of the first switching element A control circuit for generating a pulse with a short pulse width ;
An electric discharge machining power supply device comprising:
記第2スイッチング素子に並列接続されたコンデンサを備える請求項1に記載の放電加工電源装置。 Discharge machining power supply device according to claim 1, further comprising a pre-Symbol parallel connected capacitor to the second switching element. 前記インダクタンスをもつ線路又はインダクタのインダクタンスと前記コンデンサのキャパシタンスは、それぞれ値が可変である請求項2に記載の放電加工電源装置。 The electric discharge machining power supply device according to claim 2, wherein values of the inductance of the line or inductor having the inductance and the capacitance of the capacitor are variable. 前記パルス電圧のピーク値が可変である請求項1から3のいずれか1項に記載の放電加工電源装置。   The electric discharge machining power supply device according to any one of claims 1 to 3, wherein a peak value of the pulse voltage is variable.
JP2004149432A 2004-05-19 2004-05-19 EDM power supply Expired - Lifetime JP4425056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149432A JP4425056B2 (en) 2004-05-19 2004-05-19 EDM power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149432A JP4425056B2 (en) 2004-05-19 2004-05-19 EDM power supply

Publications (2)

Publication Number Publication Date
JP2005329498A JP2005329498A (en) 2005-12-02
JP4425056B2 true JP4425056B2 (en) 2010-03-03

Family

ID=35484476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149432A Expired - Lifetime JP4425056B2 (en) 2004-05-19 2004-05-19 EDM power supply

Country Status (1)

Country Link
JP (1) JP4425056B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030591B2 (en) * 2006-07-31 2011-10-04 3M Innovative Properties Company Microreplication on a complex surface
CN102143821B (en) 2008-09-02 2012-09-12 三菱电机株式会社 Power supply device for electric discharge machine
WO2014162822A1 (en) 2013-04-04 2014-10-09 西部電機株式会社 Electrical discharge machining device, electrical discharge machining method, and design method

Also Published As

Publication number Publication date
JP2005329498A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP5202639B2 (en) Electric discharge machine power supply
EP1806197B1 (en) Electric discharge machining power supply apparatus, and small-hole drilling electric discharge machining
JP5220036B2 (en) EDM machine
TW590833B (en) Power unit for discharge processing
JP2005246551A (en) Power supply apparatus for electric discharge machining
EP3566805B1 (en) Machining power supply device for electric discharge machine
JP4425056B2 (en) EDM power supply
EP2883641B1 (en) Electric discharge machining device
JP3938044B2 (en) Power supply for electric discharge machining
JP5044898B2 (en) Power supply device for electric discharge machine and wire electric discharge machine
US6630641B2 (en) Electric discharge machining apparatus generating preliminary discharge and machining discharge pulses
JP5800923B2 (en) Power supply device for wire electric discharge machine
JP2003205426A (en) Power source for electric discharge machine
CN112912193B (en) Power supply device for electric discharge machine
JP5940229B1 (en) EDM power supply
JP2004195562A (en) Machining power supply device of electric discharge machine
JPH11333632A (en) Electrical discharging device
JPH059209B2 (en)
JP4381223B2 (en) EDM power supply
JPH048165B2 (en)
JPH04331020A (en) Electric discharge machine
JPH06143034A (en) Electric discharge machining method and device
JPS61168423A (en) Power source device for wire electric discharge machine
JPS61249213A (en) Electric power source apparatus for wire electric discharge machine
JP2003127028A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4425056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4