JP4424458B2 - Acrylic syrup and manufacturing method thereof - Google Patents

Acrylic syrup and manufacturing method thereof Download PDF

Info

Publication number
JP4424458B2
JP4424458B2 JP2000326624A JP2000326624A JP4424458B2 JP 4424458 B2 JP4424458 B2 JP 4424458B2 JP 2000326624 A JP2000326624 A JP 2000326624A JP 2000326624 A JP2000326624 A JP 2000326624A JP 4424458 B2 JP4424458 B2 JP 4424458B2
Authority
JP
Japan
Prior art keywords
polymerization
monomer
weight
added
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000326624A
Other languages
Japanese (ja)
Other versions
JP2002128803A (en
Inventor
正 川畑
真一 日永田
章二郎 桑原
正弘 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000326624A priority Critical patent/JP4424458B2/en
Publication of JP2002128803A publication Critical patent/JP2002128803A/en
Application granted granted Critical
Publication of JP4424458B2 publication Critical patent/JP4424458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はメタクリル酸メチルを主成分とする単量体を重合して得られる重合体を含む、アクリルシラップ及びその製造方法に関する。
【0002】
【従来の技術】
アクリルシラップはメタクリル樹脂注型板、光伝送繊維や光導波路等の光学材料、アクリル人造大理石、人工印材、床材、接着剤、粘着剤、文化財・剥製等修復材料又は医療用材料等の中間原料として用いられている。このうちメタクリル酸メチルを主成分とするメタクリル酸メチルシラップの製造方法は特許、文献等に多く紹介されており、その製造方法は以下の2つに大別される。1つは特開昭49−104937号公報、特開平9−194673号公報等に開示されている、別途調製した重合体を単量体に溶解する方法である。本発明とは基本的に異なる製造方法であり、しかも一旦重合体を取り出した後再度単量体に溶解するため、エネルギー的にも経済的にも不利である。もう1つは、単量体を部分的に塊状重合させる方法であり部分重合法とも呼ばれ、更に部分重合法は回分法と連続法とに分けられる。
【0003】
部分重合法のうち回分法による製造方法として、例えば特公昭36−3392号公報には、メタクリル酸メチルを主成分とする単量体及び連鎖移動剤からなる原料を80℃に昇温し、少量の2,2’−アゾビスイソブチロニトリル又は過酸化ベンゾイルを重合開始剤として加え、同時に100℃に昇温して27〜50分重合し、所定の粘度になった時点で重合禁止剤としてハイドロキノンを含有する冷たいメタクリル酸メチルを加えて急冷することによりアクリルシラップを製造する方法が開示されている。しかしながら、この方法では重合開始剤が完全に分解しない状態で重合を停止するため、得られたシラップ中に重合開始剤が残存しており、たとえ重合禁止剤を加えても貯蔵安定性の劣ったものとなる。例えば重合開始剤に用いる過酸化ベンゾイルの100℃での半減期は約22分であるから、所定の粘度に達した時点では加えた量に対して42〜20%の重合開始剤が製品中に残存している。また反応に必要な量の重合開始剤を一度に添加するために一旦重合開始剤を加えた後に昇温を行うため、僅かな温度変化により製品の重合率、分子量、引いては製品粘度に大きく影響するため安定した製造は行えない。
【0004】
特公平1−11652号公報及び特開平9−67495号公報では、SMC又はBMCの中間原料としてシラップを製造するに際し、メタクリル酸メチル89重量%、メタクリル酸5重量%、トリメチロールプロパントリメタクリレート6重量%からなる単量体100部に対しn−ドデシルメルカプタン0.4部、2,2' −アゾビスイソブチロニトリル0.05部を含む原料を仕込み、80℃で重合を行い、反応液が所定の粘度に達した時点で重合禁止剤としてハイドロキノン及びp−メトキシフェノールを加え速やかに室温まで冷却し重合を停止する方法により、カルボン酸を含むアクリルシラップを製造する方法が開示されている。しかしながらこの方法で得られたシラップ中には重合開始剤が残存しており、たとえ重合禁止剤を加えても貯蔵安定性の劣ったものとなる。また反応に必要な量の重合開始剤を一度に添加するために反応の制御が困難であり、重合率、分子量及び製品粘度が大きく変化するので優れた製造方法とは言えない。しかも得られたシラップ中に重合開始剤が残存する可能性が大きく、たとえ重合禁止剤を加えても貯蔵安定性の劣ったものとなり、また貯蔵中に着色する原因ともなる。重合開始剤が残存しないようにするため重合温度での半減期の短い重合開始剤を用いれば良いが、この場合多量の重合開始剤を必要とするため、重合反応が急速に進行する結果となり反応を制御することがはなはだ困難となる。このため回分法で使用可能な重合開始剤は重合温度での半減期が長いものに制限されると言うジレンマに陥る。
【0005】
一方メルカプタン類により重合が進行することについては、例えば特公昭46−40693号公報で連鎖移動剤としてメルカプタン類のように活性水素を有する硫黄化合物を用い、重合開始剤を加えずに65〜105℃で部分重合を行いアクリルシラップを製造する方法が開示されている。この方法では所望の重合率まで重合するためには大量の連鎖移動剤を必要とし、分子量の高い重合体を含むアクリルシラップを得ることができない。また分子量の高い重合体を含むアクリルシラップを得るためには少量の連鎖移動剤を用いて長時間反応することが必要となり、いずれの場合にも実用的ではない。
【0006】
ところで、上述した回分重合法においては系内組成物の沸点より低い温度で重合が行われていた。他方、重合組成物の沸点で重合を行うことにより温度変化を小さくすることが期待できるが、実際には重合が進み系内の粘度が上昇するにつれ、発泡による液面上昇又はこれに起因する槽内付着物の生成等の問題が生じる。大型装置では反応液の体積に比べ液面の面積が小さくなることからこの傾向が顕著になる。そのため、沸点重合は現実的には不可能と言って良い状況にあった。これらを解決する手段として、特開昭53−24380号公報にはメタクリル酸メチル70重量%以上を含むモノマーを(共)重合する際、オルガノシロキサン類1〜10,000ppm を添加することを特徴とする重合物製造方法を開示している。しかしながら、上記特許明細書にも明記されているように基本的にオルガノシロキサン類はアクリルモノマー及びポリマーとの相溶性がなく、得られた成型品は白濁を呈する。加えて、オルガノシロキサン類が成型品の表面現れると塗装の際のハジキの原因になったり、ほこり付着の遠因になったりするため使用には注意を要する。
【0007】
【発明が解決しようとする課題】
本発明の目的は、従来法の上記のような問題点を解決し、種々の用途に適しかつ安定した品質のアクリルシラップ及び該アクリルシラップの効率的かつ簡便な製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは鋭意研究した結果、特定の製造方法によって種々の用途に適し、かつ安定した品質のアクリルシラップを効率的、かつ容易に製造し得ることを見いだし本発明に到った。すなわち本発明は、(1)メタクリル酸メチルを主成分とする単量体原料の20〜70重量%に、炭素数1〜30の脂肪族カルボン酸とグリセリンとの部分エステル化合物及び/又はブタジエンを主成分とする単量体から得られたポリマーからなる消泡剤を添加した後、昇温し、(2)系内組成物の温度が沸点に達し、還流を開始した時点で連鎖移動剤の全量を添加し、(3)還流を維持しながら、残りの単量体を該沸点での半減期が10〜300秒である重合開始剤とともに0.1〜10時間かけて連続的又は分割して添加し、(4)添加終了後さらに加熱を継続し、(5)加熱終了後にヒンダードフェノール系重合禁止剤を加えることを特徴とするアクリルシラップの製造方法に関する。また本発明は、(A)メタクリル酸メチルを主成分とする単量体39〜90重量%、(B)メタクリル酸メチル単位を主成分とする単量体から得られ、GPCで測定した重量平均分子量が2万〜50万である重合体60〜9重量%、(C)炭素数4〜20のメルカプタン0.0005〜3.0重量%、(D)炭素数1〜30の脂肪族カルボン酸とグリセリンとの部分エステル化合物及び/又はブタジエンを主成分とする単量体から得られたポリマー0.0001〜0.3重量%及び(E)ヒンダードフェノール系重合禁止剤0.001〜1.0重量%(合計100重量%)からなり、25℃における粘度が10〜500,000mPa・sであることを特徴とするアクリルシラップに関する。
【0009】
【発明の実施の形態】
以下に本発明のアクリルシラップ及びその製造方法について具体的に説明する。本発明では単量体成分としてメタクリル酸メチルを必須成分とし、メタクリル酸メチルと共重合可能な他のビニル性単量体成分を任意に加えて用いることができる。この単量体成分はメタクリル酸メチルと共重合可能な単量体であれば特に限定されず、アクリル酸、メタクリル酸、マレイン酸及びフマル酸等の不飽和カルボン酸;前記不飽和カルボン酸のエステル、ニトリル、アミド、イミド及び酸無水物;スチレン等の芳香族ビニル;酢酸ビニル等のカルボン酸ビニル等のエチレン性二重結合を有する化合物が挙げられる。
【0010】
本発明ではメタクリル酸メチルを必須成分とする単量体原料の初めの仕込み分に消泡剤を添加した後、単量体原料の沸点まで昇温する。消泡剤添加後で昇温する前に、初期仕込原料に対し200〜1000vol%の不活性ガスを仕込原料に接触させて溶存酸素濃度を置換したのち昇温してもよい。不活性ガスとしては窒素が例示できる。消泡剤としては、重合反応及び得られた製品に悪影響を及ぼさず、気泡を安定化させる物質の活動を抑制し、液体の泡抜けをよくするもの、表面の泡を破泡するもの、かつ液体粘度を低下させる性質を有する物質が選択される。この様な消泡剤として本発明では炭素数1〜30の脂肪族カルボン酸とグリセリンとの部分エステル化合物及び/又はブタジエンを主成分とする単量体から得られたポリマーからなる消泡剤が用いられる。具体的にはビックケミー・ジャパン(株)「プラスチック添加剤」や、花王(株)「花王のプラスチック用滑剤」等に記載されているカプリル酸モノグリセリド、ラウリン酸モノグリセリド、ミリスチン酸モノグリセリド、パルミチン酸モノグリセリド、リノレン酸モノグリセリド、オレイン酸モノグリセリド、ステアリン酸モノグリセリド及びベヘニン酸モノグリセリド等の炭素数1〜30の脂肪酸とグリセリンとの部分エステル化合物;ブタジエンゴム、ニトリルゴム、スチレン−ブタジエンゴム、スチレン−ブタジエン−スチレンエラストマー等のブタジエンを主成分とする単量体のポリマーである。
【0011】
消泡剤添加量は、必要な性能を発揮するために単量体原料全量(初めに仕込む単量体と後に加える単量体との合計量)に対して0.0001〜0.3重量%添加することが望ましい。0.3%を超えて添加しても消泡効果に大きな違いは見られない。添加した消泡剤は最終製品を製造する際に気泡の内包を抑制し、成型時の脱泡を良くするために、注型板、光伝送繊維や光導波路等の光学材料、アクリル人造大理石、人工印材、床材、接着剤、粘着剤、文化財・剥製等修復材料又は医用材料等の最終製品においても外観不良率又は機械的欠陥を低減させると言う効果も期待できる。
【0012】
本発明では単量体原料の初めの仕込み分に消泡剤を添加した後、単量体原料の沸点まで昇温する。沸点に達したら、還流を開始する。還流の目的は追加原料の添加により系内にもたらされる酸素を系外へ除去することであり、それにより重合反応を安定に行うことが出来る。
【0013】
還流を開始した時点で全量添加される連鎖移動剤としては重合反応を阻害せず所望の分子量の製品が得られるメルカプタン類が用いられ、例えば、1−ブタンチオール、2,2−ジメチルエタンチオール、1−オクタンチオール、2,2−ジメチルヘキサンチオール、1−ドデカンチオール、2,2−ジメチルデカンチオール、1−ヘキサデカンチオール、1−オクタデカンチオール、ベンゼンチオール、チオクレゾール、チオナフトール等炭素数4〜20のメルカプタン類の少なくとも1種を使用する。連鎖移動剤の添加量は単量体原料全量に対し0.0005〜3.0重量%、好ましくは0.03〜1.5重量%である。
【0014】
連鎖移動剤を添加したのち、残りの単量体を該沸点での半減期が10〜300秒である重合開始剤とともに0.1〜10時間かけて連続的又は分割して添加する。本発明で使用する重合開始剤は、反応温度での半減期が10〜300秒になるような重合開始剤であり、この様な重合開始剤を用いることにより重合開始剤を完全に消費させ、得られるシラップの貯蔵安定性を向上させることができる。この様な重合開始剤は日本油脂(株)「有機過酸化物」資料第13版、アトケム吉富(株)技術資料 及び和光純薬工業(株)「Azo Polymerization Initiators」等に記載の諸定数等により容易に求めることができ、例えば2,2' −アゾビスイソブチロニトリル、2,2' −アゾビス(2,4−ジメチルバレロニトリル)、2,2' −アゾビス(2,4ジメチル−4−メトキシバレロニトリル)、1,1' −アゾビスシクロヘキサンカルボニトリル、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルピバレート、t−ブチルパーオキシ−2−エチルヘキサノエート、ジイソプロピルパーオキシジカーボネート及びビス( 4−t−ブチルシクロヘキシル)パーオキシジカーボネート等が例示される。
【0015】
重合開始剤は、単独あるいは2種以上組み合わせて用いることができ、所望の重合率を得るために必要な量が添加される。そして重合開始剤は単独で添加する方法、又は単量体原料と混合して添加する方法のいずれも用いることができる。本発明により製造されたアクリルシラップの粘度は重合率、分子量及び重合体中のメタクリル酸メチルと共重合可能な不飽和単量体単位の組成により影響を受けるが、必要な粘度範囲を満足するためには、単量体原料全量に対する重合開始剤の使用量は5 .0×10-5〜2.0重量%が好ましく、5 .0×10-4〜1.0重量%がさらに好ましい。
【0016】
追加の単量体と重合開始剤との添加時間が10時間を超えることも可能であるが、仕込から製品取出までの工程時間が長くなり生産性の点から好ましくない。また、連鎖移動剤としてメルカプタン類を用いた場合には僅かずつ重合が進行することが知られている。最初に仕込む原料中にメルカプタン類を加えた状態で昇温すると、昇温速度の長短により重合率が変動するため安定した製造が行えない。また、重合開始剤と同時に連鎖移動剤を調合すると、重合開始剤と連鎖移動剤とのレドックス反応による原料槽内での重合が起こる虞があり好ましくない。
【0017】
本発明においては追加の単量体と重合開始剤との添加終了後、一定時間加熱を継続し重合反応を完結させた後、重合禁止剤を添加した後冷却し製品を取り出す。加熱終了時に重合禁止剤を加えることにより、冷却操作中にメルカプタン類による重合を完全に防止し、さらに安全に製造でき、安定した製品品質のアクリルシラップを製造することができる。また加熱終了時に重合禁止剤を加えることによりアクリルシラップの貯蔵安定性は良好となるため、アクリルシラップ中に残存するメルカプタン類の不活性化処理を行う必要はない。
【0018】
得られたシラップの重合及び着色をさけるため、本発明ではヒンダードフェノール系重合禁止剤を用いる。ヒンダードフェノール系重合禁止剤としては、例えば2,6−ジ−t−ブチル−4−メチルフェノール、6−t−ブチル−2,4−ジメチルフェノール、4,4' −チオビス−(6−t−ブチル−3−メチルフェノール)及び/又は2,2' −メチレンビス−(4−メチル−6−t−ブチルフェノール)等が挙げられる。これらのヒンダードフェノール系重合禁止剤は単独で、あるいは2種以上組み合わせて用いることができる。ヒンダードフェノール系重合禁止剤の添加量は単量体原料全量に対して0.001〜1.0重量%が好ましく、0.005〜0.3重量%がより好ましい。
【0019】
以上のようにして得られたアクリルシラップは、(A)メタクリル酸メチルを主成分とする単量体39〜90重量%、(B)メタクリル酸メチル単位を主成分とする単量体から得られ、GPCで測定した重量平均分子量が2万〜50万である重合体60〜9重量%、(C)炭素数4〜20のメルカプタンから選ばれる少なくとも1種の化合物0.0005〜3.0重量%、(D)炭素数1〜30の脂肪族カルボン酸とグリセリンとの部分エステル化合物及び/又はブタジエンを主成分とする単量体から得られたポリマー0.0001〜0.3重量%及び(E)ヒンダードフェノール系重合禁止剤0.001〜1.0重量%(合計100重量%)からなり、25℃における粘度が10〜500,000mPa・sである。
【0020】
本発明の方法により得られたアクリルシラップは注型板、光伝送繊維や光導波路等の光学材料、アクリル人造大理石、人工印材、床材、接着剤、粘着剤、文化財・剥製等修復材料又は医用材料等の中間原料として用いることができる。必要に応じ充填材、繊維補強材、低収縮剤、滑剤、可塑剤、増粘剤、有機溶剤等の希釈剤、架橋剤、レベリング剤、沈降防止剤、離型剤、酸化防止剤、UV吸収剤、顔料及び/又は染料等の公知の添加剤を混合し用いることもできる。本発明をさらに具体的に例示するが、本発明はこれらに限定されるものではない。
【0021】
【実施例】
重合率は重量法により、試料を大量の冷ヘキサン中に投入し生じた沈澱物を精製・減圧乾燥し求めた。重合体の分子量は東ソー(株)製8010型ゲルパーミエーションクロマトグラフィー(GPC)により測定した。粘度はB型粘度計を用い25℃で測定した。
実施例1
温度計、還流冷却器、定量ポンプ、撹拌装置を取り付けた1.5リットルセパラブル四つ口フラスコに、メタクリル酸メチル458g、メタクリル酸10.9g及びブタジエンを主成分とする単量体のポリマー(ビックケミー社、商品名BYK−A515)0.090gからなる混合物を投入し、100rpmで攪拌しながら昇温した。温度が100℃に達したところで連鎖移動剤としての1−ドデカンチオール2.6gをすばやく加え、次いで重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.058gを溶解したメタクリル酸メチル472gを3時間かけて定量ポンプを用いて2.6g/分で滴下した。滴下終了後0.15時間加熱を継続し重合禁止剤としての2,6−ジ−t−ブチル−4−メチルフェノール0.2gを加え重合を停止した。その後室温まで冷却し、無色透明なアクリルシラップを得た。重合の進行に伴い反応溶液の粘度が高くなり泡が発生したが、界面に於いて直ちに破泡し、重合後期及び終了時に於いても泡の相はみられなかった。得られたシラップの重合率は31.3%で、ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)は10.3万であった。また、25℃における粘度は4,200mPa ・sであった。
【0022】
実施例2
実施例1におけるBYK−A515の0.09gをBYK−A515の0.045gに変更した以外は、実施例1と同様の反応を行いアクリルシラップを得た。重合の進行に伴い反応溶液中に泡が生じたが、気相部への泡抜けが良く、重合終了時でも泡の相はみられなかった。得られたアクリルシラップは無色透明であり、重合率は31.4%で、重量平均分子量(Mw)は10.0万であった。25℃における粘度は4,700mPa ・sであった。
【0023】
実施例3
実施例1におけるBYK−A515をステアリン酸モノグリセリド2.83gに変更する以外は、実施例1と同様の反応を行いアクリルシラップを得た。重合の進行に伴い反応溶液中に泡が生じたが、気相部への泡抜けが非常に良く、重合終了時でも泡の相はみられなかった。得られたアクリルシラップは無色透明で、重合率は32.2%、重量平均分子量(Mw)は10.0万で、25℃における粘度は6,100mPa ・sであった。
【0024】
実施例4
実施例1におけるBYK−A515をカプリル酸モノグリセリド2.83gに変更する以外は、実施例1と同様の反応を行いアクリルシラップを得た。重合の進行に伴い反応溶液中に泡が生じたが、気相部への泡抜けが良く、重合終了時でも泡の相はみられなかった。得られたアクリルシラップは無色透明であり、重合率は33.0%で、重量平均分子量(Mw)は10.0万であった。25℃における粘度は6,000mPa ・sであった。
【0025】
実施例5
実施例1と同様の装置にメタクリル酸メチル458g、メタクリル酸10.9g及びBYK−A515の0.090gを仕込み、100rpmで攪拌しながら昇温した。温度が101℃に達したところで連鎖移動剤としての1−ドデカンチオール1.1gをすばやく加え、次いで重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.030gを溶解したメタクリル酸メチル472gを3時間かけて定量ポンプより加えた。滴下終了後0.25時間加熱を継続し重合禁止剤としての6−t−ブチル−2,4−ジメチルフェノール0.2gを加え重合を停止した。その後室温まで冷却し、無色透明なアクリルシラップを得た。重合の進行に伴い反応溶液の粘度が高くなり泡が発生したが、界面に於いて直ちに破泡し、重合後期及び終了時に於いても泡の相はみられなかった。得られたシラップの重合率は24.3%で、ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)は20.3万であった。また、25℃における粘度は6,100mPa ・sであった。
【0026】
実施例6
実施例1と同様の装置にメタクリル酸メチル472gとオレイン酸モノグリセリド2.83gを仕込み、80rpmで攪拌しながら昇温した。温度が101℃に達したところで連鎖移動剤としての1−ドデカンチオール3.4gを加え、次いで重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.041gを溶解したメタクリル酸メチル472gを3時間かけて定量ポンプより加えた。滴下終了後0.25時間加熱を継続し重合禁止剤としての2,6−ジ−t−ブチル−4−メチルフェノール0.5gを加え重合を停止した。その後室温まで冷却し、無色透明なアクリルシラップを得た。重合の進行に伴い反応溶液の粘度が高くなり泡が発生したが、界面に於いて直ちに破泡し、重合後期及び終了時に於いても泡の相はみられなかった。得られたシラップの重合率は27.6%で、GPCにより測定したMwは7.9万であった。また、25℃における粘度は500mPa ・sであった。
【0027】
実施例7
実施例1と同様の装置にメタクリル酸メチル472gとBYK−A515の0.090gを仕込み、100rpmで攪拌しながら昇温した。温度が101℃に達したところで連鎖移動剤としての1−ドデカンチオール3.4gを加え、次いで重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.102gを溶解したメタクリル酸メチル472gを3時間かけて定量ポンプより加えた。滴下終了後0.25時間加熱を継続し重合禁止剤としての2,6−ジ−t−ブチル−4−メチルフェノール1.0gを加え重合を停止した。その後室温まで冷却し、無色透明なアクリルシラップを得た。重合の進行に伴い反応溶液の粘度が高くなり泡が発生したが、界面に於いて直ちに破泡し、重合後期及び終了時に於いても泡の相はみられなかった。得られたシラップの重合率は40.4%で、GPCにより測定したMwは8.0万であった。また、25℃における粘度は50,000mPa ・sであった。
【0028】
比較例1
実施例1におけるBYK−A515を添加しない以外は、実施例1と同様の反応を行った。重合の進行に伴い、反応溶液の粘度上昇により泡が生じ、重合反応の進行と共に界面より泡立ちはじめ、高さ約5mmの泡の相ができたが重合反応を停止するまでには至らなかった。得られたシラップの重合率は32.1%で、GPCにより測定したMwは10.1万であった。また、25℃における粘度は5,000mPa ・sであった。
【0029】
【発明の効果】
本発明により所望の特性を有するアクリルシラップを安定に製造することができ、かつ得られたシラップは成型性に優れたものであり、工業的意義は大きい。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acrylic syrup containing a polymer obtained by polymerizing a monomer mainly composed of methyl methacrylate and a method for producing the same.
[0002]
[Prior art]
Acrylic syrup is an intermediate between methacrylic resin casting plates, optical materials such as optical transmission fibers and optical waveguides, acrylic artificial marble, artificial sealants, flooring materials, adhesives, adhesives, restoration materials such as cultural assets and stuffed animals, or medical materials. Used as a raw material. Of these, many methods for producing methyl methacrylate syrup mainly composed of methyl methacrylate have been introduced in patents, literatures, etc., and the production methods are roughly classified into the following two methods. One is a method of dissolving a separately prepared polymer in a monomer as disclosed in JP-A-49-104937 and JP-A-9-194673. This is a production method fundamentally different from the present invention. Further, since the polymer is once taken out and then dissolved again in the monomer, it is disadvantageous in terms of energy and economy. The other is a method in which the monomer is partially bulk polymerized and is also called a partial polymerization method. The partial polymerization method is further divided into a batch method and a continuous method.
[0003]
As a production method by a batch method among the partial polymerization methods, for example, in Japanese Patent Publication No. 36-3392, a raw material composed of a monomer mainly composed of methyl methacrylate and a chain transfer agent is heated to 80 ° C. Of 2,2′-azobisisobutyronitrile or benzoyl peroxide as a polymerization initiator, and simultaneously heated to 100 ° C. and polymerized for 27 to 50 minutes. A method for producing acrylic syrup by adding cold methyl methacrylate containing hydroquinone and quenching is disclosed. However, in this method, since the polymerization is stopped in a state where the polymerization initiator is not completely decomposed, the polymerization initiator remains in the obtained syrup, and even when a polymerization inhibitor is added, the storage stability is poor. It will be a thing. For example, benzoyl peroxide used as a polymerization initiator has a half-life at 100 ° C. of about 22 minutes. Therefore, when a predetermined viscosity is reached, 42 to 20% of the polymerization initiator is added to the product. Remains. In order to add a polymerization initiator in an amount necessary for the reaction at a time, the polymerization temperature is increased after the polymerization initiator is added once, so that the polymerization rate of the product, the molecular weight, and the product viscosity are greatly increased by a slight temperature change. Stable production cannot be performed due to influence.
[0004]
In Japanese Patent Publication No. 1-11652 and JP-A-9-67495, when producing syrup as an intermediate raw material for SMC or BMC, methyl methacrylate 89% by weight, methacrylic acid 5% by weight, trimethylolpropane trimethacrylate 6% A raw material containing 0.4 part of n-dodecyl mercaptan and 0.05 part of 2,2′-azobisisobutyronitrile is charged to 100 parts of monomer consisting of 100%, and polymerization is carried out at 80 ° C. A method for producing acrylic syrup containing a carboxylic acid is disclosed by adding hydroquinone and p-methoxyphenol as a polymerization inhibitor when a predetermined viscosity is reached and quickly cooling to room temperature to stop the polymerization. However, the polymerization initiator remains in the syrup obtained by this method, and even if a polymerization inhibitor is added, the storage stability is poor. Moreover, since a polymerization initiator in an amount necessary for the reaction is added at a time, it is difficult to control the reaction, and the polymerization rate, molecular weight, and product viscosity are greatly changed, so that it cannot be said to be an excellent production method. In addition, there is a high possibility that the polymerization initiator remains in the obtained syrup, and even if a polymerization inhibitor is added, the storage stability is inferior, and it causes coloring during storage. In order to prevent the polymerization initiator from remaining, a polymerization initiator having a short half-life at the polymerization temperature may be used. In this case, a large amount of polymerization initiator is required, resulting in a rapid progress of the polymerization reaction. It becomes very difficult to control. For this reason, the polymerization initiator that can be used in the batch method falls into a dilemma that the half-life at the polymerization temperature is limited.
[0005]
On the other hand, with respect to the progress of the polymerization by mercaptans, for example, in Japanese Patent Publication No. 46-40693, a sulfur compound having active hydrogen is used as a chain transfer agent, such as mercaptans, and 65 to 105 ° C. without adding a polymerization initiator. Discloses a method for producing acrylic syrup by partial polymerization. In this method, a large amount of chain transfer agent is required to polymerize to a desired polymerization rate, and acrylic syrup containing a polymer having a high molecular weight cannot be obtained. Further, in order to obtain acrylic syrup containing a polymer having a high molecular weight, it is necessary to react for a long time using a small amount of chain transfer agent, which is not practical in any case.
[0006]
By the way, in the batch polymerization method described above, the polymerization is performed at a temperature lower than the boiling point of the in-system composition. On the other hand, it can be expected that the temperature change is reduced by carrying out the polymerization at the boiling point of the polymerization composition, but in reality, as the polymerization proceeds and the viscosity in the system rises, the liquid level rises due to foaming or the tank resulting therefrom. Problems such as the generation of internal deposits occur. In a large apparatus, since the area of the liquid surface is smaller than the volume of the reaction liquid, this tendency becomes remarkable. Therefore, it could be said that boiling point polymerization is impossible in practice. As means for solving these problems, JP-A-53-24380 is characterized in that 1 to 10,000 ppm of organosiloxanes are added when (co) polymerizing a monomer containing 70% by weight or more of methyl methacrylate. A method for producing a polymer is disclosed. However, as specified in the above patent specification, the organosiloxanes are basically incompatible with the acrylic monomer and the polymer, and the resulting molded product is cloudy. In addition, if organosiloxanes appear on the surface of the molded product, they may cause repelling during coating or cause dispersal of dust adhesion, so use with caution.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the conventional method, and to provide an acrylic syrup suitable for various uses and having a stable quality, and an efficient and simple method for producing the acrylic syrup.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that an acrylic syrup suitable for various applications and having a stable quality can be efficiently and easily produced by a specific production method, and has reached the present invention. That is, the present invention includes (1) 20 to 70% by weight of a monomer raw material mainly composed of methyl methacrylate with a partial ester compound of aliphatic carboxylic acid having 1 to 30 carbon atoms and glycerin and / or butadiene. After adding an antifoaming agent composed of a polymer obtained from a monomer as a main component, the temperature is raised, and (2) when the temperature of the in-system composition reaches the boiling point and refluxing is started, (3) While maintaining the reflux, the remaining monomer is continuously or divided over 0.1 to 10 hours with a polymerization initiator having a half-life at the boiling point of 10 to 300 seconds. And (4) continuing the heating after the end of the addition, and (5) adding a hindered phenol polymerization inhibitor after the end of the heating. Further, the present invention provides (A) 39 to 90% by weight of a monomer having methyl methacrylate as a main component, and (B) a weight average measured by GPC, obtained from a monomer having a methyl methacrylate unit as a main component. 60 to 9% by weight of a polymer having a molecular weight of 20,000 to 500,000, (C) 0.0005 to 3.0% by weight of a mercaptan having 4 to 20 carbon atoms, and (D) an aliphatic carboxylic acid having 1 to 30 carbon atoms 0.0001 to 0.3% by weight of a polymer obtained from a partial ester compound of styrene and glycerin and / or a monomer containing butadiene as a main component, and (E) a hindered phenol polymerization inhibitor 0.001 to 1. The present invention relates to an acrylic syrup comprising 0% by weight (100% by weight in total) and having a viscosity at 25 ° C. of 10 to 500,000 mPa · s.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The acrylic syrup of the present invention and the production method thereof will be specifically described below. In the present invention, methyl methacrylate is an essential component as a monomer component, and other vinyl monomer components copolymerizable with methyl methacrylate can be optionally added and used. The monomer component is not particularly limited as long as it is a monomer copolymerizable with methyl methacrylate, unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid and fumaric acid; ester of the unsaturated carboxylic acid , Nitrile, amide, imide and acid anhydrides; aromatic vinyl such as styrene; compounds having an ethylenic double bond such as vinyl carboxylate such as vinyl acetate.
[0010]
In the present invention, an antifoaming agent is added to the initial charge of the monomer raw material containing methyl methacrylate as an essential component, and then the temperature is raised to the boiling point of the monomer raw material. Before raising the temperature after adding the antifoaming agent, the temperature may be raised after contacting the charged raw material with 200 to 1000 vol% of an inert gas with respect to the initial charged raw material to replace the dissolved oxygen concentration. Nitrogen can be illustrated as an inert gas. Antifoaming agents that do not adversely affect the polymerization reaction and the resulting product, suppress the activity of substances that stabilize bubbles, improve the bubble removal of liquids, break bubbles on the surface, and A substance having the property of reducing the liquid viscosity is selected. As such an antifoaming agent, an antifoaming agent comprising a polymer obtained from a monomer mainly composed of a partial ester compound of an aliphatic carboxylic acid having 1 to 30 carbon atoms and glycerin and / or butadiene is used in the present invention. Used. Specifically, Caprylic acid monoglyceride, lauric acid monoglyceride, myristic acid monoglyceride, palmitic acid monoglyceride described in Big Chemie Japan Co., Ltd. “Plastic Additive”, Kao Corporation “Kao Plastic Lubricant”, etc. Partial ester compounds of fatty acids having 1 to 30 carbon atoms such as linolenic acid monoglyceride, oleic acid monoglyceride, stearic acid monoglyceride and behenic acid monoglyceride; butadiene rubber, nitrile rubber, styrene-butadiene rubber, styrene-butadiene-styrene elastomer, etc. It is a monomer polymer mainly composed of butadiene.
[0011]
The defoamer addition amount is 0.0001 to 0.3% by weight with respect to the total amount of the monomer raw material (total amount of the monomer initially charged and the monomer added later) in order to exhibit the required performance. It is desirable to add. Even if added over 0.3%, there is no significant difference in the defoaming effect. The added antifoaming agent suppresses the inclusion of bubbles when producing the final product and improves the defoaming at the time of molding, such as casting plates, optical materials such as optical transmission fibers and optical waveguides, acrylic artificial marble, The effect of reducing the appearance defect rate or mechanical defects can also be expected in final products such as artificial sealants, flooring materials, adhesives, adhesives, restoration materials such as cultural properties and stuffing, and medical materials.
[0012]
In the present invention, the antifoaming agent is added to the initial charge of the monomer raw material, and then the temperature is raised to the boiling point of the monomer raw material. When the boiling point is reached, reflux begins. The purpose of the reflux is to remove oxygen brought into the system by adding additional raw materials to the outside of the system, whereby the polymerization reaction can be performed stably.
[0013]
As the chain transfer agent to be added in the total amount at the start of reflux, mercaptans that do not inhibit the polymerization reaction and obtain a product with a desired molecular weight are used. For example, 1-butanethiol, 2,2-dimethylethanethiol, 4-20 carbon atoms such as 1-octanethiol, 2,2-dimethylhexanethiol, 1-dodecanethiol, 2,2-dimethyldecanethiol, 1-hexadecanethiol, 1-octadecanethiol, benzenethiol, thiocresol, thionaphthol At least one of the mercaptans is used. The addition amount of the chain transfer agent is 0.0005 to 3.0% by weight, preferably 0.03 to 1.5% by weight, based on the total amount of the monomer raw materials.
[0014]
After adding the chain transfer agent, the remaining monomer is added continuously or in portions over 0.1 to 10 hours together with a polymerization initiator having a half-life at the boiling point of 10 to 300 seconds. The polymerization initiator used in the present invention is a polymerization initiator having a half-life of 10 to 300 seconds at the reaction temperature. By using such a polymerization initiator, the polymerization initiator is completely consumed, The storage stability of the obtained syrup can be improved. Such polymerization initiators include various constants described in Nippon Oil & Fats Co., Ltd. “Organic Peroxide” Material 13th Edition, Atchem Yoshitomi Co., Ltd. Technical Materials, Wako Pure Chemical Industries, Ltd. “Azo Polymerization Initiators”, etc. For example, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,4dimethyl-4) -Methoxyvaleronitrile), 1,1'-azobiscyclohexanecarbonitrile, lauroyl peroxide, benzoyl peroxide, t-butyl pivalate, t-butyl peroxy-2-ethylhexanoate, diisopropyl peroxydicarbonate and bis ( 4-t-butylcyclohexyl) peroxydicarbonate and the like are exemplified.
[0015]
The polymerization initiators can be used alone or in combination of two or more, and an amount necessary for obtaining a desired polymerization rate is added. The polymerization initiator can be used either by adding it alone or by mixing it with a monomer raw material. The viscosity of acrylic syrup prepared according to the present invention is affected by the polymerization rate, molecular weight, and composition of unsaturated monomer units copolymerizable with methyl methacrylate in the polymer, but to satisfy the required viscosity range The amount of polymerization initiator used for the total amount of monomer raw material is 5. 0.times.10.sup.- 5 to 2.0% by weight is preferred. More preferably, 0 × 10 −4 to 1.0% by weight.
[0016]
Although the addition time of the additional monomer and the polymerization initiator can exceed 10 hours, it is not preferable from the viewpoint of productivity because the process time from preparation to product removal becomes long. In addition, it is known that polymerization proceeds little by little when mercaptans are used as chain transfer agents. If the temperature is increased in a state where mercaptans are added to the raw material initially charged, stable production cannot be performed because the polymerization rate varies depending on the rate of temperature increase. In addition, it is not preferable to prepare a chain transfer agent at the same time as the polymerization initiator because polymerization may occur in the raw material tank due to a redox reaction between the polymerization initiator and the chain transfer agent.
[0017]
In the present invention, after the addition of the additional monomer and the polymerization initiator is completed, heating is continued for a certain period of time to complete the polymerization reaction, and then a polymerization inhibitor is added, followed by cooling and taking out the product. By adding a polymerization inhibitor at the end of heating, polymerization by mercaptans can be completely prevented during the cooling operation, and it can be produced more safely and can produce acrylic syrup of stable product quality. Moreover, since the storage stability of acrylic syrup is improved by adding a polymerization inhibitor at the end of heating, it is not necessary to inactivate mercaptans remaining in the acrylic syrup.
[0018]
In order to avoid polymerization and coloring of the obtained syrup, a hindered phenol polymerization inhibitor is used in the present invention. Examples of the hindered phenol polymerization inhibitor include 2,6-di-t-butyl-4-methylphenol, 6-t-butyl-2,4-dimethylphenol, 4,4′-thiobis- (6-t -Butyl-3-methylphenol) and / or 2,2'-methylenebis- (4-methyl-6-t-butylphenol). These hindered phenol polymerization inhibitors can be used alone or in combination of two or more. The amount of the hindered phenol polymerization inhibitor added is preferably 0.001 to 1.0% by weight, more preferably 0.005 to 0.3% by weight, based on the total amount of the monomer raw materials.
[0019]
The acrylic syrup obtained as described above is obtained from (A) 39 to 90% by weight of a monomer having methyl methacrylate as a main component and (B) a monomer having a methyl methacrylate unit as a main component. , A polymer having a weight average molecular weight of 20,000 to 500,000 as measured by GPC, 60 to 9% by weight, (C) at least one compound selected from mercaptans having 4 to 20 carbon atoms, 0.0005 to 3.0% by weight %, (D) 0.0001 to 0.3% by weight of a polymer obtained from a partial ester compound of an aliphatic carboxylic acid having 1 to 30 carbon atoms and glycerin and / or a monomer based on butadiene, and ( E) It consists of 0.001 to 1.0% by weight (100% by weight in total) of a hindered phenol polymerization inhibitor, and has a viscosity at 25 ° C. of 10 to 500,000 mPa · s.
[0020]
Acrylic syrup obtained by the method of the present invention is a cast plate, optical materials such as optical transmission fibers and optical waveguides, acrylic artificial marble, artificial sealants, flooring materials, adhesives, adhesives, restoration materials such as cultural assets and stuffed or It can be used as an intermediate material for medical materials. Fillers, fiber reinforcements, low shrinkage agents, lubricants, plasticizers, thickeners, diluents such as organic solvents, crosslinking agents, leveling agents, anti-settling agents, mold release agents, antioxidants, UV absorption as necessary Known additives such as agents, pigments and / or dyes can also be mixed and used. The present invention will be illustrated more specifically, but the present invention is not limited thereto.
[0021]
【Example】
The polymerization rate was determined by the gravimetric method by putting the sample into a large amount of cold hexane and purifying and drying under reduced pressure. The molecular weight of the polymer was measured by 8010 type gel permeation chromatography (GPC) manufactured by Tosoh Corporation. The viscosity was measured at 25 ° C. using a B-type viscometer.
Example 1
Into a 1.5 liter separable four-necked flask equipped with a thermometer, reflux condenser, metering pump, and stirrer, a monomer polymer (mainly 458 g of methyl methacrylate, 10.9 g of methacrylic acid and butadiene) A mixture consisting of 0.090 g of a trade name BYK-A515 (BIC Chemie Co., Ltd.) was added, and the temperature was raised while stirring at 100 rpm. When the temperature reached 100 ° C., 2.6 g of 1-dodecanethiol as a chain transfer agent was quickly added, and then 0.058 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was dissolved. 472 g of the methyl methacrylate was added dropwise at 2.6 g / min using a metering pump over 3 hours. After completion of the dropwise addition, heating was continued for 0.15 hours, and 0.2 g of 2,6-di-t-butyl-4-methylphenol as a polymerization inhibitor was added to terminate the polymerization. Thereafter, the mixture was cooled to room temperature to obtain a colorless and transparent acrylic syrup. As the polymerization progressed, the viscosity of the reaction solution increased and foam was generated, but bubbles immediately broke off at the interface, and no foam phase was observed at the end and end of the polymerization. The polymerization rate of the obtained syrup was 31.3%, and the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) was 103,000. The viscosity at 25 ° C. was 4,200 mPa · s.
[0022]
Example 2
Acrylic syrup was obtained by performing the same reaction as in Example 1 except that 0.09 g of BYK-A515 in Example 1 was changed to 0.045 g of BYK-A515. Bubbles were generated in the reaction solution as the polymerization proceeded, but the bubbles were well removed into the gas phase, and no bubble phase was observed even at the end of the polymerization. The obtained acrylic syrup was colorless and transparent, the polymerization rate was 31.4%, and the weight average molecular weight (Mw) was 10.0 million. The viscosity at 25 ° C. was 4,700 mPa · s.
[0023]
Example 3
Acrylic syrup was obtained in the same manner as in Example 1 except that BYK-A515 in Example 1 was changed to 2.83 g of stearic acid monoglyceride. Bubbles were generated in the reaction solution as the polymerization proceeded, but the bubbles were very well removed from the gas phase, and no bubble phase was observed even at the end of the polymerization. The obtained acrylic syrup was colorless and transparent, the polymerization rate was 32.2%, the weight average molecular weight (Mw) was 10.0 million, and the viscosity at 25 ° C. was 6,100 mPa · s.
[0024]
Example 4
Acrylic syrup was obtained in the same manner as in Example 1 except that BYK-A515 in Example 1 was changed to 2.83 g of caprylic acid monoglyceride. Bubbles were generated in the reaction solution as the polymerization proceeded, but the bubbles were well removed into the gas phase, and no bubble phase was observed even at the end of the polymerization. The obtained acrylic syrup was colorless and transparent, the polymerization rate was 33.0%, and the weight average molecular weight (Mw) was 10.0 million. The viscosity at 25 ° C. was 6,000 mPa · s.
[0025]
Example 5
In the same apparatus as in Example 1, 458 g of methyl methacrylate, 10.9 g of methacrylic acid, and 0.090 g of BYK-A515 were charged, and the temperature was increased while stirring at 100 rpm. When the temperature reached 101 ° C., 1.1 g of 1-dodecanethiol as a chain transfer agent was quickly added, and then 0.030 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was dissolved. 472 g of methyl methacrylate was added from a metering pump over 3 hours. After completion of the dropwise addition, heating was continued for 0.25 hour, and 0.2 g of 6-tert-butyl-2,4-dimethylphenol as a polymerization inhibitor was added to terminate the polymerization. Thereafter, the mixture was cooled to room temperature to obtain a colorless and transparent acrylic syrup. As the polymerization progressed, the viscosity of the reaction solution increased and foam was generated, but bubbles immediately broke off at the interface, and no foam phase was observed at the end and end of the polymerization. The polymerization rate of the obtained syrup was 24.3%, and the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) was 203,000. The viscosity at 25 ° C. was 6,100 mPa · s.
[0026]
Example 6
In the same apparatus as in Example 1, 472 g of methyl methacrylate and 2.83 g of oleic acid monoglyceride were charged, and the temperature was raised while stirring at 80 rpm. When the temperature reached 101 ° C., 3.4 g of 1-dodecanethiol as a chain transfer agent was added, and then 0.041 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was dissolved. 472 g of methyl methacrylate was added from a metering pump over 3 hours. After completion of the dropwise addition, the heating was continued for 0.25 hours, and 0.5 g of 2,6-di-t-butyl-4-methylphenol as a polymerization inhibitor was added to terminate the polymerization. Thereafter, the mixture was cooled to room temperature to obtain a colorless and transparent acrylic syrup. As the polymerization progressed, the viscosity of the reaction solution increased and foam was generated, but bubbles immediately broke off at the interface, and no foam phase was observed at the end and end of the polymerization. The polymerization rate of the obtained syrup was 27.6%, and Mw measured by GPC was 79,000. The viscosity at 25 ° C. was 500 mPa · s.
[0027]
Example 7
In the same apparatus as in Example 1, 472 g of methyl methacrylate and 0.090 g of BYK-A515 were charged, and the temperature was increased while stirring at 100 rpm. When the temperature reached 101 ° C., 3.4 g of 1-dodecanethiol as a chain transfer agent was added, and then 0.102 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was dissolved. 472 g of methyl methacrylate was added from a metering pump over 3 hours. After completion of the dropwise addition, heating was continued for 0.25 hour, and 1.0 g of 2,6-di-t-butyl-4-methylphenol as a polymerization inhibitor was added to terminate the polymerization. Thereafter, the mixture was cooled to room temperature to obtain a colorless and transparent acrylic syrup. As the polymerization progressed, the viscosity of the reaction solution increased and foam was generated, but bubbles immediately broke off at the interface, and no foam phase was observed at the end and end of the polymerization. The polymerization rate of the obtained syrup was 40.4%, and Mw measured by GPC was 80000. The viscosity at 25 ° C. was 50,000 mPa · s.
[0028]
Comparative Example 1
The same reaction as in Example 1 was performed except that BYK-A515 in Example 1 was not added. As the polymerization progressed, bubbles were generated due to an increase in the viscosity of the reaction solution. As the polymerization reaction proceeded, bubbles started to form from the interface, and a foam phase with a height of about 5 mm was formed, but the polymerization reaction was not stopped. The polymerization rate of the obtained syrup was 32.1%, and Mw measured by GPC was 101,000. The viscosity at 25 ° C. was 5,000 mPa · s.
[0029]
【The invention's effect】
According to the present invention, acrylic syrup having desired characteristics can be produced stably, and the obtained syrup has excellent moldability and has great industrial significance.

Claims (3)

(1)メタクリル酸メチルを97.7重量%以上含む単量体原料の20〜70重量%に、炭素数1〜30の脂肪族カルボン酸とグリセリンとの部分エステル化合物及び/又はブタジエンを主成分とする単量体から得られたポリマーからなる消泡剤を添加した後、昇温し、(2)系内組成物の温度が沸点に達し、還流を開始した時点で連鎖移動剤の全量を添加し、(3)還流を維持しながら、残りの単量体を該沸点での半減期が10〜300秒である重合開始剤とともに0.1〜10時間かけて連続的又は分割して添加し、(4)添加終了後さらに加熱を継続し、(5)加熱終了後にヒンダードフェノール系重合禁止剤を加えることを特徴とするアクリルシラップの製造方法。(1) The main component is a partial ester compound of aliphatic carboxylic acid having 1 to 30 carbon atoms and / or glycerin and / or butadiene in 20 to 70% by weight of the monomer raw material containing 97.7% by weight or more of methyl methacrylate. (2) When the temperature of the composition in the system reaches the boiling point and the reflux is started, the total amount of the chain transfer agent is reduced. (3) While maintaining reflux, the remaining monomer is added continuously or in portions over 0.1 to 10 hours with a polymerization initiator having a half-life at the boiling point of 10 to 300 seconds. And (4) continuing the heating after the end of the addition, and (5) adding a hindered phenol polymerization inhibitor after the end of the heating. 初めに仕込む単量体と後に添加する単量体との合計量に対し0.0001〜0.3重量%の消泡剤を添加する請求項1記載の製造方法。The production method according to claim 1, wherein 0.0001 to 0.3% by weight of an antifoaming agent is added to the total amount of the monomer charged first and the monomer added later. 連鎖移動剤が炭素数4〜20のメルカプタンから選ばれる少なくとも1種の化合物である請求項1に記載の製造方法。The production method according to claim 1, wherein the chain transfer agent is at least one compound selected from mercaptans having 4 to 20 carbon atoms.
JP2000326624A 2000-10-26 2000-10-26 Acrylic syrup and manufacturing method thereof Expired - Fee Related JP4424458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326624A JP4424458B2 (en) 2000-10-26 2000-10-26 Acrylic syrup and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326624A JP4424458B2 (en) 2000-10-26 2000-10-26 Acrylic syrup and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009242254A Division JP2010047766A (en) 2009-10-21 2009-10-21 Acrylic syrup

Publications (2)

Publication Number Publication Date
JP2002128803A JP2002128803A (en) 2002-05-09
JP4424458B2 true JP4424458B2 (en) 2010-03-03

Family

ID=18803776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326624A Expired - Fee Related JP4424458B2 (en) 2000-10-26 2000-10-26 Acrylic syrup and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4424458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693913A (en) * 2016-03-02 2016-06-22 李金平 High-permeation chemical grouting material and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649902B2 (en) * 2004-07-16 2011-03-16 住友化学株式会社 Resin composition with excellent heat resistance
KR100727219B1 (en) 2004-11-08 2007-06-13 주식회사 엘지화학 Method for producing an metaacrylate syrup
JP5840355B2 (en) * 2009-10-22 2016-01-06 旭化成ケミカルズ株式会社 Acrylic resin and molded body
CN102482360A (en) 2009-10-22 2012-05-30 旭化成化学株式会社 Methacrylic resin, molded body thereof, and method for producing methacrylic resin
JP5615163B2 (en) * 2009-12-25 2014-10-29 旭化成ケミカルズ株式会社 Acrylic resin production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693913A (en) * 2016-03-02 2016-06-22 李金平 High-permeation chemical grouting material and preparation method thereof

Also Published As

Publication number Publication date
JP2002128803A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
CN100577697C (en) Method for producing an (meth)acrylate syrup
BRPI0611398B1 (en) accelerator solution, process for curing unsaturated polyester or an acrylate resin, redox polymerization process and use of accelerator solution
JP4424458B2 (en) Acrylic syrup and manufacturing method thereof
EP1201686B1 (en) Methyl methacrylate syrup and production thereof
JP5168259B2 (en) Acrylic syrup
JP2010285483A (en) Methacrylic resin composition
JP4424459B2 (en) Acrylic syrup and method for producing the same
JP3013951B2 (en) Acrylic resin manufacturing method
JP2010047766A (en) Acrylic syrup
JP2002121228A (en) Crosslinkable composition, crosslinked resin and resin obtained by cleaving reaction of crosslinked parts thereof
JP4257469B2 (en) Method for producing methyl syrup methacrylate
JP4296364B2 (en) Acrylic syrup manufacturing method
US20020173589A1 (en) Acrylic syrup and method of producing same
JPH11166005A (en) Production of molding
JP4553078B2 (en) Acrylic syrup manufacturing method
JP5138263B2 (en) Method for producing methacrylic resin molded product
CA1183996A (en) Process for the partial polymerisation of vinyl monomers
JP5138177B2 (en) Acrylic syrup manufacturing method
CA1107752A (en) Process for continuous production of prepolymer syrups
JP4065739B2 (en) Acrylic syrup manufacturing method
JP2005314471A5 (en)
JPS63191812A (en) Production of high refractive index resin
JP2001151827A (en) Method for producing acrylic syrup
KR940003363B1 (en) Method for in-mold polymerization of unsaturated compounds
JP2004176043A (en) Manufacturing method of acrylic syrup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4424458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees