JP4876476B2 - Chloroalkoxystyrene and process for producing the same - Google Patents
Chloroalkoxystyrene and process for producing the same Download PDFInfo
- Publication number
- JP4876476B2 JP4876476B2 JP2005230444A JP2005230444A JP4876476B2 JP 4876476 B2 JP4876476 B2 JP 4876476B2 JP 2005230444 A JP2005230444 A JP 2005230444A JP 2005230444 A JP2005230444 A JP 2005230444A JP 4876476 B2 JP4876476 B2 JP 4876476B2
- Authority
- JP
- Japan
- Prior art keywords
- chloropropoxy
- mol
- phenylmagnesium
- styrene
- chloroalkoxystyrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、医農薬、機能性高分子等の原料として有用な新規クロロアルコキシスチレン及びその製造方法に関する。 The present invention relates to a novel chloroalkoxystyrene useful as a raw material for medical and agricultural chemicals, functional polymers, and the like, and a method for producing the same.
本発明の化合物であるクロロアルコキシスチレンは、新規化合物である。しかし、3−ブロモプロピルスチレン、4−ブロモブチルスチレン、2−(4−ブロモメチルシクロヘキシレン)−エチルスチレンの如き、ハロゲン置換アルキル基を有するスチレン化合物は、耐熱性のアニオン交換樹脂の原料として提案されており、本化合物についても同様の効果が期待されるものである(例えば、特許文献1参照)。 The compound of the present invention, chloroalkoxystyrene, is a novel compound. However, styrene compounds having a halogen-substituted alkyl group such as 3-bromopropylstyrene, 4-bromobutylstyrene, and 2- (4-bromomethylcyclohexylene) -ethylstyrene are proposed as raw materials for heat-resistant anion exchange resins. The same effect is expected for this compound (see, for example, Patent Document 1).
また、本発明の化合物であるクロロアルコキシスチレンの製法に関しても、新規化合物のため知られていない。一方、類似のスチレン誘導体に関しては、以下の製法が知られている。例えば、(1)パラ−ヒドロキシスチレンを原料とし、アルカリ存在下で1,12−ジブロモドデカンと反応させる方法(例えば、非特許文献1参照)、(2)パラ−ヒドロキシアセトフェノンをアルカリ存在下に1,4−ジブロモブタンと反応させてパラ−(4−ブロモブチルオキシ)アセトフェノンへと変換した後、NaBH4にて還元反応を行い、1−(1−ヒドロキシエチル)−4−ブロモブチルオキシアセトフェノンに誘導し、さらに脱水反応を行う方法(例えば、非特許文献2参照)、(3)パラ−アセトキシスチレンを水酸化カリウムでけん化させ、その後ジブロモアルカンと反応させる方法(例えば、非特許文献3参照)等が挙げられる。 Moreover, it is not known also about the manufacturing method of the chloroalkoxy styrene which is a compound of this invention because of a novel compound. On the other hand, the following production methods are known for similar styrene derivatives. For example, (1) a method in which para-hydroxystyrene is used as a raw material and reacted with 1,12-dibromododecane in the presence of an alkali (see, for example, Non-Patent Document 1), (2) para-hydroxyacetophenone in the presence of an alkali , 4-dibromobutane to convert to para- (4-bromobutyloxy) acetophenone, followed by reduction with NaBH 4 to give 1- (1-hydroxyethyl) -4-bromobutyloxyacetophenone. Induction and further dehydration reaction (for example, see Non-Patent Document 2), (3) A method in which para-acetoxystyrene is saponified with potassium hydroxide and then reacted with dibromoalkane (for example, Non-Patent Document 3) Etc.
しかし、(1)の方法に関しては、原料となるパラ−ヒドロキシスチレンが不安定で極めて重合し易い化合物であるため、大量の取り扱いが極めて困難な問題があり、(2)の方法に関しては、工程数が多くて操作が煩雑になる上に、禁水性及び自己発火性物質であるNaBH4を多量に取り扱わなければならない問題がある。さらに(3)の方法は、高価で入手困難なパラ−アセトキシスチレンを原料に用いる必要がある。このように、これら上述した従来の合成法を、本発明の化合物であるクロロアルコキシスチレンに適用するには、多くの問題がある。 However, with respect to the method (1), since para-hydroxystyrene as a raw material is an unstable and extremely easy compound, there is a problem that it is extremely difficult to handle in large quantities. In addition to the large number of operations, the operation is complicated and NaBH 4 that is a water-inhibiting and self-igniting substance has to be handled in large quantities. Furthermore, in the method (3), it is necessary to use para-acetoxystyrene which is expensive and difficult to obtain as a raw material. As described above, there are many problems in applying the above-described conventional synthesis methods to the chloroalkoxystyrene which is the compound of the present invention.
本発明は、医農薬、機能性高分子等の原料として有用な新規クロロアルコキシスチレン及びその効率的な製造方法を提供することにある。 An object of the present invention is to provide a novel chloroalkoxystyrene useful as a raw material for medical and agricultural chemicals, functional polymers, and the like, and an efficient production method thereof.
本発明者らは、従来の問題点を解決すべく鋭意検討した結果、下記式(3)で示されるクロロアルコキシフェニルマグネシウムハライドと下記式(4)で表されるビニルハライドとを触媒の存在下に反応させることにより、クロロアルコキシスチレンが容易に得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the conventional problems, the present inventors have found that a chloroalkoxyphenylmagnesium halide represented by the following formula (3) and a vinyl halide represented by the following formula (4) are present in the presence of a catalyst. It was found that by reacting with chloroalkoxystyrene, chloroalkoxystyrene can be easily obtained, and the present invention has been completed.
すなわち本発明は、下記式(1)で示されるクロロアルコキシスチレン、及び下記式(3)で示されるクロロアルコキシフェニルマグネシウムハライドと下記式(4)で示されるビニルハライドとを触媒の存在下に反応させることを特徴とする、クロロアルコキシスチレンの製造方法に関する。
That is, the present invention reacts chloroalkoxystyrene represented by the following formula (1), chloroalkoxyphenylmagnesium halide represented by the following formula (3) and vinyl halide represented by the following formula (4) in the presence of a catalyst. The present invention relates to a method for producing chloroalkoxystyrene.
以下、本発明について詳細に説明する。
Hereinafter, the present invention will be described in detail.
本発明におけるクロロアルコキシスチレンとは、下記式(1)で示される構造の化合物であり、具体的には、o−(3−クロロプロポキシ)スチレン、o−(4−クロロブトキシ)スチレン、o−(5−クロロペントキシ)スチレン、m−(3−クロロプロポキシ)スチレン、m−(4−クロロブトキシ)スチレン、m−(5−クロロペントキシ)スチレン、p−(3−クロロプロポキシ)スチレン、p−(4−クロロブトキシ)スチレン、p−(5−クロロペントキシ)スチレン等が例示され、これら化合物群の一種もしくは2種以上の混合物でもよい。 The chloroalkoxystyrene in the present invention is a compound having a structure represented by the following formula (1). Specifically, o- (3-chloropropoxy) styrene, o- (4-chlorobutoxy) styrene, o- (5-chloropentoxy) styrene, m- (3-chloropropoxy) styrene, m- (4-chlorobutoxy) styrene, m- (5-chloropentoxy) styrene, p- (3-chloropropoxy) styrene, Examples include p- (4-chlorobutoxy) styrene, p- (5-chloropentoxy) styrene, and one or a mixture of two or more of these compound groups may be used.
本発明において、下記式(3)で示されるクロロアルコキシフェニルマグネシウムハライドと下記式(4)で示されるビニルハライドとを触媒の存在下に反応させることにより、クロロアルコキシスチレンを効率的に製造することができる。
In the present invention, chloroalkoxystyrene is efficiently produced by reacting a chloroalkoxyphenylmagnesium halide represented by the following formula (3) with a vinyl halide represented by the following formula (4) in the presence of a catalyst. Can do.
式(3)で示される化合物の具体例としては、o−(3−クロロプロポキシ)フェニルマグネシウムフルオライド、o−(3−クロロプロポキシ)フェニルマグネシウムクロライド、o−(3−クロロプロポキシ)フェニルマグネシウムブロマイド、o−(3−クロロプロポキシ)フェニルマグネシウムヨーダイド、o−(4−クロロブトキシ)フェニルマグネシウムフルオライド、o−(4−クロロブトキシ)フェニルマグネシウムクロライド、o−(4−クロロブトキシ)フェニルマグネシウムブロマイド、o−(4−クロロブトキシ)フェニルマグネシウムヨーダイド、o−(5−クロロペンチルオキシ)フェニルマグネシウムフルオライド、o−(5−クロロペンチルオキシ)フェニルマグネシウムクロライド、o−(5−クロロペンチルオキシ)フェニルマグネシウムブロマイド、o−(5−クロロペンチルオキシ)フェニルマグネシウムヨーダイド、m−(3−クロロプロポキシ)フェニルマグネシウムフルオライド、m−(3−クロロプロポキシ)フェニルマグネシウムクロライド、m−(3−クロロプロポキシ)フェニルマグネシウムブロマイド、m−(3−クロロプロポキシ)フェニルマグネシウムヨーダイド、m−(4−クロロブトキシ)フェニルマグネシウムフルオライド、m−(4−クロロブトキシ)フェニルマグネシウムクロライド、m−(4−クロロブトキシ)フェニルマグネシウムブロマイド、m−(4−クロロブトキシ)フェニルマグネシウムヨーダイド、m−(5−クロロペンチルオキシ)フェニルマグネシウムフルオライド、m−(5−クロロペンチルオキシ)フェニルマグネシウムクロライド、m−(5−クロロペンチルオキシ)フェニルマグネシウムブロマイド、m−(5−クロロペンチルオキシ)フェニルマグネシウムヨーダイド、p−(3−クロロプロポキシ)フェニルマグネシウムフルオライド、p−(3−クロロプロポキシ)フェニルマグネシウムクロライド、p−(3−クロロプロポキシ)フェニルマグネシウムブロマイド、p−(3−クロロプロポキシ)フェニルマグネシウムヨーダイド、p−(4−クロロブトキシ)フェニルマグネシウムフルオライド、p−(4−クロロブトキシ)フェニルマグネシウムクロライド、p−(4−クロロブトキシ)フェニルマグネシウムブロマイド、p−(4−クロロブトキシ)フェニルマグネシウムヨーダイド、p−(5−クロロペンチルオキシ)フェニルマグネシウムフルオライド、p−(5−クロロペンチルオキシ)フェニルマグネシウムクロライド、p−(5−クロロペンチルオキシ)フェニルマグネシウムブロマイド、p−(5−クロロペンチルオキシ)フェニルマグネシウムヨーダイド等が挙げられる。
Specific examples of the compound represented by the formula (3) include o- (3-chloropropoxy) phenylmagnesium fluoride, o- (3-chloropropoxy) phenylmagnesium chloride, o- (3-chloropropoxy) phenylmagnesium bromide. O- (3-chloropropoxy) phenylmagnesium iodide, o- (4-chlorobutoxy) phenylmagnesium fluoride, o- (4-chlorobutoxy) phenylmagnesium chloride, o- (4-chlorobutoxy) phenylmagnesium bromide O- (4-chlorobutoxy) phenylmagnesium iodide, o- (5-chloropentyloxy) phenylmagnesium fluoride, o- (5-chloropentyloxy) phenylmagnesium chloride, o- (5-chlorope Tiloxy) phenylmagnesium bromide, o- (5-chloropentyloxy) phenylmagnesium iodide, m- (3-chloropropoxy) phenylmagnesium fluoride, m- (3-chloropropoxy) phenylmagnesium chloride, m- (3- Chloropropoxy) phenylmagnesium bromide, m- (3-chloropropoxy) phenylmagnesium iodide, m- (4-chlorobutoxy) phenylmagnesium fluoride, m- (4-chlorobutoxy) phenylmagnesium chloride, m- (4- Chlorobutoxy) phenyl magnesium bromide, m- (4-chlorobutoxy) phenyl magnesium iodide, m- (5-chloropentyloxy) phenyl magnesium fluoride, m- (5-chloro) Pentyloxy) phenylmagnesium chloride, m- (5-chloropentyloxy) phenylmagnesium bromide, m- (5-chloropentyloxy) phenylmagnesium iodide, p- (3-chloropropoxy) phenylmagnesium fluoride, p- ( 3-chloropropoxy) phenylmagnesium chloride, p- (3-chloropropoxy) phenylmagnesium bromide, p- (3-chloropropoxy) phenylmagnesium iodide, p- (4-chlorobutoxy) phenylmagnesium fluoride, p- ( 4-chlorobutoxy) phenyl magnesium chloride, p- (4-chlorobutoxy) phenyl magnesium bromide, p- (4-chlorobutoxy) phenyl magnesium iodide, p- (5-chloro) Lopentyloxy) phenylmagnesium fluoride, p- (5-chloropentyloxy) phenylmagnesium chloride, p- (5-chloropentyloxy) phenylmagnesium bromide, p- (5-chloropentyloxy) phenylmagnesium iodide, etc. Can be mentioned.
上述したクロロアルコキシフェニルマグネシウムハライドの調製方法としては特に限定されないが、例えば下記反応式(A)に示す方法、すなわち、ハロフェノールとハロクロロアルカンとを反応させてクロロアルコキシフェニルハライドへと誘導した後に、金属マグネシウムと反応させることにより、容易に調製することができる。 Although it does not specifically limit as a preparation method of the chloroalkoxyphenyl magnesium halide mentioned above, For example, after reacting halophenol and a halochloroalkane and inducing | guiding | deriving to chloroalkoxyphenyl halide, it shows. It can be easily prepared by reacting with metallic magnesium.
上記反応式(A)の方法において用いられるハロフェノールの具体例としては、o−フルオロフェノール、o−クロロフェノール、o−ブロモフェノール、o−ヨードフェノール、m−フルオロフェノール、m−クロロフェノール、m−ブロモフェノール、m−ヨードフェノール、p−フルオロフェノール、p−クロロフェノール、p−ブロモフェノール、p−ヨードフェノール等が挙げられる。
Specific examples of the halophenol used in the method of the above reaction formula (A) include o-fluorophenol, o-chlorophenol, o-bromophenol, o-iodophenol, m-fluorophenol, m-chlorophenol, m -Bromophenol, m-iodophenol, p-fluorophenol, p-chlorophenol, p-bromophenol, p-iodophenol and the like.
上記反応式(A)の方法において用いられるハロクロロアルカンの具体例としては、1−クロロ−3−フルオロプロパン、1,3−ジクロロプロパン、1−ブロモ−3−クロロプロパン、1−クロロ−3−ヨードプロパン、1−クロロ−4−フルオロブタン、1,4−ジクロロブタン、1−ブロモ−4−クロロブタン、1−クロロ−4−ヨードプロパン、1−クロロ−5−フルオロペンタン、1,5−ジクロロペンタン、1−ブロモ−5−クロロペンタン、1−クロロ−5−ヨードペンタン等が挙げられる。 Specific examples of the halochloroalkane used in the method of the reaction formula (A) include 1-chloro-3-fluoropropane, 1,3-dichloropropane, 1-bromo-3-chloropropane, 1-chloro-3- Iodopropane, 1-chloro-4-fluorobutane, 1,4-dichlorobutane, 1-bromo-4-chlorobutane, 1-chloro-4-iodopropane, 1-chloro-5-fluoropentane, 1,5-dichloro Pentane, 1-bromo-5-chloropentane, 1-chloro-5-iodopentane and the like can be mentioned.
本発明の方法では、上記反応式(A)で調製したクロロアルコキシフェニルマグネシウムハライドとビニルハライドとを触媒の存在下に反応させることにより、目的とするクロロアルコキシスチレンを合成することができる。 In the method of the present invention, the desired chloroalkoxystyrene can be synthesized by reacting the chloroalkoxyphenylmagnesium halide prepared in the above reaction formula (A) with a vinyl halide in the presence of a catalyst.
本発明の方法で使用される触媒としては特に限定されないが、例えば、パラジウム系触媒、ニッケル系触媒、マンガン系触媒、鉄系触媒、コバルト系触媒及びロジウム系触媒よりなる群から選ばれる一種または二種以上が挙げられる。 The catalyst used in the method of the present invention is not particularly limited. For example, one or two selected from the group consisting of a palladium catalyst, a nickel catalyst, a manganese catalyst, an iron catalyst, a cobalt catalyst, and a rhodium catalyst. More than species.
本発明の方法に用いるパラジウム系触媒とは、パラジウム元素を有効成分とする触媒のことであり、特に限定するものではないが、例えば、パラジウム粉末、塩化パラジウム(II)、臭化パラジウム(II)、ヨウ化パラジウム(II)、酢酸パラジウム(II)、硝酸パラジウム(II)、硫酸パラジウム(II)、シアン化パラジウム(II)、パラジウム(II)アセチルアセトナート、パラジウム(II)トリフルオロアセテート、パラジウムカーボン等の化合物、それら化合物の水和物、またはそれら化合物から誘導される各種錯体触媒等が挙げられる。 The palladium-based catalyst used in the method of the present invention is a catalyst containing palladium element as an active ingredient, and is not particularly limited. For example, palladium powder, palladium (II) chloride, palladium (II) bromide. , Palladium (II) iodide, palladium (II) acetate, palladium (II) nitrate, palladium (II) sulfate, palladium (II) cyanide, palladium (II) acetylacetonate, palladium (II) trifluoroacetate, palladium Examples thereof include compounds such as carbon, hydrates of these compounds, and various complex catalysts derived from these compounds.
本発明の方法に用いるニッケル系触媒とは、ニッケル元素を有効成分とする触媒のことであり、特に限定するものではないが、例えば、ニッケル粉末、フッ化ニッケル(II)、塩化ニッケル(II)、臭化ニッケル(II)、ヨウ化ニッケル(II)、硫酸ニッケル(II)、硝酸ニッケル(II)、過塩素酸ニッケル(II)、硫化ニッケル(II)、ギ酸ニッケル(II)、シュウ酸ニッケル(II)、酢酸ニッケル(II)、フマル酸ニッケル(II)、乳酸ニッケル(II)、グルコン酸ニッケル(II)、安息香酸ニッケル(II)、ステアリン酸ニッケル(II)、スルファミン酸ニッケル(II)、アミド硫酸ニッケル(II)、炭酸ニッケル(II)、ニッケル(II)アセチルアセトナート、ニッケルカーボン等の化合物、それら化合物の水和物、またはそれら化合物から誘導される各種錯体触媒等が挙げられる。 The nickel-based catalyst used in the method of the present invention is a catalyst containing nickel element as an active ingredient and is not particularly limited. For example, nickel powder, nickel fluoride (II), nickel chloride (II) , Nickel bromide (II), nickel iodide (II), nickel sulfate (II), nickel nitrate (II), nickel perchlorate (II), nickel sulfide (II), nickel formate (II), nickel oxalate (II), nickel (II) acetate, nickel (II) fumarate, nickel (II) lactate, nickel (II) gluconate, nickel (II) benzoate, nickel (II) stearate, nickel (II) sulfamate , Nickel amidosulfate (II), nickel carbonate (II), nickel (II) acetylacetonate, nickel carbon, etc. , Hydrates of these compounds or various complex catalysts derived from these compounds, and the like.
本発明の方法に用いるマンガン系触媒とは、マンガン元素を有効成分とする触媒のことであり、特に限定するものではないが、例えば、塩化マンガン(II)、臭化マンガン(II)、ヨウ化マンガン(II)、フッ化マンガン(II)、酢酸マンガン(II)、酢酸マンガン(III)、ギ酸マンガン(II)、シュウ酸マンガン(II)、安息香酸マンガン(II)、ステアリン酸マンガン(II)、ホウ酸マンガン(II)、マンガン(II)アセチルアセトナート、マンガン(III)アセチルアセトナート、炭酸マンガン(II)、硫酸マンガン(II)、硝酸マンガン(II)、リン酸マンガン(II)、マンガン粉末、またはそれら化合物の水和物、あるいはそれら化合物から誘導される各種錯体触媒等が挙げられる。 The manganese-based catalyst used in the method of the present invention is a catalyst containing manganese element as an active ingredient, and is not particularly limited. For example, manganese (II) chloride, manganese (II) bromide, iodide Manganese (II), manganese fluoride (II), manganese acetate (II), manganese acetate (III), manganese formate (II), manganese oxalate (II), manganese benzoate (II), manganese stearate (II) , Manganese (II) borate, manganese (II) acetylacetonate, manganese (III) acetylacetonate, manganese carbonate (II), manganese sulfate (II), manganese nitrate (II), manganese phosphate (II), manganese Examples thereof include powders, hydrates of these compounds, and various complex catalysts derived from these compounds.
本発明の方法に用いる鉄系触媒とは、鉄元素を有効成分とする触媒のことであり、特に限定するものではないが、例えば、塩化鉄(II)、塩化鉄(III)、臭化鉄(II)、臭化鉄(III)、ヨウ化鉄(II)、フッ化鉄(II)、フッ化鉄(III)、酢酸鉄(II)、シュウ酸鉄(II)、シュウ酸鉄(III)、クエン酸鉄(III)、過塩素酸鉄(III)、鉄(III)アセチルアセトナート、硝酸鉄(III)、リン酸鉄(III)、硫酸鉄(II)、硫酸鉄(III)、もしくは鉄粉等の化合物、それら化合物の水和物、あるいはそれら化合物から誘導される各種錯体触媒等が挙げられる。 The iron-based catalyst used in the method of the present invention is a catalyst containing iron element as an active ingredient, and is not particularly limited. For example, iron (II) chloride, iron (III) chloride, iron bromide. (II), iron bromide (III), iron (II) iodide, iron (II) fluoride, iron (III) fluoride, iron (II) acetate, iron (II) oxalate, iron (III) oxalate (III) ), Iron (III) citrate, iron (III) perchlorate, iron (III) acetylacetonate, iron (III) nitrate, iron (III) phosphate, iron (II) sulfate, iron (III) sulfate, Or compounds such as iron powder, hydrates of these compounds, or various complex catalysts derived from these compounds can be mentioned.
本発明の方法に用いるコバルト系触媒とは、コバルト元素を有効成分とする触媒のことであり、特に限定するものではないが、例えば、塩化コバルト(II)、臭化コバルト(II)、ヨウ化コバルト(II)、フッ化コバルト(II)、酢酸コバルト(II)、酢酸コバルト(III)、ギ酸コバルト(II)、シュウ酸コバルト(II)、安息香酸コバルト(II)、ステアリン酸コバルト(II)、ホウ酸コバルト(II)、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、炭酸コバルト(II)、硫酸コバルト(II)、硝酸コバルト(II)、リン酸コバルト(II)、もしくはコバルト粉末等の化合物、それら化合物の水和物、あるいはそれら化合物から誘導される各種錯体触媒等が挙げられる。 The cobalt-based catalyst used in the method of the present invention is a catalyst containing cobalt element as an active ingredient, and is not particularly limited. For example, cobalt (II) chloride, cobalt (II) bromide, iodide Cobalt (II), cobalt fluoride (II), cobalt acetate (II), cobalt acetate (III), cobalt formate (II), cobalt oxalate (II), cobalt benzoate (II), cobalt stearate (II) , Cobalt (II) borate, cobalt (II) acetylacetonate, cobalt (III) acetylacetonate, cobalt (II) carbonate, cobalt (II) sulfate, cobalt (II) nitrate, cobalt (II) phosphate, or Examples include compounds such as cobalt powder, hydrates of these compounds, and various complex catalysts derived from these compounds. That.
本発明の方法に用いるロジウム系触媒とは、ロジウム元素を有効成分とする触媒のことであり、特に限定するものではないが、例えば、塩化ロジウム(II)、臭化ロジウム(II)、酢酸ロジウム(II)、酢酸ロジウム(III)、ロジウム(II)アセチルアセトナート、ロジウム(III)アセチルアセトナート、ロジウム粉末、ロジウムカーボン等の化合物、それら化合物の水和物、あるいはそれら化合物から誘導される各種錯体触媒等が挙げられる。 The rhodium-based catalyst used in the method of the present invention is a catalyst containing a rhodium element as an active ingredient, and is not particularly limited. For example, rhodium (II) chloride, rhodium bromide (II), rhodium acetate (II), rhodium acetate (III), rhodium (II) acetylacetonate, rhodium (III) acetylacetonate, rhodium powder, rhodium carbon, etc., hydrates of these compounds, or various compounds derived from these compounds Examples include complex catalysts.
本発明の方法において、上記した触媒は、単独または混合物として使用することができる。 In the method of the present invention, the above-described catalysts can be used alone or as a mixture.
尚、本発明の方法に用いられる触媒の使用量について格別の限定はないが、通常、クロロアルコキシフェニルマグネシウムハライドに対して1×10−4〜1×10−1倍モル程度の使用量が選ばれる。使用量が1×10−4倍モル未満の場合には、反応が円滑に進行せず、また使用量が1×10−1倍モルを超える場合には、使用量の割には収率が向上せず、かえって経済的に不利となる。 In addition, although there is no special limitation about the usage-amount of the catalyst used for the method of this invention, the usage-amount of about 1 * 10 < -4 > -1 * 10 <-1> times mole is normally selected with respect to chloroalkoxyphenyl magnesium halide. It is. When the amount used is less than 1 × 10 −4 times mole, the reaction does not proceed smoothly, and when the amount used exceeds 1 × 10 −1 times mole, the yield is in proportion to the amount used. It does not improve, but it is economically disadvantageous.
本発明の方法は、通常、窒素及び/またはアルゴン等の不活性ガス雰囲気下において、上述した触媒存在下に、クロロアルコキシフェニルマグネシウムハライドとビニルハライドとを反応させる。 In the method of the present invention, chloroalkoxyphenylmagnesium halide and vinyl halide are usually reacted in the presence of the catalyst described above in an inert gas atmosphere such as nitrogen and / or argon.
本発明の方法において使用されるビニルハライドの具体例としては、フッ化ビニル、塩化ビニル、臭化ビニル、ヨウ化ビニルが挙げられ、これらを単独または混合物として使用することができる。通常は、経済性及び入手の容易さを考慮して、塩化ビニル及び/または臭化ビニルが選ばれる。 Specific examples of the vinyl halide used in the method of the present invention include vinyl fluoride, vinyl chloride, vinyl bromide and vinyl iodide, and these can be used alone or as a mixture. Usually, vinyl chloride and / or vinyl bromide are selected in consideration of economy and availability.
本発明の方法において使用されるビニルハライドの使用量について格別の限定はないが、通常、クロロアルコキシフェニルマグネシウムハライドに対して1.0〜10.0倍モル程度の使用量が選ばれる。使用量が1.0倍モル未満の場合には、反応が円滑に進行せず、また使用量が10.0倍モルを超える場合には、使用量の割には収率が向上せず、かえって経済的に不利となる。 Although there is no special limitation about the usage-amount of the vinyl halide used in the method of this invention, the usage-amount of about 1.0-10.0 times mole is normally selected with respect to chloroalkoxyphenyl magnesium halide. When the amount used is less than 1.0 times mol, the reaction does not proceed smoothly, and when the amount used exceeds 10.0 times mol, the yield does not improve for the amount used, On the contrary, it becomes economically disadvantageous.
本発明の方法は、通常、溶媒存在下で実施される。本発明の方法において使用される反応溶媒としては、反応を阻害する溶媒でなければ特に限定するものではないが、例えば、エーテル系溶媒、含酸素系溶媒、含窒素系溶媒、芳香族炭化水素溶媒、脂肪族炭化水素溶媒等が挙げられる。通常、これらの溶媒を単独または混合して使用することができる。 The method of the present invention is usually carried out in the presence of a solvent. The reaction solvent used in the method of the present invention is not particularly limited as long as it does not inhibit the reaction. For example, ether solvents, oxygen-containing solvents, nitrogen-containing solvents, aromatic hydrocarbon solvents And aliphatic hydrocarbon solvents. Usually, these solvents can be used alone or in combination.
また、本発明の方法における反応温度としては、通常、−10℃〜溶媒還流温度の範囲が用いられる。 Moreover, as reaction temperature in the method of this invention, the range of -10 degreeC-solvent recirculation | reflux temperature is normally used.
反応終了後は、酸洗浄、水洗浄、アルカリ洗浄等を適当に組み合わせることにより、副生した無機物や未反応原料等を除去し、さらにクロマトグラフィーや蒸留、再結晶等の通常の精製技術により、目的とするクロロアルコキシスチレンを得ることができる。 After completion of the reaction, by appropriately combining acid washing, water washing, alkali washing, etc., by-product inorganic substances and unreacted raw materials are removed, and further by ordinary purification techniques such as chromatography, distillation, recrystallization, The intended chloroalkoxystyrene can be obtained.
以上の説明から明らかなように、本発明の方法によれば、新規化合物であるクロロアルコキシスチレンを効率良く製造することができる。 As is clear from the above description, according to the method of the present invention, a novel compound, chloroalkoxystyrene, can be efficiently produced.
以下に、本発明の方法を実施例により具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES The method of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
なお、本発明における各種分析・測定方法を以下に示す。 Various analysis / measurement methods in the present invention are shown below.
[元素分析]
元素分析計:パーキンエルマー全自動元素分析装置 2400II
酸素フラスコ燃焼−IC測定法:東ソー製イオンクロマトグラフ IC−2001
[質量分析]
質量分析装置:JMS−K9
測定方法:DI−MS(EI)分析
[NMR測定]
NMR測定装置:VARIAN Gemini−200
実施例1 p−(3−クロロプロポキシ)スチレンの合成
[Elemental analysis]
Element analyzer: Perkin Elmer fully automatic element analyzer 2400II
Oxygen flask combustion-IC measurement method: Tosoh ion chromatograph IC-2001
[Mass spectrometry]
Mass spectrometer: JMS-K9
Measuring method: DI-MS (EI) analysis [NMR measurement]
NMR measuring apparatus: VARIAN Gemini-200
Example 1 Synthesis of p- (3-chloropropoxy) styrene
攪拌装置を備えた1Lフラスコ中に、p−ブロモフェノール 173.0g(1.0mol)[東京化成品]、水酸化ナトリウム48.0g(1.2mol)[和光純薬品]、1−ブロモ−3−クロロプロパン 188.9g(1.2mol)[東京化成品]、水300gを仕込み、100℃にて4時間加熱した。その後、反応液を室温まで冷却し、析出した副生NaBrをろ過して、さらに有機層を分液した。得られた有機層を減圧蒸留に付し、目的のp−(3−クロロプロポキシ)ブロモベンゼン 212.1gを得た(収率82%、純度96%)。
<p−(3−クロロプロポキシ)ブロモベンゼン>
(1)質量分析(m/z):249(m+)
(2)元素分析
計算値:C=43.3%,H=4.0%,Br=32.0%,Cl=14.2%,O=4.0%
実測値:C=43.4%,H=4.1%,Br=31.8%,Cl=14.1%,O=3.6%
2)p−(3−クロロプロポキシ)スチレンの合成
窒素雰囲気下、攪拌装置及び還流装置を備えた300mLフラスコ中に、金属マグネシウム(切削状、20〜50メッシュ)2.7g(0.11mol)[山石金属製]、テトラヒドロフラン50.0g[関東化学品]、臭化エチル0.7g(0.006mol)[関東化学品]を仕込み、溶媒還流条件にて30分加熱攪拌した。その後、液を10℃まで冷却し、前述合成したp−(3−クロロプロポキシ)ブロモベンゼン 24.9g(0.10mol)をテトラヒドロフラン50.0gに溶解させた溶液を、10℃で2時間かけて滴下した。さらに同温度にて1時間攪拌し、目的のp−(3−クロロプロポキシ)フェニルマグネシウムブロマイドのテトラヒドロフラン溶液を得た。
<P- (3-chloropropoxy) bromobenzene>
(1) Mass spectrometry (m / z): 249 (m +)
(2) Elemental analysis
Calculated values: C = 43.3%, H = 4.0%, Br = 32.0%, Cl = 14.2%, O = 4.0%
Found: C = 43.4%, H = 4.1%, Br = 31.8%, Cl = 14.1%, O = 3.6%
2) Synthesis of p- (3-chloropropoxy) styrene In a 300 mL flask equipped with a stirrer and a reflux device under a nitrogen atmosphere, 2.7 g (0.11 mol) of metallic magnesium (cut shape, 20 to 50 mesh) [ Yamastone Metal Co., Ltd.], tetrahydrofuran 50.0 g [Kanto Chemical Co., Ltd.], ethyl bromide 0.7 g (0.006 mol) [Kanto Chemical Co., Ltd.] were charged, and the mixture was heated and stirred for 30 minutes under solvent reflux conditions. Thereafter, the solution was cooled to 10 ° C., and a solution prepared by dissolving 24.9 g (0.10 mol) of p- (3-chloropropoxy) bromobenzene synthesized above in 50.0 g of tetrahydrofuran was added at 10 ° C. over 2 hours. It was dripped. The mixture was further stirred at the same temperature for 1 hour to obtain a target tetrahydrofuran solution of p- (3-chloropropoxy) phenylmagnesium bromide.
続いて、この溶液に無水塩化鉄(FeCl3) 16mg(0.001mol)[和光純薬品]を加え、その後、塩化ビニルガス6.3g(0.10mol)を10℃にて1時間かけて吹込み、さらに同温度で0.5時間攪拌した。反応終了後、飽和塩化アンモニウム水溶液を加えて、未反応原料及び副生Mg塩を溶解分液除去し、得られた有機層を減圧蒸留に付したところ、125℃/0.4kPaの留分にて無色液体の化合物14.4gを得た。分析の結果、本化合物は目的のp−(3−クロロプロポキシ)スチレンと同定された(収率72%(p−(3−クロロプロポキシ)ブロモベンゼン基準)、純度94%)。 Subsequently, 16 mg (0.001 mol) of anhydrous iron chloride (FeCl 3 ) [Wako Pure Chemical Industries] was added to this solution, and then 6.3 g (0.10 mol) of vinyl chloride gas was blown in at 10 ° C. over 1 hour. The mixture was further stirred at the same temperature for 0.5 hour. After completion of the reaction, a saturated aqueous ammonium chloride solution was added to dissolve and remove unreacted raw materials and by-product Mg salts, and the resulting organic layer was subjected to vacuum distillation to obtain a 125 ° C./0.4 kPa fraction. As a result, 14.4 g of a colorless liquid compound was obtained. As a result of analysis, this compound was identified as the desired p- (3-chloropropoxy) styrene (yield 72% (p- (3-chloropropoxy) bromobenzene reference, purity 94%)).
<p−(3−クロロプロポキシ)スチレン>
(1)質量分析(m/z):196(m+)
(2)元素分析
計算値:C=67.2%,H=6.7%,Cl=18.0%,O=8.1%
実測値:C=67.4%,H=6.5%,Cl=17.9%,O=8.2%
(3)1H−NMR(CDCl3):2.31(2H),3.82(2H),4.20(2H),5.21(1H),5.69(1H),6.75(1H),6.95(2H),7.43(2H)[ppm]
(4)13C−NMR(CDCl3):32.40, 41.63, 64.41. 111.72, 114.54, 127.44, 130.68, 136.21, 158.49[ppm]
実施例2 m−(3−クロロプロポキシ)スチレンの合成
<P- (3-chloropropoxy) styrene>
(1) Mass spectrometry (m / z): 196 (m +)
(2) Elemental analysis
Calculated values: C = 67.2%, H = 6.7%, Cl = 18.0%, O = 8.1%
Found: C = 67.4%, H = 6.5%, Cl = 17.9%, O = 8.2%
(3) 1 H-NMR (CDCl 3 ): 2.31 (2H), 3.82 (2H), 4.20 (2H), 5.21 (1H), 5.69 (1H), 6.75 (1H), 6.95 (2H), 7.43 (2H) [ppm]
(4) 13 C-NMR (CDCl 3 ): 32.40, 41.63, 64.41. 111.72, 114.54, 127.44, 130.68, 136.21, 158.49 [ppm]
Example 2 Synthesis of m- (3-chloropropoxy) styrene
実施例1で用いたp−ブロモフェノール 173.0g(1.0mol)の代わりに、m−ブロモフェノール 173.0g(1.0mol)[和光純薬品]を用いた以外は、実施例1の方法に準じて反応を行ったところ、目的のm−(3−クロロプロポキシ)ブロモベンゼン 196.6gが得られた(収率75%、純度95%)。
2)m−(3−クロロプロポキシ)スチレンの合成
窒素雰囲気下、攪拌装置及び還流装置を備えた300mLフラスコ中に、金属マグネシウム(切削状、20〜50メッシュ)1.4g(0.06mol)[山石金属製]、テトラヒドロフラン25.0g[関東化学品]、臭化エチル0.4g(0.003mol)[関東化学品]を仕込み、溶媒還流条件にて30分加熱攪拌した。その後、液を10℃まで冷却し、前述合成したm−(3−クロロプロポキシ)ブロモベンゼン 12.5g(0.05mol)をテトラヒドロフラン25.0gに溶解させた溶液を、10℃で2時間かけて滴下した。さらに同温度にて1時間攪拌し、目的のm−(3−クロロプロポキシ)フェニルマグネシウムブロマイドのテトラヒドロフラン溶液を得た。
2) Synthesis of m- (3-chloropropoxy) styrene In a 300 mL flask equipped with a stirrer and a reflux device in a nitrogen atmosphere, 1.4 g (0.06 mol) of metallic magnesium (cut, 20 to 50 mesh) [ Yamastone Metal Co., Ltd.], tetrahydrofuran 25.0 g [Kanto Chemical Co., Ltd.], ethyl bromide 0.4 g (0.003 mol) [Kanto Chemical Co., Ltd.] were charged, and the mixture was heated and stirred for 30 minutes under solvent reflux conditions. Thereafter, the liquid was cooled to 10 ° C., and a solution prepared by dissolving 12.5 g (0.05 mol) of m- (3-chloropropoxy) bromobenzene synthesized above in 25.0 g of tetrahydrofuran was added at 10 ° C. over 2 hours. It was dripped. The mixture was further stirred at the same temperature for 1 hour to obtain a target tetrahydrofuran solution of m- (3-chloropropoxy) phenylmagnesium bromide.
続いて、この溶液に無水塩化鉄(FeCl3) 16mg(0.001mol)[和光純薬品]を加え、その後、塩化ビニルガス3.2g(0.05mol)を5℃にて1時間かけて吹込み、さらに同温度で0.5時間攪拌した。反応終了後、飽和塩化アンモニウム水溶液を加えて、未反応原料及び副生Mg塩を溶解分液除去し、得られた有機層をシリカゲルカラムクロマトグラフィーに付し、目的のm−(3−クロロプロポキシ)スチレン 6.2gを得た(収率60%(m−(3−クロロプロポキシ)ブロモベンゼン基準)、純度95%)。 Subsequently, 16 mg (0.001 mol) of anhydrous iron chloride (FeCl 3 ) [Wako Pure Chemical Industries] was added to this solution, and then 3.2 g (0.05 mol) of vinyl chloride gas was blown in at 5 ° C. over 1 hour. The mixture was further stirred at the same temperature for 0.5 hour. After completion of the reaction, a saturated aqueous ammonium chloride solution is added to dissolve and remove unreacted raw materials and by-product Mg salts, and the obtained organic layer is subjected to silica gel column chromatography to obtain the desired m- (3-chloropropoxy). ) 6.2 g of styrene was obtained (yield 60% (based on m- (3-chloropropoxy) bromobenzene), purity 95%).
<m−(3−クロロプロポキシ)スチレン>
(1)質量分析(m/z):196(m+)
(2)元素分析
計算値:C=67.2%,H=6.7%,Cl=18.0%,O=8.1%
実測値:C=67.3%,H=6.8%,Cl=17.8%,O=8.1%
実施例3 p−(4−クロロブトキシ)スチレンの合成
<M- (3-Chloropropoxy) styrene>
(1) Mass spectrometry (m / z): 196 (m +)
(2) Elemental analysis
Calculated values: C = 67.2%, H = 6.7%, Cl = 18.0%, O = 8.1%
Found: C = 67.3%, H = 6.8%, Cl = 17.8%, O = 8.1%
Example 3 Synthesis of p- (4-chlorobutoxy) styrene
攪拌装置を備えた1Lフラスコ中に、p−ブロモフェノール 173.0g(1.0mol)[東京化成品]、水酸化カリウム84.2g(1.5mol)[和光純薬品]、1,4−ジクロロブタン 226.0g(2.0mol)[関東化学品]、水200gを仕込み、100℃にて6時間加熱した。その後、反応液を室温まで冷却し、析出した副生KBrをろ過して、さらに有機層を分液した。得られた有機層を減圧蒸留に付し、目的のp−(4−クロロブトキシ)ブロモベンゼン 197.0gを得た(収率71%、純度95%)。
<p−(4−クロロブトキシ)ブロモベンゼン>
(1)質量分析(m/z):264(m+)
(2)元素分析
計算値:C=45.6%,H=4.6%,Br=30.3%,Cl=13.5%,O=6.0%
実測値:C=45.4%,H=4.4%,Br=30.6%,Cl=13.8%,O=5.8%
2)p−(4−クロロブトキシ)スチレンの合成
窒素雰囲気下、攪拌装置及び還流装置を備えた200mLフラスコ中に、金属マグネシウム(切削状、20〜50メッシュ)2.4g(0.10mol)[山石金属製]、テトラヒドロフラン50.0g[関東化学品]、臭化エチル0.7g(0.006mol)[関東化学品]を仕込み、溶媒還流条件にて30分加熱攪拌した。その後、液を5℃まで冷却し、前述合成したp−(4−クロロブトキシ)ブロモベンゼン 26.4g(0.10mol)をテトラヒドロフラン30.0gに溶解させた溶液を、5℃で1時間かけて滴下した。さらに同温度にて2時間攪拌し、目的のp−(4−クロロブトキシ)フェニルマグネシウムブロマイドのテトラヒドロフラン溶液を得た。
<P- (4-chlorobutoxy) bromobenzene>
(1) Mass spectrometry (m / z): 264 (m +)
(2) Elemental analysis
Calculated values: C = 45.6%, H = 4.6%, Br = 30.3%, Cl = 13.5%, O = 6.0%
Found: C = 45.4%, H = 4.4%, Br = 30.6%, Cl = 13.8%, O = 5.8%
2) Synthesis of p- (4-chlorobutoxy) styrene In a 200 mL flask equipped with a stirrer and a reflux apparatus under a nitrogen atmosphere, 2.4 g (0.10 mol) of metallic magnesium (cut shape, 20 to 50 mesh) [ Yamastone Metal Co., Ltd.], tetrahydrofuran 50.0 g [Kanto Chemical Co., Ltd.], ethyl bromide 0.7 g (0.006 mol) [Kanto Chemical Co., Ltd.] were charged, and the mixture was heated and stirred for 30 minutes under solvent reflux conditions. Thereafter, the liquid was cooled to 5 ° C., and a solution prepared by dissolving 26.4 g (0.10 mol) of p- (4-chlorobutoxy) bromobenzene synthesized in 30.0 g of tetrahydrofuran over 5 hours at 5 ° C. It was dripped. The mixture was further stirred at the same temperature for 2 hours to obtain a target tetrahydrofuran solution of p- (4-chlorobutoxy) phenylmagnesium bromide.
続いて、この溶液に1,3−ビス(ジフェニルホスフィノ)プロパン−ジクロロニッケル 1.1g(0.002mol)[アルドリッチ品]を加え、その後、臭化ビニルガス16.0g(0.15mol)を5℃にて2時間かけて吹込み、さらに同温度で1時間攪拌した。反応終了後、飽和塩化アンモニウム水溶液を加えて、未反応原料及び副生Mg塩を溶解分液除去し、得られた有機層をシリカゲルカラムクロマトグラフィーに付し、目的のp−(4−クロロブトキシ)スチレン 14.1gを得た(収率65%(p−(4−クロロブトキシ)ブロモベンゼン基準)、純度94%)。 Subsequently, 1.1 g (0.002 mol) [Aldrich product] of 1,3-bis (diphenylphosphino) propane-dichloronickel was added to this solution, and then 16.0 g (0.15 mol) of vinyl bromide gas was added to 5 g. The mixture was blown at 2 ° C. over 2 hours, and further stirred at the same temperature for 1 hour. After completion of the reaction, a saturated aqueous ammonium chloride solution is added to dissolve and remove unreacted raw materials and by-product Mg salts, and the obtained organic layer is subjected to silica gel column chromatography to obtain the desired p- (4-chlorobutoxy). ) 14.1 g of styrene was obtained (yield 65% (based on p- (4-chlorobutoxy) bromobenzene), purity 94%).
<p−(4−クロロブトキシ)スチレン>
(1)質量分析(m/z):211(m+)
(2)元素分析
計算値:C=68.4%,H=7.2%,Cl=16.8%,O=7.6%
実測値:C=68.4%,H=7.0%,Cl=16.9%,O=7.7%
実施例4 p−(5−クロロペントキシ)スチレンの合成
<P- (4-chlorobutoxy) styrene>
(1) Mass spectrometry (m / z): 211 (m +)
(2) Elemental analysis
Calculated values: C = 68.4%, H = 7.2%, Cl = 16.8%, O = 7.6%
Found: C = 68.4%, H = 7.0%, Cl = 16.9%, O = 7.7%
Example 4 Synthesis of p- (5-chloropentoxy) styrene
攪拌装置を備えた500mLフラスコ中に、p−ブロモフェノール 86.5g(0.5mol)[東京化成品]、水酸化ナトリウム32.0g(0.8mol)[和光純薬品]、1−ブロモ−5−クロロペンタン 171.5g(1.0mol)[和光純薬品]、水150gを仕込み、80℃にて3時間加熱した。その後、反応液を室温まで冷却し、析出した副生NaBrをろ過して、さらに有機層を分液した。得られた有機層を減圧蒸留に付し、目的のp−(5−クロロペンチロキシ)ブロモベンゼン 115.7gを得た(収率80%、純度96%)。
<p−(5−クロロペンチロキシ)ブロモベンゼン>
(1)質量分析(m/z):278(m+)
2)p−(5−クロロペンチロキシ)スチレンの合成
窒素雰囲気下、攪拌装置及び還流装置を備えた200mLフラスコ中に、金属マグネシウム(切削状、20〜50メッシュ)2.4g(0.10mol)[山石金属製]、テトラヒドロフラン50.0g[関東化学品]、トルエン10.0g[関東化学品]、臭化エチル0.7g(0.005mol)[関東化学品]を仕込み、溶媒還流条件にて30分加熱攪拌した。その後、液を0℃まで冷却し、前述合成したp−(5−クロロペンチロキシ)ブロモベンゼン 27.8g(0.10mol)をテトラヒドロフラン50.0gに溶解させた溶液を、0℃で2時間かけて滴下した。さらに同温度にて1時間攪拌し、目的のp−(5−クロロペンチロキシ)フェニルマグネシウムブロマイドのテトラヒドロフラン/トルエン溶液を得た。
<P- (5-chloropentyloxy) bromobenzene>
(1) Mass spectrometry (m / z): 278 (m +)
2) Synthesis of p- (5-chloropentyloxy) styrene 2.4 g (0.10 mol) of metallic magnesium (cut shape, 20-50 mesh) in a 200 mL flask equipped with a stirrer and a reflux device under a nitrogen atmosphere [Yamaishi Metal], tetrahydrofuran 50.0 g [Kanto Chemicals], toluene 10.0 g [Kanto Chemicals], ethyl bromide 0.7 g (0.005 mol) [Kanto Chemicals] were charged under solvent reflux conditions. The mixture was heated and stirred for 30 minutes. Thereafter, the liquid was cooled to 0 ° C., and a solution prepared by dissolving 27.8 g (0.10 mol) of p- (5-chloropentyloxy) bromobenzene synthesized above in 50.0 g of tetrahydrofuran was added at 0 ° C. for 2 hours. And dripped. The mixture was further stirred at the same temperature for 1 hour to obtain the target p- (5-chloropentyloxy) phenylmagnesium bromide in tetrahydrofuran / toluene.
続いて、この溶液に無水塩化コバルト(CoCl2) 32mg(0.002mol)[和光純薬品]を加え、その後、塩化ビニルガス7.6g(0.12mol)を0℃にて1時間かけて吹込み、さらに同温度で1時間攪拌した。反応終了後、飽和塩化アンモニウム水溶液を加えて、未反応原料及び副生Mg塩を溶解分液除去し、得られた有機層をシリカゲルカラムクロマトグラフィーに付し、目的のp−(5−クロロペンチロキシ)スチレン 15.8gを得た(収率68%(p−(5−クロロペンチロキシ)ブロモベンゼン基準)、純度96%)。 Subsequently, 32 mg (0.002 mol) of anhydrous cobalt chloride (CoCl 2 ) [Wako Pure Chemical Industries] was added to this solution, and then 7.6 g (0.12 mol) of vinyl chloride gas was blown in at 0 ° C. over 1 hour. The mixture was further stirred at the same temperature for 1 hour. After completion of the reaction, a saturated aqueous ammonium chloride solution is added to dissolve and remove unreacted raw materials and by-product Mg salts, and the obtained organic layer is subjected to silica gel column chromatography to obtain the desired p- (5-chloropentyl). 15.8 g of (roxy) styrene was obtained (yield 68% (based on p- (5-chloropentyloxy) bromobenzene, purity 96%)).
<p−(5−クロロペンチロキシ)スチレン>
(1)質量分析(m/z):225(m+)
(2)元素分析
計算値:C=69.5%,H=7.6%,Cl=15.8%,O=7.1%
実測値:C=69.4%,H=7.5%,Cl=15.8%,O=7.3%
<P- (5-chloropentyloxy) styrene>
(1) Mass spectrometry (m / z): 225 (m +)
(2) Elemental analysis
Calculated values: C = 69.5%, H = 7.6%, Cl = 15.8%, O = 7.1%
Found: C = 69.4%, H = 7.5%, Cl = 15.8%, O = 7.3%
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005230444A JP4876476B2 (en) | 2005-08-09 | 2005-08-09 | Chloroalkoxystyrene and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005230444A JP4876476B2 (en) | 2005-08-09 | 2005-08-09 | Chloroalkoxystyrene and process for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007045729A JP2007045729A (en) | 2007-02-22 |
JP4876476B2 true JP4876476B2 (en) | 2012-02-15 |
Family
ID=37848870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005230444A Expired - Fee Related JP4876476B2 (en) | 2005-08-09 | 2005-08-09 | Chloroalkoxystyrene and process for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4876476B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5173335B2 (en) * | 2007-09-13 | 2013-04-03 | 東ソ−・エフテック株式会社 | Process for producing (1-perfluoroalkyl) vinylaryls |
EP2543656B1 (en) | 2010-03-03 | 2019-09-25 | Daikin Industries, Ltd. | Method for producing substituted fluorine-containing olefin |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3147389B2 (en) * | 1990-02-28 | 2001-03-19 | 三菱化学株式会社 | Anion exchanger |
-
2005
- 2005-08-09 JP JP2005230444A patent/JP4876476B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007045729A (en) | 2007-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4876476B2 (en) | Chloroalkoxystyrene and process for producing the same | |
JPS5865241A (en) | Carbonylation of secondary benzylhalide | |
JPH0471896B2 (en) | ||
JP2002053515A (en) | Tertiary butoxy styrene | |
JP2017002002A (en) | Fluorine-containing organic compound and manufacturing method of biaryl compound by the same and grignard reagent | |
CN110730767B (en) | Process for producing cycloalkyl (trifluoromethyl) benzene | |
JPH02160739A (en) | Production of m-tert-butoxystyrene | |
JP2015117224A (en) | METHOD FOR PRODUCING α,β-UNSATURATED CARBONYL COMPOUNDS | |
JP6643005B2 (en) | Method for producing 2-hydroxy-1,4-naphthoquinone | |
JPS62187434A (en) | Production of diphenylcarboxylic acid ester | |
JP2011256158A (en) | Biaryl compound and method for producing the same, and method for producing carbazole derivative using the biaryl compound | |
JP2007320938A (en) | Lithium t-butyldiethyl zincate, method for producing the same and method for using the same | |
JP2000159702A (en) | Production of 1-(4-chlorophenyl)-omega-bromoalkane | |
CN107074708A (en) | Produce 7,8 dihydro C15The method of aldehyde | |
JP2008303170A (en) | 2-t-AMYLOXY-6-HALONAPHTHALENE AND METHOD FOR PRODUCING THE SAME, AND 2-t-AMYLOXY-6-VINYLNAPHTHALENE AND METHOD FOR PRODUCING THE SAME | |
JPH11222452A (en) | 6-vinyl-2-tert-butoxynaphthalene and its production | |
JP5885213B2 (en) | Process for producing unsaturated alkyl halides | |
JP2022188828A (en) | Method for producing oxystyrene compound having plurality of ether substituents | |
JPH05320085A (en) | P-tertiary butoxyphenyldimethylcarbinol and its production | |
JP2003146927A (en) | METHOD FOR PRODUCING tert-AMYLOXYSTYRENE | |
JPS60218349A (en) | Preparation of benzaldehyde | |
JP2021172588A (en) | Method for producing 3-acetoxystyrene | |
JPS58109443A (en) | Preparation of 3-(2'-chloro-4'-trifluoromethylphenoxy) acetophenone | |
JPS61134333A (en) | Production of 2-arylethanol | |
JP2003183210A (en) | Para-tertiary amyloxyhalobenzene, method for producing the same and method for producing para-tertiary- amyloxystyrene therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111114 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4876476 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |