JP4423691B2 - Method for producing styrene derivative - Google Patents

Method for producing styrene derivative Download PDF

Info

Publication number
JP4423691B2
JP4423691B2 JP02178799A JP2178799A JP4423691B2 JP 4423691 B2 JP4423691 B2 JP 4423691B2 JP 02178799 A JP02178799 A JP 02178799A JP 2178799 A JP2178799 A JP 2178799A JP 4423691 B2 JP4423691 B2 JP 4423691B2
Authority
JP
Japan
Prior art keywords
iron
cobalt
iii
rhodium
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02178799A
Other languages
Japanese (ja)
Other versions
JP2000239192A (en
Inventor
真一 石川
久雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP02178799A priority Critical patent/JP4423691B2/en
Publication of JP2000239192A publication Critical patent/JP2000239192A/en
Application granted granted Critical
Publication of JP4423691B2 publication Critical patent/JP4423691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スチレン誘導体の製造方法に関する。更に詳しくは、芳香族ハロゲン化合物から調製したグリニャ−ル試薬を、触媒の存在下にビニルハライドと反応させて、スチレン誘導体を製造する方法に関するものである。
【0002】
本発明の目的化合物であるスチレン誘導体は、機能性高分子、医農薬等の原料として非常に有用である。例えば、パラ−第三級−ブトキシスチレン(以下、PTBSと略記する)は、超LSI用途等に使用されるレジスト原料として極めて有効であることが知られている(特開昭59−199705号公報、特開平3−277608号公報)。また、メタ−第三級−ブトキシスチレン(以下、MTBSと略記する)は、機能性高分子、医農薬等の中間原料として有用であることが知られている(特開平2−160739号公報)。
【0003】
【従来の技術】
PTBSやMTBSのごときスチレン誘導体については、従来2通りの製造法が知られている。
【0004】
即ち、米国特許第4,603,101号明細書及び特開昭59−199705号公報においては、ハロスチレンから調製したグリニャ−ル試薬を過安息香酸−第三級−ブチルエステルと反応させる方法が開示されている。しかしながらこの方法は、反応収率が低いことに加えて、大量入手が困難で且つ爆発性を有する過安息香酸−第三級−ブチルエステルを必要とする問題があり、PTBSやMTBSのごときスチレン誘導体を工業的に製造する方法としては満足できるものでない。
【0005】
一方、特公平4−71896号公報及び特開平2−160739号公報においては、第三級−ブトキシフェニルハライドから調製したグリニャ−ル試薬を、ニッケルホスフィン錯体触媒の存在下にビニルハライドと反応させる方法が開示されている。しかしながらこの方法では、反応収率は改善されるものの、高価で非常に毒性の強いニッケルホスフィン錯体触媒を必要とする問題がある。特公平4−71896号公報及び特開平2−160739号公報には、この反応を収率良く進行させるためには、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]ニッケル、ジクロロ[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル等の二座配位ホスフィン錯体が有効であると明記されているが、これらの触媒は高価で且つ非常に毒性の強い触媒である。したがって、本法を用いてもPTBSやMTBSのごときスチレン誘導体を経済性良く、安全に製造することは困難であり、本法もまたPTBSやMTBSのごときスチレン誘導体を工業的に製造する方法としては満足できるものではない。
【0006】
【発明が解決しようとする課題】
本発明は上記の課題に鑑みてなされたものであり、その目的は、従来の方法では満足できなかったスチレン誘導体の工業的製造法を提供することにある。すなわち、PTBSやMTBSのごときスチレン誘導体に関して、従来の問題点を解決し、経済性及び安全性に優れた工業的製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、従来の問題点を解決すべく鋭意検討した結果、第三級−ブトキシフェニルハライドから調製したグリニャ−ル試薬を、触媒の存在下にビニルハライドと反応させてPTBSやMTBSのごときスチレン誘導体を製造する方法において、特定の触媒を用いることにより、PTBSやMTBSのごときスチレン誘導体を工業的規模で経済性良く、安全に製造することが可能となることを見出した。更に、本触媒法は、各種スチレン誘導体の製造にも有効なことを確認し、本発明を完成させるに至った。
【0008】
即ち本発明は、芳香族ハロゲン化合物から調製したグリニャ−ル試薬を、触媒の存在下にビニルハライドと反応させて、スチレン誘導体を製造する方法において、触媒として、マンガン系触媒、鉄系触媒、コバルト系触媒及びロジウム系触媒からなる群より選ばれる一種又は二種以上の触媒を用いることを特徴とするスチレン誘導体の製造方法である。
【0009】
以下、PTBSの製造を例に、本発明を詳細に説明する。
【0010】
本発明の方法において使用されるグリニャ−ル試薬は、芳香族ハロゲン化合物から調製したグリニャ−ル試薬であれば特に限定するものではなく、常法により容易に調製できる。即ち、溶媒中で金属マグネシウムとパラ−第三級−ブトキシフェニルハライドとを反応させる方法等を実施することにより、容易に調製できる。本調製反応では、活性化した金属マグネシウムを用いた場合、特に良好な結果が得られる。金属マグネシウムの活性化法としては、溶媒に懸濁させた金属マグネシウムを加熱攪拌する方法や、これに微量のヨウ素、ヨウ化メチルのようなヨウ化物、ジブロモエタンのような臭化物等を添加して攪拌する方法が有効である。
【0011】
本発明の方法では、上記の方法で調製したグリニャ−ル試薬を、マンガン系触媒、鉄系触媒、コバルト系触媒及びロジウム系触媒からなる群より選ばれる一種又は二種以上の触媒の存在下にビニルハライドと反応させることにより、PTBSを高収率で安価に安全に製造することが可能となる。
【0012】
本発明の方法において使用されるビニルハライドは、フッ化ビニル、塩化ビニル、臭化ビニル、ヨウ化ビニルであり、これらを単独に又は混合物として使用することができる。通常は、経済性及び入手の容易さを考慮して塩化ビニルガス及び/又は臭化ビニルガスが選ばれる。
【0013】
本発明の方法で使用される触媒は、マンガン系触媒、鉄系触媒、コバルト系触媒及びロジウム系触媒よりなる群から選ばれる一種又は二種以上の触媒である。
【0014】
本発明の方法においてマンガン系触媒とは、マンガン元素を有効成分とする触媒をいい、特に限定するものではないが、例えば、マンガン粉末や、塩化マンガン(II)、臭化マンガン(II)、ヨウ化マンガン(II)、フッ化マンガン(II)、酢酸マンガン(II)、酢酸マンガン(III)、ギ酸マンガン(II)、シュウ酸マンガン(II)、安息香酸マンガン(II)、ステアリン酸マンガン(II)、ホウ酸マンガン(II)、マンガン(II)アセチルアセトナート、マンガン(III)アセチルアセトナート、炭酸マンガン(II)、硫酸マンガン(II)、硝酸マンガン(II)、リン酸マンガン(II)等の化合物、それら化合物の水和物、又はそれら化合物から誘導される各種錯体触媒等が挙げられる。
【0015】
本発明の方法において鉄系触媒とは、鉄元素を有効成分とする触媒のことをいい、特に限定するものではないが、例えば、ハロゲン化第一鉄、ハロゲン化第二鉄、ハロゲン化第一鉄から調製できる触媒、ハロゲン化第二鉄から調製できる触媒等が挙げられる。なお、本発明においてハロゲン化第一鉄から調製できる触媒とは、ハロゲン化第一鉄から誘導できる触媒又はハロゲン化第一鉄を有効成分とする触媒をいい、例えば、ハロゲン化第一鉄の水和物や各種錯体触媒が挙げられる。ハロゲン化第一鉄から調製できる触媒についても同様に定義され、例えば、ハロゲン化第二鉄の水和物や各種錯体触媒が挙げられる。
【0016】
本発明の方法において鉄系触媒としては、具体的には、鉄粉や、塩化鉄(II)、塩化鉄(III)、臭化鉄(II)、臭化鉄(III)、ヨウ化鉄(II)、フッ化鉄(II)、フッ化鉄(III)、酢酸鉄(II)、シュウ酸鉄(II)、シュウ酸鉄(III)、クエン酸鉄(III)、過塩素酸鉄(III)、鉄(III)アセチルアセトナート、硝酸鉄(III)、リン酸鉄(III)、硫酸鉄(II)、硫酸鉄(II)等の化合物、それら化合物の水和物、又はそれら化合物から誘導される各種錯体触媒等が例示される。
【0017】
本発明の方法においてコバルト系触媒とは、コバルト元素を有効成分とする触媒をいい、特に限定するものではないが、例えば、コバルト粉末や、塩化コバルト(II)、臭化コバルト(II)、ヨウ化コバルト(II)、フッ化コバルト(II)、酢酸コバルト(II)、酢酸コバルト(III)、ギ酸コバルト(II)、シュウ酸コバルト(II)、安息香酸コバルト(II)、ステアリン酸コバルト(II)、ホウ酸コバルト(II)、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、炭酸コバルト(II)、硫酸コバルト(II)、硝酸コバルト(II)、リン酸コバルト(II)等の化合物、それら化合物の水和物、又はそれら化合物から誘導される各種錯体触媒等が挙げられる。
【0018】
本発明の方法においてロジウム系触媒とは、ロジウム元素を有効成分とする触媒をいい、特に限定するものではないが、例えば、ロジウム粉末やロジウム−カーボン、塩化ロジウム(II)、臭化ロジウム(II)、酢酸ロジウム(II)、酢酸ロジウム(III)、ロジウム(II)アセチルアセトナート、ロジウム(III)アセチルアセトナート等の化合物、それら化合物の水和物、又はそれら化合物から誘導される各種錯体触媒等が挙げられる。
【0019】
本発明の方法においては、上記した触媒を単独に又は混合物として使用することができるが、ハロゲン化マンガン、酢酸マンガン、ハロゲン化鉄、酢酸鉄、ハロゲン化コバルト、酢酸コバルト、ハロゲン化ロジウム、及び酢酸ロジウムからなる群から選ばれる一種又は二種以上の触媒を用いた場合に、特に良好な結果(高収率)が得られる。なお、本発明の方法において使用される触媒の使用量については格別の限定はないが、通常、グリニヤ−ル試薬に対して10-4〜10-1倍モル程度の使用量が選ばれる。
【0020】
前述した従来法(例えば、特公平4−71896号公報記載の方法)は、高価で且つ非常に毒性の強いニッケルホスフィン錯体触媒を必要とする問題があり、PTBSの工業的製造法としては満足できるものではなかった。本発明者らは、パラ−第三級−ブトキシフェニルハライドから調製したグリニャ−ル試薬とビニルハライドとの反応に対し、安価で安全な、マンガン系触媒、鉄系触媒、コバルト系触媒及びロジウム系触媒からなる群より選ばれる一種又は二種以上の触媒が有効であることを初めて見出した。これらのうち、ハロゲン化マンガン、酢酸マンガン、ハロゲン化鉄、酢酸鉄、ハロゲン化コバルト、酢酸コバルト、ハロゲン化ロジウム及び酢酸ロジウムからなる群より選ばれる一種又は二種以上の触媒は、非常に安価で安全な触媒であり、このような触媒を用いる本発明の方法は、PTBSの工業的製造法として極めて有用である。
【0021】
本発明の方法は、通常、窒素及び/又はアルゴン等の不活性ガス雰囲気下に、溶媒中で実施される。本発明の方法おいて使用される反応溶媒としては、エ−テル系溶媒、含酸素系溶媒、含窒素系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。通常、これらの溶媒を単独に又は混合して使用することができるが、特にテトラヒドロフラン溶媒、又はテトラヒドロフランを含む混合溶媒を使用した場合に良好な結果(高収率)が得られる。また、本発明の方法は、通常0℃〜溶媒還流温度の条件下で実施される。
【0022】
反応終了後は、常法に従い反応液に酸性水溶液を加えて処理した後、有機層を分離する。続いて、有機層を水洗処理した後、溶媒を留去して、これに第三級−ブチルカテコ−ル等の重合禁止剤を添加して蒸留することにより、目的とするPTBSを得る。
【0023】
本発明の方法は、上述したPTBS製造に留まらず、芳香族ハロゲン化合物からスチレン誘導体を製造する同種の反応に広く適用できるが、PTBSやMTBSのごとき第三級−ブトキシスチレンの製造に適用した場合に、特に良好な結果(高収率)が得られる。尚、本発明の方法において言う芳香族ハロゲン化合物とは、芳香環の少なくとも一箇所がハロゲン置換された化合物の総称であり、例えば、フッ化ベンゼン誘導体、塩素化ベンゼン誘導体、臭素化ベンゼン誘導体、ヨウ素化ベンゼン誘導体等が挙げられる。
【0024】
【発明の効果】
以上の説明から明らかなように本発明の方法によれば、従来の問題点を解決して、スチレン誘導体を工業的規模で経済性良く、安全に製造することが可能となる。
【0025】
【実施例】
以下に、本発明の方法を実施例により具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0026】
参考例1
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、パラ−第三級−ブトキシブロモベンゼン11.46g(50mmol)をテトラヒドロフラン20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0027】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化マンガン(II)四水和物(MnCl2・4H2O)0.05g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0028】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析し、PTBS収率を求めた。反応結果を表1に示す。
【0029】
【表1】

Figure 0004423691
【0030】
参考例2〜4、実施例5〜14、参考例15〜17、実施例18
参考例1で使用した塩化マンガン(II)四水和物(0.25mmol)に代えて、表1に示した触媒(0.25mmol)を用いた以外は、実施例1の方法に準じて反応を行った。反応結果を表1にあわせて示す。
【0031】
参考例16
参考例1で使用した塩化マンガン(II)四水和物(0.25mmol)に代えて、塩化マンガン(II)四水和物0.03g(0.13mmol)及び塩化鉄(III)0.02g(0.13mmol)の混合物を用いた以外は、参考例1の方法に準じて反応を行った。反応結果を表1にあわせて示す。
【0032】
参考例17
参考例1で使用した塩化マンガン(II)四水和物(0.25mmol)に代えて、塩化マンガン(II)四水和物0.03g(0.13mmol)及び塩化コバルト(II)0.02g(0.13mmol)の混合物を用いた以外は、参考例1の方法に準じて反応を行った。反応結果を表1にあわせて示す。
【0033】
実施例18
参考例1で使用した塩化マンガン(II)四水和物(0.25mmol)に代えて、塩化鉄(III)0.02g(0.13mmol)及び塩化コバルト(II)0.02g(0.13mmol)の混合物を用いた以外は、参考例1の方法に準じて反応を行った。反応結果を表1にあわせて示す。
【0034】
比較例1〜比較例6
参考例1で使用した塩化マンガン(II)四水和物(0.25mmol)に代えて、表1に示した触媒(0.25mmol)を用いた以外は、参考例1に準じて反応を行った。反応結果を表1にあわせて示す。
【0035】
参考例19
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、メタ−第三級−ブトキシブロモベンゼン11.46g(50mmol)をテトラヒドロフラン20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0036】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に酢酸マンガン(II)四水和物[Mn(CH3CO22・4H2O]0.06g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0037】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、MTBSが81.8%の収率で生成していた。
【0038】
参考例20
窒素雰囲気で置換した100mlフラスコに、ジエチルエーテル10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を20〜30℃に保ちながら、メタ−第三級−ブトキシブロモベンゼン11.46g(50mmol)をジエチルエーテル20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0039】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に酢酸マンガン(II)四水和物[Mn(CH3CO22・4H2O]0.06g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0040】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、MTBSが71.3%の収率で生成していた。
【0041】
参考例21
窒素雰囲気で置換した100mlフラスコに、ジブチルエーテル10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、メタ−第三級−ブトキシブロモベンゼン11.46g(50mmol)をジブチルエーテル20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0042】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に酢酸マンガン(II)四水和物[Mn(CH3CO22・4H2O]0.06g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0043】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、MTBSが68.9%の収率で生成していた。
【0044】
実施例22
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、メタ−第三級−ブトキシブロモベンゼン11.46g(50mmol)をテトラヒドロフラン20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャール試薬を得た。
【0045】
上記の操作によって得られたグリニャール試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化コバルト(II)(CoCl2)0.03g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0046】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィーで分析した結果、MTBSが80.4%の収率で生成していた。
【0047】
実施例23
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム2.68g(110mmol)、臭化エチル0.65g(6mmol)を仕込み、溶媒還流条件下で20分間攪拌した。続いて、溶媒還流条件下で、メタ−第三級−ブトキシクロロベンゼン18.47g(100mmol)をテトラヒドロフラン20mlに溶かした溶液を、約2時間かけて滴下した。更に、溶媒還流条件下で3時間攪拌し、グリニャ−ル試薬を得た。
【0048】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化鉄(II)(FeCl2)0.13g(1mmol)、テトラヒドロフラン20mlを加えた後、反応温度を40〜50℃に保ちながら塩化ビニルガス6.88g(110mmol)を3時間かけて吹き込み、更に同温度で30分間攪拌を行った。
【0049】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、MTBSが83.3%の収率で生成していた。
【0050】
実施例24
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム2.68g(110mmol)、臭化エチル0.65g(6mmol)を仕込み、溶媒還流条件下で20分間攪拌した。続いて、溶媒還流条件下で、メタ−第三級−ブトキシクロロベンゼン18.47g(100mmol)をテトラヒドロフラン20mlに溶かした溶液を、約2時間かけて滴下した。更に、溶媒還流条件下で3時間攪拌し、グリニャ−ル試薬を得た。
【0051】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化鉄(II)(FeCl2)0.13g(1mmol)、トルエン20mlを加えた後、反応温度を40〜50℃に保ちながら塩化ビニルガス6.88g(110mmol)を3時間かけて吹き込み、更に同温度で30分間攪拌を行った。
【0052】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、MTBSが81.9%の収率で生成していた。
【0053】
参考例25
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、パラブロモトルエン8.55g(50mmol)をテトラヒドロフラン20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0054】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化マンガン(II)四水和物(MnCl2・4H2O)0.05g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0055】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、パラメチルスチレンが64.1%の収率で生成していた。
【0056】
実施例26
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、パラブロモトルエン8.55g(50mmol)をテトラヒドロフラン20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャール試薬を得た。
【0057】
上記の操作によって得られたグリニャール試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化コバルト(II)(CoCl2)0.03g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0058】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィーで分析した結果、パラメチルスチレンが64.3%の収率で生成していた。
【0059】
実施例27
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム2.68g(110mmol)、臭化エチル0.65g(6mmol)を仕込み、溶媒環流条件下で20分間攪拌した。続いて、溶媒環流条件下で、パラクロロトルエン12.66g(100mmol)をテトラヒドロフラン20mlに溶かした溶液を、約2時間をかけて滴下した。更に、溶媒還流条件下で3時間攪拌し、グリニャ−ル試薬を得た。
【0060】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化鉄(II)(FeCl2)0.13g(1mmol)、テトラヒドロフラン20mlを加えた後、反応温度を40〜50℃に保ちながら塩化ビニルガス6.88g(110mmol)を約3時間かけて吹き込み、更に同温度で30分攪拌を行った。
【0061】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、パラメチルスチレンが64.3%の収率で生成していた。
【0062】
参考例28
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、パラブロモクロロベンゼン9.57g(50mmol)をテトラヒドロフラン20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0063】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に酢酸マンガン(II)四水和物[Mn(CH3CO2)2・4H2O]0.06g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0064】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、パラクロロスチレンが60.7%の収率で生成していた。
【0065】
実施例29
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、パラブロモクロロベンゼン9.57g(50mmol)をテトラヒドロフラン20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0066】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化コバルト(II)(CoCl2)0.03g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0067】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、パラクロロスチレンが67.1%の収率で生成していた。
【0068】
実施例30
窒素雰囲気で置換した100mlフラスコに、ジブチルエーテル10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、パラブロモクロロベンゼン9.57g(50mmol)をジブチルエーテル20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0069】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化コバルト(II)(CoCl2)0.03g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0070】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、パラクロロスチレンが55.4%の収率で生成していた。
【0071】
実施例31
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム1.34g(55mmol)、ヨウ素1片を仕込み、室温条件下で攪拌した。ヨウ素の色が消えるのを確認した後、反応液を40〜50℃に保ちながら、パラブロモクロロベンゼン9.57g(50mmol)をテトラヒドロフラン20mlに溶かした溶液を約1時間かけて滴下した。更に、溶媒還流条件下で1時間攪拌し、グリニャ−ル試薬を得た。
【0072】
上記の操作によって得られたグリニャ−ル試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化ロジウム(III)三水和物(RhCl3・3H2O)0.07g(0.25mmol)を加えた後、反応温度を20〜30℃に保ちながら塩化ビニルガス3.44g(55mmol)を10分間かけて吹き込み、更に同温度で1時間攪拌を行った。
【0073】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィ−で分析したところ、パラクロロスチレンが64.8%の収率で生成していた。
【0074】
実施例32
窒素雰囲気で置換した100mlフラスコに、テトラヒドロフラン10ml、金属マグネシウム2.68g(110mmol)、臭化エチル0.65g(6mmol)を仕込み、溶媒還流条件下で20分間攪拌した。続いて、溶媒還流条件下で、パラジクロロベンゼン14.75g(100mmol)をテトラヒドロフラン20mlに溶かした溶液を約2時間をかけて滴下した。更に、溶媒還流条件下で3時間攪拌し、グリニャール試薬を得た。
【0075】
上記の操作によって得られたグリニャール試薬の上澄液を、窒素雰囲気で置換した100mlフラスコに移した。続いて、この反応液に塩化第二鉄(FeCl3)0.08g(0.5mmol)、トルエン30mlを加えた後、反応温度を40〜50℃に保ちながら塩化ビニルガス10.46g(167mmol)を約3時間かけて吹き込み、更に同温度で30分間攪拌を行った。
【0076】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解した。有機層を分取した後、これをガスクロマトグラフィーで分析した結果、パラクロロスチレンが62.9%の収率で生成していた。
【0077】
実施例33
窒素雰囲気で置換した50Lフラスコに、テトラヒドロフラン6L、金属マグネシウム0.73kg(30mol)、臭化エチル0.22kg(2mol)を仕込み、溶媒環流条件下で1時間撹拌した。続いて、溶媒環流条件下で、パラ−第三級−ブトキシクロロベンゼン4.62kg(25mol)をテトラヒドロフラン5Lに溶かした溶液を、約2時間をかけて滴下した。更に、溶媒環流条件下で4時間撹拌し、グリニャール試薬を得た。
【0078】
上記の操作によって得られたグリニャール試薬を40℃まで冷却した後、この反応液に塩化鉄(III)(FeCl3)0.02kg(0.12mol)、テトラヒドロフラン12Lを加えた。続いて、反応温度を40〜50℃に保ちながら塩化ビニルガス1.88kg(30mol)を約7時間かけて吹き込み、更に同温度で1時間撹拌を行った。
【0079】
反応終了後、反応液に塩化アンモニウム水溶液を加えて生成した塩を溶解し、有機層を分離した。得られた有機層を飽和食塩水で洗浄後、溶媒を留去し、これに重合禁止剤を加えて減圧蒸留を行い、沸点92℃/5mmHgのPTBS留分(3.58kg、収率81.2%)を得た。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a styrene derivative. More specifically, the present invention relates to a method for producing a styrene derivative by reacting a Grignard reagent prepared from an aromatic halogen compound with a vinyl halide in the presence of a catalyst.
[0002]
The styrene derivative which is the target compound of the present invention is very useful as a raw material for functional polymers, medicines and agricultural chemicals. For example, para-tertiary-butoxystyrene (hereinafter abbreviated as PTBS) is known to be extremely effective as a resist material used for VLSI applications (Japanese Patent Laid-Open No. 59-199705). JP-A-3-277608). Further, it is known that meta-tertiary-butoxystyrene (hereinafter abbreviated as MTBS) is useful as an intermediate material for functional polymers, medical pesticides and the like (JP-A-2-160739). .
[0003]
[Prior art]
For styrene derivatives such as PTBS and MTBS, two conventional production methods are known.
[0004]
That is, US Pat. No. 4,603,101 and JP-A-59-199705 disclose a method of reacting a Grignard reagent prepared from halostyrene with perbenzoic acid-tertiary-butyl ester. Has been. However, this method has a problem that a peroxybenzoic acid-tertiary-butyl ester which is difficult to obtain in large quantities and has explosive properties is required in addition to low reaction yield, and styrene derivatives such as PTBS and MTBS. Is not satisfactory as a method for industrially producing
[0005]
On the other hand, in Japanese Patent Publication No. 4-71896 and Japanese Patent Laid-Open No. 2-160739, a Grignard reagent prepared from tertiary-butoxyphenyl halide is reacted with vinyl halide in the presence of a nickel phosphine complex catalyst. Is disclosed. However, although this method improves the reaction yield, there is a problem that an expensive and very toxic nickel phosphine complex catalyst is required. In Japanese Patent Publication No. 4-71896 and Japanese Patent Laid-Open No. 2-160739, dichloro [1,2-bis (diphenylphosphino) ethane] nickel, dichloro [1, Although bidentate phosphine complexes such as 3-bis (diphenylphosphino) propane] nickel are stated to be effective, these catalysts are expensive and very toxic catalysts. Therefore, it is difficult to produce styrene derivatives such as PTBS and MTBS economically and safely even if this method is used, and this method is also an industrial method for producing styrene derivatives such as PTBS and MTBS. It is not satisfactory.
[0006]
[Problems to be solved by the invention]
This invention is made | formed in view of said subject, The objective is to provide the industrial manufacturing method of the styrene derivative which was not satisfied with the conventional method. That is, an object of the present invention is to solve the conventional problems related to styrene derivatives such as PTBS and MTBS and to provide an industrial production method excellent in economic efficiency and safety.
[0007]
[Means for Solving the Problems]
As a result of diligent studies to solve the conventional problems, the present inventors reacted a Grignard reagent prepared from tertiary-butoxyphenyl halide with vinyl halide in the presence of a catalyst to produce PTBS and MTBS. In the method for producing styrene derivatives, it has been found that by using a specific catalyst, styrene derivatives such as PTBS and MTBS can be produced safely on an industrial scale with good economic efficiency. Furthermore, the present catalytic method was confirmed to be effective for the production of various styrene derivatives, and the present invention was completed.
[0008]
That is, the present invention relates to a method for producing a styrene derivative by reacting a Grignard reagent prepared from an aromatic halogen compound with a vinyl halide in the presence of a catalyst. A method for producing a styrene derivative, wherein one or two or more catalysts selected from the group consisting of a catalyst based on a catalyst and a rhodium catalyst are used.
[0009]
Hereinafter, the present invention will be described in detail by taking the production of PTBS as an example.
[0010]
The Grignard reagent used in the method of the present invention is not particularly limited as long as it is a Grignard reagent prepared from an aromatic halogen compound, and can be easily prepared by a conventional method. That is, it can be easily prepared by carrying out a method of reacting magnesium metal with para-tertiary-butoxyphenyl halide in a solvent. In this preparation reaction, particularly good results are obtained when activated magnesium metal is used. As a method for activating the metal magnesium, a method of heating and stirring the metal magnesium suspended in a solvent, adding a trace amount of iodine, an iodide such as methyl iodide, a bromide such as dibromoethane, etc. A method of stirring is effective.
[0011]
In the method of the present invention, the Grignard reagent prepared by the above method is added in the presence of one or more catalysts selected from the group consisting of manganese-based catalysts, iron-based catalysts, cobalt-based catalysts, and rhodium-based catalysts. By reacting with vinyl halide, PTBS can be produced safely at a high yield and at a low cost.
[0012]
The vinyl halide used in the method of the present invention is vinyl fluoride, vinyl chloride, vinyl bromide or vinyl iodide, and these can be used alone or as a mixture. Usually, vinyl chloride gas and / or vinyl bromide gas are selected in consideration of economy and availability.
[0013]
The catalyst used in the method of the present invention is one or two or more catalysts selected from the group consisting of manganese-based catalysts, iron-based catalysts, cobalt-based catalysts, and rhodium-based catalysts.
[0014]
In the method of the present invention, the manganese-based catalyst refers to a catalyst containing manganese element as an active ingredient, and is not particularly limited. For example, manganese powder, manganese chloride (II), manganese bromide (II), iodine Manganese (II), manganese fluoride (II), manganese acetate (II), manganese acetate (III), manganese formate (II), manganese oxalate (II), manganese benzoate (II), manganese stearate (II) ), Manganese (II) borate, manganese (II) acetylacetonate, manganese (III) acetylacetonate, manganese carbonate (II), manganese sulfate (II), manganese nitrate (II), manganese phosphate (II), etc. , Hydrates of these compounds, or various complex catalysts derived from these compounds.
[0015]
In the method of the present invention, the iron-based catalyst refers to a catalyst containing iron element as an active ingredient, and is not particularly limited. For example, ferrous halide, ferric halide, ferrous halide Examples include catalysts that can be prepared from iron, catalysts that can be prepared from ferric halide, and the like. In the present invention, the catalyst that can be prepared from ferrous halide refers to a catalyst that can be derived from ferrous halide or a catalyst containing ferrous halide as an active ingredient, such as water of ferrous halide. Examples include Japanese and various complex catalysts. Catalysts that can be prepared from ferrous halide are defined in the same manner, and examples thereof include ferric halide hydrates and various complex catalysts.
[0016]
Specific examples of the iron-based catalyst in the method of the present invention include iron powder, iron chloride (II), iron chloride (III), iron bromide (II), iron bromide (III), iron iodide ( II), iron fluoride (II), iron fluoride (III), iron acetate (II), iron oxalate (II), iron oxalate (III), iron citrate (III), iron perchlorate (III) ), Iron (III) acetylacetonate, iron nitrate (III), iron phosphate (III), iron sulfate (II), iron sulfate (II) and the like, hydrates of these compounds, or derived from these compounds Examples of the various complex catalysts are shown.
[0017]
In the method of the present invention, the cobalt-based catalyst means a catalyst containing cobalt element as an active ingredient, and is not particularly limited. For example, cobalt powder, cobalt chloride (II), cobalt bromide (II), iodine Cobalt (II) fluoride, cobalt (II) fluoride, cobalt (II) acetate, cobalt (III) acetate, cobalt (II) formate, cobalt (II) oxalate, cobalt (II) benzoate, cobalt stearate (II) ), Cobalt (II) borate, cobalt (II) acetylacetonate, cobalt (III) acetylacetonate, cobalt (II) carbonate, cobalt (II) sulfate, cobalt (II) nitrate, cobalt (II) phosphate, etc. , Hydrates of these compounds, or various complex catalysts derived from these compounds.
[0018]
In the method of the present invention, the rhodium-based catalyst means a catalyst containing a rhodium element as an active ingredient, and is not particularly limited. For example, rhodium powder, rhodium-carbon, rhodium chloride (II), rhodium bromide (II ), Rhodium acetate (II), rhodium acetate (III), rhodium (II) acetylacetonate, rhodium (III) acetylacetonate, hydrates of these compounds, or various complex catalysts derived from these compounds Etc.
[0019]
In the method of the present invention, the above-mentioned catalysts can be used alone or as a mixture, but manganese halide, manganese acetate, iron halide, iron acetate, cobalt halide, cobalt acetate, rhodium halide, and acetic acid can be used. Particularly good results (high yield) are obtained when one or more catalysts selected from the group consisting of rhodium are used. The amount of the catalyst used in the method of the present invention is not particularly limited, but is usually 10% with respect to the Grignard reagent.-Four-10-1The amount used is about double moles.
[0020]
The conventional methods described above (for example, the method described in Japanese Patent Publication No. 4-71896) have a problem of requiring an expensive and very toxic nickel phosphine complex catalyst, which is satisfactory as an industrial production method of PTBS. It was not a thing. The present inventors have provided an inexpensive and safe manganese-based catalyst, iron-based catalyst, cobalt-based catalyst, and rhodium-based reaction for the reaction of a Grignard reagent prepared from para-tertiary-butoxyphenyl halide and vinyl halide. It has been found for the first time that one or more catalysts selected from the group consisting of catalysts are effective. Among these, one or more catalysts selected from the group consisting of manganese halide, manganese acetate, iron halide, iron acetate, cobalt halide, cobalt acetate, rhodium halide and rhodium acetate are very inexpensive. It is a safe catalyst, and the method of the present invention using such a catalyst is extremely useful as an industrial production method of PTBS.
[0021]
The method of the present invention is usually carried out in a solvent under an inert gas atmosphere such as nitrogen and / or argon. Examples of the reaction solvent used in the method of the present invention include ether solvents, oxygen-containing solvents, nitrogen-containing solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents and the like. Usually, these solvents can be used singly or in combination, but good results (high yield) are obtained particularly when a tetrahydrofuran solvent or a mixed solvent containing tetrahydrofuran is used. In addition, the method of the present invention is usually performed under conditions of 0 ° C. to solvent reflux temperature.
[0022]
After completion of the reaction, the reaction solution is treated with an acidic aqueous solution according to a conventional method, and then the organic layer is separated. Subsequently, after the organic layer is washed with water, the solvent is distilled off, and a polymerization inhibitor such as tertiary-butylcatechol is added thereto and distilled to obtain the target PTBS.
[0023]
The method of the present invention is not limited to the above-mentioned PTBS production, but can be widely applied to the same kind of reaction for producing a styrene derivative from an aromatic halogen compound, but when applied to the production of tertiary-butoxystyrene such as PTBS and MTBS. Particularly good results (high yield) are obtained. The aromatic halogen compound referred to in the method of the present invention is a general term for compounds in which at least one part of the aromatic ring is substituted with halogen. For example, a fluorinated benzene derivative, a chlorinated benzene derivative, a brominated benzene derivative, iodine Benzene derivatives and the like.
[0024]
【The invention's effect】
As is clear from the above description, according to the method of the present invention, it is possible to solve the conventional problems and to safely produce a styrene derivative on an industrial scale with good economic efficiency.
[0025]
【Example】
EXAMPLES The method of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0026]
  Reference example 1
  A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 11.46 g (50 mmol) of para-tertiary-butoxybromobenzene in 20 ml of tetrahydrofuran was maintained for about 1 hour while keeping the reaction solution at 40 to 50 ° C. It was dripped. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0027]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, manganese chloride (II) tetrahydrate (MnCl2・ 4H2O) 0.05 g (0.25 mmol) was added, and then, while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in over 10 minutes, and the mixture was further stirred at the same temperature for 1 hour. .
[0028]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. After separating the organic layer, this was analyzed by gas chromatography to determine the PTBS yield. The reaction results are shown in Table 1.
[0029]
[Table 1]
Figure 0004423691
[0030]
  Reference Examples 2-4, Example 514Reference examples15-17, Example 18
  The reaction was performed according to the method of Example 1 except that the catalyst (0.25 mmol) shown in Table 1 was used instead of the manganese (II) chloride tetrahydrate (0.25 mmol) used in Reference Example 1. Went. The reaction results are also shown in Table 1.
[0031]
  Reference Example 16
  Reference example 1In place of the manganese (II) chloride tetrahydrate (0.25 mmol) used in Example 1, 0.03 g (0.13 mmol) of manganese (II) chloride tetrahydrate and 0.02 g (0. 13 mmol)Reference example 1The reaction was carried out according to the method. The reaction results are also shown in Table 1.
[0032]
  Reference Example 17
  Reference example 1In place of the manganese (II) chloride tetrahydrate (0.25 mmol) used in Example 1, 0.03 g (0.13 mmol) of manganese (II) chloride tetrahydrate and 0.02 g (0. 13 mmol)Reference example 1The reaction was carried out according to the method. The reaction results are also shown in Table 1.
[0033]
  Example 18
  Reference example 1In place of manganese (II) chloride tetrahydrate (0.25 mmol) used in 1), 0.02 g (0.13 mmol) of iron (III) chloride and 0.02 g (0.13 mmol) of cobalt (II) chloride Except usingReference example 1The reaction was carried out according to the method. The reaction results are also shown in Table 1.
[0034]
  Comparative Examples 1 to 6
  Reference example 1Except that the catalyst (0.25 mmol) shown in Table 1 was used instead of the manganese (II) chloride tetrahydrate (0.25 mmol) used inReference example 1The reaction was carried out according to. The reaction results are also shown in Table 1.
[0035]
  Reference Example 19
  A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 11.46 g (50 mmol) of meta-tertiary-butoxybromobenzene in 20 ml of tetrahydrofuran was maintained for about 1 hour while keeping the reaction solution at 40 to 50 ° C. It was dripped. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0036]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, manganese (II) acetate tetrahydrate [Mn (CHThreeCO2)2・ 4H2O] 0.06 g (0.25 mmol) was added, and while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in over 10 minutes, and the mixture was further stirred at the same temperature for 1 hour. .
[0037]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. After the organic layer was separated, it was analyzed by gas chromatography. As a result, MTBS was produced in a yield of 81.8%.
[0038]
  Reference Example 20
  A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of diethyl ether, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution obtained by dissolving 11.46 g (50 mmol) of meta-tertiary-butoxybromobenzene in 20 ml of diethyl ether was kept for about 1 hour while keeping the reaction solution at 20 to 30 ° C. And dripped. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0039]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, manganese (II) acetate tetrahydrate [Mn (CHThreeCO2)2・ 4H2O] 0.06 g (0.25 mmol) was added, and while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in over 10 minutes, and the mixture was further stirred at the same temperature for 1 hour. .
[0040]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. After separating the organic layer, it was analyzed by gas chromatography. MTBS was produced in a yield of 71.3%.
[0041]
  Reference Example 21
  A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of dibutyl ether, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 11.46 g (50 mmol) of meta-tertiary-butoxybromobenzene in 20 ml of dibutyl ether was kept for about 1 hour while keeping the reaction solution at 40 to 50 ° C. And dripped. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0042]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, manganese (II) acetate tetrahydrate [Mn (CHThreeCO2)2・ 4H2O] 0.06 g (0.25 mmol) was added, and while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in over 10 minutes, and the mixture was further stirred at the same temperature for 1 hour. .
[0043]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. After separating the organic layer, it was analyzed by gas chromatography. As a result, MTBS was produced in a yield of 68.9%.
[0044]
Example 22
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 11.46 g (50 mmol) of meta-tertiary-butoxybromobenzene in 20 ml of tetrahydrofuran was maintained for about 1 hour while keeping the reaction solution at 40 to 50 ° C. It was dripped. Furthermore, the mixture was stirred for 1 hour under solvent reflux conditions to obtain a Grignard reagent.
[0045]
The supernatant of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, cobalt (II) chloride (CoCl2) After adding 0.03 g (0.25 mmol), while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in for 10 minutes, and further stirred at the same temperature for 1 hour.
[0046]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. After separating the organic layer, it was analyzed by gas chromatography. As a result, MTBS was produced in a yield of 80.4%.
[0047]
Example 23
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 2.68 g (110 mmol) of metallic magnesium and 0.65 g (6 mmol) of ethyl bromide, and stirred for 20 minutes under solvent reflux conditions. Subsequently, a solution prepared by dissolving 18.47 g (100 mmol) of meta-tertiary-butoxychlorobenzene in 20 ml of tetrahydrofuran was added dropwise over about 2 hours under solvent reflux conditions. Further, the mixture was stirred for 3 hours under a solvent reflux condition to obtain a Grignard reagent.
[0048]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, iron (II) chloride (FeCl2) After adding 0.13 g (1 mmol) and 20 ml of tetrahydrofuran, 6.88 g (110 mmol) of vinyl chloride gas was blown in over 3 hours while maintaining the reaction temperature at 40 to 50 ° C., and further stirred at the same temperature for 30 minutes. .
[0049]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. MTBS was produced in a yield of 83.3%.
[0050]
Example 24
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 2.68 g (110 mmol) of metallic magnesium and 0.65 g (6 mmol) of ethyl bromide, and stirred for 20 minutes under solvent reflux conditions. Subsequently, a solution prepared by dissolving 18.47 g (100 mmol) of meta-tertiary-butoxychlorobenzene in 20 ml of tetrahydrofuran was added dropwise over about 2 hours under solvent reflux conditions. Further, the mixture was stirred for 3 hours under a solvent reflux condition to obtain a Grignard reagent.
[0051]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, iron (II) chloride (FeCl2) After adding 0.13 g (1 mmol) and 20 ml of toluene, 6.88 g (110 mmol) of vinyl chloride gas was blown in over 3 hours while maintaining the reaction temperature at 40 to 50 ° C., and further stirred at the same temperature for 30 minutes. .
[0052]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. After separating the organic layer, it was analyzed by gas chromatography. As a result, MTBS was produced in a yield of 81.9%.
[0053]
  Reference Example 25
  A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 8.55 g (50 mmol) of parabromotoluene in 20 ml of tetrahydrofuran was dropped over about 1 hour while keeping the reaction solution at 40 to 50 ° C. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0054]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, manganese chloride (II) tetrahydrate (MnCl2・ 4H2O) 0.05 g (0.25 mmol) was added, and then, while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in over 10 minutes, and the mixture was further stirred at the same temperature for 1 hour. .
[0055]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. As a result, paramethylstyrene was produced in a yield of 64.1%.
[0056]
Example 26
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 8.55 g (50 mmol) of parabromotoluene in 20 ml of tetrahydrofuran was dropped over about 1 hour while keeping the reaction solution at 40 to 50 ° C. Furthermore, the mixture was stirred for 1 hour under solvent reflux conditions to obtain a Grignard reagent.
[0057]
The supernatant of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, cobalt (II) chloride (CoCl2) After adding 0.03 g (0.25 mmol), while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in for 10 minutes, and further stirred at the same temperature for 1 hour.
[0058]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. As a result, paramethylstyrene was produced in a yield of 64.3%.
[0059]
Example 27
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 2.68 g (110 mmol) of metallic magnesium and 0.65 g (6 mmol) of ethyl bromide, and stirred for 20 minutes under solvent reflux conditions. Subsequently, a solution prepared by dissolving 12.66 g (100 mmol) of parachlorotoluene in 20 ml of tetrahydrofuran was added dropwise over about 2 hours under solvent reflux conditions. Further, the mixture was stirred for 3 hours under a solvent reflux condition to obtain a Grignard reagent.
[0060]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, iron (II) chloride (FeCl2) After adding 0.13 g (1 mmol) and 20 ml of tetrahydrofuran, 6.88 g (110 mmol) of vinyl chloride gas was blown in over about 3 hours while maintaining the reaction temperature at 40 to 50 ° C., and further stirred at the same temperature for 30 minutes. It was.
[0061]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. As a result, paramethylstyrene was produced in a yield of 64.3%.
[0062]
  Reference Example 28
  A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 9.57 g (50 mmol) of parabromochlorobenzene in 20 ml of tetrahydrofuran was dropped over about 1 hour while keeping the reaction solution at 40 to 50 ° C. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0063]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, manganese (II) acetate tetrahydrate [Mn (CHThreeCO2) 2.4H2O] 0.06 g (0.25 mmol) was added, and while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in over 10 minutes, and the mixture was further stirred at the same temperature for 1 hour. .
[0064]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. As a result, parachlorostyrene was produced in a yield of 60.7%.
[0065]
Example 29
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 9.57 g (50 mmol) of parabromochlorobenzene in 20 ml of tetrahydrofuran was dropped over about 1 hour while keeping the reaction solution at 40 to 50 ° C. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0066]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, cobalt (II) chloride (CoCl2) After adding 0.03 g (0.25 mmol), while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in for 10 minutes, and further stirred at the same temperature for 1 hour.
[0067]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. As a result, parachlorostyrene was produced in a yield of 67.1%.
[0068]
Example 30
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of dibutyl ether, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 9.57 g (50 mmol) of parabromochlorobenzene in 20 ml of dibutyl ether was dropped over about 1 hour while keeping the reaction solution at 40 to 50 ° C. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0069]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, cobalt (II) chloride (CoCl2) After adding 0.03 g (0.25 mmol), while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in for 10 minutes, and further stirred at the same temperature for 1 hour.
[0070]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. As a result, parachlorostyrene was produced in a yield of 55.4%.
[0071]
Example 31
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 1.34 g (55 mmol) of metallic magnesium and one piece of iodine, and stirred at room temperature. After confirming that the color of iodine disappeared, a solution prepared by dissolving 9.57 g (50 mmol) of parabromochlorobenzene in 20 ml of tetrahydrofuran was dropped over about 1 hour while keeping the reaction solution at 40 to 50 ° C. Further, the mixture was stirred for 1 hour under a solvent reflux condition to obtain a Grignard reagent.
[0072]
The supernatant liquid of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, the reaction solution was mixed with rhodium (III) chloride trihydrate (RhCl).Three・ 3H2O) 0.07 g (0.25 mmol) was added, and while maintaining the reaction temperature at 20 to 30 ° C., 3.44 g (55 mmol) of vinyl chloride gas was blown in over 10 minutes, and stirring was further performed at the same temperature for 1 hour. .
[0073]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. As a result, parachlorostyrene was produced in a yield of 64.8%.
[0074]
Example 32
A 100 ml flask substituted with a nitrogen atmosphere was charged with 10 ml of tetrahydrofuran, 2.68 g (110 mmol) of metallic magnesium and 0.65 g (6 mmol) of ethyl bromide, and stirred for 20 minutes under solvent reflux conditions. Subsequently, a solution prepared by dissolving 14.75 g (100 mmol) of paradichlorobenzene in 20 ml of tetrahydrofuran was added dropwise over about 2 hours under solvent reflux conditions. Further, the mixture was stirred for 3 hours under a solvent reflux condition to obtain a Grignard reagent.
[0075]
The supernatant of the Grignard reagent obtained by the above operation was transferred to a 100 ml flask replaced with a nitrogen atmosphere. Subsequently, ferric chloride (FeClThree) After adding 0.08 g (0.5 mmol) and 30 ml of toluene, 10.46 g (167 mmol) of vinyl chloride gas was blown in over about 3 hours while maintaining the reaction temperature at 40 to 50 ° C., and further stirred at the same temperature for 30 minutes. Went.
[0076]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt. The organic layer was separated and analyzed by gas chromatography. As a result, parachlorostyrene was produced in a yield of 62.9%.
[0077]
Example 33
A 50 L flask substituted with a nitrogen atmosphere was charged with 6 L of tetrahydrofuran, 0.73 kg (30 mol) of metal magnesium and 0.22 kg (2 mol) of ethyl bromide, and stirred for 1 hour under solvent reflux conditions. Subsequently, a solution prepared by dissolving 4.62 kg (25 mol) of para-tertiary-butoxychlorobenzene in 5 L of tetrahydrofuran was added dropwise over about 2 hours under solvent reflux conditions. Further, the mixture was stirred for 4 hours under solvent reflux conditions to obtain a Grignard reagent.
[0078]
After cooling the Grignard reagent obtained by the above operation to 40 ° C., this reaction solution was mixed with iron (III) chloride (FeClThree) 0.02 kg (0.12 mol) and 12 L of tetrahydrofuran were added. Subsequently, while maintaining the reaction temperature at 40 to 50 ° C., 1.88 kg (30 mol) of vinyl chloride gas was blown in over about 7 hours, and further stirred at the same temperature for 1 hour.
[0079]
After completion of the reaction, an aqueous ammonium chloride solution was added to the reaction solution to dissolve the generated salt, and the organic layer was separated. The obtained organic layer was washed with a saturated saline solution, the solvent was distilled off, a polymerization inhibitor was added thereto and distilled under reduced pressure, and a PTBS fraction having a boiling point of 92 ° C./5 mmHg (3.58 kg, yield 81.81). 2%).

Claims (2)

下記一般式(I)
Figure 0004423691
(式中、Xはハロゲン原子を示す)
で表される第三級−ブトキシフェニルハライドから調製したグリニャ−ル試薬を、触媒の存在下にビニルハライドと反応させて、スチレン誘導体を製造する方法において、触媒として、鉄系触媒、コバルト系触媒及びロジウム系触媒からなる群より選ばれる一種又は二種以上の触媒を用いるスチレン誘導体の製造方法であって、
鉄系触媒が、鉄粉、塩化鉄(II)、塩化鉄(III)、臭化鉄(II)、臭化鉄(III)、ヨウ化鉄(II)、フッ化鉄(II)、フッ化鉄(III)、酢酸鉄(II)、シュウ酸鉄(II)、シュウ酸鉄(III)、クエン酸鉄(III)、過塩素酸鉄(III)、鉄(III)アセチルアセトナート、硝酸鉄(III)、リン酸鉄(III)、硫酸鉄(II)、硫酸鉄(II)、それら化合物の水和物、及びそれら化合物と下記式(1)
Figure 0004423691
で示されるdppp若しくは下記式(2)
Figure 0004423691
で示されるdpyとの錯体触媒からなる群より選ばれ、
コバルト系触媒が、コバルト粉末、塩化コバルト(II)、臭化コバルト(II)、ヨウ化コバルト(II)、フッ化コバルト(II)、酢酸コバルト(II)、酢酸コバルト(III)、ギ酸コバルト(II)、シュウ酸コバルト(II)、安息香酸コバルト(II)、ステアリン酸コバルト(II)、ホウ酸コバルト(II)、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、炭酸コバルト(II)、硫酸コバルト(II)、硝酸コバルト(II)、リン酸コバルト(II)、それら化合物の水和物、及びそれら化合物と上記式(1)で示されるdppp若しくは上記式(2)で示されるdpyとの錯体触媒からなる群より選ばれ、かつ
ロジウム系触媒が、ロジウム粉末、ロジウム−カーボン、塩化ロジウム(II)、臭化ロジウム(II)、酢酸ロジウム(II)、酢酸ロジウム(III)、ロジウム(II)アセチルアセトナート、ロジウム(III)アセチルアセトナート、それら化合物の水和物、及びそれら化合物と上記式(1)で示されるdppp若しくは上記式(2)で示されるdpyとの錯体触媒からなる群より選択されることを特徴とする製造方法。
The following general formula (I)
Figure 0004423691
(Wherein X represents a halogen atom)
In the method of producing a styrene derivative by reacting a Grignard reagent prepared from a tertiary-butoxyphenyl halide represented by the formula (I) with a vinyl halide in the presence of a catalyst, an iron-based catalyst and a cobalt-based catalyst are used. And a method for producing a styrene derivative using one or more catalysts selected from the group consisting of rhodium-based catalysts,
Iron catalyst is iron powder, iron chloride (II), iron chloride (III), iron bromide (II), iron bromide (III), iron iodide (II), iron fluoride (II), fluoride Iron (III), iron acetate (II), iron oxalate (II), iron oxalate (III), iron (III) citrate, iron (III) perchlorate, iron (III) acetylacetonate, iron nitrate (III), iron (III) phosphate, iron (II) sulfate, iron (II) sulfate, hydrates of these compounds , and these compounds and the following formula (1)
Figure 0004423691
Dppp represented by the following formula (2)
Figure 0004423691
Selected from the group consisting of complex catalysts with dpy ,
The cobalt catalyst is cobalt powder, cobalt chloride (II), cobalt bromide (II), cobalt iodide (II), cobalt fluoride (II), cobalt acetate (II), cobalt acetate (III), cobalt formate ( II), cobalt oxalate (II), cobalt benzoate (II), cobalt stearate (II), cobalt borate (II), cobalt (II) acetylacetonate, cobalt (III) acetylacetonate, cobalt carbonate ( II), cobalt sulfate (II), cobalt nitrate (II), cobalt phosphate (II), hydrates of these compounds, and those compounds and dppp represented by the above formula (1) or represented by the above formula (2) It is selected from the group consisting of complex catalyst and dpy, and rhodium-based catalysts, rhodium powder, rhodium - carbon, chloride Indium (II), rhodium bromide (II), rhodium acetate (II), rhodium acetate (III), rhodium (II) acetylacetonate, rhodium (III) acetylacetonate, hydrates of these compounds, and their compounds And dppp represented by the above formula (1) or a dpy catalyst represented by the above formula (2) .
触媒が、FeCl、FeCl、FeCl・4HO、FeBr ・4HO、FeCl(dppp)、FeCl(PPh、FeCl(dpy)、CoCl、Co(CHCO・4HO、及びCoCl (dppp)からなる群より選択される一種又は二種以上であることを特徴とする請求項1に記載の製造方法。The catalyst is FeCl 3 , FeCl 2 , FeCl 2 .4H 2 O, FeBr 2 .4H 2 O, FeCl 2 (dppp), FeCl 2 (PPh 3 ) 2 , FeCl 2 (dpy), CoCl 2 , Co (CH 3 The production method according to claim 1, wherein the production method is one or more selected from the group consisting of CO 2 ) 2 .4H 2 O and CoCl 2 (dppp) .
JP02178799A 1998-01-30 1999-01-29 Method for producing styrene derivative Expired - Lifetime JP4423691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02178799A JP4423691B2 (en) 1998-01-30 1999-01-29 Method for producing styrene derivative

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP10-18681 1998-01-30
JP1868198 1998-01-30
JP10-165389 1998-06-12
JP16538998 1998-06-12
JP20948898 1998-07-24
JP10-209488 1998-07-24
JP10-209489 1998-07-24
JP20948998 1998-07-24
JP10-357438 1998-12-16
JP35743898 1998-12-16
JP02178799A JP4423691B2 (en) 1998-01-30 1999-01-29 Method for producing styrene derivative

Publications (2)

Publication Number Publication Date
JP2000239192A JP2000239192A (en) 2000-09-05
JP4423691B2 true JP4423691B2 (en) 2010-03-03

Family

ID=27548806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02178799A Expired - Lifetime JP4423691B2 (en) 1998-01-30 1999-01-29 Method for producing styrene derivative

Country Status (1)

Country Link
JP (1) JP4423691B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479709B1 (en) 1998-01-30 2002-11-12 Tosoh Corporation Process for the production of styrene derivative
US6608212B1 (en) * 2002-06-04 2003-08-19 Pfizer, Inc. Process for preparing vinylaromatic compounds
WO2011098375A2 (en) * 2010-02-09 2011-08-18 Saltigo Gmbh Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis
JP5885213B2 (en) * 2013-11-27 2016-03-15 東ソー有機化学株式会社 Process for producing unsaturated alkyl halides
ES2917191T3 (en) 2016-03-29 2022-07-07 Novartis Ag Reaction medium containing a mixture of water-surfactant

Also Published As

Publication number Publication date
JP2000239192A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP5377309B2 (en) Novel cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions
Endres et al. Dirhodium (II) tetrakis (perfluoroalkylbenzoates) as partially recyclable catalysts for carbene transfer reactions with diazoacetates
JP4423691B2 (en) Method for producing styrene derivative
US6479709B1 (en) Process for the production of styrene derivative
US6472567B2 (en) Process for the production of styrene compound, and styrene compound free from biphenyl
JPS5865241A (en) Carbonylation of secondary benzylhalide
JP2002053515A (en) Tertiary butoxy styrene
JP4876476B2 (en) Chloroalkoxystyrene and process for producing the same
JPH01106835A (en) Method for synthesizing p-tertiary-butoxystyrene
US5159082A (en) Process for producing aromatic compound
JP6245605B2 (en) Process for producing .ALPHA.,. BETA.-unsaturated carbonyl compounds.
CA1243041A (en) Process for the conversion of a terminal carbon- carbon double bond of an olefinic hydrocarbon to carbonyl groups
Black et al. Olefin insertion reactivity of a (phosphine-arenesulfonate) palladium (II) fluoride complex
CN106431822B (en) Industrial production method of 3,3 ', 4, 4' -tetrafluorobiphenyl
JP3353046B2 (en) Method for producing organic compound using organic bismuth compound
JPH02160739A (en) Production of m-tert-butoxystyrene
JP2003146927A (en) METHOD FOR PRODUCING tert-AMYLOXYSTYRENE
JPH11222452A (en) 6-vinyl-2-tert-butoxynaphthalene and its production
JPH0134208B2 (en)
JP2001158779A (en) Method for producing paratetrahydropyranyloxystyrene
JPS6132295B2 (en)
JPH0615554B2 (en) New dihydrido rhodium complex
JP3206452B2 (en) Method for producing diaryl carbonate
JP2003313194A (en) Method for producing tertiary phosphine bonded with bulky hydrocarbon group
JPH04112870A (en) Production of fluoroalkyl group-containing hetero aromatic derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

EXPY Cancellation because of completion of term