JP4423536B2 - 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体 - Google Patents

信号処理装置および信号処理方法、並びにプログラムおよび記録媒体 Download PDF

Info

Publication number
JP4423536B2
JP4423536B2 JP2003184018A JP2003184018A JP4423536B2 JP 4423536 B2 JP4423536 B2 JP 4423536B2 JP 2003184018 A JP2003184018 A JP 2003184018A JP 2003184018 A JP2003184018 A JP 2003184018A JP 4423536 B2 JP4423536 B2 JP 4423536B2
Authority
JP
Japan
Prior art keywords
pixel
pixel value
data
pixels
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003184018A
Other languages
English (en)
Other versions
JP2005018536A5 (ja
JP2005018536A (ja
Inventor
哲二郎 近藤
哲志 小久保
和志 吉川
寿一 白木
通雅 尾花
英雄 笠間
昌憲 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003184018A priority Critical patent/JP4423536B2/ja
Publication of JP2005018536A publication Critical patent/JP2005018536A/ja
Publication of JP2005018536A5 publication Critical patent/JP2005018536A5/ja
Application granted granted Critical
Publication of JP4423536B2 publication Critical patent/JP4423536B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信号処理装置および信号処理方法、並びにプログラムおよび記録媒体に関し、特に、現実世界の信号により近似した画像等を得ることができるようにする信号処理装置および信号処理方法、並びにプログラムおよび記録媒体に関する。
【0002】
【従来の技術】
実世界(現実世界)における事象をセンサで検出し、センサが出力するサンプリングデータを処理する技術が広く利用されている。例えば、実世界をイメージセンサで撮像し、画像データであるサンプリングデータを処理する画像処理技術が広く利用されている。
【0003】
また、第1の次元を有する現実世界の信号である第1の信号をセンサによって検出することにより得た、第1の次元に比較し次元が少ない第2の次元を有し、第1の信号に対する歪を含む第2の信号を取得し、第2の信号に基づく信号処理を行うことにより、第2の信号に比して歪の軽減された第3の信号を生成するようにしているものもある(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−250119号公報。
【0005】
【発明が解決しようとする課題】
しかしながら、従来においては、現実世界の信号の定常性を考慮した信号処理が行われていなかったため、現実世界の信号により近似した画像等を得ることが困難であることがあった。
【0006】
本発明は、このような状況に鑑みてなされたものであり、現実世界の信号により近似した画像等を得ることができるようにするものである。
【0007】
【課題を解決するための手段】
本発明の信号処理装置は、それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内動きベクトルを設定する動きベクトル設定手段と、画像データにおいて、動オブジェクトと動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定手段と、画像データの各画素の画素値は、定常性の空間方向に続いており、その画素値が、動きベクトルに対応して移動しながら積分された値であるとして、画像データの各画素の画素値と、動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成手段と、モデル生成手段により生成されたモデルに対して、画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成手段と、正規方程式生成手段により生成された正規方程式を演算することにより、動きボケが生じていない各画素の画素値を推定する実世界推定手段とを備えることを特徴とする。
【0008】
モデル生成手段には、動オブジェクトが、空間方向定常性設定手段により設定される方向と同一方向、または、垂直な方向以外に動いている動オブジェクトについて、画像データの各画素の画素値と、動きボケが生じていない各画素の画素値との関係をモデル化させるようにすることができる。
【0009】
モデル生成手段には、動きボケが生じていない各画素の画素幅が、画像データの各画素の画素幅よりも小さいとして、画像データの各画素の画素値と、動きボケが生じていない各画素の画素値との関係をモデル化させ、実世界推定手段には、画像データの各画素よりも画素幅の小さい、動きボケが生じていない各画素の画素値を推定させることができる。
【0010】
本発明の信号処理方法は、それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルを設定する動きベクトル設定ステップと、画像データにおいて、動オブジェクトと動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定ステップと、画像データの各画素の画素値は、動オブジェクトに対応する動きボケが生じていない各画素の画素値が、定常性の空間方向に続いており、その画素値が、動きベクトルに対応して移動しながら積分された値であるとして、画像データの各画素の画素値と、動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成ステップと、モデル生成ステップの処理により生成されたモデルに対して、画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成ステップと、正規方程式生成ステップの処理により生成された正規方程式を演算することにより、動きボケが生じていない各画素の画素値を推定する実世界推定ステップとを含むことを特徴とする。
【0011】
本発明の記録媒体のプログラムは、それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルを設定する動きベクトル設定ステップと、画像データにおいて、動オブジェクトと動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定ステップと、画像データの各画素の画素値は、動オブジェクトに対応する動きボケが生じていない各画素の画素値が、定常性の空間方向に続いており、その画素値が、動きベクトルに対応して移動しながら積分された値であるとして、画像データの各画素の画素値と、動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成ステップと、モデル生成ステップの処理により生成されたモデルに対して、画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成ステップと、正規方程式生成ステップの処理により生成された正規方程式を演算することにより、動きボケが生じていない各画素の画素値を推定する実世界推定ステップとを含むことを特徴とする。
【0012】
本発明のプログラムは、それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルを設定する動きベクトル設定ステップと、画像データにおいて、動オブジェクトと動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定ステップと、画像データの各画素の画素値は、動オブジェクトに対応する動きボケが生じていない各画素の画素値が、定常性の空間方向に続いており、その画素値が、動きベクトルに対応して移動しながら積分された値であるとして、画像データの各画素の画素値と、動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成ステップと、モデル生成ステップの処理により生成されたモデルに対して、画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成ステップと、正規方程式生成ステップの処理により生成された正規方程式を演算することにより、動きボケが生じていない各画素の画素値を推定する実世界推定ステップとをコンピュータに実行させることを特徴とする。
【0013】
本発明においては、それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルが設定され、画像データにおいて、動オブジェクトと動オブジェクト以外の部分の境界と所定の軸とがなす角度が、定常性の空間方向として設定され、画像データの各画素の画素値は、動オブジェクトに対応する動きボケが生じていない各画素の画素値が、定常性の空間方向に続いており、その画素値が、動きベクトルに対応して移動しながら積分された値であるとして、画像データの各画素の画素値と、動きボケが生じていない各画素の画素値との関係がモデル化され、モデル生成手段により生成されたモデルに対して、画像データの各画素の画素値を代入して正規方程式が生成され、正規方程式生成手段により生成された正規方程式を演算することにより、動きボケが生じていない各画素の画素値が推定される。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を説明するが、請求項に記載の構成要件と、発明の実施の形態における具体例との対応関係を例示すると、次のようになる。この記載は、請求項に記載されている発明をサポートする具体例が、発明の実施の形態に記載されていることを確認するためのものである。従って、発明の実施の形態中には記載されているが、構成要件に対応するものとして、ここには記載されていない具体例があったとしても、そのことは、その具体例が、その構成要件に対応するものではないことを意味するものではない。逆に、具体例が構成要件に対応するものとしてここに記載されていたとしても、そのことは、その具体例が、その構成要件以外の構成要件には対応しないものであることを意味するものでもない。
【0015】
さらに、この記載は、発明の実施の形態に記載されている具体例に対応する発明が、請求項に全て記載されていることを意味するものではない。換言すれば、この記載は、発明の実施の形態に記載されている具体例に対応する発明であって、この出願の請求項には記載されていない発明の存在、すなわち、将来、分割出願されたり、補正により追加される発明の存在を否定するものではない。
【0016】
請求項1に記載の信号処理装置は、それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルを設定する動きベクトル設定手段(例えば、図115の動きベクトル設定部11032)と、前記画像データにおいて、動オブジェクトと動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定手段(例えば、図115の空間方向定常性設定部11031)と、前記画像データの各画素の画素値は、前記動オブジェクトに対応する動きボケが生じていない各画素の画素値が、前記定常性の空間方向に続いており、その画素値が、前記動きベクトルに対応して移動しながら積分された値であるとして、前記画像データの各画素の画素値と、前記動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成手段(例えば、図113のモデル生成部11021)と、前記モデル生成手段により生成されたモデルに対して、前記画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成手段(例えば、図113の方程式生成部11022)と、前記正規方程式生成手段により生成された前記正規方程式を演算することにより、前記動きボケが生じていない各画素の画素値を推定する実世界推定手段(例えば、図113の実世界波形推定部11023)とを備えることを特徴とする。
【0017】
請求項4に記載の信号処理方法、請求項5に記載のプログラム、請求項6に記載の記録媒体は、それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内動きベクトルを設定する動きベクトル設定ステップ(例えば、図114のステップS11003)と、前記画像データにおいて、動オブジェクトと動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定ステップ(例えば、図114のステップS11004)と、前記画像データの各画素の画素値は、前記動オブジェクトに対応する動きボケが生じていない各画素の画素値が、前記定常性の空間方向に続いており、その画素値が、前記動きベクトルに対応して移動しながら積分された値であるとして、前記画像データの各画素の画素値と、前記動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成ステップ(例えば、図136のステップS12001)と、前記モデル生成ステップの処理により生成されたモデルに対して、前記画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成ステップ(例えば、図136のステップS12002)と、前記正規方程式生成ステップの処理により生成された前記正規方程式を演算することにより、前記動きボケが生じていない各画素の画素値を推定する実世界推定ステップ(例えば、図136のステップS12004)とを含むことを特徴とする。
【0018】
図1は、本発明の原理を表している。同図で示されるように、空間、時間、および質量の次元を有する実世界1の事象(現象)は、センサ2により取得され、データ化される。実世界1の事象とは、光(画像)、音声、圧力、温度、質量、濃度、明るさ/暗さ、またはにおいなどをいう。実世界1の事象は、時空間方向に分布している。例えば、実世界1の画像は、実世界1の光の強度の時空間方向の分布である。
【0019】
センサ2に注目すると、空間、時間、および質量の次元を有する実世界1の事象のうち、センサ2が取得可能な、実世界1の事象が、センサ2により、データ3に変換される。センサ2によって、実世界1の事象を示す情報が取得されるとも言える。
【0020】
すなわち、センサ2は、実世界1の事象を示す情報を、データ3に変換する。空間、時間、および質量の次元を有する実世界1の事象(現象)を示す情報である信号がセンサ2により取得され、データ化されるとも言える。
【0021】
以下、実世界1における、画像、音声、圧力、温度、質量、濃度、明るさ/暗さ、またはにおいなどの事象の分布を、実世界1の事象を示す情報である信号とも称する。また、実世界1の事象を示す情報である信号を、単に、実世界1の信号とも称する。本明細書において、信号は、現象および事象を含み、送信側に意思がないものも含むものとする。
【0022】
センサ2から出力されるデータ3(検出信号)は、実世界1の事象を示す情報を、実世界1に比較して、より低い次元の時空間に射影して得られた情報である。例えば、動画像の画像データであるデータ3は、実世界1の3次元の空間方向および時間方向の画像が、2次元の空間方向、および時間方向からなる時空間に射影されて得られた情報である。また、例えば、データ3がデジタルデータであるとき、データ3は、サンプリングの単位に応じて、丸められている。データ3がアナログデータであるとき、データ3において、ダイナミックレンジに応じて、情報が圧縮されているか、またはリミッタなどにより、情報の一部が削除されている。
【0023】
このように、所定の次元を有する実世界1の事象を示す情報である信号をデータ3(検出信号)に射影することにより、実世界1の事象を示す情報の一部が欠落する。すなわち、センサ2が出力するデータ3において、実世界1の事象を示す情報の一部が欠落している。
【0024】
しかしながら、射影により実世界1の事象を示す情報の一部が欠落しているものの、データ3は、実世界1の事象(現象)を示す情報である信号を推定するための有意情報を含んでいる。
【0025】
本発明においては、実世界1の情報である信号を推定するための有意情報として、実世界1またはデータ3に含まれる定常性を有する情報を利用する。定常性は、新たに定義する概念である。
【0026】
ここで、実世界1に注目すると、実世界1の事象は、所定の次元の方向に一定の特徴を含む。例えば、実世界1の物体(有体物)において、空間方向または時間方向に、形状、模様、若しくは色彩などが連続するか、または形状、模様、若しくは色彩などのパターンが繰り返す。
【0027】
従って、実世界1の事象を示す情報には、所定の次元の方向に一定の特徴が含まれることになる。
【0028】
より具体的な例を挙げれば、糸、紐、またはロープなどの線状の物体は、長さ方向の任意の位置において、断面形状が同じであるという長さ方向、すなわち空間方向に一定の特徴を有する。長さ方向の任意の位置において、断面形状が同じであるという空間方向に一定の特徴は、線状の物体が長いという特徴から生じる。
【0029】
従って、線状の物体の画像は、長さ方向の任意の位置において、断面形状が同じであるという長さ方向、すなわち空間方向に一定の特徴を有している。
【0030】
また、空間方向に広がりを有する有体物である、単色の物体は、部位にかかわらず、同一の色を有するという空間方向に一定の特徴を有していると言える。
【0031】
同様に、空間方向に広がりを有する有体物である、単色の物体の画像は、部位にかかわらず、同一の色を有するという空間方向に一定の特徴を有している。
【0032】
このように、実世界1(現実世界)の事象は、所定の次元の方向に一定の特徴を有しているので、実世界1の信号は、所定の次元の方向に一定の特徴を有する。
【0033】
本明細書において、このような所定の次元の方向に一定の特徴を定常性と称する。実世界1(現実世界)の信号の定常性とは、実世界1(現実世界)の事象を示す信号が有している、所定の次元の方向に一定の特徴をいう。
【0034】
実世界1(現実世界)には、このような定常性が無数に存在する。
【0035】
次に、データ3に注目すると、データ3は、センサ2により、所定の次元を有する実世界1の事象を示す情報である信号が射影されたものであるので、実世界の信号の定常性に対応する定常性を含んでいる。データ3は、実世界の信号の定常性が射影された定常性を含んでいるとも言える。
【0036】
しかしながら、上述したように、センサ2が出力するデータ3において、実世界1の情報の一部が欠落しているので、データ3から、実世界1(現実世界)の信号に含まれる定常性の一部が欠落し得る。
【0037】
換言すれば、データ3は、データの定常性として、実世界1(現実世界)の信号の定常性の中の、少なくとも一部の定常性を含む。データの定常性とは、データ3が有している、所定の次元の方向に一定の特徴である。
【0038】
本発明においては、実世界1の事象を示す情報である信号を推定するための有意情報として、実世界1の信号の定常性、またはデータ3が有する、データの定常性が利用される。
【0039】
例えば、信号処理装置4においては、データの定常性を利用して、データ3を信号処理することで、欠落した、実世界1の事象を示す情報が生成される。
【0040】
なお、信号処理装置4においては、実世界1の事象を示す情報である信号の次元の、長さ(空間)、時間、および質量のうち、空間方向または時間方向の定常性が利用される。
【0041】
図1において、センサ2は、例えば、デジタルスチルカメラ、またはビデオカメラなどで構成され、実世界1の画像を撮像し、得られたデータ3である画像データを信号処理装置4に出力する。センサ2は、例えば、サーモグラフィ装置、または光弾性を利用した圧力センサなどとすることができる。
【0042】
信号処理装置4は、例えば、パーソナルコンピュータなどで構成され、データ3を対象とした信号処理を行う。
【0043】
信号処理装置4は、例えば、図2で示されるように構成される。CPU(Central Processing Unit)21は、ROM(Read Only Memory)22、または記憶部28に記憶されているプログラムに従って各種の処理を実行する。RAM(Random Access Memory)23には、CPU21が実行するプログラムやデータなどが適宜記憶される。これらのCPU21、ROM22、およびRAM23は、バス24により相互に接続されている。
【0044】
CPU21にはまた、バス24を介して入出力インタフェース25が接続されている。入出力インタフェース25には、キーボード、マウス、マイクロホンなどよりなる入力部26、ディスプレイ、スピーカなどよりなる出力部27が接続されている。CPU21は、入力部26から入力される指令に対応して各種の処理を実行する。そして、CPU21は、処理の結果得られた画像や音声等を出力部27に出力する。
【0045】
入出力インタフェース25に接続されている記憶部28は、例えばハードディスクなどで構成され、CPU21が実行するプログラムや各種のデータを記憶する。通信部29は、インターネット、その他のネットワークを介して外部の装置と通信する。この例の場合、通信部29はセンサ2の出力するデータ3を取り込む取得部として働く。
【0046】
また、通信部29を介してプログラムを取得し、記憶部28に記憶してもよい。
【0047】
入出力インタフェース25に接続されているドライブ30は、磁気ディスク51、光ディスク52、光磁気ディスク53、或いは半導体メモリ54などが装着されたとき、それらを駆動し、そこに記録されているプログラムやデータなどを取得する。取得されたプログラムやデータは、必要に応じて記憶部28に転送され、記憶される。
【0048】
図3は、信号処理装置4を示すブロック図である。
【0049】
なお、信号処理装置4の各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。つまり、本明細書の各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアによる機能ブロック図と考えても良い。
【0050】
図3に構成を示す信号処理装置4においては、データ3の一例である画像データが入力され、入力された画像データ(入力画像)からデータの定常性が検出される。次に、検出されたデータの定常性から、センサ2により取得された実世界1の信号が推定される。そして、推定された実世界1の信号を基に、画像が生成され、生成された画像(出力画像)が出力される。すなわち、図3は、画像処理装置である信号処理装置4の構成を示す図である。
【0051】
信号処理装置4に入力された入力画像(データ3の一例である画像データ)は、データ定常性検出部101および実世界推定部102に供給される。
【0052】
データ定常性検出部101は、入力画像からデータの定常性を検出して、検出した定常性を示すデータ定常性情報を実世界推定部102および画像生成部103に供給する。データ定常性情報は、例えば、入力画像における、データの定常性を有する画素の領域の位置、データの定常性を有する画素の領域の方向(時間方向および空間方向の角度または傾き)、またはデータの定常性を有する画素の領域の長さなどを含む。データ定常性検出部101の構成の詳細は、後述する。
【0053】
実世界推定部102は、入力画像、およびデータ定常性検出部101から供給されたデータ定常性情報を基に、実世界1の信号を推定する。すなわち、実世界推定部102は、入力画像が取得されたときセンサ2に入射された、実世界の信号である画像を推定する。実世界推定部102は、実世界1の信号の推定の結果を示す実世界推定情報を画像生成部103に供給する。実世界推定部102の構成の詳細は、後述する。
【0054】
画像生成部103は、実世界推定部102から供給された、推定された実世界1の信号を示す実世界推定情報を基に、実世界1の信号により近似した信号を生成して、生成した信号を出力する。または、画像生成部103は、データ定常性検出部101から供給されたデータ定常性情報、および実世界推定部102から供給された、推定された実世界1の信号を示す実世界推定情報を基に、実世界1の信号により近似した信号を生成して、生成した信号を出力する。
【0055】
すなわち、画像生成部103は、実世界推定情報を基に、実世界1の画像により近似した画像を生成して、生成した画像を出力画像として出力する。または、画像生成部103は、データ定常性情報および実世界推定情報を基に、実世界1の画像により近似した画像を生成して、生成した画像を出力画像として出力する。
【0056】
例えば、画像生成部103は、実世界推定情報を基に、推定された実世界1の画像を所望の空間方向または時間方向の範囲で積分することにより、入力画像に比較して、空間方向または時間方向により高解像度の画像を生成して、生成した画像を出力画像として出力する。例えば、画像生成部103は、外挿補間により、画像を生成して、生成した画像を出力画像として出力する。
【0057】
画像生成部103の構成の詳細は、後述する。
【0058】
次に、図4を参照して、本発明の原理を説明する。
【0059】
例えば、画像である、実世界1の信号は、センサ2の一例であるCCD(Charge Coupled Device)の受光面に結像される。センサ2の一例であるCCDは、積分特性を有しているので、CCDから出力されるデータ3には、実世界1の画像との差が生じることになる。センサ2の積分特性の詳細については、後述する。
【0060】
信号処理装置4による信号処理においては、CCDにより取得された実世界1の画像と、CCDにより撮像され、出力されたデータ3との関係が明確に考慮される。すなわち、データ3と、センサ2で取得された実世界の情報である信号との関係が明確に考慮される。
【0061】
より具体的には、図4で示されるように、信号処理装置4は、モデル161を用いて、実世界1を近似(記述)する。モデル161は、例えば、N個の変数で表現される。より正確には、モデル161は、実世界1の信号を近似(記述)する。
【0062】
モデル161を予測するために、信号処理装置4は、データ3から、M個のデータ162を抽出する。データ3から、M個のデータ162を抽出するとき、信号処理装置4は、例えば、データ3に含まれるデータの定常性を利用する。換言すれば、信号処理装置4は、データ3に含まれるデータの定常性を基に、モデル161を予測するためのデータ162を抽出する。この場合、結果的に、モデル161は、データの定常性に拘束されることになる。
【0063】
すなわち、モデル161は、センサ2で取得されたとき、データ3においてデータの定常性を生じさせる、定常性(所定の次元の方向に一定の特徴)を有する実世界1の事象(を示す情報(信号))を近似する。
【0064】
ここで、データ162の数Mが、モデルの変数の数N以上であれば、M個のデータ162から、N個の変数で表現されるモデル161を予測することができる。
【0065】
このように、実世界1(の信号)を近似(記述)するモデル161を予測することにより、信号処理装置4は、実世界1の情報である信号を考慮することができる。
【0066】
次に、センサ2の積分効果について説明する。
【0067】
画像を撮像するセンサ2である、CCDまたはCMOS(Complementary Metal-Oxide Semiconductor)センサなどのイメージセンサは、現実世界を撮像するとき、現実世界の情報である信号を2次元のデータに投影する。イメージセンサの各画素は、いわゆる受光面(受光領域)として、それぞれ所定の面積を有する。所定の面積を有する受光面に入射した光は、画素毎に、空間方向および時間方向に積分され、各画素に対して1つの画素値に変換される。
【0068】
図5乃至図8を参照して、画像の空間的時間的な積分について説明する。
【0069】
イメージセンサは、現実世界の対象物(オブジェクト)を撮像し、撮像の結果得られた画像データを1フレーム単位で出力する。すなわち、イメージセンサは、実世界1の対象物で反射された光である、実世界1の信号を取得し、データ3を出力する。
【0070】
例えば、イメージセンサは、1秒間に30フレームからなる画像データを出力する。この場合、イメージセンサの露光時間は、1/30秒とすることができる。露光時間は、イメージセンサが入射された光の電荷への変換を開始してから、入射された光の電荷への変換を終了するまでの期間である。以下、露光時間をシャッタ時間とも称する。
【0071】
図5は、イメージセンサ上の画素の配置の例を説明する図である。図5中において、A乃至Iは、個々の画素を示す。画素は、画像データにより表示される画像に対応する平面上に配置されている。1つの画素に対応する1つの検出素子は、イメージセンサ上に配置されている。イメージセンサが実世界1の画像を撮像するとき、1つの検出素子は、画像データを構成する1つの画素に対応する1つの画素値を出力する。例えば、検出素子の空間方向Xの位置(X座標)は、画像データにより表示される画像上の横方向の位置に対応し、検出素子の空間方向Yの位置(Y座標)は、画像データにより表示される画像上の縦方向の位置に対応する。
【0072】
実世界1の光の強度の分布は、3次元の空間方向および時間方向に広がりを有するが、イメージセンサは、2次元の空間方向および時間方向で、実世界1の光を取得し、2次元の空間方向および時間方向の光の強度の分布を表現するデータ3を生成する。
【0073】
図6で示されるように、例えば、CCDである検出素子は、シャッタ時間に対応する期間、受光面(受光領域)(検出領域)に入力された光を電荷に変換して、変換された電荷を蓄積する。光は、3次元の空間上の位置、および時刻により、強度が決定される実世界1の情報(信号)である。実世界1の光の強度の分布は、3次元の空間上の位置x,y、およびz、並びに時刻tを変数とする関数F(x,y,z,t)で表すことができる。
【0074】
CCDである検出素子に蓄積される電荷の量は、2次元の空間上の広がりを有する受光面の全体に入射された光の強さと、光が入射されている時間にほぼ比例する。検出素子は、シャッタ時間に対応する期間において、受光面の全体に入射された光から変換された電荷を、既に蓄積されている電荷に加えていく。すなわち、検出素子は、シャッタ時間に対応する期間、2次元の空間上の広がりを有する受光面の全体に入射される光を積分して、積分された光に対応する量の電荷を蓄積する。検出素子は、空間(受光面)および時間(シャッタ時間)に対して、積分効果があるとも言える。
【0075】
検出素子に蓄積された電荷は、図示せぬ回路により、電圧値に変換され、電圧値はさらにデジタルデータなどの画素値に変換されて、データ3として出力される。従って、イメージセンサから出力される個々の画素値は、実世界1の情報(信号)の時間的空間的に広がりを有するある部分を、シャッタ時間の時間方向および検出素子の受光面の空間方向について積分した結果である、1次元の空間に射影した値を有する。
【0076】
すなわち、1つの画素の画素値は、F(x,y,t)の積分で表される。F(x,y,t)は、検出素子の受光面における、光の強度の分布を表す関数である。例えば、画素値Pは、式(1)で表される。
【0077】
【数1】
Figure 0004423536
・・・(1)
【0078】
式(1)において、x1は、検出素子の受光面の左側の境界の空間座標(X座標)である。x2は、検出素子の受光面の右側の境界の空間座標(X座標)である。式(1)において、y1は、検出素子の受光面の上側の境界の空間座標(Y座標)である。y2は、検出素子の受光面の下側の境界の空間座標(Y座標)である。また、t1は、入射された光の電荷への変換を開始した時刻である。t2は、入射された光の電荷への変換を終了した時刻である。
【0079】
なお、実際には、イメージセンサから出力される画像データの画素値は、例えばフレーム全体として、そのゲインが補正されている。
【0080】
画像データの各画素値は、イメージセンサの各検出素子の受光面に入射した光の積分値であり、イメージセンサに入射された光のうち、検出素子の受光面よりも微小な実世界1の光の波形は、積分値としての画素値に隠されてしまう。
【0081】
以下、本明細書において、所定の次元を基準として表現される信号の波形を単に波形とも称する。
【0082】
このように、実世界1の画像(光信号)は、画素を単位として、空間方向および時間方向に積分されてしまうので、画像データにおいては、実世界1の画像の定常性の一部が欠落し、実世界1の画像の定常性の他の一部が画像データに含まれることになる。または、画像データには、実世界1の画像の定常性から変化してしまった定常性が含まれることがある。
【0083】
積分効果を有するイメージセンサにより撮像された画像の、空間方向の積分効果についてさらに説明する。
【0084】
図7は、画素D乃至画素Fに対応する検出素子に入射される光と、画素値との関係を説明する図である。図7のF(x)は、空間上(検出素子上)の空間方向Xの座標xを変数とする、実世界1の光の強度の分布を表す関数の例である。言い換えれば、F(x)は、空間方向Yおよび時間方向に一定である場合の、実世界1の光の強度の分布を表す関数の例である。図7において、Lは、画素D乃至画素Fに対応する検出素子の受光面の空間方向Xの長さを示す。
【0085】
1つの画素の画素値は、F(x)の積分で表される。例えば、画素Eの画素値Pは、式(2)で表される。
【0086】
【数2】
Figure 0004423536
・・・(2)
【0087】
式(2)において、x1は、画素Eに対応する検出素子の受光面の左側の境界の空間方向Xの空間座標である。x2は、画素Eに対応する検出素子の受光面の右側の境界の空間方向Xの空間座標である。
【0088】
同様に、積分効果を有するイメージセンサにより撮像された画像の、時間方向の積分効果についてさらに説明する。
【0089】
図8は、時間の経過と、1つの画素に対応する検出素子に入射される光と、画素値との関係を説明する図である。図8のF(t)は、時刻tを変数とする、実世界1の光の強度の分布を表す関数である。言い換えれば、F(t)は、空間方向Yおよび空間方向Xに一定である場合の、実世界1の光の強度の分布を表す関数の例である。tsは、シャッタ時間を示す。
【0090】
フレーム#n-1は、フレーム#nに対して時間的に前のフレームであり、フレーム#n+1は、フレーム#nに対して時間的に後のフレームである。すなわち、フレーム#n-1、フレーム#n、およびフレーム#n+1は、フレーム#n-1、フレーム#n、およびフレーム#n+1の順で表示される。
【0091】
なお、図8で示される例において、シャッタ時間tsとフレーム間隔とが同一である。
【0092】
1つの画素の画素値は、F(t)の積分で表される。例えば、フレーム#nの画素の画素値Pは、式(3)で表される。
【0093】
【数3】
Figure 0004423536
・・・(3)
【0094】
式(3)において、t1は、入射された光の電荷への変換を開始した時刻である。t2は、入射された光の電荷への変換を終了した時刻である。
【0095】
以下、センサ2による空間方向の積分効果を単に空間積分効果と称し、センサ2による時間方向の積分効果を単に時間積分効果と称する。また、空間積分効果または時間積分効果を単に積分効果とも称する。
【0096】
次に、積分効果を有するイメージセンサにより取得されたデータ3に含まれるデータの定常性の例について説明する。
【0097】
図9は、実世界1の線状の物(例えば、細線)の画像、すなわち光の強度の分布の例を示す図である。図9において、図中の上方向の位置は、光の強度(レベル)を示し、図中の右上方向の位置は、画像の空間方向の一方向である空間方向Xの位置を示し、図中の右方向の位置は、画像の空間方向の他の方向である空間方向Yの位置を示す。
【0098】
実世界1の線状の物の画像には、所定の定常性が含まれる。すなわち、図9で示される画像は、長さ方向の任意の位置において、断面形状(長さ方向に直交する方向の位置の変化に対するレベルの変化)が同じであるという定常性を有する。
【0099】
図10は、図9で示される画像に対応する、実際の撮像により得られた画像データの画素値の例を示す図である。
【0100】
即ち、図10は、イメージセンサの画素の並び(画素の縦または横の並び)とずれた方向に延びる、各画素の受光面の長さLよりも短い径の線状の物の画像を、イメージセンサで撮像して得られた画像データの模式図である。図10で示される画像データが取得されたときにイメージセンサに入射された画像は、図9の実世界1の線状の物の画像である。
【0101】
図10において、図中の上方向の位置は、画素値を示し、図中の右上方向の位置は、画像の空間方向の一方向である空間方向Xの位置を示し、図中の右方向の位置は、画像の空間方向の他の方向である空間方向Yの位置を示す。図10における画素値を示す方向は、図9におけるレベルの方向に対応し、図10における空間方向X、および空間方向Yは、図9における方向と同じである。
【0102】
各画素の受光面の長さLよりも短い径の線状の物の画像を、イメージセンサで撮像した場合、撮像の結果得られる画像データにおいて、線状の物は、模式的に、例えば、斜めにずれて並ぶ、複数の所定の長さの円弧形状(かまぼこ型)で表される。各円弧形状は、ほぼ同じ形状である。1つの円弧形状は、縦に1列の画素の上、または横に1列の画素の上に形成される。例えば、図10における1つの円弧形状は、縦に1列の画素の上に形成される。
【0103】
このように、例えば、イメージセンサで撮像されて取得された画像データにおいては、実世界1の線状の物の画像が有していた、長さ方向の任意の位置において、空間方向Yにおける断面形状が同じであるという定常性が失われている。また、実世界1の線状の物の画像が有していた定常性は、縦に1列の画素の上、または横に1列の画素の上に形成された、同じ形状である円弧形状が一定の間隔で並ぶという定常性に変化していると言える。
【0104】
図11は、背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像、すなわち光の強度の分布の例を示す図である。図11において、図中の上方向の位置は、光の強度(レベル)を示し、図中の右上方向の位置は、画像の空間方向の一方向である空間方向Xの位置を示し、図中の右方向の位置は、画像の空間方向の他の方向である空間方向Yの位置を示す。
【0105】
背景とは異なる色の、直線状の縁を有する物の実世界1の画像には、所定の定常性が含まれる。すなわち、図11で示される画像は、縁の長さ方向の任意の位置において、断面形状(縁に直交する方向の位置の変化に対するレベルの変化)が同じであるという定常性を有する。
【0106】
図12は、図11で示される画像に対応する、実際の撮像により得られた画像データの画素値の例を示す図である。図12で示されるように、画像データは、画素を単位とした画素値からなるので、階段状になる。
【0107】
図13は、図12に示す画像データの模式図である。
【0108】
図13で示される模式図は、イメージセンサの画素の並び(画素の縦または横の並び)とずれた方向に縁が延びる、背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像を、イメージセンサで撮像して得られた画像データの模式図である。図13で示される画像データが取得されたときにイメージセンサに入射された画像は、図11で示される、背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像である。
【0109】
図13において、図中の上方向の位置は、画素値を示し、図中の右上方向の位置は、画像の空間方向の一方向である空間方向Xの位置を示し、図中の右方向の位置は、画像の空間方向の他の方向である空間方向Yの位置を示す。図13における画素値を示す方向は、図11におけるレベルの方向に対応し、図13における空間方向X、および空間方向Yは、図11における方向と同じである。
【0110】
背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像を、イメージセンサで撮像した場合、撮像の結果得られる画像データにおいて、直線状の縁は、模式的に、例えば、斜めにずれて並ぶ、複数の所定の長さのつめ(pawl)形状で表される。各つめ形状は、ほぼ同じ形状である。1つのつめ形状は、縦に1列の画素の上、または横に1列の画素の上に形成される。例えば、図13において、1つのつめ形状は、縦に1列の画素の上に形成される。
【0111】
このように、例えば、イメージセンサで撮像されて取得された画像データにおいては、背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像が有していた、縁の長さ方向の任意の位置において、断面形状が同じであるという定常性が失われている。また、背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像が有していた定常性は、縦に1列の画素の上、または横に1列の画素の上に形成された、同じ形状であるつめ形状が一定の間隔で並ぶという定常性に変化していると言える。
【0112】
データ定常性検出部101は、このような、例えば、入力画像であるデータ3が有するデータの定常性を検出する。例えば、データ定常性検出部101は、所定の次元の方向に一定の特徴を有する領域を検出することにより、データの定常性を検出する。例えば、データ定常性検出部101は、図10で示される、同じ円弧形状が一定の間隔で並ぶ領域を検出する。また、例えば、データ定常性検出部101は、図13で示される、同じつめ形状が一定の間隔で並ぶ領域を検出する。
【0113】
また、データ定常性検出部101は、同様の形状の並び方を示す、空間方向の角度(傾き)を検出することにより、データの定常性を検出する。
【0114】
また、例えば、データ定常性検出部101は、空間方向および時間方向の同様の形状の並び方を示す、空間方向および時間方向の角度(動き)を検出することにより、データの定常性を検出する。
【0115】
さらに、例えば、データ定常性検出部101は、所定の次元の方向に一定の特徴を有する領域の長さを検出することにより、データの定常性を検出する。
【0116】
以下、背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像がセンサ2により射影されたデータ3の部分を2値エッジとも称する。
【0117】
ここで、従来の信号処理においては、データ3から、例えば、所望の高解像度データが生成される。
【0118】
これに対して、信号処理装置4による信号処理においては、データ3から、実世界1が推定され、推定の結果に基づいて、高解像度データが生成される。すなわち、実世界1が、データ3から推定され、高解像度データが、データ3を考慮して、推定された実世界1から生成される。
【0119】
実世界1から高解像度データを生成するためには、実世界1とデータ3との関係を考慮する必要がある。例えば、実世界1が、CCDであるセンサ2により、データ3に射影されるとどうなるかが考慮される。
【0120】
CCDであるセンサ2は、上述したように、積分特性を有する。すなわち、データ3の1つの単位(例えば、画素値)は、実世界1の信号をセンサ2の検出素子(例えば、CCD)の検出領域(例えば、受光面)で積分することにより算出することができる。
【0121】
これを高解像度データについて当てはめると、仮想的な高解像度のセンサが実世界1の信号をデータ3に射影する処理を、推定された実世界1に適用することにより、高解像度データを得ることができる。
【0122】
換言すれば、データ3から実世界1の信号を推定できれば、実世界1の信号を、仮想的な高解像度のセンサの検出素子の検出領域毎に(時空間方向に)積分することにより、高解像度データに含まれる1つの値を得ることができる。
【0123】
例えば、センサ2の検出素子の検出領域の大きさに比較して、実世界1の信号の変化が、より小さいとき、データ3は、実世界1の信号の小さい変化を表すことができない。そこで、データ3から推定された実世界1の信号を、実世界1の信号の変化に比較して、より小さい領域毎に(時空間方向に)積分することにより、実世界1の信号の小さい変化を示す高解像度データを得ることができる。
【0124】
すなわち、仮想的な高解像度のセンサの各検出素子について、推定された実世界1の信号を検出領域で積分することにより、高解像度データを得ることができる。
【0125】
信号処理装置4において、画像生成部103は、例えば、仮想的な高解像度のセンサの各検出素子の時空間方向の領域で、推定された実世界1の信号を積分することにより、高解像度データを生成する。
【0126】
次に、データ3から、実世界1を推定するために、信号処理装置4においては、データ3と実世界1との関係、定常性、およびデータ3における空間的または時間的な混合(空間混合または時間混合)が利用される。
【0127】
ここで、混合とは、データ3において、実世界1における2つの物体に対する信号が混合されて1つの値となることをいう。
【0128】
空間混合とは、センサ2の空間積分効果による、2つの物体に対する信号の空間方向の混合をいう。時間混合については、後述する。
【0129】
実世界1そのものは、無限の数の事象からなり、従って、実世界1そのものを、例えば、数式で表現するためには、無限の数の変数が必要になる。データ3から、実世界1の全ての事象を予測することはできない。
【0130】
同様に、データ3から、実世界1の信号の全てを予測することはできない。
【0131】
そこで、信号処理装置4においては、実世界1の信号のうち、定常性を有し、関数f(x,y,z,t)で表すことができる部分に注目し、関数f(x,y,z,t)で表すことができる、定常性を有する実世界1の信号の部分が、N個の変数で表現されるモデル161で近似される。そして、図14で示されるように、モデル161が、データ3の中の、M個のデータ162から予測される。
【0132】
M個のデータ162からモデル161の予測を可能にするには、第1に、モデル161を、定常性に基づいて、N個の変数で表し、第2に、センサ2の積分特性に基づいて、N個の変数で表現されるモデル161とM個のデータ162との関係を示す、N個の変数を使用した式を立てることが必要である。モデル161が、定常性に基づいて、N個の変数で表されているので、N個の変数で表現されるモデル161とM個のデータ162との関係を示す、N個の変数を使用した式は、定常性を有する実世界1の信号の部分と、データの定常性を有するデータ3の部分との関係を記述しているとも言える。
【0133】
換言すれば、N個の変数で表現されるモデル161で近似される、定常性を有する実世界1の信号の部分は、データ3において、データの定常性を生じさせる。
【0134】
データ定常性検出部101は、定常性を有する実世界1の信号の部分によって、データの定常性が生じたデータ3の部分、およびデータの定常性が生じた部分の特徴を検出する。
【0135】
例えば、図15で示されるように、背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像において、図15中Aで示す、注目する位置における縁は、傾きを有している。図15のBの矢印は、縁の傾きを示す。所定の縁の傾きは、基準となる軸に対する角度または基準となる位置に対する方向で表すことができる。例えば、所定の縁の傾きは、空間方向Xの座標軸と、縁との角度で表すことができる。例えば、所定の縁の傾きは、空間方向Xの長さおよび空間方向Yの長さで示される方向で表すことができる。
【0136】
背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像が、センサ2で取得されて、データ3が出力されたとき、データ3において、実世界1の画像における、縁の注目する位置(A)に対する、図15中A’で示す位置に、縁に対応するつめ形状が並び、実世界1の画像の縁の傾きに対応する、図15中B’で示す傾きの方向に、縁に対応するつめ形状が並ぶ。
【0137】
N個の変数で表現されるモデル161は、このような、データ3において、データの定常性を生じさせる、実世界の1の信号の部分を近似する。
【0138】
N個の変数で表現されるモデル161とM個のデータ162との関係を示す、N個の変数を使用した式を立てるとき、データ3において、データの定常性が生じている部分の値を利用する。
【0139】
この場合において、図16で示される、データ3において、データの定常性が生じ、混合領域に属する値に注目して、実世界1の信号を積分した値が、センサ2の検出素子が出力する値に等しいとして、式が立てられる。例えば、データの定常性が生じている、データ3における複数の値について、複数の式を立てることができる。
【0140】
図16において、Aは、縁の注目する位置を示し、A’は、実世界1の画像における、縁の注目する位置(A)に対する、画素(の位置)を示す。
【0141】
ここで、混合領域とは、データ3において、実世界1における2つの物体に対する信号が混合されて1つの値となっているデータの領域をいう。例えば、背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像に対するデータ3において、直線状の縁を有する物に対する画像、および背景に対する画像が積分されている画素値は、混合領域に属する。
【0142】
図17は、式を立てる場合における、実世界1における2つの物体に対する信号および混合領域に属する値を説明する図である。
【0143】
図17中の左側は、センサ2の1つの検出素子の検出領域で取得される、空間方向Xおよび空間方向Yに所定の広がりを有する、実世界1における2つの物体に対する実世界1の信号を示す。図17中の右側は、図17中の左側に示す実世界1の信号がセンサ2の1つの検出素子によって射影された、データ3の1つの画素の画素値Pを示す。すなわち、センサ2の1つの検出素子によって取得された、空間方向Xおよび空間方向Yに所定の広がりを有する、実世界1における2つの物体に対する実世界1の信号が射影された、データ3の1つの画素の画素値Pを示す。
【0144】
図17のLは、実世界1における1つの物体に対する、図17の白い部分の実世界1の信号のレベルを示す。図17のRは、実世界1における他の1つの物体に対する、図17の斜線で表される部分の実世界1の信号のレベルを示す。
【0145】
ここで、混合比αは、センサ2の1つの検出素子の、空間方向Xおよび空間方向Yに所定の広がりを有する検出領域に入射された、2つの物体に対する信号(の面積)の割合を示す。例えば、混合比αは、センサ2の1つの検出素子の検出領域の面積に対する、空間方向Xおよび空間方向Yに所定の広がりを有する、センサ2の1つの検出素子の検出領域に入射された、レベルLの信号の面積の割合を示す。
【0146】
この場合において、レベルL、レベルR、および画素値Pの関係は、式(4)で表すことができる。
【0147】
【数4】
Figure 0004423536
・・・(4)
【0148】
なお、レベルRは、注目している画素の右側に位置している、データ3の画素の画素値とすることができる場合があり、レベルLは、注目している画素の左側に位置している、データ3の画素値とすることができる場合がある。
【0149】
また、混合比αおよび混合領域は、空間方向と同様に、時間方向を考慮することができる。例えば、センサ2に対して撮像の対象となる実世界1の物体が移動しているとき、時間方向に、センサ2の1つの検出素子の検出領域に入射される、2つの物体に対する信号の割合は変化する。センサ2の1つの検出素子の検出領域に入射された、時間方向に割合が変化する、2つの物体に対する信号は、センサ2の検出素子によって、データ3の1つの値に射影される。
【0150】
センサ2の時間積分効果による、2つの物体に対する信号の時間方向の混合を時間混合と称する。
【0151】
データ定常性検出部101は、例えば、実世界1における2つの物体に対する実世界1の信号が射影された、データ3における画素の領域を検出する。データ定常性検出部101は、例えば、実世界1の画像の縁の傾きに対応する、データ3における傾きを検出する。
【0152】
そして、実世界推定部102は、例えば、データ定常性検出部101で検出された、所定の混合比αを有する画素の領域、および領域の傾きを基に、N個の変数で表現されるモデル161とM個のデータ162との関係を示す、N個の変数を使用した式を立てて、立てた式を解くことにより、実世界1の信号を推定する。
【0153】
さらに、具体的な実世界1の推定について説明する。
【0154】
関数F(x,y,z,t)で表される実世界の信号のうち、空間方向Zの断面(センサ2の位置)における関数F(x,y,t)で表される実世界の信号を、空間方向Xにおける位置x、空間方向Yにおける位置y、および時刻tで決まる近似関数f(x,y,t)で近似することを考える。
【0155】
ここで、センサ2の検出領域は、空間方向Xおよび空間方向Yに広がりを有する。換言すれば、近似関数f(x,y,t)は、センサ2で取得される、空間方向および時間方向に広がりを有する実世界1の信号を近似する関数である。
【0156】
センサ2による実世界1の信号の射影によって、データ3の値P(x,y,t)が得られるものとする。データ3の値P(x,y,t)は、例えば、イメージセンサであるセンサ2が出力する、画素値である。
【0157】
ここで、センサ2による射影を定式化できる場合、近似関数f(x,y,t)を射影して得られた値を射影関数S(x,y,t)と表すことができる。
【0158】
射影関数S(x,y,t)を求める上で、以下に示す問題がある。
【0159】
第1に、一般的に、実世界1の信号を表す関数F(x,y,z,t)は、無限の次数の関数となりうる。
【0160】
第2に、たとえ、実世界の信号を関数として記述できたとしても、センサ2の射影を介した、射影関数S(x,y,t)を定めることは、一般的にはできない。すなわち、センサ2による射影の動作、言い換えればセンサ2の入力信号と出力信号との関係を知らないので、射影関数S(x,y,t)を定めることはできない。
【0161】
第1の問題点に対して、実世界1の信号を近似する関数f(x,y,t)を記述可能な関数(例えば、有限次数の関数)である関数fi(x,y,t)および変数wiの積和で表現することを考える。
【0162】
また、第2の問題点に対して、センサ2による射影を定式化することで、関数fi(x,y,t)の記述から、関数Si(x,y,t)を記述することができる。
【0163】
すなわち、実世界1の信号を近似する関数f(x,y,t)を関数fi(x,y,t)および変数wiの積和で表現すると、式(5)が得られる。
【0164】
【数5】
Figure 0004423536
・・・(5)
【0165】
例えば、式(6)で示されるように、センサ2の射影を定式化することにより、式(5)から、データ3と実世界の信号の関係を式(7)のように定式化することができる。
【0166】
【数6】
Figure 0004423536
・・・(6)
【0167】
【数7】
Figure 0004423536
・・・(7)
式(7)において、jは、データのインデックスである。
【0168】
式(7)のN個の変数wi(i=1乃至N)が共通であるM個のデータ群(j=1乃至M)が存在すれば、式(8)を満たすので、データ3から実世界のモデル161を求めることができる。
【0169】
【数8】
Figure 0004423536
・・・(8)
【0170】
Nは、実世界1を近似するモデル161を表現する変数の数である。Mは、データ3に含まれるデータ162の数である。
【0171】
実世界1の信号を近似する関数f(x,y,t)を式(5)で表すことにより、wiとして変数の部分を独立させることができる。このとき、iは、そのまま変数の数を示すことになる。また、fiで示される関数の形を独立させることができ、fiとして所望の関数を利用することができるようになる。
【0172】
従って、関数fiの形に依存せず、変数wiの数Nを定義でき、変数wiの数Nとデータの数Mとの関係で変数wiを求めることができる。
【0173】
すなわち、以下の3つを用いることで、データ3から実世界1を推定することができるようになる。
【0174】
第1に、N個の変数を定める、すなわち、式(5)を定める。これは、定常性を用いて実世界1を記述することにより可能になる。例えば、断面が多項式で表され、同じ断面形状が一定方向に続く、というモデル161で実世界1の信号を記述することができる。
【0175】
第2に、例えば、センサ2による射影を定式化して、式(7)を記述する。例えば、実世界の信号の積分を行った結果がデータ3であると定式化する。
【0176】
第3に、M個のデータ162を集めて、式(8)を満足させる。例えば、データ定常性検出部101で検出された、データの定常性を有する領域から、データ162が集められる。例えば、定常性の一例である、一定の断面が続く領域のデータ162が集められる。
【0177】
このように、式(5)によって、データ3と実世界1との関係を記述し、M個のデータ162を集めることで、式(8)を満たすことにより、実世界1を推定することができる。
【0178】
より具体的には、N=Mのとき、変数の数Nと式の数Mが等しいので、連立方程式を立てることにより、変数wiを求めることができる。
【0179】
また、N<Mのとき、様々な解法を適用できる。例えば、最小自乗法により、変数wiを求めることができる。
【0180】
ここで、最小自乗法による解法について、詳細に記載する。
【0181】
まず、式(7)に従って、実世界1からデータ3を予測する式(9)を示す。
【0182】
【数9】
Figure 0004423536
・・・(9)
【0183】
式(9)において、P'j(xj,yj,tj)は、予測値である。
【0184】
予測値P'と実測値Pとの差分自乗和Eは、式(10)で表される。
【0185】
【数10】
Figure 0004423536
・・・(10)
【0186】
差分自乗和Eが最小になるように、変数wiが求められる。従って、各変数wkによる式(10)の偏微分値は0とされる。すなわち、式(11)が成り立つ。
【0187】
【数11】
Figure 0004423536
・・・(11)
【0188】
式(11)から式(12)が導かれる。
【0189】
【数12】
Figure 0004423536
・・・(12)
【0190】
式(12)がK=1乃至Nで成り立つとき、最小自乗法による解が得られる。このときの正規方程式は、式(13)で示される。
【0191】
【数13】
Figure 0004423536
・・・(13)
【0192】
ただし、式(13)において、Si(xj,yj,tj)は、Si(j)と記述した。
【0193】
【数14】
Figure 0004423536
・・・(14)
【0194】
【数15】
Figure 0004423536
・・・(15)
【0195】
【数16】
Figure 0004423536
・・・(16)
【0196】
式(14)乃至式(16)から、式(13)は、SMATWMAT=PMATと表すことができる。
【0197】
式(13)において、Siは、実世界1の射影を表す。式(13)において、Pjは、データ3を表す。式(13)において、wiは、実世界1の信号の特徴を記述し、求めようとする変数である。
【0198】
従って、式(13)にデータ3を入力し、行列解法などによりWMATを求めることで、実世界1を推定することが可能になる。すなわち、式(17)を演算することにより、実世界1を推定することができるようになる。
【0199】
【数17】
Figure 0004423536
・・・(17)
【0200】
なお、SMATが正則でない場合、SMATの転置行列を利用して、WMATを求めることができる。
【0201】
実世界推定部102は、例えば、式(13)にデータ3を入力し、行列解法などによりWMATを求めることで、実世界1を推定する。
【0202】
ここで、さらにより具体的な例を説明する。例えば、実世界1の信号の断面形状、すなわち位置の変化に対するレベルの変化を、多項式で記述する。実世界1の信号の断面形状が一定で、実世界1の信号の断面が等速で移動すると仮定する。そして、センサ2による実世界1の信号からデータ3への射影を、実世界1の信号の時空間方向の3次元で積分で定式化する。
【0203】
実世界1の信号の断面形状が、等速で移動するとの仮定から、式(18)および式(19)が得られる。
【0204】
【数18】
Figure 0004423536
・・・(18)
【0205】
【数19】
Figure 0004423536
・・・(19)
【0206】
ここで、vxおよびvyは、一定である。
【0207】
実世界1の信号の断面形状は、式(18)および式(19)を用いることで、式(20)と表される。
【0208】
【数20】
Figure 0004423536
・・・(20)
【0209】
センサ2による実世界1の信号からデータ3への射影を、実世界1の信号の時空間方向の3次元で積分で定式化すれば、式(21)が得られる。
【0210】
【数21】
Figure 0004423536
・・・(21)
【0211】
式(21)において、S(x,y,t)は、空間方向Xについて、位置xsから位置xeまで、空間方向Yについて、位置ysから位置yeまで、時間方向tについて、時刻tsから時刻teまでの領域、すなわち時空間の直方体で表される領域の積分値を示す。
【0212】
式(21)を定めることができる所望の関数f(x',y')を用いて、式(13)を解けば、実世界1の信号を推定することができる。
【0213】
以下では、関数f(x',y')の一例として、式(22)に示す関数を用いることとする。
【0214】
【数22】
Figure 0004423536
・・・(22)
【0215】
すなわち、実世界1の信号が、式(18)、式(19)、および式(22)で表される定常性を含むと仮定している。これは、図18で示されるように、一定の形状の断面が、時空間方向に移動していることを示す。
【0216】
式(21)に、式(22)を代入することにより、式(23)が得られる。
【0217】
【数23】
Figure 0004423536
・・・(23)
【0218】
ただし、
Volume=(xe-xs)(ye-ys)(te-ts)
S0(x,y,t)=Volume/2×(xe+xs+vx(te+ts))
S1(x,y,t)=Volume/2×(ye+ys+vy(te+ts))
S2(x,y,t)=1
である。
【0219】
図19は、データ3から抽出される、M個のデータ162の例を示す図である。例えば、27個の画素値が、データ162として抽出され、抽出された画素値が、Pj(x,y,t)とされる。この場合、jは、0乃至26である。
【0220】
図19に示す例において、nである時刻tの注目する位置に対応する画素の画素値がP13(x,y,t)であり、データの定常性を有する画素の画素値の並ぶ方向(例えば、データ定常性検出部101で検出された、同じ形状であるつめ形状が並ぶ方向)が、P4(x,y,t)、P13(x,y,t)、およびP22(x,y,t)を結ぶ方向であるとき、nである時刻tにおける、画素値P9(x,y,t)乃至P17(x,y,t)、nより時間的に前である、n-1である時刻tにおける、画素値P0(x,y,t)乃至P8(x,y,t)、およびnより時間的に後である、n+1である時刻tにおける、画素値P18(x,y,t)乃至P26(x,y,t)が抽出される。
【0221】
ここで、センサ2であるイメージセンサから出力された、データ3である画素値が取得された領域は、時間方向および2次元の空間方向に広がりを有する。そこで、例えば、画素に対応する直方体(画素値が取得された領域)の重心を、画素の時空間方向の位置として使用することができる。
【0222】
27個の画素値P0(x,y,t)乃至P26(x,y,t)、および式(23)から、式(13)を生成し、Wを求めることで、実世界1を推定することが可能になる。
【0223】
このように、実世界推定部102は、例えば、27個の画素値P0(x,y,t)乃至P26(x,y,t)、および式(23)から、式(13)を生成し、Wを求めることで、実世界1の信号を推定する。
【0224】
なお、関数fi(x,y,t)として、ガウス関数、またはシグモイド関数などを利用することができる。
【0225】
図20乃至図23を参照して、推定された実世界1の信号から、データ3に対応する、より高解像度の高解像度データを生成する処理の例について説明する。
【0226】
図20で示されるように、データ3は、時間方向および2次元の空間方向に実世界1の信号が積分された値を有する。例えば、センサ2であるイメージセンサから出力された、データ3である画素値は、検出素子に入射された光である、実世界1の信号が、時間方向に、検出時間であるシャッタ時間で積分され、空間方向に、検出素子の受光領域で積分された値を有する。
【0227】
これに対して、図21で示されるように、空間方向により解像度の高い高解像度データは、推定された実世界1の信号を、時間方向に、データ3を出力したセンサ2の検出時間と同じ時間で積分するとともに、空間方向に、データ3を出力したセンサ2の検出素子の受光領域に比較して、より狭い領域で積分することにより、生成される。
【0228】
なお、空間方向により解像度の高い高解像度データを生成する場合において、推定された実世界1の信号が積分される領域は、データ3を出力したセンサ2の検出素子の受光領域と全く無関係に設定することができる。例えば、高解像度データに、データ3に対して、空間方向に整数倍の解像度を持たせることは勿論、5/3倍など、データ3に対して、空間方向に有理数倍の解像度を持たせることができる。
【0229】
また、図22で示されるように、時間方向により解像度の高い高解像度データは、推定された実世界1の信号を、空間方向に、データ3を出力したセンサ2の検出素子の受光領域と同じ領域で積分するとともに、時間方向に、データ3を出力したセンサ2の検出時間に比較して、より短い時間で積分することにより、生成される。
【0230】
なお、時間方向により解像度の高い高解像度データを生成する場合において、推定された実世界1の信号が積分される時間は、データ3を出力したセンサ2の検出素子のシャッタ時間と全く無関係に設定することができる。例えば、高解像度データに、データ3に対して、時間方向に整数倍の解像度を持たせることは勿論、7/4倍など、データ3に対して、時間方向に有理数倍の解像度を持たせることができる。
【0231】
動きボケを除去した高解像度データは、推定された実世界1の信号を、時間方向に積分しないで、空間方向にのみ積分することにより、生成される。
【0232】
さらに、図23で示されるように、時間方向および空間方向により解像度の高い高解像度データは、推定された実世界1の信号を、空間方向に、データ3を出力したセンサ2の検出素子の受光領域に比較して、より狭い領域で積分するとともに、時間方向に、データ3を出力したセンサ2の検出時間に比較して、より短い時間で積分することにより、生成される。
【0233】
この場合において、推定された実世界1の信号が積分される領域および時間は、データ3を出力したセンサ2の検出素子の受光領域およびシャッタ時間と全く無関係に設定することができる。
【0234】
このように、画像生成部103は、例えば、推定された実世界1の信号を所望の時空間の領域で積分することにより、時間方向、または空間方向に、より高解像度のデータを生成する。
【0235】
以上のように、実世界1の信号を推定することにより、実世界1の信号に対してより正確で、時間方向、または空間方向に、より高解像度のデータを生成することができる。
【0236】
図24乃至図28は、信号処理装置4の信号処理を用いた入力画像の例と、処理の結果の例を示している。
【0237】
図24は、入力画像の元の画像(実世界1の光信号に相当)を示す図である。図25は、入力画像の例を示す図である。図25で示される入力画像は、図24で示される画像の2×2の画素からなるブロックに属する画素の画素値の平均値を、1つの画素の画素値として生成された画像である。すなわち、入力画像は、図24で示される画像に、センサの積分特性を模した、空間方向の積分を適用することにより得られた画像である。
【0238】
図24で示される元の画像において、上下方向から、ほぼ5度時計方向に傾いた細線の画像が含まれている。同様に、図25で示される入力画像において、上下方向から、ほぼ5度時計方向に傾いた細線の画像が含まれている。
【0239】
図26は、図25で示される入力画像に、従来のクラス分類適応処理を適用して得られた画像を示す図である。ここで、クラス分類適応処理は、クラス分類処理と適応処理とからなり、クラス分類処理によって、データを、その性質に基づいてクラス分けし、各クラスごとに適応処理を施すものである。適応処理では、例えば、低画質または標準画質の画像が、所定のタップ係数を用いてマッピング(写像)されることにより、高画質の画像に変換される。
【0240】
即ち、適応処理では、第1のデータが、所定のタップ係数を用いてマッピング(写像)されることにより、第2のデータに変換される。
【0241】
いま、このタップ係数を用いてのマッピング方法として、例えば、線形1次結合モデルを採用するとともに、第1のデータとして、高解像度のHD(High Definition)画像をローパスフィルタでフィルタリングすること等により得られる低解像度または標準解像度のSD(Standard Definition)画像を採用し、第2のデータとして、そのSD画像を得るのに用いたHD画像を採用することとして、適応処理について説明する。
【0242】
上述の条件下において、HD画像を構成する画素であるHD画素yは、例えば、SD画像を構成する画素であるSD画素から、HD画素を予測するための予測タップとして抽出される複数のSD画素と、タップ係数とを用いて、次の線形1次式(線形結合)によって求めることができる。
【0243】
【数24】
Figure 0004423536
・・・(24)
【0244】
但し、式(24)において、xnは、HD画素yについての予測タップを構成する、n番目のSD画素(の画素値)を表し、wnは、n番目のSD画素と乗算されるn番目のタップ係数を表す。なお、式(24)では、予測タップが、N個のSD画素x1,x2,・・・,xNで構成されるものとしてある。
【0245】
ここで、HD画素の画素値yは、式(24)に示した線形1次式ではなく、2次以上の高次の式によって求めるようにすることも可能である。
【0246】
いま、HD画像において、k番目のHD画素(の画素値)の真値をykと表すとともに、式(24)によって得られるその真値ykの予測値をyk’と表すと、その予測誤差ekは、例えば、次式で表される。
【0247】
【数25】
Figure 0004423536
・・・(25)
【0248】
式(25)の予測値yk’は、式(24)にしたがって求められるため、式(25)のyk’を、式(24)にしたがって置き換えると、次式が得られる。
【0249】
【数26】
Figure 0004423536
・・・(26)
【0250】
但し、式(26)において、xn,kは、k番目のHD画素についての予測タップを構成するn番目のSD画素を表す。
【0251】
式(26)の予測誤差ekを0とするタップ係数wnが、HD画素を予測するのに最適なものとなるが、すべてのHD画素について、そのようなタップ係数wnを求めることは、一般には困難である。
【0252】
そこで、タップ係数wnが最適なものであることを表す規範として、例えば、最小自乗法を採用することとすると、最適なタップ係数wnは、統計的な誤差としての、例えば、次式で表される自乗誤差の総和Eを最小にすることで求めることができる。
【0253】
【数27】
Figure 0004423536
・・・(27)
【0254】
但し、式(27)において、Kは、HD画素ykと、そのHD画素ykについての予測タップを構成するSD画素x1,k,x2,k,・・・,xN,kとのセットのサンプル数を表す。
【0255】
式(27)の自乗誤差の総和Eを最小(極小)にするタップ係数wnは、その総和Eをタップ係数wnで偏微分したものを0とするものであり、従って、次式を満たす必要がある。
【0256】
【数28】
Figure 0004423536
・・・(28)
【0257】
そこで、上述の式(26)をタップ係数wnで偏微分すると、次式が得られる。
【0258】
【数29】
Figure 0004423536
・・・(29)
【0259】
式(28)と(29)から、次式が得られる。
【0260】
【数30】
Figure 0004423536
・・・(30)
【0261】
式(30)のekに、式(26)を代入することにより、式(30)は、式(31)に示す正規方程式で表すことができる。
【0262】
【数31】
Figure 0004423536
・・・(31)
【0263】
式(31)の正規方程式は、HD画素ykとSD画素xn,kのセットを、ある程度の数だけ用意することでたてることができ、式(31)を解くことで、最適なタップ係数wnを求めることができる。なお、式(31)を解くにあたっては、例えば、掃き出し法(Gauss-Jordanの消去法)などを採用することが可能である。
【0264】
以上のように、多数のHD画素y1,y2,・・・,yKを、タップ係数の学習の教師となる教師データとするとともに、各HD画素ykについての予測タップを構成するSD画素x1,k,x2,k,・・・,xN,kを、タップ係数の学習の生徒となる生徒データとして、式(31)を解くことにより、最適なタップ係数wnを求める学習を行っておき、さらに、そのタップ係数wnを用い、式(24)により、SD画素を、HD画素にマッピング(変換)するのが適応処理である。
【0265】
ここで、HD画素ykについての予測タップを構成するSD画素x1,k,x2,k,・・・,xN,kとしては、そのHD画素ykに対応するSD画像上の位置から空間的または時間的に近い位置にあるSD画素を採用することができる。
【0266】
また、クラス分類適応処理では、タップ係数wnの学習と、そのタップ係数wnを用いたマッピングとは、クラスごとに行われる。クラス分類適応処理では、注目しているHD画素ykを対象にクラス分類処理が行われ、そのクラス分類処理により得られるクラスごとに、タップ係数wnの学習と、そのタップ係数wnを用いたマッピングが行われる。
【0267】
HD画素ykを対象としたクラス分類処理としては、例えば、そのHD画素ykのクラス分類に用いるクラスタップとしての複数のSD画素を、SD画像から抽出し、その複数のSD画素で構成されるクラスタップを用いてMビットADRC(Adaptive Dynamic Range Coding)処理を施す方法がある。
【0268】
MビットADRC処理においては、クラスタップを構成するSD画素の最大値MAXと最小値MINが検出され、DR=MAX-MINを、局所的なダイナミックレンジとし、このダイナミックレンジDRに基づいて、クラスタップを構成するSD画素がKビットに再量子化される。即ち、クラスタップを構成する各SD画素から、最小値MINが減算され、その減算値がDR/2Kで除算(量子化)される。従って、クラスタップが、例えば、1ビットADRC処理される場合には、そのクラスタップを構成する各SD画素は1ビットとされることになる。そして、この場合、以上のようにして得られる、クラスタップを構成する各SD画素についての1ビットの画素値を、所定の順番で並べたビット列が、ADRCコードとして出力され、このADRCコードが、クラスを表すクラスコードとされる。
【0269】
なお、クラス分類適応処理は、SD画素には含まれていないが、HD画素に含まれる成分が再現される点で、例えば、単なる補間処理等とは異なる。即ち、クラス分類適応処理では、式(24)だけを見る限りは、いわゆる補間フィルタを用いての補間処理と同一であるが、その補間フィルタのタップ係数に相当するタップ係数wnが、教師データとしてのHD画素と生徒データとしてのSD画素とを用いての学習により求められるため、HD画素に含まれる成分を再現することができる。
【0270】
ここで、タップ係数wnの学習では、教師データyと生徒データxとの組み合わせとして、どのようなものを採用するかによって、各種の変換を行うタップ係数wnを求めることができる。
【0271】
即ち、例えば、上述のように、教師データyとして、高解像度のHD画像を採用するとともに、生徒データxとして、そのHD画像の解像度を低下させたSD画像を採用した場合には、画像の解像度を向上させるマッピングを行うタップ係数wnを得ることができる。また、例えば、教師データyとして、HD画像を採用するとともに、生徒データxとして、そのHD画像の画素数を少なくしたSD画像を採用した場合には、画像を構成する画素数を増加させるマッピングを行うタップ係数wnを得ることができる。
【0272】
図26は、図25の入力画像に対して、上述のようなクラス分類適応処理によるマッピングを施すことにより得られる画像である。図26では、細線の画像が、図24の元の画像とは異なるものになっていることがわかる。
【0273】
図27は、データ定常性検出部101による、図25の例で示される入力画像から細線の領域を検出した結果を示す図である。図27において、白い領域は、細線の領域、すなわち、図10で示される円弧形状が並んでいる領域を示す。
【0274】
図28は、図25で示される画像を入力画像として、信号処理装置4で信号処理を行うことにより得られる出力画像の例を示す図である。図28で示されるように、信号処理装置4によれば、図24で示される元の画像の細線の画像により近い画像を得ることができる。
【0275】
図29は、信号処理装置4による、信号処理を説明するフローチャートである。
【0276】
ステップS101において、データ定常性検出部101は、定常性の検出の処理を実行する。データ定常性検出部101は、データ3である入力画像に含まれているデータの定常性を検出して、検出したデータの定常性を示すデータ定常性情報を実世界推定部102および画像生成部103に供給する。
【0277】
データ定常性検出部101は、現実世界の信号の定常性に対応するデータの定常性を検出する。ステップS101の処理において、データ定常性検出部101により検出されるデータの定常性は、データ3に含まれる、実世界1の画像の定常性の一部であるか、または、実世界1の信号の定常性から変化してしまった定常性である。
【0278】
例えば、データ定常性検出部101は、所定の次元の方向に一定の特徴を有する領域を検出することにより、データの定常性を検出する。また、例えば、データ定常性検出部101は、同様の形状の並び方を示す、空間方向の角度(傾き)を検出することにより、データの定常性を検出する。
【0279】
ステップS101における、定常性の検出の処理の詳細は、後述する。
【0280】
なお、データ定常性情報は、データ3の特徴を示す特徴量として利用することができる。
【0281】
ステップS102において、実世界推定部102は、実世界の推定の処理を実行する。すなわち、実世界推定部102は、入力画像、およびデータ定常性検出部101から供給されたデータ定常性情報を基に、実世界1の信号を推定する。例えば、ステップS102の処理において、実世界推定部102は、実世界1を近似(記述)するモデル161を予測することにより、実世界1の信号を推定する。実世界推定部102は、推定された実世界1の信号を示す実世界推定情報を画像生成部103に供給する。
【0282】
例えば、実世界推定部102は、線状の物の幅を予測することにより、実世界1の信号を推定する。また、例えば、実世界推定部102は、線状の物の色を示すレベルを予測することにより、実世界1の信号を推定する。
【0283】
ステップS102における、実世界の推定の処理の詳細は、後述する。
【0284】
なお、実世界推定情報は、データ3の特徴を示す特徴量として利用することができる。
【0285】
ステップS103において、画像生成部103は、画像の生成の処理を実行して、処理は終了する。すなわち、画像生成部103は、実世界推定情報を基に、画像を生成して、生成した画像を出力する。または、画像生成部103は、データ定常性情報および実世界推定情報を基に、画像を生成して、生成した画像を出力する。
【0286】
例えば、ステップS103の処理において、画像生成部103は、実世界推定情報を基に、推定された現実世界の光を空間方向に積分することにより、入力画像に比較して、空間方向により高解像度の画像を生成して、生成した画像を出力する。例えば、画像生成部103は、実世界推定情報を基に、推定された現実世界の光を時空間方向に積分することにより、入力画像に比較して、時間方向および空間方向により高解像度の画像を生成して、生成した画像を出力する。ステップS103における、画像の生成の処理の詳細は、後述する。
【0287】
このように、信号処理装置4は、データ3からデータの定常性を検出し、検出したデータの定常性を基に、実世界1を推定する。そして、信号処理装置4は、推定された実世界1を基に、より実世界1に近似した信号を生成する。
【0288】
以上のように、現実世界の信号を推定して処理を実行するようにした場合には、正確で、精度の高い処理結果を得ることができるようになる。
【0289】
また、第1の次元を有する現実世界の信号である第1の信号が射影され、現実世界の信号の定常性の一部が欠落した第1の次元よりも少ない第2の次元の第2の信号の、欠落した現実世界の信号の定常性に対応するデータの定常性を検出し、検出されたデータの定常性に基づいて、欠落した現実世界の信号の定常性を推定することにより第1の信号を推定するようにした場合には、現実世界の事象に対して、より正確で、より精度の高い処理結果を得ることができるようになる。
【0290】
次に、データ定常性検出部101の構成の詳細について説明する。
【0291】
図30は、データ定常性検出部101の構成を示すブロック図である。
【0292】
図30に構成を示すデータ定常性検出部101は、細線である対象物を撮像したとき、対象物の有する断面形状が同じであるという定常性から生じた、データ3に含まれるデータの定常性を検出する。すなわち、図30に構成を示すデータ定常性検出部101は、細線である実世界1の画像の有する、長さ方向の任意の位置において、長さ方向に直交する方向の位置の変化に対する光のレベルの変化が同じであるという定常性から生じた、データ3に含まれるデータの定常性を検出する。
【0293】
より具体的には、図30に構成を示すデータ定常性検出部101は、細線の画像を空間積分効果を有するセンサ2で撮像して得られたデータ3に含まれる、斜めにずれて隣接して並ぶ、複数の所定の長さの円弧形状(かまぼこ型)が配置される領域を検出する。
【0294】
データ定常性検出部101は、データ3である入力画像から、データの定常性を有する細線の画像が射影された画像データの部分(以下、定常成分とも称する)以外の画像データの部分(以下、非定常成分と称する)を抽出し、抽出された非定常成分と入力画像とから、実世界1の細線の画像が射影された画素を検出し、入力画像における、実世界1の細線の画像が射影された画素からなる領域を検出する。
【0295】
非定常成分抽出部201は、入力画像から非定常成分を抽出して、入力画像と共に、抽出された非定常成分を示す非定常成分情報を頂点検出部202および単調増減検出部203に供給する。
【0296】
例えば、図31で示されるように、ほぼ一定の光のレベルの背景の前に細線がある実世界1の画像がデータ3に射影されたとき、図32で示されるように、非定常成分抽出部201は、データ3である入力画像における背景を平面で近似することにより、背景である非定常成分を抽出する。図32において、実線は、データ3の画素値を示し、点線は、背景を近似する平面で示される近似値を示す。図32において、Aは、細線の画像が射影された画素の画素値を示し、PLは、背景を近似する平面を示す。
【0297】
このように、データの定常性を有する画像データの部分における、複数の画素の画素値は、非定常成分に対して不連続となる。
【0298】
非定常成分抽出部201は、実世界1の光信号である画像が射影され、実世界1の画像の定常性の一部が欠落した、データ3である画像データの複数の画素の画素値の不連続部を検出する。
【0299】
非定常成分抽出部201における非定常成分の抽出の処理の詳細は、後述する。
【0300】
頂点検出部202および単調増減検出部203は、非定常成分抽出部201から供給された非定常成分情報を基に、入力画像から非定常成分を除去する。例えば、頂点検出部202および単調増減検出部203は、入力画像の各画素のうち、背景の画像のみが射影された画素の画素値を0に設定することにより、入力画像から非定常成分を除去する。また、例えば、頂点検出部202および単調増減検出部203は、入力画像の各画素の画素値から、平面PLで近似される値を引き算することにより、入力画像から非定常成分を除去する。
【0301】
入力画像から背景を除去することができるので、頂点検出部202乃至連続性検出部204は、細線が射影された画像データの部分のみを処理の対象とすることができ、頂点検出部202乃至連続性検出部204における処理がより容易になる。
【0302】
なお、非定常成分抽出部201は、入力画像から非定常成分を除去した画像データを頂点検出部202および単調増減検出部203に供給するようにしてもよい。
【0303】
以下に説明する処理の例において、入力画像から非定常成分が除去された画像データ、すなわち、定常成分を含む画素のみからなる画像データが対象となる。
【0304】
ここで、頂点検出部202乃至連続性検出部204が検出しようとする、細線の画像が射影された画像データについて説明する。
【0305】
図31で示される細線の画像が射影された画像データの空間方向Yの断面形状(空間方向の位置の変化に対する画素値の変化)は、光学LPFがないとした場合、センサ2であるイメージセンサの空間積分効果から、図33に示す台形、または図34に示す三角形となることが考えられる。しかしながら、通常のイメージセンサは、光学LPFを備え、イメージセンサは、光学LPFを通過した画像を取得し、取得した画像をデータ3に射影するので、現実には、細線の画像データの空間方向Yの断面形状は、図35に示すようなガウス分布に類似した形状となる。
【0306】
頂点検出部202乃至連続性検出部204は、細線の画像が射影された画素であって、同じ断面形状(空間方向の位置の変化に対する画素値の変化)が画面の上下方向に一定の間隔で並ぶものからなる領域を検出して、さらに、実世界1の細線の長さ方向に対応した、領域の繋がりを検出することにより、データの定常性を有する領域である、細線の画像が射影された画素からなる領域を検出する。すなわち、頂点検出部202乃至連続性検出部204は、入力画像における、縦に1列の画素の上に、円弧形状(かまぼこ型)が形成される領域を検出し、検出された領域が横方向に隣接して並んでいるか否かを判定して、実世界1の信号である細線の画像の長さ方向に対応した、円弧形状が形成される領域の繋がりを検出する。
【0307】
また、頂点検出部202乃至連続性検出部204は、細線の画像が射影された画素であって、同じ断面形状が画面の左右方向に一定の間隔で並ぶものからなる領域を検出して、さらに、実世界1の細線の長さ方向に対応した、検出された領域の繋がりを検出することにより、データの定常性を有する領域である、細線の画像が射影された画素からなる領域を検出する。すなわち、頂点検出部202乃至連続性検出部204は、入力画像における、横に1列の画素の上に、円弧形状が形成される領域を検出し、検出された領域が縦方向に隣接して並んでいるか否かを判定して、実世界1の信号である細線の画像の長さ方向に対応した、円弧形状が形成される領域の繋がりを検出する。
【0308】
まず、細線の画像が射影された画素であって、画面の上下方向に同じ円弧形状が一定の間隔で並ぶものからなる領域を検出する処理を説明する。
【0309】
頂点検出部202は、周囲の画素に比較して、より大きい画素値を有する画素、すなわち頂点を検出し、頂点の位置を示す頂点情報を単調増減検出部203に供給する。画面の上下方向に1列に並ぶ画素を対象とした場合、頂点検出部202は、画面の上側に位置する画素の画素値、および画面の下側に位置する画素の画素値に比較して、より大きい画素値を有する画素を頂点として検出する。頂点検出部202は、1つの画像、例えば、1つのフレームの画像から、1または複数の頂点を検出する。
【0310】
1つの画面には、フレームまたはフィールドが含まれる。以下の説明において、同様である。
【0311】
例えば、頂点検出部202は、1フレームの画像からまだ注目画素とされていない画素の中から注目画素を選択し、注目画素の画素値と、注目画素の上側の画素の画素値とを比較し、注目画素の画素値と、注目画素の下側の画素の画素値とを比較して、上側の画素の画素値より大きい画素値を有し、下側の画素の画素値より大きい画素値を有する注目画素を検出して、検出された注目画素を頂点とする。頂点検出部202は、検出された頂点を示す頂点情報を単調増減検出部203に供給する。
【0312】
頂点検出部202が、頂点を検出しない場合もある。例えば、1つの画像の画素の画素値が全て同じ値であるとき、または、1若しくは2の方向に対して画素値が減少しているとき、頂点は検出されない。この場合、細線の画像は、画像データに射影されていない。
【0313】
単調増減検出部203は、頂点検出部202から供給された、頂点の位置を示す頂点情報を基に、頂点検出部202で検出された頂点に対して上下方向に1列に並ぶ画素であって、細線の画像が射影された画素からなる領域の候補を検出し、頂点情報と共に、検出した領域を示す領域情報を連続性検出部204に供給する。
【0314】
より具体的には、単調増減検出部203は、頂点の画素値を基準として、単調減少している画素値を有する画素からなる領域を、細線の画像が射影された画素からなる領域の候補として検出する。単調減少とは、頂点からの距離がより長い画素の画素値が、頂点からの距離が短い画素の画素値に比較して、より小さいことをいう。
【0315】
また、単調増減検出部203は、頂点の画素値を基準として、単調増加している画素値を有する画素からなる領域を、細線の画像が射影された画素からなる領域の候補として検出する。単調増加とは、頂点からの距離がより長い画素の画素値が、頂点からの距離が短い画素の画素値に比較して、より大きいことをいう。
【0316】
以下、単調増加している画素値を有する画素からなる領域についての処理は、単調減少している画素値を有する画素からなる領域についての処理と同様なので、その説明は省略する。細線の画像が射影された画素であって、画面の横方向に同じ円弧形状が一定の間隔で並ぶものからなる領域を検出する処理における、単調増加している画素値を有する画素からなる領域についての処理も、単調減少している画素値を有する画素からなる領域についての処理と同様なので、その説明は省略する。
【0317】
例えば、単調増減検出部203は、頂点に対して縦に1列に各画素について、各画素の画素値と、上側の画素の画素値との差分、および下側の画素の画素値との差分を求める。そして、単調増減検出部203は、差分の符号が変化する画素を検出することにより、画素値が単調減少している領域を検出する。
【0318】
さらに、単調増減検出部203は、画素値が単調減少している領域から、頂点の画素値の符号を基準として、頂点の画素値の符号と同じ符号の画素値を有する画素からなる領域を、細線の画像が射影された画素からなる領域の候補として検出する。
【0319】
例えば、単調増減検出部203は、各画素の画素値の符号と、上側の画素の画素値の符号および下側の画素の画素値の符号とを比較し、画素値の符号が変化する画素を検出することにより、画素値が単調減少している領域から、頂点と同じ符号の画素値を有する画素からなる領域を検出する。
【0320】
このように、単調増減検出部203は、上下方向に並び、頂点に対して画素値が単調減少し、頂点と同じ符号の画素値を有する画素からなる領域を検出する。
【0321】
図36は、空間方向Yの位置に対する画素値から、細線の画像が射影された画素の領域を検出する、頂点の検出および単調増減領域の検出の処理を説明する図である。
【0322】
図36乃至図38において、Pは、頂点を示す。図30で構成が示されるデータ定常性検出部101の説明において、Pは、頂点を示す。
【0323】
頂点検出部202は、各画素の画素値と、これに空間方向Yに隣接する画素の画素値とを比較して、空間方向Yに隣接する2つの画素の画素値より大きい画素値を有する画素を検出することにより、頂点Pを検出する。
【0324】
頂点Pと、頂点Pの空間方向Yの両側の画素とからなる領域は、頂点Pの画素値に対して、空間方向Yの両側の画素の画素値が単調に減少する単調減少領域である。図36において、Aで示す矢印、およびBで示す矢印は、頂点Pの両側に存在する単調減少領域を示す。
【0325】
単調増減検出部203は、各画素の画素値と、その画素に空間方向Yに隣接する画素の画素値との差分を求めて、差分の符号が変化する画素を検出する。単調増減検出部203は、検出された、差分の符号が変化する画素と、その手前側(頂点P側)の画素との境界を、細線の画像が射影された画素からなる細線領域の境界とする。
【0326】
図36において、差分の符号が変化する画素と、その手前側(頂点P側)の画素との境界である細線領域の境界はCで示される。
【0327】
さらに、単調増減検出部203は、単調減少領域において、各画素の画素値の符号と、その画素に空間方向Yに隣接する画素の画素値の符号とを比較し、画素値の符号が変化する画素を検出する。単調増減検出部203は、検出された、差分の符号が変化する画素と、その手前側(頂点P側)の画素との境界を細線領域の境界とする。
【0328】
図36において、差分の符号が変化する画素と、その手前側(頂点P側)の画素との境界である細線領域の境界はDで示される。
【0329】
図36で示されるように、細線の画像が射影された画素からなる細線領域Fは、細線領域の境界Cと、細線領域の境界Dとに挟まれる領域とされる。
【0330】
単調増減検出部203は、このような単調増減領域からなる細線領域Fの中から、予め定めた閾値より長い細線領域F、すなわち、閾値より多い数の画素を含む細線領域Fを求める。例えば、閾値が3であるとき、単調増減検出部203は、4つ以上の画素を含む細線領域Fを検出する。
【0331】
さらに、このように検出された細線領域Fの中から、単調増減検出部203は、頂点Pの画素値、および頂点Pの右側の画素の画素値、および頂点Pの左側の画素の画素値を、それぞれ閾値と比較し、頂点Pの画素値が閾値を超え、頂点Pの右側の画素の画素値が閾値以下であり、頂点Pの左側の画素の画素値が閾値以下である頂点Pが属する細線領域Fを検出し、検出された細線領域Fを細線の画像の成分を含む画素からなる領域の候補とする。
【0332】
言い換えれば、頂点Pの画素値が閾値以下であるか、頂点Pの右側の画素の画素値が閾値を超えるか、または頂点Pの左側の画素の画素値が閾値を超える頂点Pが属する細線領域Fは、細線の画像の成分を含まないと判定され、細線の画像の成分を含む画素からなる領域の候補から除去される。
【0333】
すなわち、図37で示されるように、単調増減検出部203は、頂点Pの画素値を閾値と比較すると共に、頂点Pに対して、空間方向X(点線AA'で示す方向)に隣接する画素の画素値を、閾値と比較し、頂点Pの画素値が閾値を超え、空間方向Xに隣接する画素の画素値が閾値以下である、頂点Pが属する細線領域Fを検出する。
【0334】
図38は、図37の点線AA'で示す空間方向Xに並ぶ画素の画素値を表す図である。頂点Pの画素値が閾値ThSを超え、頂点Pの空間方向Xに隣接する画素の画素値が、閾値ThS以下である、頂点Pが属する細線領域Fは、細線の成分を含む。
【0335】
なお、単調増減検出部203は、背景の画素値を基準として、頂点Pの画素値と背景の画素値との差分を閾値と比較すると共に、頂点Pに対して、空間方向Xに隣接する画素の画素値と背景の画素値との差分を、閾値と比較し、頂点Pの画素値と背景の画素値との差分が閾値を超え、空間方向Xに隣接する画素の画素値と背景の画素値との差分が閾値以下である、頂点Pが属する細線領域Fを検出するようにしてもよい。
【0336】
単調増減検出部203は、頂点Pを基準として、画素値が単調減少し、画素値の符号が頂点Pと同じである画素からなる領域であって、その頂点Pが閾値を超え、頂点Pの右側の画素の画素値が閾値以下であり、頂点Pの左側の画素の画素値が閾値以下であるものを示す単調増減領域情報を連続性検出部204に供給する。
【0337】
画面の上下方向に1列に並ぶ画素であって、細線の画像が射影されたものからなる領域を検出する場合において、単調増減領域情報により示される領域に属する画素は、上下方向に並び、細線の画像が射影された画素を含む。すなわち、単調増減領域情報により示される領域は、画面の上下方向に1列に並ぶ画素であって、細線の画像が射影されたものからなる領域を含む。
【0338】
このように、頂点検出部202および単調増減検出部203は、細線の画像が射影された画素において、空間方向Yの画素値の変化が、ガウス分布に類似するという性質を利用して、細線の画像が射影された画素からなる定常領域を検出する。
【0339】
連続性検出部204は、単調増減検出部203から供給された単調増減領域情報で示される、上下方向に並ぶ画素からなる領域のうち、横方向に隣接している画素を含む領域、すなわち、相似した画素値の変化を有し、縦方向に重複している領域を、連続している領域として検出し、頂点情報、および検出された連続している領域を示すデータ定常性情報を出力する。データ定常性情報は、単調増減領域情報、および領域の繋がりを示す情報などを含んでいる。
【0340】
細線が射影された画素において、円弧形状が隣接するように一定の間隔で並ぶので、検出された連続している領域は、細線が射影された画素を含んでいる。
【0341】
検出された連続している領域が、細線が射影された、円弧形状が隣接するように一定の間隔で並ぶ画素を含むので、検出された連続している領域を定常領域とし、連続性検出部204は、検出された連続している領域を示すデータ定常性情報を出力する。
【0342】
すなわち、連続性検出部204は、長さ方向に連続するという、実世界1の細線の画像の定常性から生じた、細線を撮像して得られたデータ3における、円弧形状が隣接するように一定の間隔で並ぶ定常性を利用して、頂点検出部202および単調増減検出部203において検出された領域の候補をさらに絞り込む。
【0343】
図39は、単調増減領域の連続性を検出の処理を説明する図である。
【0344】
図39に示すように、連続性検出部204は、画面の縦方向に1列に並ぶ画素からなる細線領域Fについて、横方向に隣接する画素を含んでいるとき、2つの単調増減領域の間に連続性があるとし、横方向に隣接する画素を含んでいないとき、2つの細線領域Fの間に連続性がないとする。例えば、画面の縦方向に1列に並ぶ画素からなる細線領域F-1は、画面の縦方向に1列に並ぶ画素からなる細線領域F0の画素と横方向に隣接する画素を含んでいるとき、細線領域F0と連続しているとされる。画面の縦方向に1列に並ぶ画素からなる細線領域F0は、画面の縦方向に1列に並ぶ画素からなる細線領域F1の画素と横方向に隣接する画素を含んでいるとき、細線領域F1と連続しているとされる。
【0345】
このように、頂点検出部202乃至連続性検出部204により、画面の上下方向に1列に並ぶ画素であって、細線の画像が射影されたものからなる領域が検出される。
【0346】
頂点検出部202乃至連続性検出部204は、上述したように、画面の上下方向に1列に並ぶ画素であって、細線の画像が射影されたものからなる領域を検出し、さらに、画面の左右方向に1列に並ぶ画素であって、細線の画像が射影されたものからなる領域を検出する。
【0347】
なお、処理の順序は、特に限定されるものではなく、並列に実行するようにしても良いことは当然である。
【0348】
すなわち、頂点検出部202は、画面の左右方向に1列に並ぶ画素を対象として、画面の左側に位置する画素の画素値、および画面の右側に位置する画素の画素値に比較して、より大きい画素値を有する画素を頂点として検出し、検出した頂点の位置を示す頂点情報を単調増減検出部203に供給する。頂点検出部202は、1つの画像、例えば、1フレームの画像から、1または複数の頂点を検出する。
【0349】
例えば、頂点検出部202は、1フレームの画像からまだ注目画素とされていない画素の中から注目画素を選択し、注目画素の画素値と、注目画素の左側の画素の画素値とを比較し、注目画素の画素値と、注目画素の右側の画素の画素値とを比較して、左側の画素の画素値より大きい画素値を有し、右側の画素の画素値より大きい画素値を有する注目画素を検出して、検出された注目画素を頂点とする。頂点検出部202は、検出された頂点を示す頂点情報を単調増減検出部203に供給する。
【0350】
頂点検出部202が、頂点を検出しない場合もある。
【0351】
単調増減検出部203は、頂点検出部202で検出された頂点に対して左右方向に1列に並ぶ画素であって、細線の画像が射影された画素からなる領域の候補を検出検出し、頂点情報と共に、検出した領域を示す単調増減領域情報を連続性検出部204に供給する。
【0352】
より具体的には、単調増減検出部203は、頂点の画素値を基準として、単調減少している画素値を有する画素からなる領域を、細線の画像が射影された画素からなる領域の候補として検出する。
【0353】
例えば、単調増減検出部203は、頂点に対して横に1列の各画素について、各画素の画素値と、左側の画素の画素値との差分、および右側の画素の画素値との差分を求める。そして、単調増減検出部203は、差分の符号が変化する画素を検出することにより、画素値が単調減少している領域を検出する。
【0354】
さらに、単調増減検出部203は、画素値が単調減少している領域から、頂点の画素値の符号を基準として、頂点の画素値の符号と同じ符号の画素値を有する画素からなる領域を、細線の画像が射影された画素からなる領域の候補として検出する。
【0355】
例えば、単調増減検出部203は、各画素の画素値の符号と、左側の画素の画素値の符号または右側の画素の画素値の符号とを比較し、画素値の符号が変化する画素を検出することにより、画素値が単調減少している領域から、頂点と同じ符号の画素値を有する画素からなる領域を検出する。
【0356】
このように、単調増減検出部203は、左右方向に並び、頂点に対して画素値が単調減少し、頂点と同じ符号の画素値を有する画素からなる領域を検出する。
【0357】
単調増減検出部203は、このような単調増減領域からなる細線領域の中から、予め定めた閾値より長い細線領域、すなわち、閾値より多い数の画素を含む細線領域を求める。
【0358】
さらに、このように検出された細線領域の中から、単調増減検出部203は、頂点の画素値、および頂点の上側の画素の画素値、および頂点の下側の画素の画素値を、それぞれ閾値と比較し、頂点の画素値が閾値を超え、頂点の上側の画素の画素値が閾値以下であり、頂点の下側の画素の画素値が閾値以下である頂点が属する細線領域を検出し、検出された細線領域を細線の画像の成分を含む画素からなる領域の候補とする。
【0359】
言い換えれば、頂点の画素値が閾値以下であるか、頂点の上側の画素の画素値が閾値を超えるか、または頂点の下側の画素の画素値が閾値を超える頂点が属する細線領域は、細線の画像の成分を含まないと判定され、細線の画像の成分を含む画素からなる領域の候補から除去される。
【0360】
なお、単調増減検出部203は、背景の画素値を基準として、頂点の画素値と背景の画素値との差分を閾値と比較すると共に、頂点に対して、上下方向に隣接する画素の画素値と背景の画素値との差分を、閾値と比較し、頂点の画素値と背景の画素値との差分が閾値を超え、上下方向に隣接する画素の画素値と背景の画素値との差分が閾値以下である、検出された細線領域を細線の画像の成分を含む画素からなる領域の候補とするようにしてもよい。
【0361】
単調増減検出部203は、頂点を基準として、画素値が単調減少し、画素値の符号が頂点と同じである画素からなる領域であって、その頂点が閾値を超え、頂点の右側の画素の画素値が閾値以下であり、頂点の左側の画素の画素値が閾値以下であるものを示す単調増減領域情報を連続性検出部204に供給する。
【0362】
画面の左右方向に1列に並ぶ画素であって、細線の画像が射影されたものからなる領域を検出する場合において、単調増減領域情報により示される領域に属する画素は、左右方向に並び、細線の画像が射影された画素を含む。すなわち、単調増減領域情報により示される領域は、画面の左右方向に並ぶ1列の画素であって、細線の画像が射影されたものからなる領域を含む。
【0363】
連続性検出部204は、単調増減検出部203から供給された単調増減領域情報で示される、左右方向に並ぶ画素からなる領域のうち、縦方向に隣接している画素を含む領域、すなわち、相似した画素値の変化を有し、横方向に重複している領域を、連続している領域として検出し、頂点情報、および検出された連続している領域を示すデータ定常性情報を出力する。データ定常性情報は、領域の繋がりを示す情報を含んでいる。
【0364】
細線が射影された画素において、円弧形状が隣接するように一定の間隔で並ぶので、検出された連続している領域は、細線が射影された画素を含んでいる。
【0365】
検出された連続している領域が、細線が射影された、円弧形状が隣接するように一定の間隔で並ぶ画素を含むので、検出された連続している領域を定常領域とし、連続性検出部204は、検出された連続している領域を示すデータ定常性情報を出力する。
【0366】
すなわち、連続性検出部204は、長さ方向に連続するという、実世界1の細線の画像の定常性から生じた、細線を撮像して得られたデータ3における、円弧形状が隣接するように一定の間隔で並ぶ定常性を利用して、頂点検出部202および単調増減検出部203において検出された領域の候補をさらに絞り込む。
【0367】
このように、データ定常性検出部101は、入力画像であるデータ3に含まれている定常性を検出することができる。すなわち、データ定常性検出部101は、細線である実世界1の画像がデータ3に射影されることにより生じた、データ3に含まれるデータの定常性を検出することができる。データ定常性検出部101は、データ3から、細線である実世界1の画像が射影された画素からなる領域を検出する。
【0368】
図40は、定常性検出部101における、細線の画像が射影された、定常性を有する領域の検出の他の処理の例を示す図である。
【0369】
定常性検出部101は、図40に示すように、各画素について、隣接する画素との画素値の差分の絶対値を計算する。計算された差分の絶対値は、画素に対応させて、配置される。例えば、図40に示すように、画素値がそれぞれP0、P1、P2である画素が並んでいるとき、定常性検出部101は、差分d0=P0-P1および差分d1=P1-P2を計算する。さらに、定常性検出部101は、差分d0および差分d1の絶対値を算出する。
【0370】
画素値P0、P1、およびP2に含まれている非定常性成分が同一であるとき、差分d0および差分d1には、細線の成分に対応した値のみが設定されることになる。
【0371】
従って、定常性検出部101は、画素に対応させて配置されている差分の絶対値のうち、隣り合う差分の値が同一であるとき、その2つの差分の絶対値に対応する画素(2つの差分の絶対値に挟まれた画素)に細線の成分が含まれていると判定する。
【0372】
定常性検出部101においては、このような、簡便な方法で細線を検出することもできる。
【0373】
図41は、定常性検出の処理を説明するフローチャートである。
【0374】
ステップS201において、非定常成分抽出部201は、入力画像から、細線が射影された部分以外の部分である非定常成分を抽出する。非定常成分抽出部201は、入力画像と共に、抽出された非定常成分を示す非定常成分情報を頂点検出部202および単調増減検出部203に供給する。非定常成分の抽出の処理の詳細は、後述する。
【0375】
ステップS202において、頂点検出部202は、非定常成分抽出部201から供給された非定常成分情報を基に、入力画像から非定常成分を除去し、入力画像に定常成分を含む画素のみを残す。さらに、ステップS202において、頂点検出部202は、頂点を検出する。
【0376】
すなわち、頂点検出部202は、画面の縦方向を基準として、処理を実行する場合、定常成分を含む画素について、各画素の画素値と、上側および下側の画素の画素値とを比較して、上側の画素の画素値および下側の画素の画素値より大きい画素値を有する画素を検出することにより、頂点を検出する。また、ステップS202において、頂点検出部202は、画面の横方向を基準として、処理を実行する場合、定常成分を含む画素について、各画素の画素値と、右側および左側の画素の画素値とを比較して、右側の画素の画素値および左側の画素の画素値より大きい画素値を有する画素を検出することにより、頂点を検出する。
【0377】
頂点検出部202は、検出した頂点を示す頂点情報を単調増減検出部203に供給する。
【0378】
ステップS203において、単調増減検出部203は、非定常成分抽出部201から供給された非定常成分情報を基に、入力画像から非定常成分を除去し、入力画像に定常成分を含む画素のみを残す。さらに、ステップS203において、単調増減検出部203は、頂点検出部202から供給された、頂点の位置を示す頂点情報を基に、頂点に対する単調増減を検出することにより、データの定常性を有する画素からなる領域を検出する。
【0379】
単調増減検出部203は、画面の縦方向を基準として、処理を実行する場合、頂点の画素値、および頂点に対して縦に1列に並ぶ画素の画素値を基に、縦に並ぶ1列の画素であって、1つの細線の画像が射影された画素からなる単調増減を検出することにより、データの定常性を有する画素からなる領域を検出する。すなわち、ステップS203において、単調増減検出部203は、画面の縦方向を基準として、処理を実行する場合、頂点および頂点に対して縦に1列に並ぶ画素について、各画素の画素値と、上側または下側の画素の画素値との差分を求めて、差分の符号が変化する画素を検出する。また、単調増減検出部203は、頂点および頂点に対して縦に1列に並ぶ画素について、各画素の画素値の符号と、その画素の上側または下側の画素の画素値の符号とを比較し、画素値の符号が変化する画素を検出する。さらに、単調増減検出部203は、頂点の画素値、並びに頂点の右側および左側の画素の画素値を、閾値と比較し、頂点の画素値が閾値を超え、右側および左側の画素の画素値が閾値以下である画素からなる領域を検出する。
【0380】
単調増減検出部203は、このように検出された領域を単調増減領域として、単調増減領域を示す単調増減領域情報を連続性検出部204に供給する。
【0381】
また、単調増減検出部203は、画面の横方向を基準として、処理を実行する場合、頂点の画素値、および頂点に対して横に1列に並ぶ画素の画素値を基に、横に並ぶ1列の画素であって、1つの細線の画像が射影された画素からなる単調増減を検出することにより、データの定常性を有する画素からなる領域を検出する。すなわち、ステップS203において、単調増減検出部203は、画面の横方向を基準として、処理を実行する場合、頂点および頂点に対して横に1列に並ぶ画素について、各画素の画素値と、左側または右側の画素の画素値との差分を求めて、差分の符号が変化する画素を検出する。また、単調増減検出部203は、頂点および頂点に対して横に1列に並ぶ画素について、各画素の画素値の符号と、その画素の左側または右側の画素の画素値の符号とを比較し、画素値の符号が変化する画素を検出する。さらに、単調増減検出部203は、頂点の画素値、並びに頂点の上側および下側の画素の画素値を、閾値と比較し、頂点の画素値が閾値を超え、上側および下側の画素の画素値が閾値以下である画素からなる領域を検出する。
【0382】
単調増減検出部203は、このように検出された領域を単調増減領域として、単調増減領域を示す単調増減領域情報を連続性検出部204に供給する。
【0383】
ステップS204において、単調増減検出部203は、全画素の処理が終了したか否かを判定する。例えば、非定常成分抽出部201は、入力画像の1つの画面(例えば、フレームまたはフィールドなど)の全画素について、頂点を検出し、単調増減領域を検出したか否かを判定する。
【0384】
ステップS204において、全画素の処理が終了していない、すなわち、頂点の検出および単調増減領域の検出の処理の対象とされていない画素がまだあると判定された場合、ステップS202に戻り、頂点の検出および単調増減領域の検出の処理の対象とされていない画素から処理の対象となる画素を選択して、頂点の検出および単調増減領域の検出の処理を繰り返す。
【0385】
ステップS204において、全画素の処理が終了した、すなわち、全ての画素を対象として頂点および単調増減領域が検出されたと判定された場合、ステップS205に進み、連続性検出部204は、単調増減領域情報を基に、検出された領域の連続性を検出する。例えば、連続性検出部204は、単調増減領域情報で示される、画面の縦方向に1列に並ぶ画素からなる単調増減領域について、横方向に隣接する画素を含んでいるとき、2つの単調増減領域の間に連続性があるとし、横方向に隣接する画素を含んでいないとき、2つの単調増減領域の間に連続性がないとする。例えば、連続性検出部204は、単調増減領域情報で示される、画面の横方向に1列に並ぶ画素からなる単調増減領域について、縦方向に隣接する画素を含んでいるとき、2つの単調増減領域の間に連続性があるとし、縦方向に隣接する画素を含んでいないとき、2つの単調増減領域の間に連続性がないとする。
【0386】
連続性検出部204は、検出された連続している領域をデータの定常性を有する定常領域とし、頂点の位置および定常領域を示すデータ定常性情報を出力する。データ定常性情報は、領域の繋がりを示す情報を含んでいる。連続性検出部204から出力されるデータ定常性情報は、実世界1の細線の画像が射影された画素からなる、定常領域である細線領域を示す。
【0387】
ステップS206において、定常性方向検出部205は、全画素の処理が終了したか否かを判定する。すなわち、定常性方向検出部205は、入力画像の所定のフレームの全画素について、領域の連続性を検出したか否かを判定する。
【0388】
ステップS206において、全画素の処理が終了していない、すなわち、領域の連続性の検出の処理の対象とされていない画素がまだあると判定された場合、ステップS205に戻り、領域の連続性の検出の処理の対象とされていない画素から処理の対象となる画素を選択して、領域の連続性の検出の処理を繰り返す。
【0389】
ステップS206において、全画素の処理が終了した、すなわち、全ての画素を対象として領域の連続性が検出されたと判定された場合、処理は終了する。
【0390】
このように、入力画像であるデータ3に含まれている定常性が検出される。すなわち、細線である実世界1の画像がデータ3に射影されることにより生じた、データ3に含まれるデータの定常性が検出され、データ3から、細線である実世界1の画像が射影された画素からなる、データの定常性を有する領域が検出される。
【0391】
なお、図30で構成が示されるデータ定常性検出部101は、データ3のフレームから検出されたデータの定常性を有する領域を基に、時間方向のデータの定常性を検出することができる。
【0392】
例えば、図42に示すように、連続性検出部204は、フレーム#nにおいて、検出されたデータの定常性を有する領域、フレーム#n-1において、検出されたデータの定常性を有する領域、およびフレーム#n+1において、検出されたデータの定常性を有する領域を基に、領域の端部を結ぶことにより、時間方向のデータの定常性を検出する。
【0393】
フレーム#n-1は、フレーム#nに対して時間的に前のフレームであり、フレーム#n+1は、フレーム#nに対して時間的に後のフレームである。すなわち、フレーム#n-1、フレーム#n、およびフレーム#n+1は、フレーム#n-1、フレーム#n、およびフレーム#n+1の順で表示される。
【0394】
より具体的には、図42において、Gは、フレーム#nにおいて、検出されたデータの定常性を有する領域、フレーム#n-1において、検出されたデータの定常性を有する領域、およびフレーム#n+1において、検出されたデータの定常性を有する領域のそれぞれの一端を結ぶことにより得られた動きベクトルを示し、G’は、検出されたデータの定常性を有する領域のそれぞれの他の一端を結ぶことにより得られた動きベクトルを示す。動きベクトルGおよび動きベクトルG’は、時間方向のデータの定常性の一例である。
【0395】
さらに、図30で構成が示されるデータ定常性検出部101は、データの定常性を有する領域の長さを示す情報を、データ定常性情報として出力することができる。
【0396】
図43は、データの定常性を有しない画像データの部分である非定常成分を平面で近似して、非定常成分を抽出する、非定常成分抽出部201の構成を示すブロック図である。
【0397】
図43に構成を示す非定常成分抽出部201は、入力画像から所定の数の画素でなるブロックを抽出し、ブロックと平面で示される値との誤差が所定の閾値未満になるように、ブロックを平面で近似して、非定常成分を抽出する。
【0398】
入力画像は、ブロック抽出部221に供給されるとともに、そのまま出力される。
【0399】
ブロック抽出部221は、入力画像から、所定の数の画素からなるブロックを抽出する。例えば、ブロック抽出部221は、7×7の画素からなるブロックを抽出し、平面近似部222に供給する。例えば、ブロック抽出部221は、抽出されるブロックの中心となる画素をラスタスキャン順に移動させ、順次、入力画像からブロックを抽出する。
【0400】
平面近似部222は、ブロックに含まれる画素の画素値を所定の平面で近似する。例えば、平面近似部222は、式(32)で表される平面でブロックに含まれる画素の画素値を近似する。
【0401】
【数32】
Figure 0004423536
・・・(32)
【0402】
式(32)において、xは、画素の画面上の一方の方向(空間方向X)の位置を示し、yは、画素の画面上の他の一方の方向(空間方向Y)の位置を示す。zは、平面で示される近似値を示す。aは、平面の空間方向Xの傾きを示し、bは、平面の空間方向Yの傾きを示す。式(32)において、cは、平面のオフセット(切片)を示す。
【0403】
例えば、平面近似部222は、回帰の処理により、傾きa、傾きb、およびオフセットcを求めることにより、式(32)で表される平面で、ブロックに含まれる画素の画素値を近似する。平面近似部222は、棄却を伴う回帰の処理により、傾きa、傾きb、およびオフセットcを求めることにより、式(32)で表される平面で、ブロックに含まれる画素の画素値を近似する。
【0404】
例えば、平面近似部222は、最小自乗法により、ブロックの画素の画素値に対して、誤差が最小となる式(32)で表される平面を求めることにより、平面でブロックに含まれる画素の画素値を近似する。
【0405】
なお、平面近似部222は、式(32)で表される平面でブロックを近似すると説明したが、式(32)で表される平面に限らず、より高い自由度をもった関数、例えば、n次の多項式で表される面でブロックを近似するようにしてもよい。
【0406】
繰り返し判定部223は、ブロックの画素値を近似した平面で示される近似値と、ブロックの対応する画素の画素値との誤差を計算する。式(33)は、ブロックの画素値を近似した平面で示される近似値と、ブロックの対応する画素の画素値ziとの差分である誤差eiを示す式である。
【0407】
【数33】
Figure 0004423536
・・・(33)
【0408】
式(33)において、zハット(zに^を付した文字をzハットと記述する。以下、本明細書において、同様に記載する。)は、ブロックの画素値を近似した平面で示される近似値を示し、aハットは、ブロックの画素値を近似した平面の空間方向Xの傾きを示し、bハットは、ブロックの画素値を近似した平面の空間方向Yの傾きを示す。式(33)において、cハットは、ブロックの画素値を近似した平面のオフセット(切片)を示す。
【0409】
繰り返し判定部223は、式(33)で示される、近似値とブロックの対応する画素の画素値との誤差eiが、最も大きい画素を棄却する。このようにすることで、細線が射影された画素、すなわち定常性を有する画素が棄却されることになる。繰り返し判定部223は、棄却した画素を示す棄却情報を平面近似部222に供給する。
【0410】
さらに、繰り返し判定部223は、標準誤差を算出して、標準誤差が、予め定めた近似終了判定用の閾値以上であり、ブロックの画素のうち、半分以上の画素が棄却されていないとき、繰り返し判定部223は、平面近似部222に、ブロックに含まれる画素のうち、棄却された画素を除いた画素を対象として、平面による近似の処理を繰り返させる。
【0411】
定常性を有する画素が棄却されるので、棄却された画素を除いた画素を対象として平面で近似をすることにより、平面は、非定常成分を近似することになる。
【0412】
繰り返し判定部223は、標準誤差が、近似終了判定用の閾値未満であるとき、または、ブロックの画素のうち、半分以上の画素が棄却されたとき、平面による近似を終了する。
【0413】
5×5の画素からなるブロックについて、標準誤差esは、例えば、式(34)で算出される。
【0414】
【数34】
Figure 0004423536
・・・(34)
ここで、nは、画素の数である。
【0415】
なお、繰り返し判定部223は、標準誤差に限らず、ブロックに含まれる全ての画素についての誤差の2乗の和を算出して、以下の処理を実行するようにしてもよい。
【0416】
ここで、ラスタスキャン方向に1画素ずつずれたブロックを平面で近似するとき、図44に示すように、図中黒丸で示す、定常性を有する画素、すなわち細線の成分を含む画素は、複数回棄却されることになる。
【0417】
繰り返し判定部223は、平面による近似を終了したとき、ブロックの画素値を近似した平面を示す情報(式(32)の平面の傾きおよび切片)を、非定常成分情報として出力する。
【0418】
なお、繰り返し判定部223は、画素毎の棄却された回数と予め定めた閾値とを比較して、棄却された回数が閾値以上である画素を定常成分を含む画素であるとして、定常成分を含む画素を示す情報を定常成分情報として出力するようにしてもよい。この場合、頂点検出部202乃至定常性方向検出部205は、定常成分情報で示される、定常成分を含む画素を対象として、それぞれの処理を実行する。
【0419】
棄却された回数、ブロックの画素の画素値を近似する平面の空間方向Xの傾き、ブロックの画素の画素値を近似する平面の空間方向Yの傾き、ブロックの画素の画素値を近似する平面で示される近似値、および誤差eiは、入力画像の特徴量としても利用することができる。
【0420】
図45は、ステップS201に対応する、図43に構成を示す非定常成分抽出部201による、非定常成分の抽出の処理を説明するフローチャートである。
【0421】
ステップS221において、ブロック抽出部221は、入力画素から、所定の数の画素からなるブロックを抽出し、抽出したブロックを平面近似部222に供給する。例えば、ブロック抽出部221は、入力画素から、まだ、選択されていない画素のうち、1つの画素を選択し、選択された画素を中心とする7×7の画素からなるブロックを抽出する。例えば、ブロック抽出部221は、ラスタスキャン順に画素を選択することができる。
【0422】
ステップS222において、平面近似部222は、抽出されたブロックを平面で近似する。平面近似部222は、例えば、回帰の処理により、抽出されたブロックの画素の画素値を、平面で近似する。例えば、平面近似部222は、回帰の処理により、抽出されたブロックの画素のうち、棄却された画素を除いた画素の画素値を、平面で近似する。ステップS223において、繰り返し判定部223は、繰り返し判定を実行する。例えば、ブロックの画素の画素値と近似した平面の近似値とから標準誤差を算出し、棄却された画素の数をカウントすることにより、繰り返し判定を実行する。
【0423】
ステップS224において、繰り返し判定部223は、標準誤差が閾値以上であるか否かを判定し、標準誤差が閾値以上であると判定された場合、ステップS225に進む。
【0424】
なお、ステップS224において、繰り返し判定部223は、ブロックの画素のうち、半分以上の画素が棄却されたか否か、および標準誤差が閾値以上であるか否かを判定し、ブロックの画素のうち、半分以上の画素が棄却されておらず、標準誤差が閾値以上であると判定された場合、ステップS225に進むようにしてもよい。
【0425】
ステップS225において、繰り返し判定部223は、ブロックの画素毎に、画素の画素値と近似した平面の近似値との誤差を算出し、誤差が最も大きい画素を棄却し、平面近似部222に通知する。手続きは、ステップS222に戻り、棄却された画素を除いた、ブロックの画素を対象として、平面による近似の処理および繰り返し判定の処理が繰り返される。
【0426】
ステップS225において、ラスタスキャン方向に1画素ずつずれたブロックがステップS221の処理で抽出される場合、図44に示すように、細線の成分を含む画素(図中の黒丸で示す)は、複数回棄却されることになる。
【0427】
ステップS224において、標準誤差が閾値以上でないと判定された場合、ブロックが平面で近似されたので、ステップS226に進む。
【0428】
なお、ステップS224において、繰り返し判定部223は、ブロックの画素のうち、半分以上の画素が棄却されたか否か、および標準誤差が閾値以上であるか否かを判定し、ブロックの画素のうち、半分以上の画素が棄却されたか、または標準誤差が閾値以上でないと判定された場合、ステップS225に進むようにしてもよい。
【0429】
ステップS226において、繰り返し判定部223は、ブロックの画素の画素値を近似する平面の傾きおよび切片を、非定常成分情報として出力する。
【0430】
ステップS227において、ブロック抽出部221は、入力画像の1つの画面の全画素について処理を終了したか否かを判定し、まだ処理の対象となってない画素があると判定された場合、ステップS221に戻り、まだ処理の対象となっていない画素からブロックを抽出して、上述した処理を繰り返す。
【0431】
ステップS227において、入力画像の1つの画面の全画素について、処理を終了したと判定された場合、処理は終了する。
【0432】
このように、図43に構成を示す非定常成分抽出部201は、入力画像から非定常成分を抽出することができる。非定常成分抽出部201が入力画像の非定常成分を抽出するので、頂点検出部202および単調増減検出部203は、入力画像と、非定常成分抽出部201で抽出された非定常成分との差分を求めることにより、定常成分を含む差分を対象として処理を実行することができる。
【0433】
なお、平面による近似の処理において算出される、棄却した場合の標準誤差、棄却しない場合の標準誤差、画素の棄却された回数、平面の空間方向Xの傾き(式(32)におけるaハット)、平面の空間方向Yの傾き(式(32)におけるbハット)、平面で置き換えたときのレベル(式(32)におけるcハット)、および入力画像の画素値と平面で示される近似値との差分は、特徴量として利用することができる。
【0434】
図46は、ステップS201に対応する非定常成分の抽出の処理に代わる、図43に構成を示す非定常成分抽出部201による、定常成分の抽出の処理を説明するフローチャートである。ステップS241乃至ステップS245の処理は、ステップS221乃至ステップS225の処理と同様なので、その説明は省略する。
【0435】
ステップS246において、繰り返し判定部223は、平面で示される近似値と入力画像の画素値との差分を、入力画像の定常成分として出力する。すなわち、繰り返し判定部223は、平面による近似値と、真値である画素値との差分を出力する。
【0436】
なお、繰り返し判定部223は、平面で示される近似値と入力画像の画素値との差分が、所定の閾値以上である画素の画素値を、入力画像の定常成分として出力するようにしてもよい。
【0437】
ステップS247の処理は、ステップS227の処理と同様なので、その説明は省略する。
【0438】
平面が非定常成分を近似しているので、非定常成分抽出部201は、入力画像の各画素の画素値から、画素値を近似する平面で示される近似値を引き算することにより、入力画像から非定常成分を除去することができる。この場合、頂点検出部202乃至連続性検出部204は、入力画像の定常成分、すなわち細線の画像が射影された値のみを処理の対象とすることができ、頂点検出部202乃至連続性検出部204における処理がより容易になる。
【0439】
図47は、ステップS201に対応する非定常成分の抽出の処理に代わる、図43に構成を示す非定常成分抽出部201による、定常成分の抽出の他の処理を説明するフローチャートである。ステップS261乃至ステップS265の処理は、ステップS221乃至ステップS225の処理と同様なので、その説明は省略する。
【0440】
ステップS266において、繰り返し判定部223は、画素毎の、棄却の回数を記憶し、ステップS262に戻り、処理を繰り返す。
【0441】
ステップS264において、標準誤差が閾値以上でないと判定された場合、ブロックが平面で近似されたので、ステップS267に進み、繰り返し判定部223は、入力画像の1つの画面の全画素について処理を終了したか否かを判定し、まだ処理の対象となってない画素があると判定された場合、ステップS261に戻り、まだ処理の対象となっていない画素についてブロックを抽出して、上述した処理を繰り返す。
【0442】
ステップS267において、入力画像の1つの画面の全画素について、処理を終了したと判定された場合、ステップS268に進み、繰り返し判定部223は、まだ選択されていない画素から1つの画素を選択し、選択された画素について、棄却の回数が、閾値以上であるか否かを判定する。例えば、繰り返し判定部223は、ステップS268において、選択された画素について、棄却の回数が、予め記憶している閾値以上であるか否かを判定する。
【0443】
ステップS268において、選択された画素について、棄却の回数が、閾値以上であると判定された場合、選択された画素が定常成分を含むので、ステップS269に進み、繰り返し判定部223は、選択された画素の画素値(入力画像における画素値)を入力画像の定常成分として出力し、ステップS270に進む。
【0444】
ステップS268において、選択された画素について、棄却の回数が、閾値以上でないと判定された場合、選択された画素が定常成分を含まないので、ステップS269の処理をスキップして、手続きは、ステップS270に進む。すなわち、棄却の回数が、閾値以上でないと判定された画素は、画素値が出力されない。
【0445】
なお、棄却の回数が、閾値以上でないと判定された画素について、繰り返し判定部223は、0を設定した画素値を出力するようにしてもよい。
【0446】
ステップS270において、繰り返し判定部223は、入力画像の1つの画面の全画素について、棄却の回数が閾値以上であるか否かの判定の処理を終了したか否かを判定し、全画素について処理を終了していないと判定された場合、まだ処理の対象となってない画素があるので、ステップS268に戻り、まだ処理の対象となっていない画素から1つの画素を選択して、上述した処理を繰り返す。
【0447】
ステップS270において、入力画像の1つの画面の全画素について処理を終了したと判定された場合、処理は終了する。
【0448】
このように、非定常成分抽出部201は、定常成分情報として、入力画像の画素のうち、定常成分を含む画素の画素値を出力することができる。すなわち、非定常成分抽出部201は、入力画像の画素のうち、細線の画像の成分を含む画素の画素値を出力することができる。
【0449】
図48は、ステップS201に対応する非定常成分の抽出の処理に代わる、図43に構成を示す非定常成分抽出部201による、定常成分の抽出のさらに他の処理を説明するフローチャートである。ステップS281乃至ステップS288の処理は、ステップS261乃至ステップS268の処理と同様なので、その説明は省略する。
【0450】
ステップS289において、繰り返し判定部223は、平面で示される近似値と、選択された画素の画素値との差分を入力画像の定常成分として出力する。すなわち、繰り返し判定部223は、入力画像から非定常成分を除去した画像を定常性情報として出力する。
【0451】
ステップS290の処理は、ステップS270の処理と同様なので、その説明は省略する。
【0452】
このように、非定常成分抽出部201は、入力画像から非定常成分を除去した画像を定常性情報として出力することができる。
【0453】
以上のように、現実世界の光信号が射影され、現実世界の光信号の定常性の一部が欠落した、第1の画像データの複数の画素の画素値の不連続部を検出し、検出された不連続部からデータの定常性を検出し、検出されたデータの定常性を基に、現実世界の光信号の定常性を推定することにより光信号を推定し、推定された光信号を第2の画像データに変換するようにした場合、現実世界の事象に対して、より正確で、より精度の高い処理結果を得ることができるようになる。
【0454】
図49は、データ定常性検出部101の他の構成を示すブロック図である。
【0455】
図49に構成を示すデータ定常性検出部101においては、注目している画素である注目画素について、入力画像の空間方向に対する画素値の変化、すなわち入力画像の空間方向のアクティビティが検出され、検出されたアクティビティに応じて、注目画素および基準軸を基準とした角度毎に、垂直方向に1列または水平方向に1列の所定の数の画素からなる画素の組が、複数抽出され、抽出された画素の組の相関が検出され、相関に基づいて、入力画像における、基準軸を基準としたデータの定常性の角度が検出される。
【0456】
データの定常性の角度とは、基準軸と、データ3が有している、一定の特徴が繰り返し現れる所定の次元の方向とがなす角度をいう。一定の特徴が繰り返し現れるとは、例えば、データ3における位置の変化に対する値の変化、すなわち断面形状が同じである場合などをいう。
【0457】
基準軸は、例えば、空間方向Xを示す軸(画面の水平方向)、または空間方向Yを示す軸(画面の垂直方向)などとすることができる。
【0458】
入力画像は、アクティビティ検出部401およびデータ選択部402に供給される。
【0459】
アクティビティ検出部401は、入力画像の空間方向に対する画素値の変化、すなわち空間方向のアクティビティを検出して、検出した結果を示すアクティビティ情報をデータ選択部402および定常方向導出部404に供給する。
【0460】
例えば、アクティビティ検出部401は、画面の水平方向に対する画素値の変化、および画面の垂直方向に対する画素値の変化を検出し、検出された水平方向に対する画素値の変化および垂直方向に対する画素値の変化を比較することにより、垂直方向に対する画素値の変化に比較して、水平方向に対する画素値の変化が大きいか、または水平方向に対する画素値の変化に比較して、垂直方向に対する画素値の変化が大きいかを検出する。
【0461】
アクティビティ検出部401は、検出の結果である、垂直方向に対する画素値の変化に比較して、水平方向に対する画素値の変化が大きいことを示すか、または水平方向に対する画素値の変化に比較して、垂直方向に対する画素値の変化が大きいことを示すアクティビティ情報をデータ選択部402および定常方向導出部404に供給する。
【0462】
垂直方向に対する画素値の変化に比較して、水平方向に対する画素値の変化が大きい場合、例えば、図50で示されるように、垂直方向に1列の画素に円弧形状(かまぼこ型)またはつめ形状が形成され、円弧形状またはつめ形状が垂直により近い方向に繰り返して形成されている。すなわち、垂直方向に対する画素値の変化に比較して、水平方向に対する画素値の変化が大きい場合、基準軸を空間方向Xを示す軸とすると、入力画像における、基準軸を基準としたデータの定常性の角度は、45度乃至90度のいずれかの値である。
【0463】
水平方向に対する画素値の変化に比較して、垂直方向に対する画素値の変化が大きい場合、例えば、水平方向に1列の画素に円弧形状またはつめ形状が形成され、円弧形状またはつめ形状が水平方向により近い方向に繰り返して形成されている。すなわち、水平方向に対する画素値の変化に比較して、垂直方向に対する画素値の変化が大きい場合、基準軸を空間方向Xを示す軸とすると、入力画像における、基準軸を基準としたデータの定常性の角度は、0度乃至45度のいずれかの値である。
【0464】
例えば、アクティビティ検出部401は、図51で示される、注目画素を中心とした3×3の9つの画素からなるブロックを入力画像から抽出する。アクティビティ検出部401は、縦に隣接する画素についての画素値の差分の和、および横に隣接する画素についての画素値の差分の和を算出する。横に隣接する画素についての画素値の差分の和hdiffは、式(35)で求められる。
【0465】
【数35】
Figure 0004423536
・・・(35)
【0466】
同様に、縦に隣接する画素についての画素値の差分の和vdiffは、式(36)で求められる。
【0467】
【数36】
Figure 0004423536
・・・(36)
【0468】
式(35)および式(36)において、Pは、画素値を示し、iは、画素の横方向の位置を示し、jは、画素の縦方向の位置を示す。
【0469】
アクティビティ検出部401は、算出された横に隣接する画素についての画素値の差分の和hdiffおよび縦に隣接する画素についての画素値の差分の和vdiffを比較して、入力画像における、基準軸を基準としたデータの定常性の角度の範囲を判定するようにしてもよい。すなわち、この場合、アクティビティ検出部401は、空間方向の位置に対する画素値の変化で示される形状が水平方向に繰り返して形成されているか、垂直方向に繰り返して形成されているかを判定する。
【0470】
例えば、横に1列の画素上に形成された円弧についての横方向の画素値の変化は、縦方向の画素値の変化に比較して大きく、横に1列の画素上に形成された円弧についての縦方向の画素値の変化は、横方向の画素値の変化に比較して大きく、データの定常性の方向、すなわち、データ3である入力画像が有している、一定の特徴の所定の次元の方向の変化は、データの定常性に直交する方向の変化に比較して小さいと言える。言い換えれば、データの定常性の方向の差分に比較して、データの定常性の方向に直交する方向(以下、非定常方向とも称する)の差分は大きい。
【0471】
例えば、図52に示すように、アクティビティ検出部401は、算出された横に隣接する画素についての画素値の差分の和hdiffおよび縦に隣接する画素についての画素値の差分の和vdiffを比較して、横に隣接する画素についての画素値の差分の和hdiffが大きい場合、基準軸を基準としたデータの定常性の角度が、45度乃至135度のいずれかの値であると判定し、縦に隣接する画素についての画素値の差分の和vdiffが大きい場合、基準軸を基準としたデータの定常性の角度が、0度乃至45度のいずれかの値、または135度乃至180度のいずれかの値であると判定する。
【0472】
例えば、アクティビティ検出部401は、判定の結果を示すアクティビティ情報をデータ選択部402および定常方向導出部404に供給する。
【0473】
なお、アクティビティ検出部401は、5×5の25の画素からなるブロック、または7×7の49の画素からなるブロックなど、任意の大きさのブロックを抽出して、アクティビティを検出することができる。
【0474】
データ選択部402は、入力画像の画素から注目画素を順に選択し、アクティビティ検出部401から供給されたアクティビティ情報を基に、注目画素および基準軸を基準とした角度毎に、垂直方向に1列または水平方向に1列の所定の数の画素からなる画素の組を、複数抽出する。
【0475】
例えば、アクティビティ情報が垂直方向に対する画素値の変化に比較して、水平方向に対する画素値の変化が大きいことを示しているとき、データの定常性の角度が、45度乃至135度のいずれかの値なので、データ選択部402は、注目画素および基準軸を基準とした45度乃至135度の範囲の所定の角度毎に、垂直方向に1列の所定の数の画素からなる画素の組を、複数抽出する。
【0476】
アクティビティ情報が水平方向に対する画素値の変化に比較して、垂直方向に対する画素値の変化が大きいことを示しているとき、データの定常性の角度が、0度乃至45度または135度乃至180度のいずれかの値なので、データ選択部402は、注目画素および基準軸を基準とした0度乃至45度または135度乃至180度の範囲の所定の角度毎に、水平方向に1列の所定の数の画素からなる画素の組を、複数抽出する。
【0477】
また、例えば、データの定常性の角度が45度乃至135度のいずれかの値であることを、アクティビティ情報が示しているとき、データ選択部402は、注目画素および基準軸を基準とした45度乃至135度の範囲の所定の角度毎に、垂直方向に1列の所定の数の画素からなる画素の組を、複数抽出する。
【0478】
データの定常性の角度が0度乃至45度または135度乃至180度のいずれかの値であることを、アクティビティ情報が示しているとき、データ選択部402は、注目画素および基準軸を基準とした0度乃至45度または135度乃至180度の範囲の所定の角度毎に、水平方向に1列の所定の数の画素からなる画素の組を、複数抽出する。
【0479】
データ選択部402は、抽出した画素からなる複数の組を誤差推定部403に供給する。
【0480】
誤差推定部403は、抽出した画素からなる複数の組について、角度毎に、画素の組の相関を検出する。
【0481】
例えば、誤差推定部403は、1つの角度に対応する、垂直方向に1列の所定の数の画素からなる画素の複数の組について、画素の組における対応する位置の画素の画素値の相関を検出する。誤差推定部403は、1つの角度に対応する、水平方向に1列の所定の数の画素からなる画素の複数の組について、組における対応する位置の画素の画素値の相関を検出する。
【0482】
誤差推定部403は、検出した相関を示す相関情報を定常方向導出部404に供給する。誤差推定部403は、相関を示す値として、データ選択部402から供給された、注目画素を含む組の画素の画素値と、他の組における対応する位置の画素の画素値の差分の絶対値の和を算出し、差分の絶対値の和を相関情報として定常方向導出部404に供給する。
【0483】
定常方向導出部404は、誤差推定部403から供給された相関情報に基いて、欠落した実世界1の光信号の定常性に対応する、入力画像における、基準軸を基準としたデータの定常性の角度を検出し、角度を示すデータ定常性情報を出力する。例えば、定常方向導出部404は、誤差推定部403から供給された相関情報に基いて、データの定常性の角度として、最も相関の強い画素の組に対する角度を検出し、検出された最も相関の強い画素の組に対する角度を示すデータ定常性情報を出力する。
【0484】
以下の説明において、適宜、0度乃至90度の範囲(いわゆる第1象限)のデータの定常性の角度を検出するものとして説明する。
【0485】
図53は、図49に示すデータ定常性検出部101のより詳細な構成を示すブロック図である。
【0486】
データ選択部402は、画素選択部411−1乃至画素選択部411−Lを含む。誤差推定部403は、推定誤差算出部412−1乃至推定誤差算出部412−Lを含む。定常方向導出部404は、最小誤差角度選択部413を含む。
【0487】
まず、アクティビティ情報で示される、データの定常性の角度が45度乃至135度のいずれかの値であるときの画素選択部411−1乃至画素選択部411−Lの処理を説明する。
【0488】
画素選択部411−1乃至画素選択部411−Lは、空間方向Xを示す軸を基準軸として、注目画素を通る、それぞれ異なる所定の角度の直線を設定する。画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列に属する画素であって、注目画素の上側の所定の数の画素、および注目画素の下側の所定の数の画素、並びに注目画素を画素の組として選択する。
【0489】
例えば、図54で示されるように、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列に属する画素から、注目画素を中心として9つの画素を画素の組として選択する。
【0490】
図54において、マス目状の1つの四角(1つのマス目)は、1つの画素を示す。図54において、中央に示す丸は、注目画素を示す。
【0491】
画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、左側の縦に1列の画素の列に属する画素であって、それぞれに設定された直線に最も近い位置の画素を選択する。図54において、注目画素の左下側の丸は、選択された画素の例を示す。そして、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、左側の縦に1列の画素の列に属する画素であって、選択された画素の上側の所定の数の画素、および選択された画素の下側の所定の数の画素、並びに選択された画素を画素の組として選択する。
【0492】
例えば、図54で示されるように、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、左側の縦に1列の画素の列に属する画素から、直線に最も近い位置の画素を中心として9つの画素を画素の組として選択する。
【0493】
画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、左側に2つめの縦に1列の画素の列に属する画素であって、それぞれに設定された直線に最も近い位置の画素を選択する。図54において、最も左側の丸は、選択された画素の例を示す。そして、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、左側に2つめの縦に1列の画素の列に属する画素であって、選択された画素の上側の所定の数の画素、および選択された画素の下側の所定の数の画素、並びに選択された画素を画素の組として選択する。
【0494】
例えば、図54で示されるように、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、左側に2つめの縦に1列の画素の列に属する画素から、直線に最も近い位置の画素を中心として9つの画素を画素の組として選択する。
【0495】
画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、右側の縦に1列の画素の列に属する画素であって、それぞれに設定された直線に最も近い位置の画素を選択する。図54において、注目画素の右上側の丸は、選択された画素の例を示す。そして、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、右側の縦に1列の画素の列に属する画素であって、選択された画素の上側の所定の数の画素、および選択された画素の下側の所定の数の画素、並びに選択された画素を画素の組として選択する。
【0496】
例えば、図54で示されるように、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、右側の縦に1列の画素の列に属する画素から、直線に最も近い位置の画素を中心として9つの画素を画素の組として選択する。
【0497】
画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、右側に2つめの縦に1列の画素の列に属する画素であって、それぞれに設定された直線に最も近い位置の画素を選択する。図54において、最も右側の丸は、このように選択された画素の例を示す。そして、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、右側に2つめの縦に1列の画素の列に属する画素であって、選択された画素の上側の所定の数の画素、および選択された画素の下側の所定の数の画素、並びに選択された画素を画素の組として選択する。
【0498】
例えば、図54で示されるように、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する縦に1列の画素の列の、右側に2つめの縦に1列の画素の列に属する画素から、直線に最も近い位置の画素を中心として9つの画素を画素の組として選択する。
【0499】
このように、画素選択部411−1乃至画素選択部411−Lは、それぞれ、画素の組を5つ選択する。
【0500】
画素選択部411−1乃至画素選択部411−Lは、互いに異なる角度(に設定された直線)についての、画素の組を選択する。例えば、画素選択部411−1は、45度についての、画素の組を選択し、画素選択部411−2は、47.5度についての、画素の組を選択し、画素選択部411−3は、50度についての、画素の組を選択する。画素選択部411−1乃至画素選択部411−Lは、52.5度から135度までの、2.5度毎の角度についての、画素の組を選択する。
【0501】
なお、画素の組の数は、例えば、3つ、または7つなど、任意の数とすることができる。また、1つの組として選択された画素の数は、例えば、5つ、または13など、任意の数とすることができる。
【0502】
なお、画素選択部411−1乃至画素選択部411−Lは、縦方向に所定の範囲の画素から、画素の組を選択するようにすることができる。例えば、画素選択部411−1乃至画素選択部411−Lは、縦方向に121個の画素(注目画素に対して、上方向に60画素、下方向に60画素)から、画素の組を選択する。この場合、データ定常性検出部101は、空間方向Xを示す軸に対して、88.09度まで、データの定常性の角度を検出することができる。
【0503】
画素選択部411−1は、選択した画素の組を推定誤差算出部412−1に供給し、画素選択部411−2は、選択した画素の組を推定誤差算出部412−2に供給する。同様に、画素選択部411−3乃至画素選択部411−Lのそれぞれは、選択した画素の組を推定誤差算出部412−3乃至推定誤差算出部412−Lのそれぞれに供給する。
【0504】
推定誤差算出部412−1乃至推定誤差算出部412−Lは、画素選択部411−1乃至画素選択部411−Lのいずれかから供給された、複数の組における対応する位置の画素の画素値の相関を検出する。例えば、推定誤差算出部412−1乃至推定誤差算出部412−Lは、相関を示す値として、画素選択部411−1乃至画素選択部411−Lのいずれかから供給された、注目画素を含む組の画素の画素値と、他の組における対応する位置の画素の画素値の差分の絶対値の和を算出する。
【0505】
より具体的には、推定誤差算出部412−1乃至推定誤差算出部412−Lは、画素選択部411−1乃至画素選択部411−Lのいずれかから供給された、注目画素を含む組の画素の画素値と、注目画素の左側の縦に1列の画素の列に属する画素からなる組の画素の画素値とを基に、最も上の画素の画素値の差分を算出し、上から2番目の画素の画素値の差分を算出するように、上の画素から順に画素値の差分の絶対値を算出して、さらに、算出された差分の絶対値の和を算出する。推定誤差算出部412−1乃至推定誤差算出部412−Lは、画素選択部411−1乃至画素選択部411−Lのいずれかから供給された、注目画素を含む組の画素の画素値と、注目画素の左に2つめの縦に1列の画素の列に属する画素からなる組の画素の画素値とを基に、上の画素から順に画素値の差分の絶対値を算出して、算出された差分の絶対値の和を算出する。
【0506】
そして、推定誤差算出部412−1乃至推定誤差算出部412−Lは、画素選択部411−1乃至画素選択部411−Lのいずれかから供給された、注目画素を含む組の画素の画素値と、注目画素の右側の縦に1列の画素の列に属する画素からなる組の画素の画素値とを基に、最も上の画素の画素値の差分を算出し、上から2番目の画素の画素値の差分を算出するように、上の画素から順に画素値の差分の絶対値を算出して、さらに、算出された差分の絶対値の和を算出する。推定誤差算出部412−1乃至推定誤差算出部412−Lは、画素選択部411−1乃至画素選択部411−Lのいずれかから供給された、注目画素を含む組の画素の画素値と、注目画素の右に2つめの縦に1列の画素の列に属する画素からなる組の画素の画素値とを基に、上の画素から順に画素値の差分の絶対値を算出して、算出された差分の絶対値の和を算出する。
【0507】
推定誤差算出部412−1乃至推定誤差算出部412−Lは、このように算出された画素値の差分の絶対値の和を全て加算して、画素値の差分の絶対値の総和を算出する。
【0508】
推定誤差算出部412−1乃至推定誤差算出部412−Lは、検出された相関を示す情報を、最小誤差角度選択部413に供給する。例えば、推定誤差算出部412−1乃至推定誤差算出部412−Lは、算出された画素値の差分の絶対値の総和を最小誤差角度選択部413に供給する。
【0509】
なお、推定誤差算出部412−1乃至推定誤差算出部412−Lは、画素値の差分の絶対値の和に限らず、画素値の差分の自乗の和、または画素値を基にした相関係数など他の値を相関値として算出するようにすることができる。
【0510】
最小誤差角度選択部413は、互いに異なる角度についての、推定誤差算出部412−1乃至推定誤差算出部412−Lにおいて検出された相関に基いて、欠落した実世界1の光信号である画像の定常性に対応する、入力画像における、基準軸を基準としたデータの定常性の角度を検出する。すなわち、最小誤差角度選択部413は、互いに異なる角度についての、推定誤差算出部412−1乃至推定誤差算出部412−Lにおいて検出された相関に基いて、最も強い相関を選択し、選択された相関が検出された角度を、基準軸を基準としたデータの定常性の角度とすることにより、入力画像における、基準軸を基準としたデータの定常性の角度を検出する。
【0511】
例えば、最小誤差角度選択部413は、推定誤差算出部412−1乃至推定誤差算出部412−Lから供給された、画素値の差分の絶対値の総和のうち、最小の総和を選択する。最小誤差角度選択部413は、選択された総和が算出された画素の組について、注目画素に対して、左側に2つめの縦に1列の画素の列に属する画素であって、直線に最も近い位置の画素の位置、および、注目画素に対して、右側に2つめの縦に1列の画素の列に属する画素であって、直線に最も近い位置の画素の位置を参照する。
【0512】
図54で示されるように、最小誤差角度選択部413は、注目画素の位置に対する、参照する画素の位置の縦方向の距離Sを求める。最小誤差角度選択部413は、図55で示すように、式(37)から、欠落した実世界1の光信号の定常性に対応する、画像データである入力画像における、基準軸である空間方向Xを示す軸を基準としたデータの定常性の角度θを検出する。
【0513】
【数37】
Figure 0004423536
・・・(37)
【0514】
次に、アクティビティ情報で示される、データの定常性の角度が0度乃至45度および135度乃至180度のいずれかの値であるときの画素選択部411−1乃至画素選択部411−Lの処理を説明する。
【0515】
画素選択部411−1乃至画素選択部411−Lは、空間方向Xを示す軸を基準軸として、注目画素を通る、所定の角度の直線を設定し、注目画素が属する横に1列の画素の列に属する画素であって、注目画素の上側の所定の数の画素、および注目画素の下側の所定の数の画素、並びに注目画素を画素の組として選択する。
【0516】
画素選択部411−1乃至画素選択部411−Lは、注目画素が属する横に1列の画素の列の、上側の横に1列の画素の列に属する画素であって、それぞれに設定された直線に最も近い位置の画素を選択する。そして、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する横に1列の画素の列の、上側の横に1列の画素の列に属する画素であって、選択された画素の左側の所定の数の画素、および選択された画素の右側の所定の数の画素、並びに選択された画素を画素の組として選択する。
【0517】
画素選択部411−1乃至画素選択部411−Lは、注目画素が属する横に1列の画素の列の、上側に2つめの横に1列の画素の列に属する画素であって、それぞれに設定された直線に最も近い位置の画素を選択する。そして、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する横に1列の画素の列の、上側に2つめの横に1列の画素の列に属する画素であって、選択された画素の左側の所定の数の画素、および選択された画素の右側の所定の数の画素、並びに選択された画素を画素の組として選択する。
【0518】
画素選択部411−1乃至画素選択部411−Lは、注目画素が属する横に1列の画素の列の、下側の横に1列の画素の列に属する画素であって、それぞれに設定された直線に最も近い位置の画素を選択する。そして、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する横に1列の画素の列の、下側の横に1列の画素の列に属する画素であって、選択された画素の左側の所定の数の画素、および選択された画素の右側の所定の数の画素、並びに選択された画素を画素の組として選択する。
【0519】
画素選択部411−1乃至画素選択部411−Lは、注目画素が属する横に1列の画素の列の、下側に2つめの横に1列の画素の列に属する画素であって、それぞれに設定された直線に最も近い位置の画素を選択する。そして、画素選択部411−1乃至画素選択部411−Lは、注目画素が属する横に1列の画素の列の、下側に2つめの横に1列の画素の列に属する画素であって、選択された画素の左側の所定の数の画素、および選択された画素の右側の所定の数の画素、並びに選択された画素を画素の組として選択する。
【0520】
このように、画素選択部411−1乃至画素選択部411−Lは、それぞれ、画素の組を5つ選択する。
【0521】
画素選択部411−1乃至画素選択部411−Lは、互いに異なる角度についての、画素の組を選択する。例えば、画素選択部411−1は、0度についての、画素の組を選択し、画素選択部411−2は、2.5度についての、画素の組を選択し、画素選択部411−3は、5度についての、画素の組を選択する。画素選択部411−1乃至画素選択部411−Lは、7.5度から45度および135度から180度までの、2.5度毎の角度についての、画素の組を選択する。
【0522】
画素選択部411−1は、選択した画素の組を推定誤差算出部412−1に供給し、画素選択部411−2は、選択した画素の組を推定誤差算出部412−2に供給する。同様に、画素選択部411−3乃至画素選択部411−Lのそれぞれは、選択した画素の組を推定誤差算出部412−3乃至推定誤差算出部412−Lのそれぞれに供給する。
【0523】
推定誤差算出部412−1乃至推定誤差算出部412−Lは、画素選択部411−1乃至画素選択部411−Lのいずれかから供給された、複数の組における対応する位置の画素の画素値の相関を検出する。推定誤差算出部412−1乃至推定誤差算出部412−Lは、検出された相関を示す情報を、最小誤差角度選択部413に供給する。
【0524】
最小誤差角度選択部413は、推定誤差算出部412−1乃至推定誤差算出部412−Lにおいて検出された相関に基いて、欠落した実世界1の光信号である画像の定常性に対応する、入力画像における、基準軸を基準としたデータの定常性の角度を検出する。
【0525】
次に、図56のフローチャートを参照して、ステップS101の処理に対応する、図49で構成が示されるデータ定常性検出部101による、データの定常性の検出の処理を説明する。
【0526】
ステップS401において、アクティビティ検出部401およびデータ選択部402は、入力画像から、注目している画素である注目画素を選択する。アクティビティ検出部401およびデータ選択部402は、同一の注目画素を選択する。例えば、アクティビティ検出部401およびデータ選択部402は、入力画像から、ラスタスキャン順に、注目画素を選択する。
【0527】
ステップS402において、アクティビティ検出部401は、注目画素に対するアクティビティを検出する。例えば、アクティビティ検出部401は、注目画素を中心とした所定の数の画素からなるブロックの縦方向に並ぶ画素の画素値の差分および横方向に並ぶ画素の画素値の差分を基に、アクティビティを検出する。
【0528】
アクティビティ検出部401は、注目画素に対する空間方向のアクティビティを検出して、検出した結果を示すアクティビティ情報をデータ選択部402および定常方向導出部404に供給する。
【0529】
ステップS403において、データ選択部402は、注目画素を含む画素の列から、注目画素を中心とした所定の数の画素を、画素の組として選択する。例えば、データ選択部402は、注目画素が属する縦または横に1列の画素の列に属する画素であって、注目画素の上側または左側の所定の数の画素、および注目画素の下側または右側の所定の数の画素、並びに注目画素を画素の組として選択する。
【0530】
ステップS404において、データ選択部402は、ステップS402の処理で検出されたアクティビティを基にした、所定の範囲の角度毎に、所定の数の画素の列から、それぞれ所定の数の画素を、画素の組として選択する。例えば、データ選択部402は、所定の範囲の角度を有し、空間方向Xを示す軸を基準軸として、注目画素を通る直線を設定し、注目画素に対して、横方向または縦方向に1列または2列離れた画素であって、直線に最も近い画素を選択し、選択された画素の上側または左側の所定の数の画素、および選択された画素の下側または右側の所定の数の画素、並びに線に最も近い選択された画素を画素の組として選択する。データ選択部402は、角度毎に、画素の組を選択する。
【0531】
データ選択部402は、選択した画素の組を誤差推定部403に供給する。
【0532】
ステップS405において、誤差推定部403は、注目画素を中心とした画素の組と、角度毎に選択した画素の組との相関を計算する。例えば、誤差推定部403は、角度毎に、注目画素を含む組の画素の画素値と、他の組における対応する位置の画素の画素値の差分の絶対値の和を算出する。
【0533】
角度毎に選択された、画素の組の相互の相関を基に、データの定常性の角度を検出するようにしてもよい。
【0534】
誤差推定部403は、算出された相関を示す情報を、定常方向導出部404に供給する。
【0535】
ステップS406において、定常方向導出部404は、ステップS405の処理で算出された相関を基に、相関が最も強い画素の組の位置から、欠落した実世界1の光信号の定常性に対応する、画像データである入力画像における、基準軸を基準としたデータの定常性の角度を検出する。例えば、定常方向導出部404は、画素値の差分の絶対値の総和のうち、最小の総和を選択し、選択された総和が算出された画素の組の位置から、データの定常性の角度θを検出する。
【0536】
定常方向導出部404は、検出したデータの定常性の角度を示すデータ定常性情報を出力する。
【0537】
ステップS407において、データ選択部402は、全ての画素の処理を終了したか否かを判定し、全ての画素の処理を終了していないと判定された場合、ステップS401に戻り、まだ注目画素として選択されていない画素から注目画素を選択して、上述した処理を繰り返す。
【0538】
ステップS407において、全ての画素の処理を終了したと判定された場合、処理は終了する。
【0539】
このように、データ定常性検出部101は、欠落した実世界1の光信号の定常性に対応する、画像データにおける、基準軸を基準としたデータの定常性の角度を検出することができる。
【0540】
なお、図49で構成が示されるデータ検出部101は、注目しているフレームである注目フレームの、注目している画素である注目画素について、入力画像の空間方向のアクティビティを検出し、検出されたアクティビティに応じて、注目画素および空間方向の基準軸を基準とした角度、並びに動きベクトル毎に、注目フレームおよび注目フレームの時間的に前または後ろのフレームのそれぞれから、垂直方向に1列または水平方向に1列の所定の数の画素からなる画素の組を、複数抽出し、抽出された画素の組の相関を検出し、相関に基づいて、入力画像における、時間方向および空間方向のデータの定常性の角度を検出するようにしてもよい。
【0541】
例えば、図57に示すように、データ選択部402は、検出されたアクティビティに応じて、注目画素および空間方向の基準軸を基準とした角度、並びに動きベクトル毎に、注目フレームであるフレーム#n、フレーム#n-1、およびフレーム#n+1のそれぞれから、垂直方向に1列または水平方向に1列の所定の数の画素からなる画素の組を、複数抽出する。
【0542】
フレーム#n-1は、フレーム#nに対して時間的に前のフレームであり、フレーム#n+1は、フレーム#nに対して時間的に後のフレームである。すなわち、フレーム#n-1、フレーム#n、およびフレーム#n+1は、フレーム#n-1、フレーム#n、およびフレーム#n+1の順で表示される。
【0543】
誤差推定部403は、抽出した画素からなる複数の組について、1つの角度および1つの動きベクトル毎に、画素の組の相関を検出する。定常方向導出部404は、画素の組の相関に基づいて、欠落した実世界1の光信号の定常性に対応する、入力画像における、時間方向および空間方向のデータの定常性の角度を検出し、角度を示すデータ定常性情報を出力する。
【0544】
次に、図58乃至図88を参照して、実世界推定部102(図3)の実施の形態の他の例について説明する。
【0545】
図58は、この例の実施の形態の原理を説明する図である。
【0546】
図58で示されるように、センサ2に入射される画像である、実世界1の信号(光の強度の分布)は、所定の関数Fで表される。なお、以下、この例の実施の形態の説明においては、画像である、実世界1の信号を、特に光信号と称し、関数Fを、特に光信号関数Fと称する。
【0547】
この例の実施の形態においては、光信号関数Fで表される実世界1の光信号が所定の定常性を有する場合、実世界推定部102が、センサ2からの入力画像(定常性に対応するデータの定常性を含む画像データ)と、データ定常性検出部101からのデータ定常性情報(入力画像のデータの定常性に対応するデータ定常性情報)を使用して、光信号関数Fを所定の関数fで近似することによって、光信号関数Fを推定する。なお、以下、この例の実施の形態の説明においては、関数fを、特に近似関数fと称する。
【0548】
換言すると、この例の実施の形態においては、実世界推定部102が、近似関数fで表されるモデル161(図4)を用いて、光信号関数Fで表される画像(実世界1の光信号)を近似(記述)する。従って、以下、この例の実施の形態を、関数近似手法と称する。
【0549】
ここで、関数近似手法の具体的な説明に入る前に、本願出願人が関数近似手法を発明するに至った背景について説明する。
【0550】
図59は、センサ2がCCDとされる場合の積分効果を説明する図である。
【0551】
図59で示されるように、センサ2の平面上には、複数の検出素子2−1が配置されている。
【0552】
図59の例では、検出素子2−1の所定の1辺に平行な方向が、空間方向の1方向であるX方向とされており、X方向に垂直な方向が、空間方向の他方向であるY方向とされている。そして、X−Y平面に垂直な方向が、時間方向であるt方向とされている。
【0553】
また、図59の例では、センサ2の各検出素子2−1のそれぞれの空間的な形状は、1辺の長さが1の正方形とされている。そして、センサ2のシャッタ時間(露光時間)が1とされている。
【0554】
さらに、図59の例では、センサ2の所定の1つの検出素子2−1の中心が、空間方向(X方向とY方向)の原点(X方向の位置x=0、およびY方向の位置y=0)とされており、また、露光時間の中間時刻が、時間方向(t方向)の原点(t方向の位置t=0)とされている。
【0555】
この場合、空間方向の原点(x=0,y=0)にその中心が存在する検出素子2−1は、X方向に-0.5乃至0.5の範囲、Y方向に-0.5乃至0.5の範囲、およびt方向に-0.5乃至0.5の範囲で光信号関数F(x,y,t)を積分し、その積分値を画素値Pとして出力することになる。
【0556】
即ち、空間方向の原点にその中心が存在する検出素子2−1から出力される画素値Pは、次の式(38)で表される。
【0557】
【数38】
Figure 0004423536
・・・(38)
【0558】
その他の検出素子2−1も同様に、対象とする検出素子2−1の中心を空間方向の原点とすることで、式(38)で示される画素値Pを出力することになる。
【0559】
図60は、センサ2の積分効果の具体的な例を説明する図である。
【0560】
図60において、X方向とY方向は、センサ2のX方向とY方向(図59)を表している。
【0561】
実世界1の光信号のうちの1部分(以下、このような部分を、領域と称する)2301は、所定の定常性を有する領域の1例を表している。
【0562】
なお、実際には、領域2301は連続した光信号の1部分(連続した領域)である。これに対して、図60においては、領域2301は、20個の小領域(正方形の領域)に区分されているように示されている。これは、領域2301の大きさが、X方向に対して4個分、かつY方向に対して5個分のセンサ2の検出素子(画素)が並んだ大きさに相当することを表すためである。即ち、領域2301内の20個の小領域(仮想領域)のそれぞれは1つの画素に相当する。
【0563】
また、領域2301のうちの図中白い部分は細線に対応する光信号を表している。従って、領域2301は、細線が続く方向に定常性を有していることになる。そこで、以下、領域2301を、細線含有実世界領域2301と称する。
【0564】
この場合、細線含有実世界領域2301(実世界1の光信号の1部分)がセンサ2により検出されると、センサ2からは、積分効果により、入力画像(画素値)の領域2302(以下、細線含有データ領域2302と称する)が出力される。
【0565】
なお、細線含有データ領域2302の各画素のそれぞれは、図中、画像として示されているが、実際には、所定の1つの値を表すデータである。即ち、細線含有実世界領域2301は、センサ2の積分効果により、所定の1つの画素値をそれぞれ有する20個の画素(X方向に4画素分、かつY方向に5画素分の総計20個の画素)に区分された細線含有データ領域2302に変化してしまう(歪んでしまう)。
【0566】
図61は、センサ2の積分効果の具体的な他の例(図60とは異なる例)を説明する図である。
【0567】
図61において、X方向とY方向は、センサ2のX方向とY方向(図59)を表している。
【0568】
実世界1の光信号の1部分(領域)2303は、所定の定常性を有する領域の他の例(図60の細線含有実世界領域2301とは異なる例)を表している。
【0569】
なお、領域2303は、細線含有実世界領域2301と同じ大きさを有する領域である。即ち、細線含有実世界領域2301と同様に、領域2303も、実際には連続した実世界1の光信号の1部分(連続した領域)であるが、図61においては、センサ2の1画素に相当する20個の小領域(正方形の領域)に区分されているように示されている。
【0570】
また、領域2303は、所定の第1の光の強度(値)を有する第1の部分と、所定の第2の光の強度(値)を有する第2の部分のエッジを含んでいる。従って、領域2303は、エッジが続く方向に定常性を有していることになる。そこで、以下、領域2303を、2値エッジ含有実世界領域2303と称する。
【0571】
この場合、2値エッジ含有実世界領域2303(実世界1の光信号の1部分)がセンサ2により検出されると、センサ2からは、積分効果により、入力画像(画素値)の領域2304(以下、2値エッジ含有データ領域2304と称する)が出力される。
【0572】
なお、2値エッジ含有データ領域2304の各画素値のそれぞれは、細線含有データ領域2302と同様に、図中、画像として表現されているが、実際には、所定の値を表すデータである。即ち、2値エッジ含有実世界領域2303は、センサ2の積分効果により、所定の1つの画素値をそれぞれ有する20個の画素(X方向に4画素分、かつY方向に5画素分の総計20個の画素)に区分された2値エッジ含有データ領域2304に変化してしまう(歪んでしまう)。
【0573】
従来の画像処理装置は、このような細線含有データ領域2302や2値エッジ含有データ領域2304等、センサ2から出力された画像データを原点(基準)とするとともに、画像データを処理の対象として、それ以降の画像処理を行っていた。即ち、センサ2から出力された画像データは、積分効果により実世界1の光信号とは異なるもの(歪んだもの)となっているにも関わらず、従来の画像処理装置は、その実世界1の光信号とは異なるデータを正として画像処理を行っていた。
【0574】
その結果、従来の画像処理装置では、センサ2から出力された段階で、実世界のディテールがつぶれてしまった波形(画像データ)を基準として、その波形から、元のディテールを復元することは非常に困難であるという課題があった。
【0575】
そこで、関数近似手法においては、この課題を解決するために、上述したように(図58で示されるように)、実世界推定部102が、細線含有データ領域2302や2値エッジ含有データ領域2304のようなセンサ2から出力された画像データ(入力画像)から、光信号関数F(実世界1の光信号)を近似関数fで近似することによって、光信号関数Fを推定する。
【0576】
これにより、実世界推定部102より後段において(いまの場合、図3の画像生成部103)、積分効果が考慮された画像データ、即ち、近似関数fにより表現可能な画像データを原点として、その処理を実行することが可能になる。
【0577】
以下、図面を参照して、このような関数近似手法のうちの3つの具体的な手法(第1乃至第3の関数近似手法)のそれぞれについて個別に説明していく。
【0578】
はじめに、図62乃至図76を参照して、第1の関数近似手法について説明する。
【0579】
図62は、上述した図60で示される細線含有実世界領域2301を再度表した図である。
【0580】
図62において、X方向とY方向は、センサ2のX方向とY方向(図59)を表している。
【0581】
第1の関数近似手法は、例えば、図62で示されるような細線含有実世界領域2301に対応する光信号関数F(x,y,t)をX方向(図中矢印2311の方向)に射影した1次元の波形(以下、このような波形を、X断面波形F(x)と称する)を、例えば、n次(nは、任意の整数)の多項式などの近似関数f(x)で近似する手法である。従って、以下、第1の関数近似手法を、特に、1次元近似手法と称する。
【0582】
なお、1次元近似手法において、近似の対象となるX断面波形F(x)は、勿論、図62の細線含有実世界領域2301に対応するものに限定されない。即ち、後述するように、1次元近似手法においては、定常性を有する実世界1の光信号に対応するX断面波形F(x)であれば、いずれのものでも近似することが可能である。
【0583】
また、光信号関数F(x,y,t)の射影の方向はX方向に限定されず、Y方向またはt方向でもよい。即ち、1次元近似手法においては、光信号関数F(x,y,t)をY方向に射影した関数F(y)を、所定の近似関数f(y)で近似することも可能であるし、光信号関数F(x,y,t)をt方向に射影した関数F(t)を、所定の近似関数f(t)で近似することも可能である。
【0584】
より詳細には、1次元近似手法は、例えば、X断面波形F(x)を、次の式(39)で示されるような、n次の多項式などの近似関数f(x)で近似する手法である。
【0585】
【数39】
Figure 0004423536
・・・(39)
【0586】
即ち、1次元近似手法においては、実世界推定部102が、式(39)のxiの係数(特徴量)wiを演算することで、X断面波形F(x)を推定する。
【0587】
この特徴量wiの演算方法は、特に限定されず、例えば、次の第1乃至第3の方法が使用可能である。
【0588】
即ち、第1の方法は、従来から利用されている方法である。
【0589】
これに対して、第2の方法は、本願出願人が新たに発明した方法であって、第1の方法に対して、さらに、空間方向の定常性を考慮した方法である。
【0590】
しかしながら、後述するように、第1の方法と第2の方法においては、センサ2の積分効果が考慮されていない。従って、第1の方法または第2の方法により演算された特徴量wiを上述した式(39)に代入して得られる近似関数f(x)は、入力画像の近似関数ではあるが、厳密には、X断面波形F(x)の近似関数とは言えない。
【0591】
そこで、本願出願人は、第2の方法に対して、センサ2の積分効果をさらに考慮して特徴量wiを演算する第3の方法を発明した。この第3の方法により演算された特徴量wiを、上述した式(39)に代入して得られる近似関数f(x)は、センサ2の積分効果を考慮している点で、X断面波形F(x)の近似関数であると言える。
【0592】
このように、厳密には、第1の方法と第2の方法は、1次元近似手法とは言えず、第3の方法のみが1次元近似手法であると言える。
【0593】
換言すると、図63で示されるように、第2の方法は、1次元近似手法とは異なる。即ち、図63は、第2の方法に対応する実施の形態の原理を説明する図である。
【0594】
図63で示されるように、第2の方法に対応する実施の形態においては、光信号関数Fで表される実世界1の光信号が所定の定常性を有する場合、実世界推定部102が、センサ2からの入力画像(定常性に対応するデータの定常性を含む画像データ)と、データ定常性検出部101からのデータ定常性情報(入力画像のデータの定常性に対応するデータ定常性情報)を使用して、X断面波形F(x)を近似するのではなく、センサ2からの入力画像を所定の近似関数f2(x)で近似する。
【0595】
このように、第2の方法は、センサ2の積分効果を考慮せず、入力画像の近似に留まっている点で、第3の方法と同一レベルの手法であるとは言い難い。しかしながら、第2の方法は、空間方向の定常性を考慮している点で、従来の第1の方法よりも優れた手法である。
【0596】
以下、第1の方法、第2の方法、および第3の方法のそれぞれの詳細について、その順番で個別に説明していく。
【0597】
なお、以下、第1の方法、第2の方法、および第3の方法により生成される近似関数f(x)のそれぞれを、他の方法のものと区別する場合、特に、近似関数f1(x)、近似関数f2(x)、および近似関数f3(x)とそれぞれ称する。
【0598】
はじめに、第1の方法の詳細について説明する。
【0599】
第1の方法においては、上述した式(39)で示される近似関数f1(x)が、図64の細線含有実世界領域2301内で成り立つとして、次の予測方程式(40)を定義する。
【0600】
【数40】
Figure 0004423536
・・・(40)
【0601】
式(40)において、xは、注目画素からのX方向に対する相対的な画素位置を表している。yは、注目画素からのY方向に対する相対的な画素位置を表している。eは、誤差を表している。具体的には、例えば、いま、図64で示されるように、注目画素が、細線含有データ領域2302(細線含有実世界領域2301(図62)がセンサ2により検出されて、出力されたデータ)のうちの、図中、左からX方向に2画素目であって、下からY方向に3画素目の画素であるとする。また、注目画素の中心を原点(0,0)とし、センサ2のX方向とY方向(図59)のそれぞれに平行なx軸とy軸を軸とする座標系(以下、注目画素座標系と称する)が設定されているとする。この場合、注目画素座標系の座標値(x,y)が、相対画素位置を表すことになる。
【0602】
また、式(40)において、P(x,y)は、相対画素位置(x,y)における画素値を表している。具体的には、いまの場合、細線含有データ領域2302内のP(x,y)は、図65で示されるようになる。
【0603】
図65は、この画素値P(x,y)をグラフ化したものを表している。
【0604】
図65において、各グラフのそれぞれの縦軸は、画素値を表しており、横軸は、注目画素からのX方向の相対位置xを表している。また、図中、上から1番目のグラフの点線は入力画素値P(x,-2)を、上から2番目のグラフの3点鎖線は入力画素値P(x,-1)を、上から3番目のグラフの実線は入力画素値P(x,0)を、上から4番目のグラフの1点鎖線は入力画素値P(x,1)を、上から5番目(下から1番目)のグラフの2点鎖線は入力画素値P(x,2)を、それぞれ表している。
【0605】
上述した式(40)に対して、図65で示される20個の入力画素値P(x,-2),P(x,-1),P(x,0),P(x,1),P(x,2)(ただし、xは、−1乃至2のうちのいずれかの整数値)のそれぞれを代入すると、次の式(41)で示される20個の方程式が生成される。なお、ek(kは、1乃至20のうちのいずれかの整数値)のそれぞれは、誤差を表している。
【0606】
【数41】
Figure 0004423536
・・・(41)
【0607】
式(41)は、20個の方程式より構成されているので、近似関数f1(x)の特徴量wiの個数が20個より少ない場合、即ち、近似関数f1(x)が19次より少ない次数の多項式である場合、例えば、最小自乗法を用いて特徴量wiの算出が可能である。なお、最小自乗法の具体的な解法は後述する。
【0608】
例えば、いま、近似関数f1(x)の次数が5次とされた場合、式(41)を利用して最小自乗法により演算された近似関数f1(x)(演算された特徴量wiにより生成される近似関数f1(x))は、図66で示される曲線のようになる。
【0609】
なお、図66において、縦軸は画素値を表しており、横軸は注目画素からの相対位置xを表している。
【0610】
即ち、図64の細線含有データ領域2302を構成する20個の画素値P(x,y)のそれぞれ(図65で示される入力画素値P(x,-2),P(x,-1),P(x,0),P(x,1),P(x,2)のそれぞれ)を、例えば、x軸に沿ってそのまま足しこむ(Y方向の相対位置yを一定とみなして、図65で示される5つのグラフを重ねる)と、図66で示されるような、x軸に平行な複数の線(点線、3点鎖線、実線、1点鎖線、および2点鎖線)が分布する。
【0611】
ただし、図66においては、点線は入力画素値P(x,-2)を、3点鎖線は入力画素値P(x,-1)を、実線は入力画素値P(x,0)を、1点鎖線は入力画素値P(x,1)を、2点鎖線は入力画素値P(x,2)を、それぞれ表している。また、同一の画素値の場合、実際には2本以上の線が重なることになるが、図66においては、各線の区別がつくように、各線のそれぞれが重ならないように描画されている。
【0612】
そして、このように分布した20個の入力画素値P(x,-2),P(x,-1),P(x,0),P(x,1),P(x,2)のそれぞれと、値f1(x)の誤差が最小となるような回帰曲線(最小自乗法により演算された特徴量wiを上述した式(38)に代入して得られる近似関数f1(x))が、図66で示される曲線(近似関数f1(x))となる。
【0613】
このように、近似関数f1(x)は、Y方向の画素値(注目画素からのX方向の相対位置xが同一の画素値)P(x,-2),P(x,-1),P(x,0),P(x,1),P(x,2)の平均値を、X方向に結んだ曲線を単に表しているに過ぎない。即ち、光信号が有する空間方向の定常性を考慮することなく、近似関数f1(x)が生成されている。
【0614】
例えば、いまの場合、近似の対象は、細線含有実世界領域2301(図62)とされている。この細線含有実世界領域2301は、図67で示されるように、傾きGFで表される空間方向の定常性を有している。なお、図67において、X方向とY方向は、センサ2のX方向とY方向(図59)を表している。
【0615】
従って、データ定常性検出部101(図58)は、空間方向の定常性の傾きGFに対応するデータ定常性情報として、図67で示されるような角度θ(傾きGFに対応する傾きGfで表されるデータの定常性の方向と、X方向のなす角度θ)を出力することができる。
【0616】
しかしながら、第1の方法においては、データ定常性検出部101より出力されるデータ定常性情報は一切用いられていない。
【0617】
換言すると、図67で示されるように、細線含有実世界領域2301の空間方向の定常性の方向は略角度θ方向である。しかしながら、第1の方法は、細線含有実世界領域2301の空間方向の定常性の方向はY方向であると仮定して(即ち、角度θが90度であると仮定して)、近似関数f1(x)の特徴量wiを演算する方法である。
【0618】
このため、近似関数f1(x)は、その波形が鈍り、元の画素値よりディテールが減少する関数となってしまう。換言すると、図示はしないが、第1の方法により生成される近似関数f1(x)は、実際のX断面波形F(x)とは大きく異なる波形となってしまう。
【0619】
そこで、本願出願人は、第1の方法に対して、空間方向の定常性をさらに考慮して(角度θを利用して)特徴量wiを演算する第2の方法を発明した。
【0620】
即ち、第2の方法は、細線含有実世界領域2301の定常性の方向は略角度θ方向であるとして、近似関数f2(x) の特徴量wiを演算する方法である。
【0621】
具体的には、例えば、空間方向の定常性に対応するデータの定常性を表す傾きGfは、次の式(42)で表される。
【0622】
【数42】
Figure 0004423536
・・・(42)
【0623】
なお、式(42)において、dxは、図67で示されるようなX方向の微小移動量を表しており、dyは、図67で示されるようなdxに対するY方向の微小移動量を表している。
【0624】
この場合、シフト量Cx(y)を、次の式(43)のように定義すると、第2の方法においては、第1の方法で利用した式(40)に相当する式は、次の式(44)のようになる。
【0625】
【数43】
Figure 0004423536
・・・(43)
【0626】
【数44】
Figure 0004423536
・・・(44)
【0627】
即ち、第1の方法で利用した式(40)は、画素の中心の位置(x、y)のうちのX方向の位置xが、同一の位置に位置する画素の画素値P(x,y)はいずれも同じ値であることを表している。換言すると、式(40)は、同じ画素値の画素がY方向に続いている(Y方向に定常性がある)ことを表している。
【0628】
これに対して、第2の方法で利用する式(44)は、画素の中心の位置が(x,y)である画素の画素値P(x,y)は、注目画素(その中心の位置が原点(0,0)である画素)からX方向にxだけ離れた場所に位置する画素の画素値(≒f2(x))とは一致せず、その画素からさらにX方向にシフト量Cx(y)だけ離れた場所に位置する画素(注目画素からX方向にx+Cx(y)だけ離れた場所に位置する画素)の画素値(≒f2(x+Cx(y)))と同じ値であることを表している。換言すると、式(44)は、同じ画素値の画素が、シフト量Cx(y)に対応する角度θ方向に続いている(略角度θ方向に定常性がある)ことを表している。
【0629】
このように、シフト量Cx(y)が、空間方向の定常性(いまの場合、図67の傾きGFで表される定常性(厳密には、傾きGfで表されるデータの定常性))を考慮した補正量であり、シフト量Cx(y)により式(40)を補正したものが式(44)となる。
【0630】
この場合、図64で示される細線含有データ領域2302の20個の画素値P(x,y)(ただし、xは、−1乃至2のうちのいずれかの整数値。yは、−2乃至2のうちのいずれかの整数値)のそれぞれを、上述した式(44)に代入すると次の式(45)で示される20個の方程式が生成される。
【0631】
【数45】
Figure 0004423536
・・・(45)
【0632】
式(45)は、上述した式(41)と同様に、20個の方程式より構成されている。従って、第1の方法と同様に第2の方法においても、近似関数f2(x)の特徴量wiの個数が20個より少ない場合、即ち、近似関数f2(x)が19次より少ない次数の多項式である場合、例えば、最小自乗法を用いて特徴量wiの算出が可能である。なお、最小自乗法の具体的な解法は後述する。
【0633】
例えば、第1の方法と同様に近似関数f2(x)の次数が5次とされた場合、第2の方法においては、次のようにして特徴量wiが演算される。
【0634】
即ち、図68は、式(45)の左辺で示される画素値P(x,y)をグラフ化したものを表している。図68で示される5つのグラフのそれぞれは、基本的に図65で示されるものと同一である。
【0635】
図68で示されるように、最大の画素値(細線に対応する画素値)は、傾きGfで表されるデータの定常性の方向に続いている。
【0636】
そこで、第2の方法においては、図68で示される入力画素値P(x,-2),P(x,-1),P(x,0),P(x,1),P(x,2)のそれぞれを、例えば、x軸に沿って足しこむ場合、第1の方法のようにそのまま足しこむ(yを一定とみなして、図68で示される状態のまま5つのグラフを重ねる)のではなく、図69で示される状態に変化させてから足しこむ。
【0637】
即ち、図69は、図68で示される入力画素値P(x,-2),P(x,-1),P(x,0),P(x,1),P(x,2)のそれぞれを、上述した式(43)で示されるシフト量Cx(y)だけシフトさせた状態を表している。換言すると、図69は、図68で示される5つのグラフを、データの定常性の実際の方向を表す傾きGFを、あたかも傾きGF’とするように(図中、点線の直線を実線の直線とするように)移動させた状態を表している。
【0638】
図69の状態で、入力画素値P(x,-2),P(x,-1),P(x,0),P(x,1),P(x,2)のそれぞれを、例えば、x軸に沿って足しこむと(図69で示される状態で5つのグラフを重ねると)、図70で示されるような、x軸に平行な複数の線(点線、3点鎖線、実線、1点鎖線、および2点鎖線)が分布する。
【0639】
なお、図70において、縦軸は画素値を表しており、横軸は注目画素からの相対位置xを表している。また、点線は入力画素値P(x,-2)を、3点鎖線は入力画素値P(x,-1)を、実線は入力画素値P(x,0)を、1点鎖線は入力画素値P(x,1)を、2点鎖線は入力画素値P(x,2)を、それぞれ表している。さらに、同一の画素値の場合、実際には2本以上の線が重なることになるが、図70においては、各線の区別がつくように、各線のそれぞれが重ならないように描画されている。
【0640】
そして、このように分布した20個の入力画素値P(x,y)のそれぞれ(ただし、xは、−1乃至2のうちのいずれかの整数値。yは、−2乃至2のうちのいずれかの整数値)と、値f2(x+Cx(y))の誤差が最小となるような回帰曲線(最小自乗法により演算された特徴量wiを上述した式(38)に代入して得られる近似関数f2(x))は、図70の実線で示される曲線f2(x)となる。
【0641】
このように、第2の方法により生成された近似関数f2(x)は、データ定常性検出部101(図58)より出力される角度θ方向(即ち、ほぼ空間方向の定常性の方向)の入力画素値P(x,y)の平均値をX方向に結んだ曲線を表すことになる。
【0642】
これに対して、上述したように、第1の方法により生成された近似関数f1(x)は、Y方向(即ち、空間方向の定常性とは異なる方向)の入力画素値P(x,y)の平均値を、X方向に結んだ曲線を単に表しているに過ぎない。
【0643】
従って、図70で示されるように、第2の方法により生成された近似関数f2(x)は、第1の方法により生成された近似関数f1(x)よりも、その波形の鈍り度合いが減少し、かつ、元の画素値に対するディテールの減り具合も減少する関数となる。換言すると、図示はしないが、第2の方法により生成される近似関数f2(x)は、第1の方法により生成される近似関数f1(x)よりも実際のX断面波形F(x)により近い波形となる。
【0644】
しかしながら、上述したように、近似関数f2(x)は、空間方向の定常性が考慮されたものではあるが、入力画像(入力画素値)を原点(基準)として生成されたものに他ならない。即ち、上述した図63で示されるように、近似関数f2(x)は、X断面波形F(x)とは異なる入力画像を近似したに過ぎず、X断面波形F(x)を近似したとは言い難い。換言すると、第2の方法は、上述した式(44)が成立するとして特徴量wiを演算する方法であり、上述した式(38)の関係は考慮していない(センサ2の積分効果を考慮していない)。
【0645】
そこで、本願出願人は、第2の方法に対して、センサ2の積分効果をさらに考慮することで近似関数f3(x)の特徴量wiを演算する第3の方法を発明した。
【0646】
即ち、第3の方法は、空間混合または時間混合の概念を導入した方法である。なお、空間混合と時間混合の両方を考慮すると、説明が複雑になるため、ここでは、空間混合と時間混合のうちの、例えば空間混合を考慮し、時間混合を無視するものとする。
【0647】
そこで、第3の方法の説明の前に、図71を参照して、空間混合について説明する。
【0648】
図71において、実世界1の光信号の1部分2321(以下、領域2321と称する)は、センサ2の1つの検出素子(画素)と同じ面積を有する領域を表している。
【0649】
領域2321がセンサ2に検出されると、センサ2からは、領域2321が時空間方向(X方向,Y方向,およびt方向)に積分された値(1つの画素値)2322が出力される。なお、画素値2322は、図中、画像として表現されているが、実際には、所定の値を表すデータである。
【0650】
実世界1の領域2321は、前景(例えば、上述した細線)に対応する光信号(図中白い領域)と、背景に対応する光信号(図中黒い領域)に明確に区分される。
【0651】
これに対して、画素値2322は、前景に対応する実世界1の光信号と、背景に対応する実世界1の光信号が積分された値である。換言すると、画素値2322は、前景に対応する光のレベルと背景に対応する光のレベルが空間的に混合されたレベルに対応する値である。
【0652】
このように、実世界1の光信号のうちの1画素(センサ2の検出素子)に対応する部分が、同一レベルの光信号が空間的に一様に分布する部分ではなく、前景と背景のように異なるレベルの光信号のそれぞれが分布する部分である場合、その領域は、センサ2により検出されると、センサ2の積分効果により、異なる光のレベルがあたかも空間的に混合されて(空間方向に積分されて)1つの画素値となってしまう。このように、センサ2の画素において、前景に対する画像(実世界1の光信号)と、背景に対する画像(実世界1の光信号)が空間的に積分されて、いわば混合されてしまうことが、空間混合であり、そのような画素からなる領域を、ここでは、空間混合領域と称する。
【0653】
従って、第3の方法においては、実世界推定部102(図58)が、実世界1の元の領域2321(実世界1の光信号のうちの、センサ2の1画素に対応する部分2321)を表すX断面波形F(x)を、例えば、図72で示されるような、1次の多項式などの近似関数f3(x)で近似することによって、X断面波形F(x)を推定する。
【0654】
即ち、図72は、空間混合領域である画素値2322(図71)に対応する近似関数f3(x)、即ち、実世界1の領域2331内の実線(図71)に対応するX断面波形F(x)を近似する近似関数f3(x)の例を表している。図72において、図中水平方向の軸は、画素値2322に対応する画素の左下端xsから右下端xeまでの辺(図71)に平行な軸を表しており、x軸とされている。図中垂直方向の軸は、画素値を表す軸とされている。
【0655】
図72において、近似関数f3(x)をxsからxeの範囲(画素幅)で積分したものが、センサ2から出力される画素値P(x,y)とほぼ一致する(誤差eだけ存在する)として、次の式(46)を定義する。
【0656】
【数46】
Figure 0004423536
・・・(46)
【0657】
いまの場合、図67で示される細線含有データ領域2302の20個の画素値P(x,y)(ただし、xは、−1乃至2のうちのいずれかの整数値。yは、−2乃至2のうちのいずれかの整数値)から、近似関数f3(x)の特徴量wiが算出されるので、式(46)の画素値Pは、画素値P(x,y)となる。
【0658】
また、第2の方法と同様に、空間方向の定常性も考慮する必要があるので、式(46)の積分範囲の開始位置xsと終了位置xeのそれぞれは、シフト量Cx(y)にも依存することになる。即ち、式(46)の積分範囲の開始位置xsと終了位置xeのそれぞれは、次の式(47)のように表される。
【0659】
【数47】
Figure 0004423536
・・・(47)
【0660】
この場合、図67で示される細線含有データ領域2302の各画素値それぞれ、即ち、図68で示される入力画素値P(x,-2),P(x,-1),P(x,0),P(x,1),P(x,2)のそれぞれ(ただし、xは、−1乃至2のうちのいずれかの整数値)を、上述した式(46)(積分範囲は、上述した式(47))に代入すると次の式(48)で示される20個の方程式が生成される。
【0661】
【数48】
Figure 0004423536
・・・(48)
【0662】
式(48)は、上述した式(45)と同様に、20個の方程式より構成されている。従って、第2の方法と同様に第3の方法においても、近似関数f3(x)の特徴量wiの個数が20個より少ない場合、即ち、近似関数f3(x)が19次より少ない次数の多項式である場合、例えば、最小自乗法を用いて特徴量wiの算出が可能である。なお、最小自乗法の具体的な解法は後述する。
【0663】
例えば、近似関数f3(x)の次数が5次とされた場合、式(48)を利用して最小自乗法により演算された近似関数f3(x)(演算された特徴量wiにより生成される近似関数f3(x))は、図73の実線で示される曲線のようになる。
【0664】
なお、図73において、縦軸は画素値を表しており、横軸は注目画素からの相対位置xを表している。
【0665】
図73で示されるように、第3の方法により生成された近似関数f3(x)(図中、実線で示される曲線)は、第2の方法により生成された近似関数f2(x)(図中、点線で示される曲線)と比較すると、x=0における画素値が大きくなり、また、曲線の傾斜の度合いも急な波形となる。これは、入力画素よりディテイルが増加して、入力画素の解像度とは無関係となっているためである。即ち、近似関数f3(x)は、X断面波形F(x)を近似していると言える。従って、図示はしないが、近似関数f3(x)は、近似関数f2(x)よりもX断面波形F(x)に近い波形となる。
【0666】
図74は、このような1次近似手法を利用する実世界推定部102の構成例を表している。
【0667】
図74において、実世界推定部102は、例えば、特徴量wiを上述した第3の方法(最小自乗法)により演算し、演算した特徴量wiを利用して上述した式(39)の近似関数f(x)を生成することで、X断面波形F(x)を推定する。
【0668】
図74で示されるように、実世界推定部102には、条件設定部2331、入力画像記憶部2332、入力画素値取得部2333、積分成分演算部2334、正規方程式生成部2335、および近似関数生成部2336が設けられている。
【0669】
条件設定部2331は、注目画素に対応するX断面波形F(x)を推定するために使用する画素の範囲(以下、タップ範囲と称する)や、近似関数f(x)の次数nを設定する。
【0670】
入力画像記憶部2332は、センサ2からの入力画像(画素値)を一次的に格納する。
【0671】
入力画素値取得部2333は、入力画像記憶部2332に記憶された入力画像のうちの、条件設定部231により設定されたタップ範囲に対応する入力画像の領域を取得し、それを入力画素値テーブルとして正規方程式生成部2335に供給する。即ち、入力画素値テーブルは、入力画像の領域に含まれる各画素のそれぞれの画素値が記述されたテーブルである。なお、入力画素値テーブルの具体例については後述する。
【0672】
ところで、ここでは、実世界推定部102は、上述した式(46)と式(47)を利用して最小自乗法により近似関数f(x)の特徴量wiを演算するが、上述した式(46)は、次の式(49)のように表現することができる。
【0673】
【数49】
Figure 0004423536
・・・(49)
【0674】
式(49)において、Si(xs,xe)は、i次項の積分成分を表している。即ち、積分成分Si(xs,xe)は、次の式(50)で示される。
【0675】
【数50】
Figure 0004423536
・・・(50)
【0676】
積分成分演算部2334は、この積分成分Si(xs、xe)を演算する。
【0677】
具体的には、式(50)で示される積分成分Si(xs,xe)(ただし、値xsと値xeは、上述した式(46)で示される値)は、相対画素位置(x,y)、シフト量Cx(y)、および、i次項のiが既知であれば演算可能である。また、これらのうちの、相対画素位置(x,y)は注目画素とタップ範囲により、シフト量Cx(y)は角度θにより(上述した式(41)と式(43)により)、iの範囲は次数nにより、それぞれ決定される。
【0678】
従って、積分成分演算部2334は、条件設定部2331により設定されたタップ範囲および次数、並びにデータ定常性検出部101より出力されたデータ定常性情報のうちの角度θに基づいて積分成分Si(xs,xe)を演算し、その演算結果を積分成分テーブルとして正規方程式生成部2335に供給する。
【0679】
正規方程式生成部2335は、入力画素値取得部2333より供給された入力画素値テーブルと、積分成分演算部2334より供給された積分成分テーブルを利用して、上述した式(46)、即ち、式(49)の右辺の特徴量wiを最小自乗法で求める場合の正規方程式を生成し、それを正規方程式テーブルとして近似関数生成部2336に供給する。なお、正規方程式の具体例については後述する。
【0680】
近似関数生成部2336は、正規方程式生成部2335より供給された正規方程式テーブルに含まれる正規方程式を行列解法で解くことにより、上述した式(49)の特徴量wi(即ち、1次元多項式である近似関数f(x)の係数wi)のそれぞれを演算し、画像生成部103に出力する。
【0681】
次に、図75のフローチャートを参照して、1次元近似手法を利用する実世界推定部102(図74)の実世界の推定処理(図29のステップS102の処理)について説明する。
【0682】
例えば、いま、センサ2から出力された1フレームの入力画像であって、上述した図60の細線含有データ領域2302を含む入力画像が、既に入力画像記憶部2332に記憶されているとする。また、データ定常性検出部101が、ステップS101(図29)の定常性の検出の処理において、細線含有データ領域2302に対してその処理を施して、データ定常性情報として角度θを既に出力しているとする。
【0683】
この場合、図75のステップS2301において、条件設定部2331は、条件(タップ範囲と次数)を設定する。
【0684】
例えば、いま、図76で示されるタップ範囲2351が設定されるとともに、次数として5次が設定されたとする。
【0685】
即ち、図76は、タップ範囲の1例を説明する図である。図76において、X方向とY方向は、センサ2のX方向とY方向(図59)を表している。また、タップ範囲2351は、X方向に4画素分、かつY方向に5画素分の総計20個の画素(図中、20個の正方形)からなる画素群を表している。
【0686】
さらに、図76で示されるように、注目画素が、タップ範囲2351のうちの、図中、左から2画素目であって、下から3画素目の画素に設定されるとする。また、各画素のそれぞれに対して、注目画素からの相対画素位置(x,y)(注目画素の中心(0,0)を原点とする注目画素座標系の座標値)に応じて、図76で示されるような番号l(lは、0乃至19のうちのいずれかの整数値)が付されるとする。
【0687】
図75に戻り、ステップS2302において、条件設定部2331は、注目画素を設定する。
【0688】
ステップS2303において、入力画素値取得部2333は、条件設定部2331により設定された条件(タップ範囲)に基づいて入力画素値を取得し、入力画素値テーブルを生成する。即ち、いまの場合、入力画素値取得部2333は、細線含有データ領域2302(図64)を取得し、入力画素値テーブルとして、20個の入力画素値P(l)からなるテーブルを生成する。
【0689】
なお、いまの場合、入力画素値P(l)と、上述した入力画素値P(x,y)の関係は、次の式(51)で示される関係とされる。ただし、式(51)において、左辺が入力画素値P(l)を表し、右辺が入力画素値P(x,y)を表している。
【0690】
【数51】
Figure 0004423536
・・・(51)
【0691】
ステップS2304において、積分成分演算部2334は、条件設定部2331により設定された条件(タップ範囲および次数)、並びにデータ定常性検出部101より供給されたデータ定常性情報(角度θ)に基づいて積分成分を演算し、積分成分テーブルを生成する。
【0692】
いまの場合、上述したように、入力画素値は、P(x,y)でなくP(l)といった、画素の番号lの値として取得されるので、積分成分演算部2334は、上述した式(50)の積分成分Si(xs,xe)を、次の式(52)の左辺で示される積分成分Si(l)といったlの関数として演算する。
【0693】
【数52】
Figure 0004423536
・・・(52)
【0694】
具体的には、いまの場合、次の式(53)で示される積分成分Si(l)が演算される。
【0695】
【数53】
Figure 0004423536
・・・(53)
【0696】
なお、式(53)において、左辺が積分成分Si(l)を表し、右辺が積分成分Si(xs,xe)を表している。即ち、いまの場合、iは0乃至5であるので、20個のS0(l),20個のS1(l),20個のS2(l),20個のS3(l),20個のS4(l),20個のS5(l)の総計120個のSi(l)が演算されることになる。
【0697】
より具体的には、はじめに、積分成分演算部2334は、データ定常性検出部101より供給された角度θを使用して、シフト量Cx(-2),Cx(-1),Cx(1),Cx(2)のそれぞれを演算する。次に、積分成分演算部2334は、演算したシフト量Cx(-2),Cx(-1),Cx(1),Cx(2)を使用して式(52)の右辺に示される20個の積分成分Si(xs,xe)のそれぞれを、i=0乃至5のそれぞれについて演算する。即ち、120個の積分成分Si(xs,xe)が演算される。なお、この積分成分Si(xs,xe)の演算においては、上述した式(50)が使用される。そして、積分成分演算部2334は、式(53)に従って、演算した120個の積分成分Si(xs,xe)のそれぞれを、対応する積分成分Si(l)に変換し、変換した120個の積分成分Si(l)を含む積分成分テーブルを生成する。
【0698】
なお、ステップS2303の処理とステップS2304の処理の順序は、図75の例に限定されず、ステップS2304の処理が先に実行されてもよいし、ステップS2303の処理とステップS2304の処理が同時に実行されてもよい。
【0699】
次に、ステップS2305において、正規方程式生成部2335は、ステップS2303の処理で入力画素値取得部2333により生成された入力画素値テーブルと、ステップS2304の処理で積分成分演算部2334により生成された積分成分テーブルに基づいて、正規方程式テーブルを生成する。
【0700】
具体的には、いまの場合、最小自乗法により、上述した式(49)に対応する次の式(54)の特徴量wiを演算する。それに対応する正規方程式は、次の式(55)のように表される。
【0701】
【数54】
Figure 0004423536
・・・(54)
【0702】
【数55】
Figure 0004423536
・・・(55)
【0703】
なお、式(55)において、Lは、タップ範囲の画素の番号lのうちの最大値を表している。nは、多項式である近似関数f(x)の次数を表している。具体的には、いまの場合、n=5となり、L=19となる。
【0704】
式(55)で示される正規方程式の各行列のそれぞれを、次の式(56)乃至(58)のように定義すると、正規方程式は、次の式(59)のように表される。
【0705】
【数56】
Figure 0004423536
・・・(56)
【0706】
【数57】
Figure 0004423536
・・・(57)
【0707】
【数58】
Figure 0004423536
・・・(58)
【0708】
【数59】
Figure 0004423536
・・・(59)
【0709】
式(57)で示されるように、行列WMATの各成分は、求めたい特徴量wiである。従って、式(59)において、左辺の行列SMATと右辺の行列PMATが決定されれば、行列解法によって行列WMAT(即ち、特徴量wi)の算出が可能である。
【0710】
具体的には、式(56)で示されるように、行列SMATの各成分は、上述した積分成分Si(l)が既知であれば演算可能である。積分成分Si(l)は、積分成分演算部2334より供給された積分成分テーブルに含まれているので、正規方程式生成部2335は、積分成分テーブルを利用して行列SMATの各成分を演算することができる。
【0711】
また、式(58)で示されるように、行列PMATの各成分は、積分成分Si(l)と入力画素値P(l)が既知であれば演算可能である。積分成分Si(l)は、行列SMATの各成分に含まれるものと同一のものであり、また、入力画素値P(l)は、入力画素値取得部2333より供給された入力画素値テーブルに含まれているので、正規方程式生成部2335は、積分成分テーブルと入力画素値テーブルを利用して行列PMATの各成分を演算することができる。
【0712】
このようにして、正規方程式生成部2335は、行列SMATと行列PMATの各成分を演算し、その演算結果(行列SMATと行列PMATの各成分)を正規方程式テーブルとして近似関数生成部2336に出力する。
【0713】
正規方程式生成部2335より正規方程式テーブルが出力されると、ステップS2306において、近似関数生成部2336は、正規方程式テーブルに基づいて、上述した式(59)の行列WMATの各成分である特徴量wi(即ち、1次元多項式である近似関数f(x)の係数wi)を演算する。
【0714】
具体的には、上述した式(59)の正規方程式は、次の式(60)のように変形できる。
【0715】
【数60】
Figure 0004423536
・・・(60)
【0716】
式(60)において、左辺の行列WMATの各成分が、求めたい特徴量wiである。また、行列SMATと行列PMATのそれぞれの各成分は、正規方程式生成部2335より供給された正規方程式テーブルに含まれている。従って、近似関数生成部2336は、正規方程式テーブルを利用して、式(60)の右辺の行列演算を行うことで行列WMATを演算し、その演算結果(特徴量wi)を画像生成部103に出力する。
【0717】
ステップS2307において、近似関数生成部2336は、全画素の処理を終了したか否かを判定する。
【0718】
ステップS2307において、全画素の処理がまだ終了されていないと判定された場合、処理はステップS2302に戻り、それ以降の処理が繰り返される。即ち、まだ注目画素とされない画素が、順次注目画素とされて、ステップS2302乃至S2307の処理が繰り返される。
【0719】
そして、全画素の処理が終了すると(ステップS2307において、全画素の処理が終了されたと判定されると)、実世界1の推定処理は終了となる。
【0720】
なお、以上のようにして演算された係数(特徴量)wiにより生成される近似関数f(x)の波形は、上述した図73の近似関数f3(x)のような波形となる。
【0721】
このように、1次元近似手法においては、1次元のX断面波形F(x)と同一形状の波形が定常性の方向に連なっていると仮定して、例えば、1次元の多項式などの近似関数f(x)の特徴量が演算される。従って、1次元近似手法においては、他の関数近似手法に比較して、少ない演算処理量で近似関数f(x)の特徴量の算出が可能となる。
【0722】
次に、図77乃至図83を参照して、第2の関数近似手法について説明する。
【0723】
即ち、第2の関数近似手法とは、例えば、図77で示されるような、傾きGFで表される空間方向の定常性を有する実世界1の光信号を、X−Y平面上(空間方向の1方向であるX方向と、X方向に垂直なY方向に水平な平面上)の波形F(x,y)とみなし、2次元の多項式などの近似関数f(x,y)で波形F(x,y)を近似することによって、その波形F(x,y)を推定する手法である。従って、以下、第2の関数近似手法を、2次元近似手法と称する。
【0724】
なお、図77において、図中、水平方向は、空間方向の1方向であるX方向を、右上方向は、空間方向の他方向であるY方向を、垂直方向は、光のレベルを、それぞれ表している。GFは、空間方向の定常性の傾きを表している。
【0725】
また、2次元近似手法の説明においても、センサ2は、図78で示されるような、複数の検出素子2−1がその平面上に配置されて構成されるCCDとされる。
【0726】
図78の例では、検出素子2−1の所定の1辺に平行な方向が、空間方向の1方向であるX方向とされており、X方向に垂直な方向が、空間方向の他方向であるY方向とされている。そして、X−Y平面に垂直な方向が、時間方向であるt方向とされている。
【0727】
また、図78の例では、センサ2の各検出素子2−1のそれぞれの空間的な形状は、1辺の長さが1の正方形とされている。そして、センサ2のシャッタ時間(露光時間)が1とされている。
【0728】
さらに、図78の例では、センサ2の所定の1つの検出素子2−1の中心が、空間方向(X方向とY方向)の原点(X方向の位置x=0、およびY方向の位置y=0)とされており、また、露光時間の中間時刻が、時間方向(t方向)の原点(t方向の位置t=0)とされている。
【0729】
この場合、空間方向の原点(x=0,y=0)にその中心が存在する検出素子2−1は、X方向に-0.5乃至0.5の範囲、Y方向に-0.5乃至0.5の範囲、およびt方向に-0.5乃至0.5の範囲で光信号関数F(x,y,t)を積分し、その積分値を画素値Pとして出力することになる。
【0730】
即ち、空間方向の原点にその中心が存在する検出素子2−1から出力される画素値Pは、次の式(61)で表される。
【0731】
【数61】
Figure 0004423536
・・・(61)
【0732】
その他の検出素子2−1も同様に、対象とする検出素子2−1の中心を空間方向の原点とすることで、式(61)で示される画素値Pを出力することになる。
【0733】
ところで、上述したように、2次元近似手法は、実世界1の光信号を、例えば、図77で示されるような波形F(x,y)として扱い、その2次元の波形F(x,y)を、2次元の多項式などの近似関数f(x,y)に近似する手法である。
【0734】
そこで、はじめに、このような近似関数f(x,y)を2次元の多項式で表現する手法について説明する。
【0735】
上述したように、実世界1の光信号は、3次元の空間上の位置x,y、およびz、並びに時刻tを変数とする光信号関数F(x,y,t)で表される。この光信号関数F(x,y,t)を、Y方向の任意の位置yにおいて、X方向に射影した1次元の波形を、ここでは、X断面波形F(x)と称している。
【0736】
このX断面波形F(x)に注目すると、実世界1の信号が、空間方向の所定の方向に定常性を有している場合、X断面波形F(x)と同一形状の波形がその定常性の方向に連なっていると考えることができる。例えば、図77の例では、X断面波形F(x)と同一形状の波形が、傾きGFの方向に連なっている。換言すると、X断面波形F(x)と同一形状の波形が傾きGFの方向に連なって、波形F(x,y)が形成されているとも言える。
【0737】
従って、波形F(x,y)を近似する近似関数f(x,y)の波形は、X断面波形F(x)を近似する近似関数f(x)と同一形状の波形が連なって形成されると考えることで、近似関数f(x,y)を2次元の多項式で表現することが可能になる。
【0738】
さらに詳細に、近似関数f(x,y)の表現方法について説明する。
【0739】
例えば、いま、上述した図77で示されるような、実世界1の光信号、即ち、傾きGFで表される空間方向の定常性を有する光信号が、センサ2(図78)により検出されて入力画像(画素値)として出力されたとする。
【0740】
さらに、図79で示されるように、データ定常性検出部101(図3)が、この入力画像のうちの、X方向に4画素分、かつY方向に5画素分の総計20個の画素(図中、点線で表される20個の正方形)から構成される入力画像の領域2401に対してその処理を実行し、データ定常性情報の1つとして角度θ(傾きGFに対応する傾きGfで表されるデータの定常性の方向と、X方向とのなす角度θ)を出力したとする。
【0741】
なお、入力画像の領域2401において、図中水平方向は、空間方向の1方向であるX方向を表しており、図中垂直方向は、空間方向の他方向であるY方向を表している。
【0742】
また、図79中、左から2画素目であって、下から3画素目の画素が注目画素とされ、その注目画素の中心を原点(0,0)とするように(x,y)座標系が設定されている。そして、原点(0,0)を通る角度θの直線(データの定常性の方向を表す傾きGfの直線)に対するX方向の相対的な距離(以下、断面方向距離と称する)がx’と記述されている。
【0743】
さらに、図79中、右側のグラフは、X断面波形F(x’)が近似された関数であって、n次(nは、任意の整数)の多項式である近似関数f(x’)を表している。右側のグラフの軸のうち、図中水平方向の軸は、断面方向距離を表しており、図中垂直方向の軸は、画素値を表している。
【0744】
この場合、図79で示される近似関数f(x’)は、n次の多項式であるので、次の式(62)のように表される。
【0745】
【数62】
Figure 0004423536
・・・(62)
【0746】
また、角度θが決定されていることから、原点(0,0)を通る角度θの直線は一意に決まり、Y方向の任意の位置yにおける、直線のX方向の位置xlが、次の式(63)のように表される。ただし、式(63)において、sはcotθ(=1/tanθ)を表している。
【0747】
【数63】
Figure 0004423536
・・・(63)
【0748】
即ち、図79で示されるように、傾きGfで表されるデータの定常性に対応する直線上の点は、座標値(xl,y)で表される。
【0749】
式(63)より、断面方向距離x’は、次の式(64)のように表される。
【0750】
【数64】
Figure 0004423536
・・・(64)
【0751】
従って、入力画像の領域2401内の任意の位置(x,y)における近似関数f(x,y)は、式(62)と式(64)より、次の式(65)のように示される。
【0752】
【数65】
Figure 0004423536
・・・(65)
【0753】
なお、式(65)において、wiは、近似関数f(x,y)の係数を表している。なお、近似関数f(x,y)を含む近似関数fの係数wiを、近似関数fの特徴量と位置づけることもできる。従って、以下、近似関数fの係数wiを、近似関数fの特徴量wiとも称する。
【0754】
このようにして、角度θが既知であれば、2次元波形の近似関数f(x,y)を、式(65)の多項式として表現することができる。
【0755】
従って、実世界推定部102は、式(65)の特徴量wiを演算することができれば、図77で示されるような波形F(x,y)を推定することができる。
【0756】
そこで、以下、式(65)の特徴量wiを演算する手法について説明する。
【0757】
即ち、式(65)で表される近似関数f(x,y)を、画素(センサ2の検出素子2−1(図78))に対応する積分範囲(空間方向の積分範囲)で積分すれば、その積分値が、画素の画素値の推定値となる。このことを、式で表現したものが、次の式(66)である。なお、2次元近似手法においては、時間方向tは一定値とみなされるので、式(66)は、空間方向(X方向とY方法)の位置x,yを変数とする方程式とされている。
【0758】
【数66】
Figure 0004423536
・・・(66)
【0759】
式(66)において、P(x,y)は、センサ2からの入力画像のうちの、その中心位置が位置(x,y)(注目画素からの相対位置(x,y))に存在する画素の画素値を表している。また、eは、誤差を表している。
【0760】
このように、2次元近似手法においては、入力画素値P(x,y)と、2次元の多項式などの近似関数f(x,y)の関係を、式(66)で表現することが可能であるので、実世界推定部102は、式(66)を利用して、特徴量wiを、例えば、最小自乗法等により演算することで(演算した特徴量wiを式(64)に代入して近似関数f(x,y)を生成することで)、2次元の関数F(x,y)(傾きGF(図77)で表される空間方向の定常性を有する実世界1の光信号を、空間方向に着目して表した波形F(x,y))を推定することが可能となる。
【0761】
図80は、このような2次元近似手法を利用する実世界推定部102の構成例を表している。
【0762】
図80で示されるように、実世界推定部102には、条件設定部2421、入力画像記憶部2422、入力画素値取得部2423、積分成分演算部2424、正規方程式生成部2425、および近似関数生成部2426が設けられている。
【0763】
条件設定部2421は、注目画素に対応する関数F(x,y)を推定するために使用する画素の範囲(タップ範囲)や、近似関数f(x,y)の次数nを設定する。
【0764】
入力画像記憶部2422は、センサ2からの入力画像(画素値)を一次格納する。
【0765】
入力画素値取得部2423は、入力画像記憶部2422に記憶された入力画像のうちの、条件設定部2421により設定されたタップ範囲に対応する入力画像の領域を取得し、それを入力画素値テーブルとして正規方程式生成部2425に供給する。即ち、入力画素値テーブルは、入力画像の領域に含まれる各画素のそれぞれの画素値が記述されたテーブルである。なお、入力画素値テーブルの具体例については後述する。
【0766】
ところで、上述したように、2次元近似手法を利用する実世界推定部102は、上述した式(66)を最小自乗法で解くことにより、上述した式(65)で示される近似関数f(x,y)の特徴量wiを演算する。
【0767】
式(66)は、次の式(67)乃至式(69)を用いることで得られる次の式(70)を使用することで、次の式(71)のように表現することができる。
【0768】
【数67】
Figure 0004423536
・・・(67)
【0769】
【数68】
Figure 0004423536
・・・(68)
【0770】
【数69】
Figure 0004423536
・・・(69)
【0771】
【数70】
Figure 0004423536
・・・(70)
【0772】
【数71】
Figure 0004423536
・・・(71)
【0773】
式(71)において、Si(x-0.5,x+0.5,y-0.5,y+0.5)は、i次項の積分成分を表している。即ち、積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5)は、次の式(72)で示される通りである。
【0774】
【数72】
Figure 0004423536
・・・(72)
【0775】
積分成分演算部2424は、この積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5)を演算する。
【0776】
具体的には、式(72)で示される積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5)は、相対画素位置(x,y)、上述した式(65)における変数s、および、i次項のiが既知であれば、演算可能である。これらのうちの、相対画素位置(x,y)は注目画素とタップ範囲により、変数sはcotθであるので角度θにより、iの範囲は次数nにより、それぞれ決定される。
【0777】
従って、積分成分演算部2424は、条件設定部2421により設定されたタップ範囲および次数、並びにデータ定常性検出部101より出力されたデータ定常性情報のうちの角度θに基づいて積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5)を演算し、その演算結果を積分成分テーブルとして正規方程式生成部2425に供給する。
【0778】
正規方程式生成部2425は、入力画素値取得部2423より供給された入力画素値テーブルと、積分成分演算部2424より供給された積分成分テーブルを利用して、上述した式(66)、即ち、式(71)を最小自乗法で求める場合の正規方程式を生成し、それを正規方程式テーブルとして近似関数生成部2426に出力する。なお、正規方程式の具体例については後述する。
【0779】
近似関数生成部2426は、正規方程式生成部2425より供給された正規方程式テーブルに含まれる正規方程式を行列解法で解くことにより、上述した式(66)の特徴量wi(即ち、2次元多項式である近似関数f(x,y)の係数wi)のそれぞれを演算し、画像生成部103に出力する。
【0780】
次に、図81のフローチャートを参照して、2次元近似手法が適用される実世界の推定処理(図29のステップS102の処理)について説明する。
【0781】
例えば、いま、傾きGFで表される空間方向の定常性を有する実世界1の光信号が、センサ2(図78)により検出されて、1フレームに対応する入力画像として、入力画像記憶部2422に既に記憶されているとする。また、データ定常性検出部101が、ステップS101(図29)の定常性の検出の処理において、入力画像のうちの、上述した図79で示される領域2401に対して処理を施して、データ定常性情報として角度θを既に出力しているとする。
【0782】
この場合、ステップS2401において、条件設定部2421は、条件(タップ範囲と次数)を設定する。
【0783】
例えば、いま、図82で示されるタップ範囲2441が設定されるとともに、次数として5次が設定されたとする。
【0784】
即ち、図82は、タップ範囲の1例を説明する図である。図82において、X方向とY方向は、センサ2のX方向とY方向(図78)を表している。また、タップ範囲2441は、X方向に4画素分、かつY方向に5画素分の総計20個の画素(図中、20個の正方形)からなる画素群を表している。
【0785】
さらに、図82に示されるように、注目画素が、タップ範囲2441のうちの、図中、左から2画素目であって、下から3画素目の画素に設定されるとする。また、各画素のそれぞれに対して、注目画素からの相対画素位置(x,y)(注目画素の中心(0,0)を原点とする注目画素座標系の座標値)に応じて、図82で示されるような番号l(lは、0乃至19のうちのいずれかの整数値)が付されるとする。
【0786】
図81に戻り、ステップS2402において、条件設定部2421は、注目画素を設定する。
【0787】
ステップS2403において、入力画素値取得部2423は、条件設定部2421により設定された条件(タップ範囲)に基づいて入力画素値を取得し、入力画素値テーブルを生成する。即ち、いまの場合、入力画素値取得部2423は、入力画像の領域2401(図79)を取得し、入力画素値テーブルとして、20個の入力画素値P(l)からなるテーブルを生成する。
【0788】
なお、いまの場合、入力画素値P(l)と、上述した入力画素値P(x,y)の関係は、次の式(73)で示される関係とされる。ただし、式(73)において、左辺が入力画素値P(l)を表し、右辺が入力画素値P(x,y)を表している。
【0789】
【数73】
Figure 0004423536
・・・(73)
【0790】
ステップS2404において、積分成分演算部2424は、条件設定部2421により設定された条件(タップ範囲および次数)、並びにデータ定常性検出部101より供給されたデータ定常性情報(角度θ)に基づいて積分成分を演算し、積分成分テーブルを生成する。
【0791】
いまの場合、上述したように、入力画素値は、P(x,y)でなくP(l)といった、画素の番号lの値として取得されるので、積分成分演算部2424は、上述した式(72)の積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5)を、次の式(74)の左辺で示される積分成分Si(l)といったlの関数として演算する。
【0792】
【数74】
Figure 0004423536
・・・(74)
【0793】
具体的には、いまの場合、次の式(75)で示される積分成分Si(l)が演算される。
【0794】
【数75】
Figure 0004423536
・・・(75)
【0795】
なお、式(75)において、左辺が積分成分Si(l)を表し、右辺が積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5)を表している。即ち、いまの場合、iは0乃至5であるので、20個のS0(l),20個のS1(l),20個のS2(l),20個のS3(l),20個のS4(l),20個のS5(l)の総計120個のSi(l)が演算されることになる。
【0796】
より具体的には、はじめに、積分成分演算部2424は、データ定常性検出部101より供給された角度θに対するcotθを演算し、それを変数sとする。次に、積分成分演算部2424は、演算した変数sを使用して式(74)の右辺で示される20個の積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5) のそれぞれを、i=0乃至5のそれぞれについて演算する。即ち、120個の積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5) が演算されることになる。なお、この積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5) の演算においては、上述した式(72)が使用される。そして、積分成分演算部2424は、式(75)に従って、演算した120個の積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5)のそれぞれを、対応するSi(l)のそれぞれに変換し、変換した120個のSi(l)を含む積分成分テーブルを生成する。
【0797】
なお、ステップS2403の処理とステップS2404の処理の順序は、図81の例に限定されず、ステップS2404の処理が先に実行されてもよいし、ステップS2403の処理とステップS2404の処理が同時に実行されてもよい。
【0798】
次に、ステップS2405において、正規方程式生成部2425は、ステップS2403の処理で入力画素値取得部2423により生成された入力画素値テーブルと、ステップS2404の処理で積分成分演算部2424により生成された積分成分テーブルに基づいて、正規方程式テーブルを生成する。
【0799】
具体的には、いまの場合、上述した式(71)を利用して最小自乗法により特徴量wiが演算される(ただし、式(70)において、積分成分Si(x-0.5,x+0.5,y-0.5,y+0.5)は、式(74)により変換されるSi(l)が使用される)ので、それに対応する正規方程式は、次の式(76)のように表される。
【0800】
【数76】
Figure 0004423536
・・・(76)
【0801】
なお、式(76)において、Lは、タップ範囲の画素の番号lのうちの最大値を表している。nは、多項式である近似関数f(x)の次数を表している。具体的には、いまの場合、n=5となり、L=19となる。
【0802】
式(76)で示される正規方程式の各行列のそれぞれを、次の式(77)乃至(79)のように定義すると、正規方程式は、次の式(80)のように表現される。
【0803】
【数77】
Figure 0004423536
・・・(77)
【0804】
【数78】
Figure 0004423536
・・・(78)
【0805】
【数79】
Figure 0004423536
・・・(79)
【0806】
【数80】
Figure 0004423536
・・・(80)
【0807】
式(78)で示されるように、行列WMATの各成分は、求めたい特徴量wiである。従って、式(80)において、左辺の行列SMATと右辺の行列PMATが決定されれば、行列解法によって行列WMATの演算が可能になる。
【0808】
具体的には、式(77)で示されるように、行列SMATの各成分は、上述した積分成分Si(l)で演算可能である。即ち、積分成分Si(l)は、積分成分演算部2424より供給された積分成分テーブルに含まれているので、正規方程式生成部2425は、積分成分テーブルを利用して行列SMATの各成分を演算することができる。
【0809】
また、式(79)で示されるように、行列PMATの各成分は、積分成分Si(l)と入力画素値P(l)で演算可能である。即ち、積分成分Si(l)は、行列SMATの各成分に含まれるものと同一のものであり、また、入力画素値P(l)は、入力画素値取得部2423より供給された入力画素値テーブルに含まれているので、正規方程式生成部2425は、積分成分テーブルと入力画素値テーブルを利用して行列PMATの各成分を演算することができる。
【0810】
このようにして、正規方程式生成部2425は、行列SMATと行列PMATの各成分を演算し、その演算結果(行列SMATと行列PMATの各成分)を正規方程式テーブルとして近似関数生成部2426に出力する。
【0811】
正規方程式生成部2425より正規方程式テーブルが出力されると、ステップS2406において、近似関数生成部2426は、正規方程式テーブルに基づいて、上述した式(80)の行列WMATの各成分である特徴量wi(即ち、2次元多項式である近似関数f(x,y)の係数wi)を演算する。
【0812】
具体的には、上述した式(80)の正規方程式は、次の式(81)のように変形できる。
【0813】
【数81】
Figure 0004423536
・・・(81)
【0814】
式(81)において、左辺の行列WMATの各成分が、求めたい特徴量wiである。また、行列SMATと行列PMATのそれぞれの各成分は、正規方程式生成部2425より供給された正規方程式テーブルに含まれている。従って、近似関数生成部2426は、正規方程式テーブルを利用して、式(81)の右辺の行列演算を行うことで行列WMATを演算し、その演算結果(特徴量wi)を画像生成部103に出力する。
【0815】
ステップS2407において、近似関数生成部2426は、全画素の処理を終了したか否かを判定する。
【0816】
ステップS2407において、全画素の処理がまだ終了されていないと判定された場合、処理はステップS2402に戻り、それ以降の処理が繰り返される。即ち、まだ注目画素とされない画素が、順次注目画素とされて、ステップS2402乃至S2407の処理が繰り返される。
【0817】
そして、全画素の処理が終了すると(ステップS2407において、全画素の処理が終了されたと判定されると)、実世界1の推定処理は終了となる。
【0818】
以上、2次元近似手法の説明として、空間方向(X方向とY方向)に対する近似関数f(x,y)の係数(特徴量)wiを演算する例を用いたが、2次元近似手法は、時空間方向(X方向とt方向、または、Y方向とt方向)に対しても適用可能である。
【0819】
即ち、上述した例は、実世界1の光信号が、例えば、傾きGF(図77)で表される空間方向の定常性を有する場合の例であったので、上述した式(66)で示されるような、空間方向(X方向とY方向)の二次元積分が含まれる式が利用された。しかしながら、二次元積分の考え方は、空間方向だけによるものではなく、時空間方向(X方向とt方向、または、Y方向とt方向)に対して適用することも可能である。
【0820】
換言すると、2次元近似手法においては、推定したい光信号関数F(x,y,t)が、空間方向の定常性のみならず、時空間方向(ただし、X方向とt方向、または、Y方向とt方向)の定常性を有している場合であっても、2次元の近似関数fにより近似することが可能である。
【0821】
具体的には、例えば、X方向に水平に等速で動いている物体がある場合、その物体の動きの方向は、図83で示されるようなX-t平面においては、傾きVFのように表される。換言すると、傾きVFは、X-t平面における時空間方向の定常性の方向を表しているとも言える。従って、データ定常性検出部101は、上述した角度θ(X-Y平面における、傾きGFで表される空間方向の定常性に対応するデータ定常性情報)と同様に、X-t平面における時空間方向の定常性を表す傾きVFに対応するデータ定常性情報として、図83で示されるような動きθ(厳密には、図示はしないが、傾きVFに対応する傾きVfで表されるデータの定常性の方向と、空間方向のX方向とのなす角度である動きθ)を出力することが可能である。
【0822】
従って、2次元近似手法を利用する実世界推定部102は、動きθを上述した角度θの代わりとして使用すれば、上述した方法と同様な方法で、近似関数f(x,t)の係数(特徴量)wiを演算することが可能になる。ただし、この場合、使用される式は、上述した式(66)ではなく、次の式(82)である。
【0823】
【数82】
Figure 0004423536
・・・(82)
【0824】
なお、式(82)において、sはcotθ(ただし、θは動きである)である。
【0825】
また、空間方向Xの変わりに、空間方向Yに注目した近似関数f(y,t)も、上述した近似関数f(x,t)と全く同様に取り扱うことが可能である。
【0826】
このように、2次元近似手法は、1次元ではなく2次元の積分効果を考慮しているので、1次元近似手法に比較して、より正確に実世界1の光信号を推定することが可能になる。
【0827】
次に、図84乃至図88を参照して、第3の関数近似手法について説明する。
【0828】
即ち、第3の関数近似手法とは、例えば、時空間方向のうちの所定の方向の定常性を有する実世界1の光信号が、光信号関数F(x,y,t)で表されることに注目して、近似関数f(x,y,t)で光信号関数F(x,y,t)を近似することによって、光信号関数F(x,y,t)を推定する手法である。従って、以下、第3の関数近似手法を、3次元近似手法と称する。
【0829】
また、3次元近似手法の説明においても、センサ2は、図84で示されるような、複数の検出素子2−1がその平面上に配置されて構成されるCCDとされる。
【0830】
図84の例では、検出素子2−1の所定の1辺に平行な方向が、空間方向の1方向であるX方向とされており、X方向に垂直な方向が、空間方向の他方向であるY方向とされている。そして、X−Y平面に垂直な方向が、時間方向であるt方向とされている。
【0831】
また、図84の例では、センサ2の各検出素子2−1のそれぞれの空間的な形状は、1辺の長さが1の正方形とされている。そして、センサ2のシャッタ時間(露光時間)が1とされている。
【0832】
さらに、図84の例では、センサ2の所定の1つの検出素子2−1の中心が、空間方向(X方向とY方向)の原点(X方向の位置x=0、およびY方向の位置y=0)とされており、また、露光時間の中間時刻が、時間方向(t方向)の原点(t方向の位置t=0)とされている。
【0833】
この場合、空間方向の原点(x=0,y=0)にその中心が存在する検出素子2−1は、X方向に-0.5乃至0.5の範囲、Y方向に-0.5乃至0.5の範囲、およびt方向に-0.5乃至0.5の範囲で光信号関数F(x,y,t)を積分し、その積分値を画素値Pとして出力することになる。
【0834】
即ち、空間方向の原点にその中心が存在する検出素子2−1から出力される画素値Pは、次の式(83)で表される。
【0835】
【数83】
Figure 0004423536
・・・(83)
【0836】
その他の検出素子2−1も同様に、対象とする検出素子2−1の中心を空間方向の原点とすることで、式(83)で示される画素値Pを出力することになる。
【0837】
ところで、上述したように、3次元近似手法においては、光信号関数F(x,y,t)は、3次元の近似関数f(x,y,t)に近似される。
【0838】
具体的には、例えば、近似関数f(x,y,t)を、N個の変数(特徴量)を有する関数とし、式(83)に対応する入力画素値P(x,y,t)と近似関数f(x,y,t)の関係式を定義する。これにより、Nより大きいM個の入力画素値P(x,y,t)が取得されていれば、定義された関係式からN個の変数(特徴量)の算出が可能である。即ち、実世界推定部102は、M個の入力画素値P(x,y,t)を取得してN個の変数(特徴量)を演算することで、光信号関数F(x,y,t)を推定することが可能である。
【0839】
この場合、実世界推定部102は、センサ2からの入力画像(入力画素値)に含まれるデータの定常性を縛りとして(即ち、データ定常性検出部101より出力される入力画像に対するデータ定常性情報を利用して)、入力画像全体のうちの、M個の入力画像P(x,y,t)を抽出(取得)する。結果的に、近似関数f(x,y,t)は、データの定常性に拘束されることになる。
【0840】
例えば、図85で示されるように、入力画像に対応する光信号関数F(x,y,t)が、傾きGFで表される空間方向の定常性を有している場合、データ定常性検出部101は、入力画像に対するデータ定常性情報として、角度θ(傾きGFに対応する傾きGf(図示せず)で表されるデータの定常性の方向と、X方向のなす角度θ)を出力することになる。
【0841】
この場合、光信号関数F(x,y,t)をX方向に射影した1次元の波形(ここでは、このような波形を、X断面波形と称している)は、Y方向のいずれの位置で射影した場合であっても同一の形状であるとする。
【0842】
即ち、同一形状のX断面波形が、定常性の方向(X方向に対して角度θ方向)に連なっている2次元の(空間方向の)波形が存在するとし、そのような2次元波形が時間方向tに連なった3次元波形を、近似関数f(x,y,t)で近似する。
【0843】
換言すると、注目画素の中心からY方向に位置yだけずれたX断面波形は、注目画素の中心を通るX断面波形がX方向に所定の量(角度θに応じて変化する量)だけ移動した(シフトした)波形となる。なお、以下、このような量を、シフト量と称する。
【0844】
このシフト量は、次のようにして算出が可能である。
【0845】
即ち、傾きVf(例えば、図85の傾きVFに対応する、データの定常性の方向を表す傾きVf)と角度θは、次の式(84)のように表される。
【0846】
【数84】
Figure 0004423536
・・・(84)
【0847】
なお、式(84)において、dxは、X方向の微小移動量を表しており、dyは、dxに対するY方向の微小移動量を表している。
【0848】
従って、X方向に対するシフト量をCx(y)と記述すると、次の式(85)のように表される。
【0849】
【数85】
Figure 0004423536
・・・(85)
【0850】
このようにして、シフト量Cx(y)を定義すると、式(83)に対応する入力画素値P(x,y,t)と近似関数f(x,y,t)の関係式は、次の式(86)のように表される。
【0851】
【数86】
Figure 0004423536
・・・(86)
【0852】
式(86)において、eは、誤差を表している。tsは、t方向の積分開始位置を表しており、teは、t方向の積分終了位置を表している。同様に、ysは、Y方向の積分開始位置を表しており、yeは、Y方向の積分終了位置を表している。また、xsは、X方向の積分開始位置を表しており、xeは、X方向の積分終了位置を表している。ただし、具体的な各積分範囲のそれぞれは、次の式(87)で示される通りになる。
【0853】
【数87】
Figure 0004423536
・・・(87)
【0854】
式(87)で示されるように、注目画素から空間方向に(x,y)だけ離れて位置する画素に対するX方向の積分範囲を、シフト量Cx(y)だけ移動させることで、同一形状のX断面波形が、定常性の方向(X方向に対して角度θ方向)に連なっていることを表すことが可能になる。
【0855】
このように、3次元近似手法においては、画素値P(x,y,t)と、3次元の近似関数f(x,y,t)の関係を式(86)(積分範囲は、式(87))で表すことができるので、式(86)と式(87)を利用して、近似関数f(x,y,t)のN個の特徴量を、例えば、最小自乗法等により演算することで、光信号関数F(x,y,t)(例えば、図85で示されるような傾きVF表される空間方向の定常性を有する光信号)の推定が可能となる。
【0856】
なお、光信号関数F(x,y,t)で表される光信号が、例えば、図85で示されるような傾きVFで表される空間方向の定常性を有している場合、次のようにして光信号関数F(x,y,t)を近似してもよい。
【0857】
即ち、光信号関数F(x,y,t)をY方向に射影した1次元の波形(以下、このような波形を、Y断面波形と称する)は、X方向のいずれの位置で射影した場合であっても同一の形状であるとする。
【0858】
換言すると、同一形状のY断面波形が、定常性の方向(X方向に対して角度θ方向)に連なっている2次元の(空間方向の)波形が存在するとし、そのような2次元波形が時間方向tに連なった3次元波形を、近似関数f(x,y,t)で近似する。
【0859】
従って、注目画素の中心からX方向にxだけずれたY断面波形は、注目画素の中心を通るY断面波形がY方向に所定のシフト量(角度θに応じて変化するシフト量)だけ移動した波形となる。
【0860】
このシフト量は、次のようにして算出が可能である。
【0861】
即ち、傾きGFが、上述した式(84)のように表されるので、Y方向に対するシフト量をCy(x)と記述すると、次の式(88)のように表される。
【0862】
【数88】
Figure 0004423536
・・・(88)
【0863】
このようにして、シフト量Cy(x)を定義すると、式(83)に対応する入力画素値P(x,y,t)と近似関数f(x,y,t)の関係式は、シフト量Cx(y)を定義したときと同様に、上述した式(86)で表される。
【0864】
ただし、今度は、具体的な各積分範囲のそれぞれは、次の式(89)で示される通りになる。
【0865】
【数89】
Figure 0004423536
・・・(89)
【0866】
式(89)(および上述した式(86))で示されるように、注目画素から(x,y)だけ離れて位置する画素に対するY方向の積分範囲を、シフト量Cy(x)だけ移動させることで、同一形状のY断面波形が、定常性の方向(X方向に対して角度θ方向)に連なっていることを表すことが可能になる。
【0867】
このように、3次元近似手法においては、上述した式(86)の右辺の積分範囲を式(87)のみならず式(89)とすることもできるので、積分範囲として式(89)が採用された式(86)を利用して、近似関数f(x,y,t)のn個の特徴量を、例えば、最小自乗法等により演算することで、光信号関数F(x,y,t)(傾きGFで表される空間方向の定常性を有する実世界1の光信号)の推定が可能となる。
【0868】
このように、積分範囲を表す式(87)と式(89)は、定常性の方向にあわせて周辺画素をX方向にシフトさせるか(式(87)の場合)、或いはY方向にシフトさせるか(式(89)の場合)の違いがあるだけであり、本質的には同じことを表している。
【0869】
しかしながら、定常性の方向(傾きGF)に応じて、光信号関数F(x,y,t)を、X断面波形の集まりと捉えるか、Y断面波形の集まりと捉えるかが異なる。即ち、定常性の方向がY方向に近い場合、光信号関数F(x,y,t)を、X断面波形の集まりと捉えた方が好適である。これに対して、定常性の方向がX方向に近い場合、光信号関数F(x,y,t)を、Y断面波形の集まりと捉えた方が好適である。
【0870】
従って、実世界推定部102は、積分範囲として式(87)と式(89)の両方を用意しておき、定常性の方向に応じて、適宜式(86)の右辺の積分範囲として、式(87)と式(89)のうちのいずれか一方を選択するとよい。
【0871】
以上、光信号関数F(x,y,t)が空間方向(X方向とY方向)の定常性(例えば、図85の傾きGFで表される空間方向の定常性)を有する場合についての3次元近似手法について説明したが、3次元近似手法は、図86で示されるように、光信号関数F(x,y,t)が時空間方向(X方向、Y方向、およびt方向)の定常性(傾きVFで表される定常性)を有する場合についても適用可能である。
【0872】
即ち、図86において、フレーム番号#N-1のフレームに対応する光信号関数がF(x,y,#N-1)とされ、フレーム番号#Nのフレームに対応する光信号関数がF(x,y,#N)とされ、かつ、フレーム番号#N+1のフレームに対応する光信号関数がF(x,y,#N+1)とされている。
【0873】
なお、図86において、図中、水平方向は、空間方向の1方向であるX方向とされており、右斜め上方向は、空間方向の他方向であるY方向とされており、かつ、垂直方向は、時間方向であるt方向とされている。
【0874】
また、フレーム#N-1は、フレーム#Nに対して時間的に前のフレームであり、フレーム#N+1は、フレーム#Nに対して時間的に後のフレームである。即ち、フレーム#N-1、フレーム#N、およびフレーム#N+1は、フレーム#N-1、フレーム#N、およびフレーム#N+1の順で表示される。
【0875】
図86の例では、傾きVFで示される方向(図中左下手前から右上奥の方向)に沿った断面の光のレベルがほぼ一定とされている。従って、図86の例では、光信号関数F(x,y,t)は、傾きVFで表される時空間方向の定常性を有していると言える。
【0876】
この場合、時空間方向の定常性を表す関数C(x,y,t)を定義し、かつ、定義された関数C(x,y,t)を利用して、上述した式(86)の積分範囲を定義すれば、上述した式(87)や式(89)と同様に、近似関数f(x,y,t)のN個の特徴量の算出が可能になる。
【0877】
関数C(x,y,t)は、定常性の方向を表す関数であれば特に限定されない。ただし、以下においては、直線的な定常性であるとして、それに対応する関数C(x,y,t)として、上述した空間方向の定常性を表す関数であるシフト量Cx(y)(式(85))やシフト量Cy(x)(式(87))に相当する、Cx(t)とCy(t)を次のように定義するとする。
【0878】
即ち、上述した空間方向のデータの定常性を表す傾きGfに対応する、時空間方向のデータの定常性の傾きをVfとすると、この傾きVfをX方向の傾き(以下、Vfxと記述する)とY方向の傾き(以下、Vfyと記述する)に分割すると、傾きVfxは次の式(90)で、傾きVfyは次の式(91)で、それぞれ表される。
【0879】
【数90】
Figure 0004423536
・・・(90)
【0880】
【数91】
Figure 0004423536
・・・(91)
【0881】
この場合、関数Cx(t)は、式(90)で示される傾きVfxを利用して、次の式(92)のように表される。
【0882】
【数92】
Figure 0004423536
・・・(92)
【0883】
同様に、関数Cy(t)は、式(91)で示される傾きVfyを利用して、次の式(93)のように表される。
【0884】
【数93】
Figure 0004423536
・・・(93)
【0885】
このようにして、時空間方向の定常性2511を表す関数Cx(t)と関数Cy(t)を定義すると、式(86)の積分範囲は、次の式(94)のように表される。
【0886】
【数94】
Figure 0004423536
・・・(94)
【0887】
このように、3次元近似手法においては、画素値P(x,y,t)と、3次元の近似関数f(x,y,t)の関係を式(86)で表すことができるので、その式(86)の右辺の積分範囲として式(94)を利用して、近似関数f(x,y,t)のn+1個の特徴量を、例えば、最小自乗法等により演算することで、光信号関数F(x,y,t)(時空間方向の所定の方向に定常性を有する実世界1の光信号)を推定することが可能となる。
【0888】
図87は、このような3次元近似手法を利用する実世界推定部102の構成例を表している。
【0889】
なお、3次元近似手法を利用する実世界推定部102が演算する近似関数f(x,y,t)(実際には、その特徴量(係数)を演算する)は、特に限定されないが、以下の説明においては、n(n=N-1)次の多項式とされる。
【0890】
図87で示されるように、実世界推定部102には、条件設定部2521、入力画像記憶部2522、入力画素値取得部2523、積分成分演算部2524、正規方程式生成部2525、および近似関数生成部2526が設けられている。
【0891】
条件設定部2521は、注目画素に対応する光信号関数F(x,y,t)を推定するために使用する画素の範囲(タップ範囲)や、近似関数f(x,y,t)の次数nを設定する。
【0892】
入力画像記憶部2522は、センサ2からの入力画像(画素値)を一次格納する。
【0893】
入力画素値取得部2523は、入力画像記憶部2522に記憶された入力画像のうちの、条件設定部2521により設定されたタップ範囲に対応する入力画像の領域を取得し、それを入力画素値テーブルとして正規方程式生成部2525に供給する。即ち、入力画素値テーブルは、入力画像の領域に含まれる各画素のそれぞれの画素値が記述されたテーブルである。
【0894】
ところで、上述したように、3次元近似手法を利用する実世界推定部102は、上述した式(86)(ただし積分範囲は、式(87)、式(90)、または式(94))を利用して最小自乗法により近似関数f(x,y,t)のN個の特徴量(いまの場合、各次の係数)を演算する。
【0895】
式(86)の右辺は、その積分を演算することで、次の式(95)のように表現することができる。
【0896】
【数95】
Figure 0004423536
・・・(95)
【0897】
式(95)において、wiは、i次項の係数(特徴量)を表しており、また、Si(xs,xe,ys,ye,ts,te)は、i次項の積分成分を表している。ただし、xsはX方向の積分範囲の開始位置を、xeはX方向の積分範囲の終了位置を、ysはY方向の積分範囲の開始位置を、yeはY方向の積分範囲の終了位置を、tsはt方向の積分範囲の開始位置を、teはt方向の積分範囲の終了位置を、それぞれ表している。
【0898】
積分成分演算部2524は、この積分成分Si(xs,xe,ys,ye,ts,te)を演算する。
【0899】
即ち、積分成分演算部2524は、条件設定部2521により設定されたタップ範囲および次数、並びにデータ定常性検出部101より出力されたデータ定常性情報のうちの角度若しくは動き(積分範囲として、上述した式(87)若しくは式(90)が利用される場合には角度であり、上述した式(94)が利用される場合には動きである)に基づいて積分成分Si(xs,xe,ys,ye,ts,te)を演算し、その演算結果を積分成分テーブルとして正規方程式生成部2525に供給する。
【0900】
正規方程式生成部2525は、入力画素値取得部2523より供給された入力画素値テーブルと、積分成分演算部2524より供給された積分成分テーブルを利用して、上述した式(95)を最小自乗法で求める場合の正規方程式を生成し、それを正規方程式テーブルとして近似関数生成部2526に出力する。正規方程式の例については、後述する。
【0901】
近似関数生成部2526は、正規方程式生成部2525より供給された正規方程式テーブルに含まれる正規方程式を行列解法で解くことにより、特徴量wi(いまの場合、多項式である近似関数f(x,y,t)の係数wi)のそれぞれを演算し、画像生成部103に出力する。
【0902】
次に、図88のフローチャートを参照して、3次元近似手法が適用される実世界の推定処理(図29のステップS102の処理)について説明する。
【0903】
はじめに、ステップS2501において、条件設定部2521は、条件(タップ範囲と次数)を設定する。
【0904】
例えば、いま、L個の画素からなるタップ範囲が設定されたとする。また、各画素のそれぞれに対して、所定の番号l(lは、0乃至L−1のうちのいずれかの整数値)が付されるとする。
【0905】
次に、ステップS2502において、条件設定部2521は、注目画素を設定する。
【0906】
ステップS2503において、入力画素値取得部2523は、条件設定部2521により設定された条件(タップ範囲)に基づいて入力画素値を取得し、入力画素値テーブルを生成する。いまの場合、L個の入力画素値P(x,y,t)からなるテーブルが生成されることになる。ここで、L個の入力画素値P(x,y,t)のそれぞれを、その画素の番号lの関数としてP(l)と記述することにする。即ち、入力画素値テーブルは、L個のP(l)が含まれるテーブルとなる。
【0907】
ステップS2504において、積分成分演算部2524は、条件設定部2521により設定された条件(タップ範囲および次数)、並びにデータ定常性検出部101より供給されたデータ定常性情報(角度若しくは動き)に基づいて積分成分を演算し、積分成分テーブルを生成する。
【0908】
ただし、いまの場合、上述したように、入力画素値は、P(x,y,t)でなくP(l)といった、画素の番号lの値として取得されるので、積分成分演算部2524は、上述した式(95)の積分成分Si(xs,xe,ys,ye,ts,te)を、積分成分Si(l)といったlの関数として演算することになる。即ち、積分成分テーブルは、L×i個のSi(l)が含まれるテーブルとなる。
【0909】
なお、ステップS2503の処理とステップS2504の処理の順序は、図88の例に限定されず、ステップS2504の処理が先に実行されてもよいし、ステップS2503の処理とステップS2504の処理が同時に実行されてもよい。
【0910】
次に、ステップS2505において、正規方程式生成部2525は、ステップS2503の処理で入力画素値取得部2523により生成された入力画素値テーブルと、ステップS2504の処理で積分成分演算部2524により生成された積分成分テーブルに基づいて、正規方程式テーブルを生成する。
【0911】
具体的には、いまの場合、最小自乗法により、上述した式(95)に対応する次の式(96)の特徴量wiを演算する。で、それに対応する正規方程式は、次の式(97)のように表される。
【0912】
【数96】
Figure 0004423536
・・・(96)
【0913】
【数97】
Figure 0004423536
・・・(97)
【0914】
式(97)で示される正規方程式の各行列のそれぞれを、次の式(98)乃至(100)のように定義すると、正規方程式は、次の式(101)のように表される。
【0915】
【数98】
Figure 0004423536
・・・(98)
【0916】
【数99】
Figure 0004423536
・・・(99)
【0917】
【数100】
Figure 0004423536
・・・(100)
【0918】
【数101】
Figure 0004423536
・・・(101)
【0919】
式(99)で示されるように、行列WMATの各成分は、求めたい特徴量wiである。従って、式(101)において、左辺の行列SMATと右辺の行列PMATが決定されれば、行列解法によって行列WMAT(即ち、特徴量wi)の算出が可能である。
【0920】
具体的には、式(98)で示されるように、行列SMATの各成分は、上述した積分成分Si(l)が既知であれば演算可能である。積分成分Si(l)は、積分成分演算部2524より供給された積分成分テーブルに含まれているので、正規方程式生成部2525は、積分成分テーブルを利用して行列SMATの各成分を演算することができる。
【0921】
また、式(100)で示されるように、行列PMATの各成分は、積分成分Si(l)と入力画素値P(l)が既知であれば演算可能である。積分成分Si(l)は、行列SMATの各成分に含まれるものと同一のものであり、また、入力画素値P(l)は、入力画素値取得部2523より供給された入力画素値テーブルに含まれているので、正規方程式生成部2525は、積分成分テーブルと入力画素値テーブルを利用して行列PMATの各成分を演算することができる。
【0922】
このようにして、正規方程式生成部2525は、行列SMATと行列PMATの各成分を演算し、その演算結果(行列SMATと行列PMATの各成分)を正規方程式テーブルとして近似関数生成部2526に出力する。
【0923】
正規方程式生成部252より正規方程式テーブルが出力されると、ステップS2506において、近似関数生成部2526は、正規方程式テーブルに基づいて、上述した式(101)の行列WMATの各成分である特徴量wi(即ち、近似関数f(x,y,t)の係数wi)を演算する。
【0924】
具体的には、上述した式(101)の正規方程式は、次の式(102)のように変形できる。
【0925】
【数102】
Figure 0004423536
・・・(102)
【0926】
式(102)において、左辺の行列WMATの各成分が、求めたい特徴量wiである。また、行列SMATと行列PMATのそれぞれの各成分は、正規方程式生成部2525より供給された正規方程式テーブルに含まれている。従って、近似関数生成部2526は、正規方程式テーブルを利用して、式(102)の右辺の行列演算を行うことで行列WMATを演算し、その演算結果(特徴量wi)を画像生成部103に出力する。
【0927】
ステップS2507において、近似関数生成部2526は、全画素の処理を終了したか否かを判定する。
【0928】
ステップS2507において、全画素の処理がまだ終了されていないと判定された場合、処理はステップS2502に戻り、それ以降の処理が繰り返される。即ち、まだ注目画素とされない画素が、順次注目画素とされて、ステップS2502乃至S2507の処理が繰り返される。
【0929】
そして、全画素の処理が終了すると(ステップS2507において、全画素の処理が終了されたと判定されると)、実世界1の推定処理は終了となる。
【0930】
以上、説明したように、3次元近似手法は、1次元や2次元ではなく、時空間方向の3次元の積分効果を考慮しているので、1次元近似手法や2次元近似手法に比較して、より正確に実世界1の光信号を推定することが可能になる。
【0931】
次に、図89乃至図110を参照して、画像生成部103(図3)の実施の形態の1例について説明する。
【0932】
図89は、この例の実施の形態の原理を説明する図である。
【0933】
図89で示されるように、この例の実施の形態においては、実世界推定部102が、関数近似手法を利用することが前提とされている。即ち、センサ2に入射される画像である、実世界1の信号(光の強度の分布)が、所定の関数Fで表されるとして、実世界推定部102が、センサ2から出力された入力画像(画素値P)と、データ定常性検出部101から出力されたデータ定常性情報を使用して、関数Fを所定の関数fで近似することによって、関数Fを推定することが前提とされている。
【0934】
なお、以下、この例の実施の形態の説明においても、画像である、実世界1の信号を、特に光信号と称し、関数Fを、特に光信号関数Fと称する。また、関数fを、特に近似関数fと称する。
【0935】
そこで、この例の実施の形態においては、このような前提に基づいて、画像生成部103が、データ定常性検出部101から出力されたデータ定常性情報と、実世界推定部102から出力された実世界推定情報(図89の例では、近似関数fの特徴量、または特徴量が特定された近似関数f)を使用して、近似関数fを所定の時空間範囲で積分し、その積分値を出力画素値M(出力画像)として出力する。なお、この例の実施の形態においては、入力画像の画素と出力画像の画素を区別するために、入力画素値をPと記述し、出力画素値をMと記述する。
【0936】
換言すると、光信号関数Fが1度積分されて入力画素値Pとなり、その入力画素値Pから光信号関数Fが推測され(近似関数fで近似され)、推測された光信号関数F(即ち、近似関数f)が再度積分されて、出力画素値Mが生成される。従って、以下、画像生成部103が実行する近似関数fの積分を、再積分と称する。また、この例の実施の形態を、再積分手法と称する。
【0937】
なお、後述するように、再積分手法において、出力画素値Mが生成される場合の近似関数fの積分範囲は、入力画素値Pが生成される場合の光信号関数Fの積分範囲(即ち、空間方向においては、センサ2の検出素子の縦幅と横幅であり、時間方向においては、センサ2の露光時間である)に限定されず、任意の積分範囲とすることが可能である。
【0938】
例えば、出力画素値Mが生成される場合、近似関数fの積分範囲のうちの空間方向の積分範囲を可変することで、その積分範囲に応じて出力画像の画素ピッチを可変することが可能になる。即ち、空間解像度の創造が可能になる。
【0939】
同様に、例えば、出力画素値Mが生成される場合、近似関数fの積分範囲のうちの時間方向の積分範囲を可変することで、時間解像度の創造が可能になる。
【0940】
以下、図面を参照して、このような再積分手法のうちの3つの具体的な手法についてそれぞれ個別に説明していく。
【0941】
即ち、3つの具体的な手法とは、関数近似手法の3つの具体的な手法(実世界推定部102の実施の形態の上述した3つの具体的な例)のそれぞれに対応する再積分手法である。
【0942】
具体的には、1つ目の手法は、上述した1次元近似手法(関数近似手法の1手法)に対応する再積分手法である。従って、1つ目の手法では1次元の再積分を行うことになるので、以下、このような再積分手法を、1次元再積分手法と称する。
【0943】
2つ目の手法は、上述した2次元近似手法(関数近似手法の1手法)に対応する再積分手法である。従って、2つ目の手法では2次元の再積分を行うことになるので、以下、このような再積分手法を、2次元再積分手法と称する。
【0944】
3つ目の手法は、上述した3次元近似手法(関数近似手法の1手法)に対応する再積分手法である。従って、3つ目の手法では3次元の再積分を行うことになるので、以下、このような再積分手法を、3次元再積分手法と称する。
【0945】
以下、1次元再積分手法、2次元再積分手法、および3次元再積分手法のそれぞれの詳細について、その順番で説明していく。
【0946】
はじめに、1次元再積分手法について説明する。
【0947】
1次元再積分手法においては、1次元近似手法により近似関数f(x)が既に生成されていることが前提とされる。
【0948】
即ち、3次元の空間上の位置x,y、およびz、並びに時刻tを変数とする光信号関数F(x,y,t)を、空間方向であるX方向、Y方向、およびZ方向、並びに時間方向であるt方向のうちの所定の1方向(例えば、X方向)に射影した1次元の波形(再積分手法の説明においても、このような波形のうちのX方向に射影した波形を、X断面波形F(x)と称することにする)が、n次(nは、任意の整数)の多項式などの近似関数f(x)で近似されていることが前提とされる。
【0949】
この場合、1次元再積分手法においては、出力画素値Mは、次の式(103)のように演算される。
【0950】
【数103】
Figure 0004423536
・・・(103)
【0951】
なお、式(103)において、xsは、積分開始位置を表しており、xeは、積分終了位置を表している。また、Geは、所定のゲインを表している。
【0952】
具体的には、例えば、いま、実世界推測部102が、図90で示されるような画素3101(センサ2の所定の1つの検出素子に対応する画素3101)を注目画素として、図90で示されるような近似関数f(x)(X断面波形F(x)の近似関数f(x))を既に生成しているとする。
【0953】
なお、図90の例では、画素3101の画素値(入力画素値)がPとされ、かつ、画素3101の形状が、1辺の長さが1の正方形とされている。また、空間方向のうちの、画素3101の1辺に平行な方向(図中水平方向)がX方向とされ、X方向に垂直な方向(図中垂直方向)がY方向とされている。
【0954】
また、図90の下側に、画素3101の中心が原点とされる空間方向(X方向とY方向)の座標系(以下、注目画素座標系と称する)と、その座標系における画素3101が示されている。
【0955】
さらに、図90の上方に、y=0(yは、図中下側で示される注目画素座標系のY方向の座標値)における近似関数f(x)をグラフ化したものが示されている。このグラフにおいて、図中水平方向に平行な軸は、図中下側で示される注目画素座標系のX方向のx軸と同一の軸であり(原点も同一であり)、また、図中垂直方向に平行な軸は、画素値を表す軸とされている。
【0956】
この場合、近似関数f(x)と画素3101の画素値Pの間には、次の式(104)の関係が成立する。
【0957】
【数104】
Figure 0004423536
・・・(104)
【0958】
また、図90で示されるように、画素3101は、傾きGfで表される空間方向のデータの定常性を有しているとする。そして、データ定常性検出部101(図89)が、傾きGfで表されるデータの定常性に対応するデータ定常性情報として、図90で示されるような角度θを既に出力しているとする。
【0959】
この場合、例えば、1次元再積分方法においては、図91で示されるように、X方向に−0.5乃至0.5の範囲、かつY方向に−0.5乃至0.5の範囲(図90の画素3101が位置する範囲)に、4個の画素3111乃至画素3114を新たに創造することが可能である。
【0960】
なお、図91の下側に、図90のものと同一の注目画素座標系と、その注目画素座標系における画素3111乃至画素3114が示されている。また、図91の上側に、図90のものと同一のグラフ(y=0における近似関数f(x)をグラフ化したもの)が示されている。
【0961】
具体的には、図91で示されるように、1次元再積分方法においては、次の式(105)により画素3111の画素値M(1)の算出が、次の式(106)により画素3112の画素値M(2)の算出が、次の式(107)により画素3113の画素値M(3)の算出が、次の式(108)により画素3114の画素値M(4)の算出が、それぞれ可能である。
【0962】
【数105】
Figure 0004423536
・・・(105)
【0963】
【数106】
Figure 0004423536
・・・(106)
【0964】
【数107】
Figure 0004423536
・・・(107)
【0965】
【数108】
Figure 0004423536
・・・(108)
【0966】
なお、式(105)のxs1、式(106)のxs2、式(107)のxs3、および式(108)のxs4のそれぞれは、対応する式の積分開始位置を表している。また、式(105)のxe1、式(106)のxe2、式(107)のxe3、および式(108)のxe4のそれぞれは、対応する式の積分終了位置を表している。
【0967】
式(105)乃至式(108)のそれぞれの右辺の積分範囲は、画素3111乃至画素3114のそれぞれの画素幅(X方向の長さ)となる。即ち、xe1-xs1,xe2-xs2,xe3-xs3,xe4-xs4のそれぞれは、0.5となる。
【0968】
ただし、いまの場合、y=0における近似関数f(x)と同一形状の1次元の波形が、Y方向ではなく、傾きGfで表されるデータの定常性の方向(即ち、角度θ方向)に連なっていると考えられる(実際には、y=0におけるX断面波形F(x)と同一形状の波形が定常性の方向に連なっている)。即ち、図91の注目画素座標系における原点(0,0)(図90の画素3101の中心)における画素値f(0)を画素値f1とした場合、画素値f1が続く方向は、Y方向ではなく、傾きGfで表されるデータの定常性の方向(角度θ方向)である。
【0969】
換言すると、Y方向の所定の位置y(ただし、yは0以外の数値)における近似関数f(x)の波形を考えた場合、画素値f1となる位置は、位置(0,y)ではなく、位置(0,y)からX方向に所定の量(ここでも、このような量をシフト量と称することにする。また、シフト量は、Y方向の位置yに依存する量であるので、このシフト量をCx(y)と記述することにする)だけ移動した位置(Cx(y),y)である。
【0970】
従って、上述した式(105)乃至式(108)のそれぞれの右辺の積分範囲として、求めたい画素値M(l)(ただし、lは、1乃至4のうちのいずれかの整数値)の中心が存在するY方向の位置yを考慮した範囲、即ち、シフト量Cx(y)を考慮した積分範囲の設定が必要である。
【0971】
具体的には、例えば、画素3111と画素3112の中心が存在するY方向の位置yは、y=0ではなく、y=0.25である。
【0972】
従って、y=0.25における近似関数f(x)の波形は、y=0における近似関数f(x)の波形をX方向にシフト量Cx(0.25)だけ移動させた波形に相当する。
【0973】
換言すると、上述した式(105)において、画素3111に対する画素値M(1)は、y=0における近似関数f(x)を所定の積分範囲(開始位置xs1から終了位置xe1まで)で積分したものであるとすると、その積分範囲は、開始位置xs1=-0.5から終了位置xe1=0までの範囲(画素3111がX方向に占める範囲そのもの)ではなく、図91で示される範囲、即ち、開始位置xs1=-0.5+Cx(0.25)から終了位置xe1=0+Cx(0.25)(シフト量Cx(0.25)だけ画素3111を仮に移動させた場合における、画素3111がX方向に占める範囲)となる。
【0974】
同様に、上述した式(106)において、画素3112に対する画素値M(2)は、y=0における近似関数f(x)を所定の積分範囲(開始位置xs2から終了位置xe2まで)で積分したものであるとすると、その積分範囲は、開始位置xs2=0から終了位置xe2=0.5までの範囲(画素3112のX方向に占める範囲そのもの)ではなく、図91で示される範囲、即ち、開始位置xs2=0+Cx(0.25)から終了位置xe1=0.5+Cx(0.25)(シフト量Cx(0.25)だけ画素3112を仮に移動させた場合における、画素3112のX方向に占める範囲)となる。
【0975】
また、例えば、画素3113と画素3114の中心が存在するY方向の位置yは、y=0ではなく、y=-0.25である。
【0976】
従って、y=-0.25における近似関数f(x)の波形は、y=0における近似関数f(x)の波形をX方向にシフト量Cx(-0.25)だけ移動させた波形に相当する。
【0977】
換言すると、上述した式(107)において、画素3113に対する画素値M(3)は、y=0における近似関数f(x)を所定の積分範囲(開始位置xs3から終了位置xe3まで)で積分したものであるとすると、その積分範囲は、開始位置xs3=-0.5から終了位置xe3=0までの範囲(画素3113のX方向に占める範囲そのもの)ではなく、図91で示される範囲、即ち、開始位置xs3=-0.5+Cx(-0.25)から終了位置xe3=0+Cx(-0.25)(シフト量Cx(-0.25)だけ画素3113を仮に移動させた場合における、画素3113のX方向に占める範囲)となる。
【0978】
同様に、上述した式(108)において、画素3114に対する画素値M(4)は、y=0における近似関数f(x)を所定の積分範囲(開始位置xs4から終了位置xe4まで)で積分したものであるとすると、その積分範囲は、開始位置xs4=0から終了位置xe4=0.5までの範囲(画素3114のX方向の占める範囲そのもの)ではなく、図91で示される範囲、即ち、開始位置xs4=0+Cx(-0.25)から終了位置xe1=0.5+Cx(-0.25)(シフト量Cx(-0.25)だけ画素3114を仮に移動させた場合における、画素3114のX方向に占める範囲)となる。
【0979】
従って、画像生成部102(図89)は、上述した式(105)乃至式(108)のそれぞれに、上述した積分範囲のうちの対応するものを代入してそれぞれ演算し、それらの演算結果を出力画素値M(1)乃至M(4)のそれぞれとして出力することになる。
【0980】
このように、画像生成部102は、1次元再積分手法を利用することで、センサ2(図89)からの出力画素3101(図90)における画素として、出力画素3101よりも空間解像度の高い4つの画素、即ち、画素3111乃至画素3114(図91)を創造することができる。さらに、図示はしないが、上述したように、画像生成部102は、画素3111乃至画素3114のみならず、積分範囲を適宜変えることで、出力画素3101に対して任意の倍率の空間解像度の画素を劣化することなく創造することができる。
【0981】
図92は、このような1次元再積分手法を利用する画像生成部103の構成例を表している。
【0982】
図92で示されるように、この例の画像生成部103には、条件設定部3121、特徴量記憶部3122、積分成分演算部3123、および出力画素値演算部3124が設けられている。
【0983】
条件設定部3121は、実世界推定部102より供給された実世界推定情報(図92の例では、近似関数f(x)の特徴量)に基づいて近似関数f(x)の次数nを設定する。
【0984】
条件設定部3121はまた、近似関数f(x)を再積分する場合(出力画素値を演算する場合)の積分範囲を設定する。なお、条件設定部3121が設定する積分範囲は、画素の幅である必要は無い。例えば、近似関数f(x)は空間方向(X方向)に積分されるので、センサ2(図89)からの入力画像の各画素の空間的な大きさに対する、出力画素(画像生成部103がこれから演算する画素)の相対的な大きさ(空間解像度の倍率)がわかれば、具体的な積分範囲の決定が可能である。従って、条件設定部3121は、積分範囲として、例えば、空間解像度倍率を設定することもできる。
【0985】
特徴量記憶部3122は、実世界推定部102より順次供給されてくる近似関数f(x)の特徴量を一次的に記憶する。そして、特徴量記憶部3122は、近似関数f(x)の特徴量の全てを記憶すると、近似関数f(x)の特徴量を全て含む特徴量テーブルを生成し、出力画素値演算部3124に供給する。
【0986】
ところで、上述したように、画像生成部103は、上述した式(103)を利用して出力画素値Mを演算するが、上述した式(103)の右辺に含まれる近似関数f(x)は、具体的には、次の式(109)のように表される。
【0987】
【数109】
Figure 0004423536
・・・(109)
【0988】
なお、式(109)において、wiは、実世界推定部102より供給される近似関数f(x)の特徴量を表している。
【0989】
従って、上述した式(103)の右辺の近似関数f(x)に、式(109)の近似関数f(x)を代入して、式(103)の右辺を展開(演算)すると、出力画素値Mは、次の式(110)のように表される。
【0990】
【数110】
Figure 0004423536
・・・(110)
【0991】
式(110)において、Ki(xs,xe)は、i次項の積分成分を表している。即ち、積分成分Ki(xs,xe)は、次の式(111)で示される通りである。
【0992】
【数111】
Figure 0004423536
・・・(111)
【0993】
積分成分演算部3123は、この積分成分Ki(xs,xe)を演算する。
【0994】
具体的には、式(111)で示されるように、積分成分Ki(xs,xe)は、積分範囲の開始位置xs、および終了位置xe、ゲインGe、並びにi次項のiが既知であれば演算可能である。
【0995】
これらのうちの、ゲインGeは、条件設定部3121により設定された空間解像度倍率(積分範囲)により決定される。
【0996】
iの範囲は、条件設定部3121により設定された次数nにより決定される。
【0997】
また、積分範囲の開始位置xs、および終了位置xeのそれぞれは、これから生成する出力画素の中心画素位置(x,y)および画素幅、並びにデータの定常性の方向を表すシフト量Cx(y)により決定される。なお、(x,y)は、実世界推定部102が近似関数f(x)を生成したときの注目画素の中心位置からの相対位置を表している。
【0998】
さらに、これから生成する出力画素の中心画素位置(x,y)および画素幅のそれぞれは、条件設定部3121により設定された空間解像度倍率(積分範囲)により決定される。
【0999】
また、シフト量Cx(y)と、データ定常性検出部101より供給された角度θは、次の式(112)と式(113)のような関係が成り立つので、シフト量Cx(y)は角度θにより決定される。
【1000】
【数112】
Figure 0004423536
・・・(112)
【1001】
【数113】
Figure 0004423536
・・・(113)
【1002】
なお、式(112)において、Gfは、データの定常性の方向を表す傾きを表しており、θは、データ定常性検出部101(図89)より出力されるデータ定常性情報の1つである角度(空間方向の1方向であるX方向と、傾きGfで表されるデータの定常性の方向とのなす角度)を表している。また、dxは、X方向の微小移動量を表しており、dyは、dxに対するY方向(X方向と垂直な空間方向)の微小移動量を表している。
【1003】
従って、積分成分演算部3123は、条件設定部3121により設定された次数および空間解像度倍率(積分範囲)、並びにデータ定常性検出部101より出力されたデータ定常性情報のうちの角度θに基づいて積分成分Ki(xs,xe)を演算し、その演算結果を積分成分テーブルとして出力画素値演算部3124に供給する。
【1004】
出力画素値演算部3124は、特徴量記憶部3122より供給された特徴量テーブルと、積分成分演算部3123より供給された積分成分テーブルを利用して、上述した式(110)の右辺を演算し、その演算結果を出力画素値Mとして外部に出力する。
【1005】
次に、図93のフローチャートを参照して、1次元再積分手法を利用する画像生成部103(図92)の画像の生成の処理(図29のステップS103の処理)について説明する。
【1006】
例えば、いま、上述した図29のステップS102の処理で、実世界推測部102が、上述した図90で示されるような画素3101を注目画素として、図90で示されるような近似関数f(x)を既に生成しているとする。
【1007】
また、上述した図29のステップS101の処理で、データ定常性検出部101が、データ定常性情報として、図90で示されるような角度θを既に出力しているとする。
【1008】
この場合、図93のステップS3101において、条件設定部3121は、条件(次数と積分範囲)を設定する。
【1009】
例えば、いま、次数として5が設定されるとともに、積分範囲として空間4倍密(画素のピッチ幅が上下左右ともに1/2倍となる空間解像度倍率)が設定されたとする。
【1010】
即ち、この場合、図91で示されるように、X方向に−0.5乃至0.5の範囲、かつY方向に−0.5乃至0.5の範囲(図90の画素3101の範囲)に、4個の画素3111乃至画素3114を新たに創造することが設定されたことになる。
【1011】
ステップS3102において、特徴量記憶部3122は、実世界推定部102より供給された近似関数f(x)の特徴量を取得し、特徴量テーブルを生成する。いまの場合、5次の多項式である近似関数f(x)の係数w0乃至w5が実世界推定部102より供給されるので、特徴量テーブルとして、(w0,w1,w2,w3,w4,w5)が生成される。
【1012】
ステップS3103において、積分成分演算部3123は、条件設定部3121により設定された条件(次数および積分範囲)、並びにデータ定常性検出部101より供給されたデータ定常性情報(角度θ)に基づいて積分成分を演算し、積分成分テーブルを生成する。
【1013】
具体的には、例えば、これから生成する画素3111乃至画素3114のそれぞれに対して、番号(このような番号を、以下、モード番号と称する)1乃至4のそれぞれが付されているとすると、積分成分演算部3123は、上述した式(111)の積分成分Ki(xs,xe)を、次の式(114)の左辺で示される積分成分Ki(l)といったl(ただし、lはモード番号を表している)の関数として演算する。
【1014】
【数114】
Figure 0004423536
・・・(114)
【1015】
具体的には、いまの場合、次の式(115)で示される積分成分Ki(l)が演算される。
【1016】
【数115】
Figure 0004423536
・・・(115)
【1017】
なお、式(115)において、左辺が積分成分Ki(l)を表し、右辺が積分成分Ki(xs,xe)を表している。即ち、いまの場合、lは、1乃至4のうちのいずれかであり、かつ、iは0乃至5のうちのいずれかであるので、6個のKi(1),6個のKi(2),6個のKi(3),6個のKi(4)の総計24個のKi(l)が演算されることになる。
【1018】
より具体的には、はじめに、積分成分演算部3123は、データ定常性検出部101より供給された角度θを使用して、上述した式(112)と式(113)よりシフト量Cx(-0.25)、およびCx(0.25)のそれぞれを演算する。
【1019】
次に、積分成分演算部3123は、演算したシフト量Cx(-0.25)、およびCx(0.25)を使用して、式(115)の4つの式の各右辺の積分成分Ki(xs,xe)のそれぞれを、i=0乃至5についてそれぞれ演算する。なお、この積分成分Ki(xs,xe)の演算においては、上述した式(111)が使用される。
【1020】
そして、積分成分演算部3123は、式(115)に従って、演算した24個の積分成分Ki(xs,xe)のそれぞれを、対応する積分成分Ki(l)に変換し、変換した24個の積分成分Ki(l)(即ち、6個のKi(1)、6個のKi(2)、6個のKi(3)、および6個のKi(4))を含む積分成分テーブルを生成する。
【1021】
なお、ステップS3102の処理とステップS3103の処理の順序は、図93の例に限定されず、ステップS3103の処理が先に実行されてもよいし、ステップS3102の処理とステップS3103の処理が同時に実行されてもよい。
【1022】
次に、ステップS3104において、出力画素値演算部3124は、ステップS3102の処理で特徴量記憶部3122により生成された特徴量テーブルと、ステップS3103の処理で積分成分演算部3123により生成された積分成分テーブルに基づいて出力画素値M(1)乃至M(4)のそれぞれを演算する。
【1023】
具体的には、いまの場合、出力画素値演算部3124は、上述した式(110)に対応する、次の式(116)乃至式(119)の右辺を演算することで、画素3111(モード番号1の画素)の画素値M(1)、画素3112(モード番号2の画素)の画素値M(2)、画素3113(モード番号3の画素)の画素値M(3)、および画素3114(モード番号4の画素)の画素値M(4)のそれぞれを演算する。
【1024】
【数116】
Figure 0004423536
・・・(116)
【1025】
【数117】
Figure 0004423536
・・・(117)
【1026】
【数118】
Figure 0004423536
・・・(118)
【1027】
【数119】
Figure 0004423536
・・・(119)
【1028】
ステップS3105において、出力画素値演算部3124は、全画素の処理を終了したか否かを判定する。
【1029】
ステップS3105において、全画素の処理がまだ終了されていないと判定された場合、処理はステップS3102に戻り、それ以降の処理が繰り返される。即ち、まだ注目画素とされない画素が、順次注目画素とされて、ステップS3102乃至S3104の処理が繰り返される。
【1030】
そして、全画素の処理が終了すると(ステップS3105において、全画素の処理が終了されたと判定すると)、出力画素値演算部3124は、ステップS3106において、画像を出力する。その後、画像の生成の処理は終了となる。
【1031】
次に、図94乃至図101を参照して、所定の入力画像に対して、1次元再積分手法を適用して得られた出力画像と、他の手法(従来のクラス分類適応処理)を適用して得られた出力画像の違いについて説明する。
【1032】
図94は、入力画像の元の画像を示す図であり、図95は、図94の元の画像に対応する画像データを示している。図95において、図中垂直方向の軸は、画素値を示し、図中右下方向の軸は、画像の空間方向の一方向であるX方向を示し、図中右上方向の軸は、画像の空間方向の他の方向であるY方向を示す。なお、後述する図97、図99、および図101の軸のそれぞれは、図95の軸と対応している。
【1033】
図96は、入力画像の例を示す図である。図96で示される入力画像は、図94で示される画像の2×2の画素からなるブロックに属する画素の画素値の平均値を、1つの画素の画素値として生成された画像である。即ち、入力画像は、図94で示される画像に、センサの積分特性を模した、空間方向の積分を適用することにより得られた画像である。また、図97は、図96の入力画像に対応する画像データを示している。
【1034】
図94で示される元の画像において、上下方向から、ほぼ5度時計方向に傾いた細線の画像が含まれている。同様に、図96で示される入力画像において、上下方向から、ほぼ5度時計方向に傾いた細線の画像が含まれている。
【1035】
図98は、図96で示される入力画像に、従来のクラス分類適応処理を適用して得られた画像(以下、図98で示される画像を、従来の画像と称する)を示す図である。また、図99は、従来の画像に対応する画像データを示している。
【1036】
なお、クラス分類適応処理は、上述したように、クラス分類処理と適応処理とからなり、クラス分類処理によって、データを、その性質に基づいてクラス分けし、各クラスごとに適応処理を施すものである。適応処理では、例えば、低画質または標準画質の画像が、所定のタップ係数を用いてマッピング(写像)されることにより、高画質の画像に変換される。
【1037】
図100は、図96で示される入力画像に、1次元再積分手法を適用して得られた画像(以下、図100で示される画像を、再積分画像と称する)を示す図である。また、図101は、再積分画像に対応する画像データを示している。
【1038】
図98の従来の画像と、図100の再積分画像を比較するに、従来の画像においては、細線の画像が、図94の元の画像とは異なるものになっているのに対して、再積分画像においては、細線の画像が、図94の元の画像とほぼ同じものになっていることがわかる。
【1039】
この違いは、従来のクラス分類適応処理は、あくまでも図96の入力画像を基準(原点)として処理を行う手法であるのに対して、1次元再積分手法は、細線の定常性を考慮して、図94の元の画像を推定し(元の画像に対応する近似関数f(x)を生成し)、推定した元の画像を基準(原点)として処理を行う(再積分して画素値を演算する)手法であるからである。
【1040】
このように、1次元再積分手法においては、1次元近似手法により生成された1次元の多項式などの近似関数f(x)(実世界のX断面波形F(x)の近似関数f(x))を基準(原点)として、近似関数f(x)を任意の範囲に積分することで出力画像(画素値)が生成される。
【1041】
従って、1次元再積分手法においては、従来の他の手法に比較して、元の画像(センサ2に入射される前の実世界1の光信号)により近い画像の出力が可能になる。
【1042】
また、1次元再積分手法においては、上述したように、積分範囲は任意なので、積分範囲を可変することにより、入力画像の解像度とは異なる解像度(時間解像度、または空間解像度)を創造することも可能になる。即ち、入力画像の解像度に対して、整数値だけではなく任意の倍率の解像度の画像を生成することが可能になる。
【1043】
さらに、1次元再積分手法においては、他の再積分手法に比較して、より少ない演算処理量で出力画像(画素値)の算出が可能となる。
【1044】
次に、図102乃至図108を参照して、2次元再積分手法について説明する。
【1045】
2次元再積分手法においては、2次元近似手法により近似関数f(x,y)が既に生成されていることが前提とされる。
【1046】
即ち、例えば、図102で示されるような、傾きGFで表される空間方向の定常性を有する実世界1(図89)の光信号を表す画像関数F(x,y,t)を、空間方向(X方向とY方向)に射影した波形、即ち、X−Y平面上の波形F(x,y)が、n次(nは、任意の整数)の多項式などの近似関数f(x,y)に近似されていることが前提とされる。
【1047】
図102において、図中、水平方向は、空間方向の1方向であるX方向を、右上方向は、空間方向の他方向であるY方向を、垂直方向は、光のレベルを、それぞれ表している。GFは、空間方向の定常性の傾きを表している。
【1048】
なお、図102の例では、定常性の方向は、空間方向(X方向とY方向)とされているため、近似の対象とされる光信号の射影関数は、関数F(x,y)とされているが、後述するように、定常性の方向に応じて、関数F(x,t)や関数F(y,t)が近似の対象とされてもよい。
【1049】
図102の例の場合、2次元再積分手法においては、出力画素値Mは、次の式(120)のように演算される。
【1050】
【数120】
Figure 0004423536
・・・(120)
【1051】
なお、式(120)において、ysは、Y方向の積分開始位置を表しており、yeは、Y方向の積分終了位置を表している。同様に、xsは、X方向の積分開始位置を表しており、xeは、X方向の積分終了位置を表している。また、Geは、所定のゲインを表している。
【1052】
式(120)において、積分範囲は任意に設定可能であるので、2次元再積分手法においては、この積分範囲を適宜変えることで、元の画素(センサ2(図89)からの入力画像の画素)に対して任意の倍率の空間解像度の画素を劣化することなく創造することが可能になる。
【1053】
図103は、2次元再積分手法を利用する画像生成部103の構成例を表している。
【1054】
図103で示されるように、この例の画像生成部103には、条件設定部3201、特徴量記憶部3202、積分成分演算部3203、および出力画素値演算部3204が設けられている。
【1055】
条件設定部3201は、実世界推定部102より供給された実世界推定情報(図103の例では、近似関数f(x,y)の特徴量)に基づいて近似関数f(x,y)の次数nを設定する。
【1056】
条件設定部3201はまた、近似関数f(x,y)を再積分する場合(出力画素値を演算する場合)の積分範囲を設定する。なお、条件設定部3201が設定する積分範囲は、画素の縦幅や横幅である必要は無い。例えば、近似関数f(x,y)は空間方向(X方向とY方向)に積分されるので、センサ2からの入力画像の各画素の空間的な大きさに対する、出力画素(画像生成部103がこれから生成する画素)の相対的な大きさ(空間解像度の倍率)がわかれば、具体的な積分範囲の決定が可能である。従って、条件設定部3201は、積分範囲として、例えば、空間解像度倍率を設定することもできる。
【1057】
特徴量記憶部3202は、実世界推定部102より順次供給されてくる近似関数f(x,y)の特徴量を一次的に記憶する。そして、特徴量記憶部3202は、近似関数f(x,y)の特徴量の全てを記憶すると、近似関数f(x,y)の特徴量を全て含む特徴量テーブルを生成し、出力画素値演算部3204に供給する。
【1058】
ここで、近似関数f(x,y)の詳細について説明する。
【1059】
例えば、いま、上述した図102で示されるような傾きGFで表される空間方向の定常性を有する実世界1(図89)の光信号(波形F(x,y)で表される光信号)が、センサ2(図89)により検出されて入力画像(画素値)として出力されたとする。
【1060】
さらに、例えば、図104で示されるように、データ定常性検出部101(図3)が、この入力画像のうちの、X方向に4画素分、かつY方向に5画素分の総計20個の画素(図中、点線で表される20個の正方形)から構成される入力画像の領域3221に対してその処理を実行し、データ定常性情報の1つとして角度θ(傾きGFに対応する傾きGfで表されるデータの定常性の方向と、X方向とのなす角度θ)を出力したとする。
【1061】
なお、実世界推定部102から見ると、データ定常性検出部101は、注目画素における角度θを単に出力すればよいので、データ定常性検出部101の処理範囲は、上述した入力画像の領域3221に限定されない。
【1062】
また、入力画像の領域3221において、図中水平方向は、空間方向の1方向であるX方向を表しており、図中垂直方向は、空間方向の他方向であるY方向を表している。
【1063】
さらに、図104中、左から2画素目であって、下から3画素目の画素が注目画素とされ、その注目画素の中心を原点(0,0)とするように(x,y)座標系が設定されている。そして、原点(0,0)を通る角度θの直線(データの定常性の方向を表す傾きGfの直線)に対するX方向の相対的な距離(以下、断面方向距離と称する)がx’とされている。
【1064】
さらに、図104中、右側のグラフは、3次元の空間上の位置x,y、およびz、並びに時刻tを変数とする画像関数F(x,y,t)を、Y方向の任意の位置yにおいて、X方向に射影した1次元の波形(以下、このような波形を、X断面波形F(x’)と称する)が近似された関数であって、n次(nは、任意の整数)の多項式などの近似関数f(x’)を表している。右側のグラフの軸のうち、図中水平方向の軸は、断面方向距離を表しており、図中垂直方向の軸は、画素値を表している。
【1065】
この場合、図104で示される近似関数f(x’)は、n次の多項式であるので、次の式(121)のように表される。
【1066】
【数121】
Figure 0004423536
・・・(121)
【1067】
また、角度θが決定されていることから、原点(0,0)を通る角度θの直線は一意に決まり、Y方向の任意の位置yにおける、直線のX方向の位置xlが、次の式(122)のように表される。ただし、式(122)において、sはcotθを表している。
【1068】
【数122】
Figure 0004423536
・・・(122)
【1069】
即ち、図104で示されるように、傾きGfで表されるデータの定常性に対応する直線上の点は、座標値(xl,y)で表される。
【1070】
式(122)より、断面方向距離x’は、次の式(123)のように表される。
【1071】
【数123】
Figure 0004423536
・・・(123)
【1072】
従って、入力画像の領域3221内の任意の位置(x,y)における近似関数f(x,y)は、式(121)と式(123)より、次の式(124)のように示される。
【1073】
【数124】
Figure 0004423536
・・・(124)
【1074】
なお、式(124)において、wiは、近似関数f(x,y)の特徴量を表している。
【1075】
図103に戻り、式(124)に含まれる特徴量wiが、実世界推定部102より供給され、特徴量記憶部3202に記憶される。特徴量記憶部3202は、式(124)で表される特徴量wiの全てを記憶すると、特徴量wiを全て含む特徴量テーブルを生成し、出力画素値演算部3204に供給する。
【1076】
また、上述した式(120)の右辺の近似関数f(x,y)に、式(124)の近似関数f(x,y)を代入して、式(120)の右辺を展開(演算)すると、出力画素値Mは、次の式(125)のように表される。
【1077】
【数125】
Figure 0004423536
・・・(125)
【1078】
式(125)において、Ki(xs,xe,ys,ye)は、i次項の積分成分を表している。即ち、積分成分Ki(xs,xe,ys,ye)は、次の式(126)で示される通りである。
【1079】
【数126】
Figure 0004423536
・・・(126)
【1080】
積分成分演算部3203は、この積分成分Ki(xs,xe,ys,ye)を演算する。
【1081】
具体的には、式(125)と式(126)で示されるように、積分成分Ki(xs,xe,ys,ye)は、積分範囲のX方向の開始位置xs、およびX方向の終了位置xe、積分範囲のY方向の開始位置ys、およびY方向の終了位置ye、変数s、ゲインGe、並びにi次項のiが既知であれば演算可能である。
【1082】
これらのうちの、ゲインGeは、条件設定部3201により設定された空間解像度倍率(積分範囲)により決定される。
【1083】
iの範囲は、条件設定部3201により設定された次数nにより決定される。
【1084】
変数sは、上述したように、cotθであるので、データ定常性検出部101より出力される角度θにより決定される。
【1085】
また、積分範囲のX方向の開始位置xs、およびX方向の終了位置xe、並びに、積分範囲のY方向の開始位置ys、およびY方向の終了位置yeのそれぞれは、これから生成する出力画素の中心画素位置(x,y)および画素幅により決定される。なお、(x,y)は、実世界推定部102が近似関数f(x)を生成したときの注目画素の中心位置からの相対位置を表している。
【1086】
さらに、これから生成する出力画素の中心画素位置(x,y)および画素幅のそれぞれは、条件設定部3201により設定された空間解像度倍率(積分範囲)により決定される。
【1087】
従って、積分成分演算部3203は、条件設定部3201により設定された次数および空間解像度倍率(積分範囲)、並びにデータ定常性検出部101より出力されたデータ定常性情報のうちの角度θに基づいて積分成分Ki(xs,xe,ys,ye)を演算し、その演算結果を積分成分テーブルとして出力画素値演算部3204に供給する。
【1088】
出力画素値演算部3204は、特徴量記憶部3202より供給された特徴量テーブルと、積分成分演算部3203より供給された積分成分テーブルを利用して、上述した式(125)の右辺を演算し、その演算結果を出力画素値Mとして外部に出力する。
【1089】
次に、図105のフローチャートを参照して、2次元再積分手法を利用する画像生成部103(図104)の画像の生成の処理(図29のステップS103の処理)について説明する。
【1090】
例えば、いま、図102で示される関数F(x,y)で表される光信号がセンサ2に入射されて入力画像となり、上述した図29のステップS102の処理で、実世界推測部102が、その入力画像のうちの、図106で示されるような1つの画素3231を注目画素として、関数F(x,y)を近似する近似関数f(x,y)を既に生成しているとする。
【1091】
なお、図106において、画素3231の画素値(入力画素値)がPとされ、かつ、画素3231の形状が、1辺の長さが1の正方形とされている。また、空間方向のうちの、画素3231の1辺に平行な方向がX方向とされ、X方向に垂直な方向がY方向とされている。さらに、画素3231の中心が原点とされる空間方向(X方向とY方向)の座標系(以下、注目画素座標系と称する)が設定されている。
【1092】
また、図106において、上述した図29のステップS101の処理で、データ定常性検出部101が、画素3231を注目画素として、傾きGfで表されるデータの定常性に対応するデータ定常性情報として、角度θを既に出力しているとする。
【1093】
図105に戻り、この場合、ステップS3201において、条件設定部3201は、条件(次数と積分範囲)を設定する。
【1094】
例えば、いま、次数として5が設定されるとともに、積分範囲として空間4倍密(画素のピッチ幅が上下左右ともに1/2倍となる空間解像度倍率)が設定されたとする。
【1095】
即ち、この場合、図107で示されるように、X方向に−0.5乃至0.5の範囲、かつY方向に−0.5乃至0.5の範囲(図106の画素3231の範囲)に、4個の画素3241乃至画素3244を新たに創造することが設定されたことになる。なお、図107においても、図106のものと同一の注目画素座標系が示されている。
【1096】
また、図107において、M(1)は、これから生成される画素3241の画素値を、M(2)は、これから生成される画素3242の画素値を、M(3)は、これから生成される画素3243の画素値を、M(4)は、これから生成される画素3241の画素値を、それぞれ表している。
【1097】
図105に戻り、ステップS3202において、特徴量記憶部3202は、実世界推定部102より供給された近似関数f(x,y)の特徴量を取得し、特徴量テーブルを生成する。いまの場合、5次の多項式である近似関数f(x)の係数w0乃至w5が実世界推定部102より供給されるので、特徴量テーブルとして、(w0,w1,w2,w3,w4,w5)が生成される。
【1098】
ステップS3203において、積分成分演算部3203は、条件設定部3201により設定された条件(次数および積分範囲)、並びにデータ定常性検出部101より供給されたデータ定常性情報(角度θ)に基づいて積分成分を演算し、積分成分テーブルを生成する。
【1099】
具体的には、例えば、これから生成される画素3241乃至画素3244のそれぞれに対して、番号(このような番号を、以下、モード番号と称する)1乃至4のそれぞれが付されているとすると、積分成分演算部3203は、上述した式(125)の積分成分Ki(xs,xe,ys,ye)を、次の式(127)の左辺で示される積分成分Ki(l)といったl(ただし、lはモード番号を表している)の関数として演算する。
【1100】
【数127】
Figure 0004423536
・・(127)
【1101】
具体的には、いまの場合、次の式(128)で示される積分成分Ki(l)が演算される。
【1102】
【数128】
Figure 0004423536
・・・(128)
【1103】
なお、式(128)において、左辺が積分成分Ki(l)を表し、右辺が積分成分Ki(xs,xe,ys,ye)を表している。即ち、いまの場合、lは、1乃至4のうちのいずれかであり、かつ、iは0乃至5のうちのいずれかであるので、6個のKi(1),6個のKi(2),6個のKi(3),6個のKi(4)の総計24個のKi(l)が演算されることになる。
【1104】
より具体的には、はじめに、積分成分演算部3203は、データ定常性検出部101より供給された角度θを使用して、上述した式(122)の変数s(s=cotθ)を演算する。
【1105】
次に、積分成分演算部3203は、演算した変数sを使用して、式(128)の4つの式の各右辺の積分成分Ki(xs,xe,ys,ye)のそれぞれを、i=0乃至5についてそれぞれ演算する。なお、この積分成分Ki(xs,xe,ys,ye)の演算においては、上述した式(125)が使用される。
【1106】
そして、積分成分演算部3203は、式(128)に従って、演算した24個の積分成分Ki(xs,xe,ys,ye)のそれぞれを、対応する積分成分Ki(l)に変換し、変換した24個の積分成分Ki(l)(即ち、6個のKi(1)、6個のKi(2)、6個のKi(3)、および6個のKi(4))を含む積分成分テーブルを生成する。
【1107】
なお、ステップS3202の処理とステップS3203の処理の順序は、図105の例に限定されず、ステップS3203の処理が先に実行されてもよいし、ステップS3202の処理とステップS3203の処理が同時に実行されてもよい。
【1108】
次に、ステップS3204において、出力画素値演算部3204は、ステップS3202の処理で特徴量記憶部3202により生成された特徴量テーブルと、ステップS3203の処理で積分成分演算部3203により生成された積分成分テーブルに基づいて出力画素値M(1)乃至M(4)のそれぞれを演算する。
【1109】
具体的には、いまの場合、出力画素値演算部3204は、上述した式(125)に対応する、次の式(129)乃至式(132)の右辺のそれぞれを演算することで、図107で示される、画素3241(モード番号1の画素)の画素値M(1)、画素3242(モード番号2の画素)の画素値M(2)、画素3243(モード番号3の画素)の画素値M(3)、および画素3244(モード番号4の画素)の画素値M(4)のそれぞれを演算する。
【1110】
【数129】
Figure 0004423536
・・・(129)
【1111】
【数130】
Figure 0004423536
・・・(130)
【1112】
【数131】
Figure 0004423536
・・・(131)
【1113】
【数132】
Figure 0004423536
・・・(132)
【1114】
ただし、いまの場合、式(129)乃至式(132)のnは全て5となる。
【1115】
ステップS3205において、出力画素値演算部3204は、全画素の処理を終了したか否かを判定する。
【1116】
ステップS3205において、全画素の処理がまだ終了されていないと判定された場合、処理はステップS3202に戻り、それ以降の処理が繰り返される。即ち、まだ注目画素とされない画素が、順次注目画素とされて、ステップS3202乃至S3204の処理が繰り返される。
【1117】
そして、全画素の処理が終了すると(ステップS3205において、全画素の処理が終了されたと判定すると)、出力画素値演算部3204は、ステップS3206において、画像を出力する。その後、画像の生成の処理は終了となる。
【1118】
このように、2次元再積分手法を利用することで、センサ2(図89)からの入力画像の画素3231(図106)における画素として、入力画素3231よりも空間解像度の高い4つの画素、即ち、画素3241乃至画素3244(図107)を創造することができる。さらに、図示はしないが、上述したように、画像生成部103は、画素3241乃至画素3244のみならず、積分範囲を適宜変えることで、入力画素3231に対して任意の倍率の空間解像度の画素を劣化することなく創造することができる。
【1119】
以上、2次元再積分手法の説明として、空間方向(X方向とY方向)に対する近似関数f(x,y)を2次元積分する例を用いたが、2次元再積分手法は、時空間方向(X方向とt方向、または、Y方向とt方向)に対しても適用可能である。
【1120】
即ち、上述した例は、実世界1(図89)の光信号が、例えば、図102で示されるような傾きGFで表される空間方向の定常性を有する場合の例であったので、上述した式(120)で示されるような、空間方向(X方向とY方向)の二次元積分が含まれる式が利用された。しかしながら、二次元積分の考え方は、空間方向だけによるものではなく、時空間方向(X方向とt方向、または、Y方向とt方向)に対して適用することも可能である。
【1121】
換言すると、2次元再積分手法の前提となる2次元近似手法においては、光信号を表す画像関数F(x,y,t)が、空間方向の定常性のみならず、時空間方向(ただし、X方向とt方向、または、Y方向とt方向)の定常性を有している場合であっても、2次元の近似関数fにより近似することが可能である。
【1122】
具体的には、例えば、X方向に水平に等速で動いている物体がある場合、その物体の動きの方向は、図108で示されるようなX-t平面においては、傾きVFのように表される。換言すると、傾きVFは、X-t平面における時空間方向の定常性の方向を表しているとも言える。従って、データ定常性検出部101(図89)は、上述した角度θ(X-Y平面における、空間方向の定常性を表す傾きGFに対応するデータ定常性情報)と同様に、X-t平面における時空間方向の定常性を表す傾きVFに対応するデータ定常性情報として、図108で示されるような動きθ(厳密には、図示はしないが、傾きVFに対応する傾きVfで表されるデータの定常性の方向と、空間方向のX方向とのなす角度である動きθ)を出力することが可能である。
【1123】
また、2次元近似手法を利用する実世界推定部102(図89)は、動きθを上述した角度θの代わりとして使用すれば、上述した方法と同様な方法で、近似関数f(x,t)の係数(特徴量)wiを演算することが可能になる。ただし、この場合、使用される式は、上述した式(124)ではなく、次の式(133)である。
【1124】
【数133】
Figure 0004423536
・・・(133)
【1125】
なお、式(133)において、sはcotθ(ただし、θは動きである)である。
【1126】
従って、2次元再積分手法を利用する画像生成部103(図89)は、次の式(134)の右辺に、上述した式(133)のf(x,t)を代入して、演算することで、画素値Mを算出することが可能になる。
【1127】
【数134】
Figure 0004423536
・・・(134)
【1128】
なお、式(134)において、tsは、t方向の積分開始位置を表しており、teは、t方向の積分終了位置を表している。同様に、xsは、X方向の積分開始位置を表しており、xeは、X方向の積分終了位置を表している。Geは、所定のゲインを表している。
【1129】
また、空間方向Xの変わりに、空間方向Yに注目した近似関数f(y,t)も、上述した近似関数f(x,t)と全く同様に取り扱うことが可能である。
【1130】
ところで、式(133)において、t方向を一定とみなし、即ち、t方向の積分を無視して積分することで、時間方向には積分されないデータ、即ち、動きボケのないデータを得ることが可能になる。換言すると、この手法は、2次元の近似関数fのうちの所定の1次元を一定として再積分する点で、2次元再積分手法の1つとみなしてもよいし、実際には、X方向の1次元の再積分をすることになるという点で、1次元再積分手法の1つとみなしてもよい。
【1131】
また、式(134)において、積分範囲は任意に設定可能であるので、2次元再積分手法においては、この積分範囲を適宜変えることで、元の画素(センサ2(図89)からの入力画像の画素)に対して任意の倍率の解像度の画素を劣化することなく創造することが可能になる。
【1132】
即ち、2次元再積分手法においては、時間方向tの積分範囲を適宜変えることで、時間解像度の創造が可能になる。また、空間方向X(または、空間方向Y)の積分範囲を適宜変えることで、空間解像度の創造が可能になる。さらに、時間方向tと空間方向Xの積分範囲のそれぞれを適宜変えることで、時間解像度と空間解像度の両方の創造が可能になる。
【1133】
なお、上述したように、時間解像度と空間解像度のうちのいずれか一方の創造は、1次元再積分手法でも可能であるが、両方の解像度の創造は、1次元再積分手法では原理上不可能であり、2次元以上の再積分を行うことではじめて可能になる。即ち、2次元再積分手法と後述する3次元再積分手法ではじめて、両方の解像度の創造が可能になる。
【1134】
また、2次元再積分手法は、1次元ではなく2次元の積分効果を考慮しているので、より実世界1(図89)の光信号に近い画像を生成することも可能になる。
【1135】
次に、図109と図110を参照して、3次元再積分手法について説明する。
【1136】
3次元再積分手法においては、3次元近似手法により近似関数f(x,y,t)が既に生成されていることが前提とされる。
【1137】
この場合、3次元再積分手法においては、出力画素値Mは、次の式(135)のように演算される。
【1138】
【数135】
Figure 0004423536
・・・(135)
【1139】
なお、式(135)において、tsは、t方向の積分開始位置を表しており、teは、t方向の積分終了位置を表している。同様に、ysは、Y方向の積分開始位置を表しており、yeは、Y方向の積分終了位置を表している。また、xsは、X方向の積分開始位置を表しており、xeは、X方向の積分終了位置を表している。さらに、Geは、所定のゲインを表している。
【1140】
式(135)において、積分範囲は任意に設定可能であるので、3次元再積分手法においては、この積分範囲を適宜変えることで、元の画素(センサ2(図89)からの入力画像の画素)に対して任意の倍率の時空間解像度の画素を劣化することなく創造することが可能になる。即ち、空間方向の積分範囲を小さくすれば、画素ピッチを自由に細かくできる。逆に、空間方向の積分範囲を大きくすれば、画素ピッチを自由に大きくすることができる。また、時間方向の積分範囲を小さくすれば、実世界波形に基づいて時間解像度を創造できる。
【1141】
図109は、3次元再積分手法を利用する画像生成部103の構成例を表している。
【1142】
図109で示されるように、この例の画像生成部103には、条件設定部3301、特徴量記憶部3302、積分成分演算部3303、および出力画素値演算部3304が設けられている。
【1143】
条件設定部3301は、実世界推定部102より供給された実世界推定情報(図109の例では、近似関数f(x,y,t)の特徴量)に基づいて近似関数f(x,y,t)の次数nを設定する。
【1144】
条件設定部3301はまた、近似関数f(x,y,t)を再積分する場合(出力画素値を演算する場合)の積分範囲を設定する。なお、条件設定部3301が設定する積分範囲は、画素の幅(縦幅と横幅)やシャッタ時間そのものである必要は無い。例えば、センサ2(図89)からの入力画像の各画素の空間的な大きさに対する、出力画素(画像生成部103がこれから生成する画素)の相対的な大きさ(空間解像度の倍率)がわかれば、具体的な空間方向の積分範囲の決定が可能である。同様に、センサ2(図89)のシャッタ時間に対する出力画素値の相対的な時間(時間解像度の倍率)がわかれば、具体的な時間方向の積分範囲の決定が可能である。従って、条件設定部3301は、積分範囲として、例えば、空間解像度倍率や時間解像度倍率を設定することもできる。
【1145】
特徴量記憶部3302は、実世界推定部102より順次供給されてくる近似関数f(x,y,t)の特徴量を一次的に記憶する。そして、特徴量記憶部3302は、近似関数f(x,y,t)の特徴量の全てを記憶すると、近似関数f(x,y,t)の特徴量を全て含む特徴量テーブルを生成し、出力画素値演算部3304に供給する。
【1146】
ところで、上述した式(135)の右辺の近似関数f(x,y)の右辺を展開(演算)すると、出力画素値Mは、次の式(136)のように表される。
【1147】
【数136】
Figure 0004423536
・・・(136)
【1148】
式(136)において、Ki(xs,xe,ys,ye,ts,te)は、i次項の積分成分を表している。ただし、xsはX方向の積分範囲の開始位置を、xeはX方向の積分範囲の終了位置を、ysはY方向の積分範囲の開始位置を、yeはY方向の積分範囲の終了位置を、tsはt方向の積分範囲の開始位置を、teはt方向の積分範囲の終了位置を、それぞれ表している。
【1149】
積分成分演算部3303は、この積分成分Ki(xs,xe,ys,ye,ts,te)を演算する。
【1150】
具体的には、積分成分演算部3303は、条件設定部3301により設定された次数、および積分範囲(空間解像度倍率や時間解像度倍率)、並びにデータ定常性検出部101より出力されたデータ定常性情報のうちの角度θまたは動きθに基づいて積分成分Ki(xs,xe,ys,ye,ts,te)を演算し、その演算結果を積分成分テーブルとして出力画素値演算部3304に供給する。
【1151】
出力画素値演算部3304は、特徴量記憶部3302より供給された特徴量テーブルと、積分成分演算部3303より供給された積分成分テーブルを利用して、上述した式(136)の右辺を演算し、その演算結果を出力画素値Mとして外部に出力する。
【1152】
次に、図110のフローチャートを参照して、3次元再積分手法を利用する画像生成部103(図109)の画像の生成の処理(図29のステップS103の処理)について説明する。
【1153】
例えば、いま、上述した図29のステップS102の処理で、実世界推測部102(図89)が、入力画像のうちの、所定の画素を注目画素として、実世界1(図89)の光信号を近似する近似関数f(x,y,t)を既に生成しているとする。
【1154】
また、上述した図29のステップS101の処理で、データ定常性検出部101(図89)が、実世界推定部102と同じ画素を注目画素として、データ定常性情報として、角度θまたは動きθを既に出力しているとする。
【1155】
この場合、図110のステップS3301において、条件設定部3301は、条件(次数と積分範囲)を設定する。
【1156】
ステップS3302において、特徴量記憶部3302は、実世界推定部102より供給された近似関数f(x,y,t)の特徴量wiを取得し、特徴量テーブルを生成する。
【1157】
ステップS3303において、積分成分演算部3303は、条件設定部3301により設定された条件(次数および積分範囲)、並びにデータ定常性検出部101より供給されたデータ定常性情報(角度θまたは動きθ)に基づいて積分成分を演算し、積分成分テーブルを生成する。
【1158】
なお、ステップS3302の処理とステップS3303の処理の順序は、図110の例に限定されず、ステップS3303の処理が先に実行されてもよいし、ステップS3302の処理とステップS3303の処理が同時に実行されてもよい。
【1159】
次に、ステップS3304において、出力画素値演算部3304は、ステップS3302の処理で特徴量記憶部3302により生成された特徴量テーブルと、ステップS3303の処理で積分成分演算部3303により生成された積分成分テーブルに基づいて各出力画素値のそれぞれを演算する。
【1160】
ステップS3305において、出力画素値演算部3304は、全画素の処理を終了したか否かを判定する。
【1161】
ステップS3305において、全画素の処理がまだ終了されていないと判定された場合、処理はステップS3302に戻り、それ以降の処理が繰り返される。即ち、まだ注目画素とされない画素が、順次注目画素とされて、ステップS3302乃至S3304の処理が繰り返される。
【1162】
そして、全画素の処理が終了すると(ステップS3305において、全画素の処理が終了されたと判定すると)、出力画素値演算部3304は、ステップS3306において、画像を出力する。その後、画像の生成の処理は終了となる。
【1163】
このように、上述した式(135)において、その積分範囲は任意に設定可能であるので、3次元再積分手法においては、この積分範囲を適宜変えることで、元の画素(センサ2(図89)からの入力画像の画素)に対して任意の倍率の解像度の画素を劣化することなく創造することが可能になる。
【1164】
即ち、3次元再積分手法においては、時間方向の積分範囲を適宜変えることで、時間解像度の創造が可能になる。また、空間方向の積分範囲を適宜変えることで、空間解像度の創造が可能になる。さらに、時間方向と空間方向の積分範囲のそれぞれを適宜変えることで、時間解像度と空間解像度の両方の創造が可能になる。
【1165】
具体的には、3次元再積分手法においては、2次元や1次元に落とすときの近似がないので精度の高い処理が可能になる。また、斜め方向の動きも2次元に縮退することなく処理することが可能になる。さらに、2次元に縮退していないので各次元の加工が可能になる。例えば、2次元再積分手法において、空間方向(X方向とY方向)に縮退している場合には時間方向であるt方向の加工ができなくなってしまう。これに対して、3次元再積分手法においては、時空間方向のいずれの加工も可能になる。
【1166】
なお、上述したように、時間解像度と空間解像度のうちのいずれか一方の創造は、1次元再積分手法でも可能であるが、両方の解像度の創造は、1次元再積分手法では原理上不可能であり、2次元以上の再積分を行うことではじめて可能になる。即ち、上述した2次元再積分手法と3次元再積分手法ではじめて、両方の解像度の創造が可能になる。
【1167】
また、3次元再積分手法は、1次元や2次元ではなく3次元の積分効果を考慮しているので、より実世界1(図89)の光信号に近い画像を生成することも可能になる。
【1168】
次に、図3の信号処理装置4においては、データ定常性検出部101においてデータの定常性が検出され、実世界推定部102において、その定常性に基づき、実世界1の信号の波形の推定、即ち、例えば、X断面波形F(x)を近似する近似関数が求められる。
【1169】
このように、信号処理装置4では、定常性に基づいて、実世界1の信号の波形の推定が行われるため、データ定常性検出部101で検出される定常性が誤っていたり、あるいは、その検出精度が悪い場合には、実世界1の信号の波形の推定精度も悪くなる。
【1170】
また、信号処理装置4では、ここでは、例えば、画像である、実世界1の信号が有する定常性に基づいて信号処理を行うため、実世界1の信号のうちの定常性が存在する部分に対しては、他の信号処理装置の信号処理に比べて、精度のよい信号処理を実行することができ、その結果、より実世界1の信号に対応する画像に近い画像を出力することが可能になる。
【1171】
しかしながら、信号処理装置4は、定常性に基づいて信号処理を実行する以上、実世界1の信号のうちの明確な定常性が存在しない部分に対しては、定常性が存在する部分に対する処理と同等の精度で、信号処理を実行することができず、その結果、実世界1の信号に対応する画像に対して誤差を含む画像を出力することになる。
【1172】
従って、信号処理装置4において実世界1の信号に対応する画像より近い画像を得るためには、信号処理装置4による信号処理の対象とする処理領域や、信号処理装置4で用いる定常性の精度などが問題となる。
【1173】
そこで、図111は、図1の信号処理装置4の他の一実施の形態の構成例を示している。
【1174】
図111では、信号処理装置4は、処理領域設定部10001、定常性設定部10002、実世界推定部10003、画像生成部10004、画像表示部10005、およびユーザI/F(Interface)10006から構成されている。
【1175】
図111に構成を示す信号処理装置4には、データ3の一例である画像データ(入力画像)が、センサ2(図1)から入力され、その入力画像は、処理領域設定部10001、定常性設定部10002、実世界推定部10003、画像生成部10004、および画像表示部10005に供給される。
【1176】
処理領域設定部10001は、入力画像について、処理領域を設定し、その処理領域を特定する処理領域情報を、定常性設定部10002、実世界推定部10003、および画像生成部10004に供給する。
【1177】
定常性設定部10002は、処理領域設定部10001から供給される処理領域情報から、入力画像における処理領域を認識し、その処理領域の画像データにおいて欠落した実世界1の信号の定常性を設定し、その定常性を表す定常性情報を、実世界推定部10003および画像生成部10004に供給する。
【1178】
実世界推定部10003は、モデル生成部10011、方程式生成部10012、および実世界波形推定部10013から構成され、処理領域内の画像データから、対応する実世界1の信号の定常性に応じて、その実世界1の信号を推定する。
【1179】
即ち、モデル生成部10011は、処理領域設定部10001から供給される処理領域情報から、入力画像における処理領域を認識し、その処理領域を構成する画素と、その処理領域の画像データに対応する実世界1の信号の定常性に応じて、処理領域内の各画素の画素値と実世界1の信号との関係をモデル化したモデルとしての関数を生成し、方程式生成部10012に供給する。
【1180】
方程式生成部10012は、処理領域設定部10001から供給される処理領域情報から、入力画像における処理領域を認識する。さらに、方程式生成部10012は、その処理領域を構成する各画素の画素値を、モデル生成部10011から供給されるモデルとしての関数に代入し、これにより、方程式を生成して、実世界波形推定部10013に供給する。
【1181】
実世界波形推定部10013は、方程式生成部10012から供給される方程式を演算することにより、実世界1の信号の波形を推定する。即ち、実世界波形推定部10013は、方程式生成部10012から供給される方程式を解くことにより、実世界1の信号を近似する近似関数を求め、その近似関数を、実世界1の信号の波形の推定結果として、画像生成部10004に供給する。ここで、実世界1の信号を近似する近似関数には、引数の値にかかわらず、関数値が一定の関数も含まれる。
【1182】
画像生成部10004は、実世界推定部10003で推定された実世界1の信号の波形を表す近似関数と、定常性設定部10002から供給される定常性情報とに基づいて、実世界1の信号により近似した信号を生成する。即ち、画像生成部10004は、処理領域設定部10001から供給される処理領域情報から、入力画像における処理領域を認識し、その処理領域について、実世界推定部10003(の実世界波形推定部10013)から供給される近似関数と、定常性設定部10002から供給される定常性情報とに基づき、実世界1の信号に対応する画像により近似した画像データを生成する。
【1183】
さらに、画像生成部10004は、入力画像と、近似関数に基づいて生成した画像データ(以下、適宜、近似画像ともいう)とを合成し、入力画像の処理領域の部分を、近似画像に置き換えた画像を生成し、その画像を、出力画像として画像表示部10005に供給する。
【1184】
画像表示部10005は、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)で構成され、入力画像や、画像生成部10004から供給される出力画像を表示する。
【1185】
なお、画像表示部10005は、1または複数のCRTやLCDで構成することが可能である。画像表示部10005を1つのCRTやLCDで構成する場合には、その1つのCRTやLCDの画面を複数の画面に分割し、ある画面に入力画像を表示するとともに、他の画面に出力画像を表示するようにすることができる。さらに、画像表示部10005を複数のCRTやLCDで構成する場合には、ある1つのCRTやLCDに入力画像を表示するとともに、他のCRTやLCDに出力画像を表示するようにすることができる。
【1186】
また、画像表示部10005は、ユーザI/F10006の出力に応じて、各種の表示を行う。即ち、画像表示部10005は、例えば、カーソルを表示し、ユーザがカーソルを移動するようにユーザI/F10006を操作した場合、その操作に応じて、カーソルを移動させる。また、画像表示部10005は、例えば、ユーザが所定の範囲を選択するようにユーザI/F10006を操作した場合、その操作に応じて、画面上の選択された範囲を囲む枠を表示する。
【1187】
ユーザI/F10006は、ユーザによって操作され、そのユーザの操作に応じて、例えば、処理領域、定常性、または現実世界の信号のうちの少なくとも1つに関連する情報を、処理領域設定部10001、定常性設定部10002、または実世界推定部10003に供給する。
【1188】
即ち、ユーザは、画像表示部10005に表示された入力画像や出力画像を見て、その入力画像や出力画像に対する入力を与えるように、ユーザI/F10006を操作する。ユーザI/F10006は、ユーザの操作に応じて、処理領域、定常性、または現実世界の信号に関連する情報を、処理領域設定部10001、定常性設定部10002、または実世界推定部10003の処理を補助する補助情報として、処理領域設定部10001、定常性設定部10002、または実世界推定部10003に供給する。
【1189】
処理領域設定部10001、定常性設定部10002、または実世界推定部10003は、ユーザI/F10006から補助情報が供給された場合、その補助情報に基づき、処理領域の設定、定常性の設定、または実世界1の信号の推定を、それぞれ行う。
【1190】
但し、処理領域設定部10001、定常性設定部10002、または実世界推定部10003では、補助情報を用いずに、即ち、ユーザによって、ユーザI/F10006が操作されなくても、処理領域の設定、定常性の設定、または実世界1の信号の推定を、それぞれ行うことが可能である。
【1191】
具体的には、処理領域設定部10001では、図30乃至図48で説明したように、図3のデータ定常性検出部101における場合と同様にして、入力画像から、定常領域を検出し、例えば、その定常領域を囲む矩形(長方形)の領域を、処理領域として設定することができる。
【1192】
また、定常性設定部10002では、図49乃至図57で説明したように、図3のデータ定常性検出部101における場合と同様にして、入力画像から、データの定常性を検出し、そのデータの定常性に基づき、対応する実世界1の信号の定常性を設定すること、即ち、例えば、データの定常性を、そのまま実世界1の信号の定常性として設定することができる。
【1193】
さらに、実世界推定部10003では、図58乃至図88で説明したように、図3の実世界推定部102における場合と同様にして、処理領域設定部10001で設定された処理領域の画像データから、定常性設定部10002で設定された定常性に応じて、実世界1の信号を推定することができる。なお、図3では、実世界推定部102において、実世界1の信号の推定に、データの定常性を用いたが、実世界1の信号の推定には、データの定常性に代えて、対応する実世界1の信号の定常性を用いることができる。
【1194】
次に、図112のフローチャートを参照して、図111の信号処理装置4の処理について説明する。
【1195】
まず最初に、ステップS10001において、信号処理装置4は、前処理を行い、ステップS10002に進む。即ち、信号処理装置4は、センサ2(図1)からデータ3として供給される、例えば1フレームまたは1フィールドの入力画像を、処理領域設定部10001、定常性設定部10002、実世界推定部10003、画像生成部10004、および画像表示部10005に供給する。さらに、信号処理部4は、画像表示部10005に、入力画像を表示させる。
【1196】
ステップS10002では、ユーザI/F10006は、ユーザがユーザI/F10006を操作することにより、何らかのユーザ入力があったかどうかを判定する。ステップS10002において、ユーザ入力がなかったと判定された場合、即ち、ユーザが何らの操作も行わなかった場合、ステップS10003乃至S10005をスキップして、ステップS10006に進む。
【1197】
また、ステップS10002において、ユーザ入力があったと判定された場合、即ち、ユーザが、画像表示部10005に表示された入力画像を見て、ユーザI/F10006を操作し、これにより、何らかの指示または情報を表すユーザ入力があった場合、ステップS10003に進み、ユーザI/F10006は、そのユーザ入力が、信号処理装置4の処理の終了を指示する終了指示であるかどうかを判定する。
【1198】
ステップS10003において、ユーザ入力が終了指示であると判定された場合、信号処理装置4は処理を終了する。
【1199】
また、ステップS10003において、ユーザ入力が終了指示でないと判定された場合、ステップS10004に進み、ユーザI/F10006は、ユーザ入力が補助情報であるかどうかを判定する。ステップS10004において、ユーザ入力が補助情報でないと判定された場合、ステップS10005をスキップして、ステップS10006に進む。
【1200】
また、ステップS10004において、ユーザ入力が補助情報であると判定された場合、ステップS10005に進み、ユーザI/F10006は、その補助情報を、処理領域設定部10001、定常性設定部10002、または実世界推定部10006に供給し、ステップS10006に進む。
【1201】
ステップS10006では、処理領域設定部10001は、入力画像について、処理領域を設定し、その処理領域を特定する処理領域情報を、定常性設定部10002、実世界推定部10003、および画像生成部10004に供給し、ステップS10007に進む。ここで、処理領域設定部10001は、直前に行われたステップS10005においてユーザI/F10006から補助情報が供給された場合は、その補助情報を用いて、処理領域の設定を行う。
【1202】
ステップS10007では、定常性設定部10002は、処理領域設定部10001から供給された処理領域情報から、入力画像における処理領域を認識する。さらに、定常性設定部10002は、その処理領域の画像データにおいて欠落した実世界1の信号の定常性を設定し、その定常性を表す定常性情報を、実世界推定部10003に供給して、ステップS10008に進む。ここで、定常性設定部10002は、直前に行われたステップS10005においてユーザI/F10006から補助情報が供給された場合は、その補助情報を用いて、定常性の設定を行う。
【1203】
ステップS10008では、実世界推定部10003は、入力画像における処理領域内の画像データについて、対応する実世界1の信号の定常性に応じて、その実世界1の信号を推定する。
【1204】
即ち、実世界推定部10003では、モデル生成部10011が、処理領域設定部10001から供給される処理領域情報から、入力画像における処理領域を認識するとともに、定常性設定部10002から供給される定常性情報から、処理領域の画像データに対応する実世界1の信号の定常性を認識する。さらに、モデル生成部10011は、入力画像における処理領域を構成する画素と、その処理領域の画像データに対応する実世界1の信号の定常性に応じて、処理領域内の各画素の画素値と実世界1の信号との関係をモデル化したモデルとしての関数を生成し、方程式生成部10012に供給する。
【1205】
方程式生成部10012は、処理領域設定部10001から供給される処理領域情報から、入力画像における処理領域を認識し、その処理領域を構成する入力画像の各画素の画素値を、モデル生成部10011から供給されるモデルとしての関数に代入し、これにより、実世界1の信号を近似する近似関数を求める方程式を生成して、実世界波形推定部10013に供給する。
【1206】
実世界波形推定部10013は、方程式生成部10012から供給される方程式を演算することにより、実世界1の信号の波形を推定する。即ち、実世界波形推定部10013は、方程式生成部10012から供給される方程式を解くことにより、実世界1の信号をモデル化したモデルとしての近似関数を求め、その近似関数を、実世界1の信号の波形の推定結果として、画像生成部10004に供給する。
【1207】
なお、実世界推定部10003においては、モデル生成部10011および方程式生成部10012は、直前に行われたステップS10005においてユーザI/F10006から補助情報が供給された場合は、その補助情報を用いて、処理を行う。
【1208】
ステップS10008の処理後は、ステップS10009に進み、画像生成部10004は、実世界推定部10003(の実世界波形推定部10013)から供給された、実世界1の信号の波形を近似する近似関数に基づいて、実世界1の信号により近似した信号を生成する。即ち、画像生成部10004は、処理領域設定部10001から供給される処理領域情報から、入力画像における処理領域を認識し、その処理領域について、実世界推定部10003から供給された近似関数に基づき、実世界1の信号に対応する画像により近似した画像データである近似画像を生成する。さらに、画像生成部10004は、入力画像の処理領域の部分を近似画像に置き換えた画像を、出力画像として生成し、画像表示部10005に供給して、ステップS10009からS10010に進む。
【1209】
ステップS10010では、画像表示部10005は、画像生成部10004から供給された出力画像を、ステップS10001で表示された入力画像に代えて、またはその入力画像とともに表示し、ステップS10011に進む。
【1210】
ステップS10011では、ユーザI/F10006は、ステップS10002における場合と同様に、ユーザがユーザI/F10006を操作することにより、何らかのユーザ入力があったかどうかを判定し、ユーザ入力がなかったと判定した場合、即ち、ユーザが何らの操作も行わなかった場合、ステップS10011に戻り、何らかのユーザ入力があるまで待つ。
【1211】
また、ステップS10011において、ユーザ入力があったと判定された場合、即ち、ユーザが、画像表示部10005に表示された入力画像や出力画像を見て、ユーザI/F10006を操作し、これにより、何らかの指示または情報を表すユーザ入力があった場合、ステップS10012に進み、ユーザI/F10006は、そのユーザ入力が、信号処理装置4の処理の終了を指示する終了指示であるかどうかを判定する。
【1212】
ステップS10012において、ユーザ入力が終了指示であると判定された場合、信号処理装置4は処理を終了する。
【1213】
また、ステップS10012において、ユーザ入力が終了指示でないと判定された場合、ステップS10013に進み、ユーザI/F10006は、ユーザ入力が補助情報であるかどうかを判定する。ステップS10013において、ユーザ入力が補助情報でないと判定された場合、ステップS10011に戻り、以下、同様の処理が繰り返される。
【1214】
また、ステップS10013において、ユーザ入力が補助情報であると判定された場合、ステップS10005に戻り、上述したように、ユーザI/F10006は、その補助情報を、処理領域設定部10001、定常性設定部10002、または実世界推定部10006に供給する。そして、ステップS10005からS10006に進み、以下、同様の処理が繰り返される。
【1215】
以上のように、図111の信号処理装置4によれば、ユーザの操作に応じて、処理領域設定部10001、定常性設定部10002、または実世界推定部10003の処理を補助する補助情報を、ユーザI/F10006から処理領域設定部10001、定常性設定部10002、または実世界推定部10003に供給し、処理領域設定部10001、定常性設定部10002、または実世界推定部10003において、ユーザI/F10006からの補助情報に基づき、処理領域の設定、定常性の設定、または実世界1の信号の推定を行うので、処理領域設定部10001、定常性設定部10002、または実世界推定部10003の処理精度を向上させ、例えば、ユーザの好みにあった、高画質の出力画像を得ることが可能となる。
【1216】
次に、図111に示した信号処理装置4の各種の応用例について説明する。
【1217】
図113は、図111に示した信号処理装置4の応用例の一実施の形態の構成例を示している。
【1218】
図113において、処理領域設定部11011、定常性設定部11012、実世界推定部11013、画像生成部11014、画像表示部11015、ユーザI/F11016は、図111の処理領域設定部10001、定常性設定部10002、実世界推定部10003、画像生成部10004、画像表示部10005、ユーザI/F10006にそれぞれ対応しており、基本的には、処理領域設定部10001、定常性設定部10002、実世界推定部10003、画像生成部10004、画像表示部10005、ユーザI/F10006それぞれと同様の処理を行う。さらに、図113において、実世界推定部11013は、モデル生成部11021、方程式生成部11022、実世界波形推定部11023で構成されている。モデル生成部11021、方程式生成部11022、実世界波形推定部11023は、図111のモデル生成部10011、方程式生成部10012、実世界波形推定部10013にそれぞれ対応しており、基本的には、モデル生成部10011、方程式生成部10012、実世界波形推定部10013それぞれと同様の処理を行う。
【1219】
ここで、図113の信号処理装置4に入力される画像(入力画像)は、例えば、1フレームまたは1フィールドの画像である。なお、ここでは、入力画像に画像の水平方向(横方向)にシャッタ時間(露光時間)あたりv画素の一定速度で移動している所定の形状を有する物体(動オブジェクト)が表示されているものとする。また、動オブジェクト(前景)と動オブジェクト以外の部分(背景)の境界(エッジ)は、入力画像の所定の軸(向き)に対して、一定の角度θを有しているものとする。
【1220】
即ち、入力画像は、物体が水平方向にv画素の動き量で動いているために、センサ2の時空間方向の積分効果(詳細は後述する)によって、その動オブジェクト(前景)の光信号と、その動オブジェクト以外の部分(背景)の光信号とが混合(時空間混合)し、これにより、動オブジェクトの境界部分などにおいて、いわゆる、ボケた画像となっている。図113の信号処理装置4では、このような時空間混合によって生じた動きボケを入力画像から除去した画像、つまり、動きボケのない、高画質の出力画像が生成される。
【1221】
次に、図114のフローチャートを参照して、図113の信号処理装置4の処理について説明する。
【1222】
最初に、ステップS11001において、信号処理装置4は、前処理を行い、ステップS11002に進む。即ち、信号処理装置4は、センサ2(図1)からデータ3として供給される、例えば1フレームまたは1フィールドの入力画像を、処理領域設定部11011、定常性設定部11012、実世界推定部11013、画像生成部11014、および画像表示部11015に供給する。さらに、信号処理装置4は、画像表示部11015に、入力画像を表示させる。
【1223】
ステップS11002では、処理領域設定部11011は、入力画像について、処理領域を設定し、その処理領域を特定する処理領域情報を、定常性設定部11012、実世界推定部11013、並びに画像生成部11014に供給し、ステップS11003に進む。
【1224】
具体的には、処理領域設定部11011では、図3のデータ定常性検出部101における場合と同様にして、入力画像から、定常領域を検出し、例えば、その定常領域を囲む矩形(長方形)の領域を、処理領域として設定することができる。
【1225】
ステップS11003では、定常性設定部11012は、処理領域設定部11011から供給された処理領域情報から、入力画像における処理領域を認識する。また、定常性設定部11012の動きベクトル設定部11032(図115)は、シャッタ時間(露光時間)あたりv画素の一定速度で水平方向に移動していることを表す動き量vを定常性情報として設定し、実世界推定部11013のモデル生成部11012に供給して、ステップS11004に進む。なお、ここでは、動きベクトル設定部11032は、入力画像において、動オブジェクトが水平方向に移動していることを前提として、その動きの大きさだけを表す動き量を定常性情報として設定するようにしたが、その他、動オブジェクトの動きの大きさと方向を表す動きベクトルを、定常性情報として設定することも可能である。
【1226】
ステップS11004では、定常性設定部11012の空間方向定常性設定部11031(図115)は、その処理領域の画像データにおいて、動オブジェクト(前景)と動オブジェクト以外の部分(背景)の境界が、入力画像の所定の軸(向き)となす角度θを設定し、その角度θを定常性情報として、実世界推定部11013のモデル生成部11012に供給して、ステップS11005に進む。
【1227】
ステップS11005では、実世界推定部11013は、実世界推定処理を行う。即ち、実世界推定部11013は、処理領域設定部11011から供給された処理領域情報から、入力画像における処理領域を認識する。また、モデル生成部11021は、入力画像の処理領域内の1つの画素に対して、ステップS11003において動きベクトル設定部11032から供給された動き量vと、ステップS11004において空間方向定常性設定部11031から供給された角度θとに基づいて、入力画像の画素値と、実世界1の信号との関係をモデル化したモデル(関係モデル)としての方程式(以下、モデル方程式とも称する)を生成する。さらに、モデル生成部11021は、そのモデル方程式を、処理領域内の所定の複数画素について生成し、即ち、複数のモデル方程式を生成し、生成した複数のモデル方程式を方程式生成部11022に供給する。
【1228】
方程式生成部11022は、モデル生成部11021から供給される複数のモデル方程式から、実世界1の信号をモデル化したモデル(以下、近似モデルとも称する)としての近似関数を求める方程式を生成し、その方程式に入力画像の各画素の画素値を代入して、実世界波形推定部11023に供給する。
【1229】
実世界波形推定部11023は、方程式生成部11022から供給される方程式を演算することにより、実世界1の信号の波形を推定、即ち、実世界1の信号をモデル化したモデルとしての近似関数を求め、その近似関数を、実世界1の信号の波形の推定結果として、画像生成部11014に供給する。
【1230】
なお、ステップS11005の実世界推定処理の詳細については、図136を参照して後述する。
【1231】
ステップS11005の処理後は、ステップS11006に進み、画像生成部11014は、実世界波形推定部11023から供給された近似関数から、実世界1の信号により近似した信号、即ち、動きボケがない画像を生成し、処理領域設定部11011から供給された処理領域情報に基づいて、入力画像の処理領域の部分を、生成した動きボケがない画像に置き換えて、出力画像として生成し、画像表示部11015に供給して、ステップS11007に進む。
【1232】
ステップS11007では、画像表示部11015は、画像生成部11014から供給された出力画像を、ステップS11001で表示された入力画像に代えて、またはその入力画像とともに表示して、処理を終了する。
【1233】
以上の処理では、処理領域設定部11011、定常性設定部11012、およびモデル生成部11021それぞれが、処理領域や、定常性情報としての動き量vおよび角度θ、および処理領域内の所定の複数画素(後述する注目領域)を検出し、設定することとしたが、ユーザがユーザI/F11016を操作することにより、指定(設定)することもできる。
【1234】
例えば、ユーザは、ユーザI/F11016を操作することにより、画像表示部11015に表示された画像に対して、処理領域とする領域を指示することができるようにして、ユーザI/F11016は、ユーザが処理領域を指示する操作を行うと、その操作によって指定された領域としての処理領域を表す処理領域指示情報を処理領域設定部11011に供給する。
【1235】
また、例えば、ユーザI/F11016は、動き量vと角度θ、および注目領域についても同様に、ユーザの操作によって指定された、動き量vまたは角度θを表す定常性指示情報を定常性設定部11012に、注目領域を表す注目領域情報を実世界推定部11013に、それぞれ供給する。
【1236】
このとき、処理領域設定部11011は、処理領域設定部11011自身が検出する処理領域に代えて、ユーザI/F11016から供給される処理領域指示情報を、処理領域情報として実世界推定部11013および画像生成部11014に供給する。また、定常性設定部11012は、定常性設定部11012自身が検出する定常性情報に代えて、ユーザI/F11016から供給される定常性指示情報を、定常性情報として実世界推定部11013に供給する。さらに、モデル生成部11021は、ユーザI/F11016から供給される注目領域情報に基づいて注目領域を設定する。
【1237】
図115は、図113の定常性設定部11012の内部の構成例を示している。
【1238】
定常性設定部11012は、空間方向定常性設定部11031と動きベクトル設定部11032で構成されている。定常性設定部11012に入力される入力画像は、センサ2(図1)が、例えば、CCDである場合、時間積分効果と空間積分効果を有する複数の画素(CCD)に実世界1の光信号が射影され、実世界1の光信号の定常性の一部が欠落した画像データとなる。
【1239】
定常性設定部11012は、処理領域設定部11011から供給された処理領域情報から、入力画像における処理領域を認識する。処理領域として矩形の形状の領域を採用する場合には、処理領域情報は、例えば、入力画像の所定の位置(画素)を原点とする絶対座標系に対する、矩形の処理領域の対角の座標値や、処理領域の中心座標と処理領域の幅(水平方向)と高さ(垂直方向)などで表すことができる。
【1240】
空間方向定常性設定部11031は、入力画像に撮像された動オブジェクトの、実世界1の光信号の定常性に対応する方向を設定する。即ち、空間方向定常性設定部11031は、この例では、動オブジェクト(前景)と動オブジェクト以外の部分(背景)の境界が、入力画像の所定の軸(向き)となす角度θを検出し、その角度θを定常性情報として、実世界推定部11013のモデル生成部11012に供給する。
【1241】
動きベクトル設定部11032は、処理領域設定部11011から供給される処理領域情報から認識される入力画像の処理領域内に表示されている動オブジェクトの、実世界1の光信号の定常性に対応する動きベクトルを検出する。即ち、動きベクトル設定部11032は、動オブジェクトがシャッタ時間(露光時間)あたりv画素の一定速度で水平方向に移動していることを表す動き量vを定常性情報として設定し、実世界推定部11013のモデル生成部11012に供給する。
【1242】
図116は、図115の動きベクトル設定部11032の詳細な構成例を示している。
【1243】
図116で構成が示される動きベクトル設定部11032においては、入力画像の中の処理領域における動オブジェクトの動き方向が検出され、動き方向が水平方向になるように入力画像が補正される。そして、動き方向に隣接する画素の画素値の差分値である、入力画像の動オブジェクトの動き方向に一次微分した特徴量が検出される。
【1244】
さらに、注目している画素の特徴量と動き方向に所定の距離の対応画素の特徴量との相関が検出され、検出された相関が最大である対応画素と注目画素との距離に応じて動オブジェクトの動き量が検出される。
【1245】
すなわち、図116で構成が示される動きベクトル設定部11032は、動き方向検出部11201、動き方向修正部11202、特徴量検出部11203、および動き量検出部11204を含む。
【1246】
さらに、動き方向検出部11201は、アクティビティ演算部11211およびアクティビティ評価部11212を含む。動き方向修正部11202は、アフィン変換部11213を含む。
【1247】
特徴量検出部11203は、差分演算部11214、差分評価部11215、中間画像作成部11216、中間画像作成部11217、フレームメモリ11218、符号反転部11219、およびフレームメモリ11220を含む。
【1248】
さらに、動き量検出部11204は、相関検出部11221および相関評価部11222を含む。
【1249】
図116で構成が示される動きベクトル設定部11032において、入力画像は、動き方向検出部11201および動き方向修正部11202に供給される。さらに、図113の処理領域設定部11011が出力する処理領域情報も、動き方向検出部11201および動き方向修正部11202に供給される。
【1250】
動き方向検出部11201は、入力画像と処理領域情報を取得して、取得した入力画像から処理領域における動き方向を検出する。
【1251】
動いている対象物を撮像したとき、対象物の画像には動きボケが生じる。これは、対象物の画像を撮像するセンサ2としてのカメラまたはビデオカメラのイメージセンサの働きによるものである。
【1252】
すなわち、CCD(Charge Coupled Device)またはCMOS(Complementary Metal-Oxide Semiconductor)センサなどのイメージセンサは、露光時間(シャッタ時間)において、画素毎に入射された光を連続的に電荷に変換し、さらに電荷を1つの画像値に変換する。撮像の対象物が静止しているとき、露光している期間において、対象物の同じ部位の画像(光)が1つの画素値に変換される。このように撮像された画像には、動きボケは含まれていない。
【1253】
これに対して、対象物が動いているとき、露光している期間において、1つの画素に入射される対象物の部位の画像が変化し、対象物の異なる部位の画像が1つの画素値に変換されてしまう。逆に言えば、対象物の1つの部位の画像が複数の画素値に射影される。これが動きボケである。
【1254】
動きボケは、対象物の動き方向に生じる。
【1255】
動きボケが生じている部分(動きボケを含む領域)の動き方向に並んでいる画素の画素値のそれぞれに注目すると、動き方向に並んでいる画素の画素値には、対象物のほぼ同じ範囲の部位の画像が射影されている。従って、動きボケが生じている部分の、動き方向に並んでいる画素の画素値の変化は、より少なくなっていると言える。
【1256】
動き方向検出部11201は、このような入力画像の処理領域における画素の画素値の変化、すなわちアクティビティを基に、動き方向を検出する。
【1257】
より具体的には、動き方向検出部11201のアクティビティ演算部11211は、予め定めた方向毎に、各方向に並んでいる画素の画素値の変化(アクティビティ)を演算する。例えば、アクティビティ演算部11211は、予め定めた方向毎に、各方向に対応して位置する画素の画素値の差分をアクティビティとして演算する。アクティビティ演算部11211は、演算した画素値の変化を示す情報をアクティビティ評価部11212に供給する。
【1258】
アクティビティ評価部11212は、アクティビティ演算部11211から供給された、予め定めた方向毎の画素の画素値の変化の中の、最小の画素値の変化を選択し、選択した画素値の変化に対応する方向を動き方向とする。
【1259】
動き方向検出部11201は、このように検出した動き方向を示す動き方向情報を動き方向修正部11202に供給する。
【1260】
動き方向修正部11202には、処理領域情報も供給される。動き方向修正部11202は、動き方向検出部11201から供給された動き方向情報を基に、動き方向が画像の水平方向となるように入力画像における処理領域の中の画像データを変換する。
【1261】
例えば、動き方向修正部11202のアフィン変換部11213は、動き方向検出部11201から供給された動き方向情報を基に、動き方向情報で示される動き方向が画像の水平方向となるように入力画像における処理領域の中の画像データをアフィン変換する。
【1262】
動き方向修正部11202は、動き方向が画像の水平方向となるように変換された入力画像における処理領域の中の画像データを特徴量検出部11203に供給する。
【1263】
なお、ここでは、入力画像において、動オブジェクトが水平方向(左から右方向)に移動していることを仮定しているので、動きベクトル設定部11032は、動き方向検出部11201と動き方向修正部11202を設けずに構成することが可能である。
【1264】
特徴量検出部11203は、動き方向修正部11202から供給された画像の特徴量を検出する。
【1265】
すなわち、特徴量検出部11203の差分演算部11214は、入力画像の処理領域の画素から1つの画素を選択することにより、注目している注目画素とする。そして、特徴量検出部11203の差分演算部11214は、注目画素の画素値から、注目画素の右隣の画素の画素値を引き算することにより差分値を求める。
【1266】
差分演算部11214は、入力画像の処理領域の画素を順に注目画素として、差分値を求める。すなわち、差分演算部11214は、入力画像の処理領域の全ての画素に対して、差分値を求める。差分演算部11214は、差分値に対応する注目画素の位置を示す情報(差分値の画面上の位置を示す位置情報)と共に、このように演算された差分値を差分評価部11215に供給する。
【1267】
差分評価部11215は、差分値が0以上であるか否かを判定し、0以上である差分値を、差分値の画面上に位置を示す位置情報と共に、中間画像作成部11216に供給し、0未満である差分値を、差分値の画面上の位置を示す位置情報と共に、中間画像作成部11217に供給する。
【1268】
中間画像作成部11216は、差分値の画面上に位置を示す位置情報と共に、差分評価部11215から供給された0以上である差分値を基に、差分値からなる中間画像を作成する。すなわち、中間画像作成部11216は、位置情報で示される画面上の位置の画素に、差分評価部11215から差分値が供給された0以上である差分値を設定し、差分評価部11215から差分値が供給されなかった位置の画素に0を設定して、中間画像を作成する。中間画像作成部11216は、このように作成した中間画像(以下、非反転中間画像と称する。)をフレームメモリ11218に供給する。
【1269】
中間画像作成部11217は、差分値の画面上に位置を示す位置情報と共に、差分評価部11215から供給された0未満(負の値)である差分値を基に、差分値からなる中間画像を作成する。すなわち、中間画像作成部11217は、位置情報で示される画面上の位置の画素に、差分評価部11215から差分値が供給された0未満である差分値を設定し、差分評価部11215から差分値が供給されなかった位置の画素に0を設定して、中間画像を作成する。中間画像作成部11216は、このように作成した中間画像を符号反転部11219に供給する。
【1270】
符号反転部11219は、中間画像作成部11217から供給された中間画像の画素に設定されている、0未満である差分値の符号を反転する。中間画像の画素に設定されている0である値の符号は、反転されない。すなわち、符号反転部11219は、中間画像作成部11217から供給された中間画像の画素に設定されている、0未満である差分値を選択し、選択した0未満である差分値を、差分値と同じ絶対値の0を超える値に変換する。例えば、−15である差分値は、符号が反転され、15に変換される。符号反転部11219は、このように符号が反転された中間画像(以下、反転中間画像と称する。)をフレームメモリ11220に供給する。
【1271】
フレームメモリ11218は、0以上である差分値と0とからなる非反転中間画像を、特徴量として動き量検出部11204に供給する。フレームメモリ11220は、符号が反転され0を超える値とされた差分値と0とからなる反転中間画像を、特徴量として動き量検出部11204に供給する。
【1272】
動き量検出部11204は、特徴量検出部11203から供給された特徴量を基に、動きを検出する。すなわち、動き量検出部11204は、入力画像の処理領域における対象物の画像(動オブジェクト)の画素の中の少なくとも注目画素の特徴と、注目画素に対して動き方向に沿って配される対応画素の特徴との相関を検出し、検出された相関に応じて、入力画像の処理領域における対象物の画像(動オブジェクト)の動き量を検出する。
【1273】
動き量検出部11204の相関検出部11221は、特徴量検出部11203のフレームメモリ11218から供給された、特徴量としての、非反転中間画像と、特徴量検出部11203のフレームメモリ11220から供給された、特徴量としての、反転中間画像との相関を検出する。相関検出部11221は、検出された相関を相関評価部11222に供給する。
【1274】
より詳細に説明すれば、例えば、動き量検出部11204の相関検出部11221は、特徴量検出部11203のフレームメモリ11218から供給された、0以上である差分値と0とからなる非反転中間画像に対して、特徴量検出部11203のフレームメモリ11220から供給された、符号が反転され0を超える値とされた差分値と0とからなる反転中間画像を、画素を単位として、画面の水平方向に移動させる(ずらす(シフトさせる))。すなわち、相関検出部11221は、反転中間画像を構成する画素の画面上の位置を水平方向に移動させる。
【1275】
反転中間画像(の画素)を、画面上の水平方向に移動させることによって、非反転中間画像の画素と、反転中間画像の画素との画面上の位置の関係が変化する。例えば、移動前に、非反転中間画像の注目画素に対応する画面上の位置にある、反転中間画像の対応画素は、移動後において、移動量だけ、非反転中間画像の注目画素に対応する位置から離れることになる。より具体的には、反転中間画像を右に20画素移動したとき、反転中間画像の対応画素は、非反転中間画像の注目画素に対応する位置から右に20画素離れる。逆に言えば、移動後に、非反転中間画像の注目画素に対応する画面上の位置にある、反転中間画像の対応画素は、移動前において、注目画素に対応する位置から移動量だけ離れている。
【1276】
相関検出部11221は、非反転中間画像と、移動された反転中間画像との、対応する位置の画素の画素値の差分を演算し、差分の絶対値の和を相関値とする。
【1277】
例えば、相関検出部11221は、非反転中間画像に対して、反転中間画像を、画面の左方向に70画素乃至画面の右方向に70画素の範囲で、1画素ずつ画面の水平方向に移動させ(ずらして)、移動させた位置毎(移動量毎)に、非反転中間画像および移動された反転中間画像について、画面上の同じ位置となる画素の画素値の差分を演算し、差分の絶対値の和を相関値とする。
【1278】
例えば、非反転中間画像に対して反転中間画像を、画面の左方向に移動するとき、移動量を負(マイナス)で表す。非反転中間画像に対して反転中間画像を、画面の右方向に移動するとき、移動量を正(プラス)で表す。相関検出部11221は、−70画素乃至+70画素の移動量毎に、非反転中間画像および移動された反転中間画像について、画面上の同じ位置となる画素の画素値の差分を演算し、差分の絶対値の和を相関値とする。
【1279】
相関検出部11221は、移動量に対応する相関値を相関評価部11222に供給する。すなわち、相関検出部11221は、移動量と相関値との組を相関評価部11222に供給する。
【1280】
相関評価部11222は、相関に応じて、入力画像の処理領域における対象物の画像の動き量を検出する。具体的には、相関評価部11222は、相関検出部11221から供給された相関のうち、最大の(最も強い)相関に対応する移動量を動き量とする。
【1281】
例えば、相関評価部11222は、相関検出部11221から供給された相関値である、差分の絶対値の和の内、最小の値を選択し、選択された最小の値に対応する移動量を動き量に設定する。
【1282】
相関評価部11222は、検出された動き量を出力する。
【1283】
図117乃至図119は、図116の動きベクトル設定部11032による動き検出の原理を説明する図である。
【1284】
いま、撮像の対象物である、白い前景オブジェクトが、他の撮像の対象物である、黒い背景オブジェクトの前(手前)に配置され、左側から右側に移動しており、CCDまたはCMOSセンサなどのイメージセンサを有するカメラが、所定の露光時間(シャッタ時間)で、背景オブジェクトと共に、前景オブジェクトを撮像するものとする。
【1285】
この場合にカメラが出力する画像の1フレームに注目すると、背景オブジェクトは、黒いので、例えば、カメラは、背景オブジェクトの画像に対して0である画素値を出力する。前景オブジェクトは、白いので、例えば、カメラは、前景オブジェクトの画像に対して255である画素値を出力する。なお、ここでは、カメラが、0乃至28−1の範囲の画素値を出力するものであるとする。
【1286】
図117上側の図は、カメラのシャッタが開いた瞬間(露光を開始した瞬間)における位置に、前景オブジェクトが静止しているとき、カメラが出力する画像の画素値を示す図である。
【1287】
図117下側の図は、カメラのシャッタが閉じる瞬間(露光を終了する瞬間)における位置に、前景オブジェクトが静止しているとき、カメラが出力する画像の画素値を示す図である。
【1288】
図117で示されるように、前景オブジェクトの画像の動き量は、カメラのシャッタが開いた瞬間から、カメラのシャッタが閉じる瞬間までに、前景オブジェクトの画像が移動した距離である。
【1289】
図118は、背景オブジェクトの前を移動する前景オブジェクトをカメラで撮像したときに、カメラから出力される画像の画素値を示す図である。カメラのイメージセンサは、露光時間(シャッタ時間)において、画素毎に対象物の画像(光)を連続的に電荷に変換し、さらに電荷を1つの画像値に変換するので、前景オブジェクト11251の画像は、複数の画素の画素値に射影される。図117で示される画像の画素値の最大値に比較して、図118で示される画像の画素値の最大値は小さくなる。
【1290】
図118で示される画素値のスロープの幅は、背景オブジェクトの画像の幅に対応する。
【1291】
図118で示される画像の個々の画素について、右隣の画素との差分値を計算し、差分値を画素に設定すると、図119に示される、差分値からなる画像が得られる。
【1292】
すなわち、図118で示される画像の画素から1つの画素が選択され、注目している注目画素とされる。そして、注目画素の画素値から、注目画素の右隣の画素の画素値が引き算されることにより差分値が求められる。差分値は、注目画素に対応する位置の画素に設定される。図118で示される画像の画素が順に注目画素とされ、図119で示される差分値からなる画像が求められる。
【1293】
図117上側の図で示される、カメラのシャッタが開いた瞬間における、前景オブジェクトの位置に対して1画素左側に、符号が負(マイナス)である差分値が現れ、図117下側の図で示される、カメラのシャッタが閉じる瞬間における、前景オブジェクトの位置に対して1画素左側に、符号が正(プラス)である差分値が現れる。
【1294】
従って、図119で示される、符号が負(マイナス)である差分値の符号を反転した値と、符号が正(プラス)である差分値とのマッチングをとると、例えば、マッチングしたときの、符号が正(プラス)である差分値を基準とした、符号が負(マイナス)である差分値の符号を反転した値の移動量は、動き量と同じである。
【1295】
例えば、符号が正(プラス)である差分値を基準として、符号が負(マイナス)である差分値の符号を反転した値が水平方向に移動され、その移動量毎に、負である差分値を反転した値と正である差分値との相関が検出され、最大の(最も強い)相関が検出される。最大の相関が検出されたときの移動量は、動き量と同じである。
【1296】
より具体的には、例えば、符号が正(プラス)である差分値を基準として、符号が負(マイナス)である差分値の符号を反転した値が水平方向に移動され、その移動量毎に、負である差分値を反転した値と正である差分値との相関として、画素毎に、反転した値から正の差分値が引き算される。そして、引き算した結果の内の最小の値、すなわち最大の相関が検出される。検出された最大の相関に対応する移動量は、動き量と同じである。
【1297】
以上のように、画像の1フレームから、露光時間(シャッタ時間)において、対象物の画像が移動した量である動き量を検出することができる。
【1298】
すなわち、特徴量検出部11203の差分演算部11214は、入力画像の処理領域における画素から1つの画素を選択して、注目画素とし、注目画素の画素値から、注目画素の右隣の画素の画素値を引き算することにより、例えば、図119で示される差分値を演算する。差分評価部11215は、差分の符号を基に、正の差分値と負の差分値とに分類する。
【1299】
中間画像作成部11216は、分類された正の差分値から、その正の差分値からなる非反転中間画像を作成する。中間画像作成部11217は、分類された負の差分値から、その負の差分値からなる中間画像を作成する。符号反転部11219は、負の差分値からなる中間画像の負の画素値の符号を反転することにより、反転中間画像を作成する。
【1300】
動き量検出部11204は、相関が最も強い非反転中間画像と反転中間画像との移動量を求めて、求められた移動量を動き量とする。
【1301】
特徴量検出部11203が、動いている対象物の画像(動オブジェクト)を検出し、動いている対象物の画像の特徴量を検出したとき、動き量検出部11204は、特徴量を基に相関を検出し、検出された相関に応じて、入力画像内の対象物の画像(動オブジェクト)の動き量を検出する。
【1302】
また、特徴量検出部11203が、動いている対象物の画像に属する画素から注目している画素である注目画素を選択し、注目画素の特徴量を検出したとき、動き量検出部11204は、注目画素の特徴量と、注目画素に対して動き方向に沿って配される対応画素の特徴量との相関を検出し、検出された相関に応じて、入力画像の処理領域における対象物の画像の動き量を検出する。
【1303】
図120は、図116の動きベクトル設定部11032による動き量の検出の処理を説明するフローチャートである。
【1304】
ステップS11201において、動き方向検出部11201および動き方向修正部11202は、入力画像と処理領域情報を取得し、ステップS11202に進む。
【1305】
ステップS11202において、動き方向検出部112011のアクティビティ演算部11211は、ステップS11201の処理により取得された入力画像における処理領域の画素について、アクティビティを演算し、ステップS11203に進む。
【1306】
例えば、アクティビティ演算部11211は、入力画像における処理領域の画素のうち、注目している画素である注目画素を選択する。アクティビティ演算部11211は、注目画素の周辺の所定の数の周辺画素を抽出する。例えば、アクティビティ演算部11211は、注目画素を中心とした、縦×横が5×5の画素からなる周辺画素を抽出する。
【1307】
そして、アクティビティ演算部11211は、抽出した周辺画素から、予め定めた画像上の方向に対応するアクティビティを検出する。
【1308】
以下の説明において、横方向の画素の1列の並びを行と称し、縦方向の画素の1列の並びを列と称する。
【1309】
アクティビティ演算部11211は、例えば、5×5の周辺画素について、画面上の上下方向(垂直)に隣接する画素の画素値の差分を算出して、算出された差分の絶対値の総和を差分の数で割り、その結果をアクティビティとすることにより、画面の水平方向を基準として、90度の角度(画面の垂直方向)に対する、アクティビティを検出する。
【1310】
例えば、20組の、画面上の上下方向に隣接する2つの画素について、画素値の差分が算出され、算出された差分の絶対値の和が20で割り算され、その結果(商)が、90度の角度に対するアクティビティに設定される。
【1311】
アクティビティ演算部11211は、例えば、5×5の周辺画素について、最も下の行の画素であって、最も左側の画素乃至左から4番目の画素のそれぞれの画素値と、それぞれの画素に対して、4画素上側であって、1画素右側の画素の画素値との差分を算出して、算出された差分の絶対値の総和を差分の数で割り、その結果をアクティビティとすることにより、画面の水平方向を基準として、76度の角度(tan-1(4/1))に対する、アクティビティを検出する。
【1312】
そして、例えば、4組の、右上方向であって、上下方向に4画素、および左右方向に1画素離れた位置にある2つの画素について、画素値の差分が算出され、算出された差分の絶対値の和が4で割り算され、その結果(商)が、76度の角度に対するアクティビティに設定される。
【1313】
アクティビティ演算部11211は、同様の処理で、画面の水平方向を基準として、90度乃至180度の範囲の角度に対するアクティビティを検出する。90度乃至180度の範囲の角度に対するアクティビティを検出する場合、左上方向に位置する画素の画素値の差分を基に、アクティビティが算出される。
【1314】
このように検出されたアクティビティは、注目画素に対するアクティビティとされる。
【1315】
なお、検出されたアクティビティを、周辺画素に対するアクティビティとするようにしてもよい。
【1316】
また、周辺画素は、縦×横が5×5の画素からなると説明したが、5×5の画素に限らず、所望の範囲の画素とすることができる。周辺画素の数が多い場合、角度の分解能が向上する。
【1317】
アクティビティ演算部11211は、複数の方向に対応するアクティビティを示す情報をアクティビティ評価部11212に供給する。
【1318】
図120に戻り、ステップS11203において、アクティビティ評価部11212は、ステップS11202の処理において算出された、所定の方向に対応するアクティビティを基に、最小のアクティビティを選択し、選択された方向を動き方向とすることにより、動き方向を求めて、ステップS11204に進む。
【1319】
ステップS11204において、動き方向修正部11202は、ステップS11203の処理において求められた動き方向を基に、動き方向が画像の水平方向となるように入力画像の処理領域における画像データを変換し、ステップS11205に進む。例えば、ステップS11204において、動き方向修正部11202のアフィン変換部11213は、ステップS11203の処理において求められた動き方向を基に、動き方向が画像の水平方向となるように入力画像の処理領域における画像データをアフィン変換する。より具体的には、例えば、アフィン変換部11213は、画面の水平方向を基準として、動き方向が18度の角度であるとき、入力画像の処理領域における画像データを時計方向に18度回動するようにアフィン変換する。
【1320】
ステップS11205において、特徴量検出部11203の差分演算部11214は、ステップS11204の処理において、動き方向が画面の水平方向となるように変換された入力画像の処理領域における各画素について、水平方向に隣接する画素との画素値の差分値を演算し、ステップS11206に進む。
【1321】
例えば、ステップS11205において、差分演算部11214は、入力画像の処理領域における画素から1つの画素を選択することにより、注目している注目画素とする。そして、差分演算部11214は、注目画素の画素値から、注目画素の右隣の画素の画素値を引き算することにより差分値を求める。
【1322】
ステップS11206において、特徴量検出部11203の差分評価部11215は、差分値の符号を基に、差分値を振り分け、ステップS11207に進む。すなわち、差分評価部11215は、0以上である差分値を中間画像作成部11216に供給し、0未満である差分値を中間画像作成部11217に供給する。この場合において、差分評価部11215は、差分値の画面上に位置を示す位置情報と共に、差分値を中間画像作成部11216または中間画像作成部11217に供給する。
【1323】
ステップS11207において、特徴量検出部11203の中間画像作成部11216は、ステップS11206の処理で振り分けられた、0以上である差分値(正の差分値)を基に、正の差分値からなる中間画像を生成し、ステップS11208に進む。すなわち、ステップS11207において、中間画像作成部11216は、位置情報で示される画面上の位置の画素に正の差分値を設定し、差分値が供給されなかった位置の画素に0を設定することにより、中間画像を作成する。
【1324】
このように、ステップS11207の処理において、非反転中間画像が生成される。
【1325】
ステップS11208において、特徴量検出部11203の中間画像作成部11217は、ステップS11206の処理で振り分けられた、0未満である差分値(負の差分値)を基に、負の差分値からなる中間画像を生成し、ステップS11209に進む。すなわち、ステップS11208において、中間画像作成部11217は、位置情報で示される画面上の位置の画素に負の差分値を設定し、差分値が供給されなかった位置の画素に0を設定することにより、中間画像を作成する。
【1326】
ステップS11209において、特徴量検出部11203の符号反転部11219は、ステップS11208の処理で生成された負の差分値からなる中間画像の負の差分値の符号を反転する。すなわち、ステップS11209において、負の中間画像の画素に設定されている、負の差分値が、同じ絶対値の正の値に変換される。
【1327】
このように、ステップS11209において、反転中間画像が生成され、その後、ステップS11210に進む。
【1328】
ステップS11210において、動き量検出部11204は、相関の検出の処理を実行する。ステップS11210の処理の詳細は、図121のフローチャートを参照して、後述する。
【1329】
ステップS11211において、相関評価部11222は、ステップS11210の処理で検出された相関のうち、最も強い相関を選択し、ステップS11212に進む。例えば、ステップS11211において、画素値の差分の絶対値の和である相関値のうち、最小の相関値が選択される。
【1330】
ステップS11212において、相関評価部11222は、ステップS11211の処理で選択された、最も強い相関に対応する移動量を動き量に設定して、ステップS11213に進む。例えば、ステップS11212において、画素値の差分の絶対値の和である相関値のうち、選択された最小の相関値に対応して、後述するステップS11223の処理により記憶されている、反転中間画像の移動量が動き量に設定される。
【1331】
ステップS11213において、動き量検出部11204は、ステップS11210の処理において検出した動き量を出力して、処理は終了する。
【1332】
図121は、ステップS11210の処理に対応する、相関の検出の処理を説明するフローチャートである。
【1333】
ステップS11221において、動き量検出部11204の相関検出部11221は、ステップS11209の処理で生成された、反転中間画像の画素の位置を、画素を単位として水平方向に移動し、ステップS11222に進む。
【1334】
ステップS11222において、相関検出部11221は、非反転中間画像と、ステップS11221の処理において、画素の位置が移動された反転中間画像との相関を検出し、ステップS11223に進む。例えば、ステップS11222において、非反転中間画像の画素の画素値と、画面上で対応する位置の、反転中間画像の画素の画素値との差分が算出され、算出された差分の絶対値の和が相関値として検出される。相関検出部11221は、ステップS11221の処理における反転中間画像の画素の移動量と共に、検出された相関を示す相関情報を相関評価部11222に供給する。
【1335】
ステップS11223において、相関評価部11222は、ステップS11221の処理における反転中間画像の画素の移動量と共に、ステップS11222の処理において検出された相関を記憶し、ステップS11224に進む。例えば、相関評価部11222は、ステップS11221の処理における反転中間画像の画素の移動量と共に、画素値の差分の絶対値の和である相関値を記憶する。
【1336】
ステップS11224において、相関検出部11221は、全ての移動量に対する相関を検出したか否かを判定し、まだ相関を検出していない移動量があると判定された場合、ステップS11221に戻り、次の移動量に対する相関を検出する処理を繰り返す。
【1337】
例えば、ステップS11224において、相関検出部11221は、画面の左方向に70画素乃至画面の右方向に70画素の範囲で、反転中間画像の画素を移動したときの相関を全て検出したか否かを判定する。
【1338】
ステップS11224において、全ての移動量に対する相関を検出したと判定された場合、処理は終了する(リターンする)。
【1339】
このように、相関検出部11221は、相関を検出することができる。
【1340】
以上のように、図116に構成を示す動きベクトル設定部11032は、画像の1つのフレームから、動き量を検出することができる。
【1341】
なお、ここでは、処理領域を対象として動きを検出するようにしたが、全画面を処理対象とすることで、例えば、手振れにより発生した全画面の動きを検出することができる。
【1342】
また、入力画像に同じ模様の繰り返しパターンが多く含まれていても、処理の対象となる入力画像の処理領域の動き量および動き方向が一定であれば、正確に動き量を検出することができる。
【1343】
次に、図122を参照して、本発明が適用可能な、実世界1の信号がもつ定常性を表す、動き量vと角度θについて説明する。
【1344】
図122左側は、図113の信号処理装置4に入力される入力画像が、センサ2によりデータ3に射影され、定常性の一部が欠落する前の、実世界1の光信号を示している。ここで、図122左側の濃淡は、光信号のレベルを表している。即ち、図122左側は、センサ2の水平方向をX方向とするとともに、センサ2の垂直方向をY方向として、そのセンサ2で得られる入力画像に対応する実世界1の光信号を示している。
【1345】
図122左側において、影を付していない部分は、前景となる動オブジェクトの光信号を表しており、影を付してある部分は、背景の光信号を表している。図122左側では、前景となっている動オブジェクトは、背景とは異なる単色で、直線状の縁を有している。そして、その物体(動オブジェクト)の縁(前景と背景との境界)は、ある方向に続いている。即ち、動オブジェクトの縁上の任意の点Aにおいては、矢印Bで示す方向に続いており、図122左側では、矢印Bは、空間方向Yの軸との間で、角度θをなしている。
【1346】
図122右側は、図122左側の実世界1の光信号をX方向に射影したX断面波形F(x)を示している。X断面波形F(x)は、yが固定の値のときの、xの位置と光信号のレベルとの関係を表している。図122左側に示す実世界1の光信号のX断面波形F(x)を、空間方向Yの、どの位置(例えば、図中、ya,yb,ycの位置)で求めても、図122のDで示す波形(ステップ状の波形)が得られる。換言すれば、図122左側の実世界1の光信号は、X−Y平面に垂直な面で切って得られるレベルの断面形状が一定形状になっている。そして、実世界1の光信号は、その一定形状の断面が、X−Y平面において、空間方向Yの軸と角度θの方向に連なった形状になっている。従って、図122の実世界1の光信号は、空間方向Yの軸から角度θの方向に、ステップ状の波形が続いていっているという定常性を有している。即ち、図122の実世界1の光信号は、角度θの定常性の方向を有している。なお、図中の点線で表すf(x)は、実世界1の光信号のX断面波形F(X)を近似する、信号処理装置4が推定する(求める)近似関数f(x)である。
【1347】
実世界1の光信号(画像)は、上述したように、シャッタ時間あたりv画素の一定速度で、図中のvの矢印で示される方向に(この実施の形態では、水平方向(空間方向Xと並行な方向))に移動しているものとする。
【1348】
即ち、ここでは、実世界1の信号において、例えば、XとYのいずれにも平行でない方向を表す角度θの方向に縁が続いている動オブジェクトが、定常性の方向(矢印Bで示される角度θの方向)と同一方向または垂直な方向以外の方向(例えばX方向)に動いているものとする。
【1349】
この場合、上述したように、定常性設定部11012の動きベクトル設定部11032と空間方向定常性設定部11031のそれぞれは、図122に示す実世界1の光信号の定常性の一部が欠落した入力画像から、実世界1の光信号の定常性に対応する動き量vと角度θをそれぞれ設定し、その動き量vと角度θを定常性情報としてモデル生成部11021に供給する。
【1350】
次に、実世界推定部11013の処理、即ち、入力画像(動きボケが生じている画像)から、実世界1の画像(動きボケがない画像)を推定する処理について説明する。
【1351】
センサ2(図1)により射影され、定常性の一部が欠落した入力画像(動きボケが生じている画像)から、実世界1の画像(動きボケがない画像)を推定するためには、実世界1(の光信号)とデータ3(入力画像)との関係を考慮する必要がある。例えば、実世界1が、CCDであるセンサ2により、データ3に射影されるとどうなるかを考慮する必要がある。
【1352】
CCDであるセンサ2は、積分特性(積分効果)を有する。すなわち、データ3の1つの単位(例えば、レベル)は、実世界1の光信号をセンサ2の検出素子(例えば、CCD)の検出領域(例えば、受光面)で積分することにより得ることができる。
【1353】
図123乃至図125を参照して、CCDであるセンサ2の積分効果について詳しく説明する。
【1354】
図123で示されるように、センサ2の平面上には、複数の検出素子(画素)12001が配置されている。
【1355】
図123の例では、検出素子12001の所定の1辺に平行な方向が、空間方向の1方向であるX方向とされており、X方向に垂直な方向が、空間方向の他方向であるY方向とされている。そして、X−Y平面に垂直な方向が、時間方向であるt方向とされている。
【1356】
また、図123の例では、センサ2の各検出素子12001(センサ2が出力する画像データの画素に対応する)のそれぞれの空間的な形状は、1辺の長さが1の正方形とされている。そして、センサ2のシャッタ時間(露光時間)が1とされている。
【1357】
さらに、図123の例では、センサ2の所定の1つの検出素子12001の中心が、空間方向(X方向とY方向)の原点(X方向の位置x=0、およびY方向の位置y=0)とされており、また、露光時間の中間時刻(露光時間を2等分する時刻)が、時間方向(t方向)の原点(t方向の位置t=0)とされている。
【1358】
この場合、空間方向の原点(x=0,y=0)にその中心が存在する検出素子12001は、X方向に-0.5乃至0.5の範囲、Y方向に-0.5乃至0.5の範囲、およびt方向に-0.5乃至0.5の範囲で実世界1の光信号を表す光信号関数F(x,y,t)を積分し、その積分値を画素値Pとして出力することになる。
【1359】
即ち、空間方向の原点にその中心が存在する検出素子12001から出力される画素値Pは、次の式(137)で表される。
【1360】
【数137】
Figure 0004423536
・・・(137)
【1361】
その他の検出素子12001も同様に、対象とする検出素子12001の中心を空間方向の原点とすることで、式(137)で示される画素値Pを出力することになる。
【1362】
以上のように、センサ2からの入力画像は、センサ2の積分効果により検出素子(画素)12001ごとに一定の画素値とされるデータの集まりである。また、センサ2の積分効果は、実世界1の光信号の空間方向(X−Y方向)の積分(空間混合)と、時間方向(t方向)の積分(時間混合)とに分けて考えることができる。
【1363】
図124は、センサ2の空間方向(X−Y方向)の積分効果(空間混合)について説明する図である。
【1364】
図124において、X方向とY方向それぞれは、図123のX方向とY方向それぞれと同一方向を表している。
【1365】
例えば、図122で示した実世界1の信号は、CCDなどのセンサ2上の受光面上のある領域12011に射影され、光電変換されることによりデータ3としてのレベルとされる。
【1366】
なお、領域12011は、図124においては、センサ2の横4画素と縦3画素の合計12画素で構成されている。
【1367】
領域12011は、動オブジェクトの光信号が射影される、所定の第1の光の強度(値)を有する第1の部分と、動オブジェクト以外の光信号が射影される、所定の第2の光の強度(値)を有する第2の部分とに分けることができる。
【1368】
センサ2の領域12011に対して、上述のような光信号が射影された場合、センサ2からは、空間方向の積分効果により、領域12011と同一の画素から構成される画像12012が出力される。
【1369】
即ち、センサ2の領域12011では、その各画素において、そこに射影される光信号が積分され、その積分値が、各画素のレベルとして出力される。このため、領域12011の画素に対して、動オブジェクトの光信号と動オブジェクト以外の光信号との両方が射影される場合には、その画素では、その2つの光信号の両方が積分され、1つのレベルとして出力される。その結果、センサ2から得られる画像12012は、動オブジェクトと動オブジェクト以外の光信号が混合した光信号に対応するレベルを有するものとなる。なお、いまの場合、動オブジェクトと動オブジェクト以外の光信号の混合は、センサ2の画素において、空間的に有限の範囲で光信号が積分(空間積分)されることにより生じる。そこで、この空間積分に起因する光信号の混合を、特に、空間混合と呼んでいる。
【1370】
空間混合によれば、入力画像において、動オブジェクトの境界部分(エッジ)がなまったもの(ボケたもの)となる。
【1371】
図125は、センサ2の時間方向(t方向)の積分効果(時間混合)について説明する図である。
【1372】
図125において、X方向とY方向それぞれは、図123のX方向とY方向それぞれと同一方向を表している。
【1373】
例えば、図122で示した実世界1の信号は、CCDなどのセンサ2上の受光面上のある領域12021に射影され、光電変換されることによりデータ3としてのレベルとされる。
【1374】
なお、領域12021は、図125においては、センサ2の横4画素と縦3画素の合計12画素で構成されている。
【1375】
領域12021は、動オブジェクトの光信号が射影される、所定の第1の光の強度(値)を有する第1の部分と、動オブジェクト以外の光信号が射影される、所定の第2の光の強度(値)を有する第2の部分とに分けることができる。但し、図125では、時間方向の積分効果のみを考えるために、空間方向の積分効果がないようなエッジの位置とされている。即ち、エッジは、センサ2の1画素に相当する小領域の区分線と同一線上にある。そして、領域12021内の動オブジェクトは、時間tの経過とともに、図中、v1で示す方向(右方向)に移動するものとする。
【1376】
センサ2の領域12021に対して、上述のような光信号が射影された場合、センサ2からは、時間方向の積分効果により、領域12021と同一の画素から構成される画像12022が出力される。
【1377】
即ち、センサ2の領域12021では、その各画素において、そこに射影される光信号が積分され、その積分値が、各画素のレベルとして出力される。このため、領域12021の画素に対して、動オブジェクトが時間tの経過とともに、v1で示す方向に移動することにより、動オブジェクトの光信号と動オブジェクト以外の光信号との両方が射影される場合には、その画素では、領域12023で示されるような、2つの光信号の両方が積分され、1つのレベルとして出力される。その結果、センサ2から得られる画像12022は、動オブジェクトと動オブジェクト以外の光信号が混合した光信号に対応するレベルを有するものとなる。なお、いまの場合、動オブジェクトと動オブジェクト以外の光信号の混合は、センサ2の画素において、時間的に有限の範囲で光信号が積分(時間積分)されることにより生じる。そこで、この時間積分に起因する光信号の混合を、特に、時間混合と呼んでいる。
【1378】
時間混合によれば、入力画像において、上述した空間混合と同様に動オブジェクトの境界部分(エッジ)がなまったものとなり、いわゆる動きボケが生じる。
【1379】
実世界推定部11013においては、以上のような、センサ2の積分効果を考慮した、実世界1の画像(動きボケのない画像)とデータ3(動きボケが生じている入力画像)との関係をモデル化したモデル(関係モデル)としての方程式(モデル方程式)が生成される。
【1380】
ところで、信号処理装置4による信号処理では、データ3から、実世界1を推定することにより、高解像度のデータを生成する。即ち、実世界1の光信号を近似する近似関数を求め、その近似関数を、仮想的な高解像度のセンサに射影することにより、高解像度のデータを生成する。
【1381】
図113に示した信号処理装置4では、動オブジェクトの移動方向と同一方向、即ち、ここではX方向に、N倍密度の高解像度データを得る。なお、以下では、例えば、N=2として、本実施の形態の説明をする。即ち、信号処理装置4においては、センサ2の画素を水平方向に2分割して得られる、センサ2の画素よりも小さい画素幅の仮想的な画素単位の高解像度の画像を生成する。この場合、仮想的な画素のX方向の幅は、0.5である。
【1382】
但し、信号処理装置4では、センサ2の画素と同一の大きさの画素単位の画像を生成することも可能である。また、高解像度の画像を生成する場合の仮想的な画素は、センサ2の画素と無関係に設定することが可能である。即ち、仮想的な画素は、センサ2の画素の境界とは無関係に設定することが可能である。
【1383】
いま、センサ2の、処理領域に対応する領域に射影される、図122に示したような実世界1の光信号のX断面波形F(X)を近似する近似関数f(x)として、例えば、図126に示される関数を採用する。即ち、近似関数f(x)は、次の式(138)で表される。
【1384】
【数138】
Figure 0004423536
・・・(138)
【1385】
ここで、近似関数f(x)は、仮想的な画素のX方向の幅(上述したように0.5)の範囲においては、引数の値にかかわらず、関数値が一定の関数である。以下において、関数値Q0乃至Q6それぞれを近似値Q0乃至Q6とも称する。
【1386】
図中、空間方向Xにおける、x0乃至x1、x1乃至x2、およびx2乃至x3それぞれの長さは、図123に示したセンサ2の1画素の水平方向の幅である1であり、近似関数f(x)において、関数値が一定の区間(それぞれQiの値の区間(i=0乃至6))は、入力画像の空間方向Xの画素幅の2倍の密度、つまり1/2の長さとなっている。なお、図中の5種類の濃度は、異なる画素値(レベル)であることをわかりやすくするために、付したものでレベルの大きさとは関係ない。
【1387】
そして、上述したように、実世界1の光信号は、X−Y平面に垂直な面で切って得られるレベルの断面形状が一定形状になっているので、X軸のそれぞれのxの位置において、Y軸とθをなす方向のレベルは一定である。
【1388】
図127は、図122の実世界1の光信号が空間方向Xに動き量vで移動する様子を模式的に表した図である。なお、図中の5種類の濃度は、実世界1の光信号の移動を1/2画素単位で区別するために付したもので、レベルとは関係ない。図127において、図122の実世界1の光信号の、空間方向Yの軸に対して角度θをなすエッジ部分は、例えば、x=x0の位置からx=x5の位置まで動き量vで移動する。ここで、図中に示される、最小の正方格子は、センサ2の1画素の幅を表している。
【1389】
図128は、図127で説明したように実世界1の光信号が移動する場合において、CCDとされるセンサ2の、あるシャッタ時間(露光時間)の最初(開始時)と最後(終了時)の状態を示している。図中、左側がシャッタ時間の開始時の状態で、右側がシャッタ時間の終了時の状態である。なお、シャッタ時間の開始時と終了時は、CCDによる積分の開始時と終了時ともいえる。図128では、v=1.5(画素)となっている。
【1390】
図128に示されるように、図128左側の、時空間積分の開始時では、x=x0の位置にあるエッジが、図128右側の、時空間積分の終了時には、動き量vに等しいx=x1+0.5まで移動する。さらに、時空間積分の開始時においてx0乃至x3+0.5の間に示される実世界1の光信号を近似する近似関数f(x)の近似値Q0乃至Q6は、時空間積分の終了時には、x1+0.5乃至x5の間に移動する。即ち、式(138)(図126)で示した近似関数が、シャッタ時間の間に動き量vだけX方向に移動する。
【1391】
図中、四角で囲んだ1画素を注目画素とすると、時空間積分の開始時には、図128の左側に示すように、注目画素には、近似値Q3乃至Q6で近似される実世界1の光信号が射影されている。また、時空間積分の終了時には、図128の右側に示すように、注目画素には、近似値Q0乃至Q3で近似される実世界1の光信号が射影されている。ここで、図128右側と左側の2つの注目画素は同一の画素を示している。注目画素の画素値は、その注目画素の空間的範囲に対して、シャッタ時間の間に射影される実世界1の光信号を近似する近似関数f(x)の積分値で表すことができる。
【1392】
図128に示した時空間積分の開始時から終了時までの実世界1の光信号を近似する近似関数f(x)の移動を、空間方向XおよびYに時間方向tを加えた3次元空間で表すと、図129のようになる。即ち、図129は、図128に示した、あるシャッタ時間の実世界1の光信号を近似する近似関数f(x)の移動を、X−Y−t空間で示した図である。図129左側に示される注目画素は、図128に示した注目画素と同一の画素であり、図129右側は、図129左側の注目画素に、実世界1の光信号を近似する近似関数f(x)が射影される時空間の範囲である角柱部分を拡大したものである。
【1393】
注目画素の画素値Pは、図129に示されるように、注目画素の角柱において近似値Q0乃至Q6が蓄積され、混合されることによって得られる。従って、注目画素の画素値Pは、次式(139)で表すことができる。
【1394】
【数139】
Figure 0004423536
・・・(139)
【1395】
ここで、a0乃至a6それぞれは、実世界1の光信号を近似する近似関数f(x)の近似値Q0乃至Q6それぞれが、各近似値Q0乃至Q6全体のうちの、注目画素の画素値Pに影響を与える(注目画素においてシャッタ時間の間に積分される)比率に等価な係数である。また、係数a0乃至a6それぞれは、画素値Pのうちの、各近似値Q0乃至Q6が占める比率に等価な係数とも言える。
【1396】
上述の式(139)は、入力画像の画素値と、近似関数f(x)によって近似される実世界1の信号との関係をモデル化したモデル(関係モデル)の方程式(モデル方程式)であるといえる。また、入力画像の画素値Pは、上述したように、近似値Q0乃至Q6が混合した値であり、以下、適宜、入力画像の画素値Pを混合画素値Pと称する。なお、入力画像の画素値Pは、このように、近似値Q0乃至Q6が混合した値であるため、動きボケが生じる。従って、入力画像の画素の画素値Pは、動きボケが生じている画素の画素値ということができる。また、これに対して、近似値Q0乃至Q6は、動きボケが生じていない画素の画素値ということができる。
【1397】
式(139)のPには、入力画像の画素値を代入することができ、この場合、式(139)の変数Q0乃至Q6が、近似関数の関数値(近似値)として、求めるべき変数となる。しかしながら、上述の式(139)のみでは、式の数が1つに対して、未知の変数(近似値)がQ0乃至Q6の7個となり、式の数より未知の変数の数が多いので、近似値Q0乃至Q6を求めることは困難である。
【1398】
そこで、図130に示すように、図128において設定した注目画素の周辺の14個の画素からなる領域(以下、注目領域と称する)を設定し、注目領域のそれぞれの画素について、注目画素の式(139)と同様の方法により、モデル方程式を生成する。
【1399】
即ち、注目領域の14個の各混合画素値(入力画像の画素値)をそれぞれP0乃至P13とすると、式(140)に示す14個のモデル方程式が成立する。
【1400】
【数140】
Figure 0004423536
・・・(140)
【1401】
式(140)は、変数の数が、近似値Q0乃至Q6の7個に対して、式の数が14個となり、係数a(i)jそれぞれが既知の係数とした場合、例えば、それぞれの式で発生する誤差の二乗和が最小になるようにして、即ち、最小自乗法を適用することにより、近似値Q0乃至Q6を求めることができる。なお、係数a(i)jそれぞれの算出方法については、後述する。ここで、iの括弧は、係数名aと区別してiが変数であることを表し、図130および式(140)では、変数iおよびjは、それぞれi=0乃至13およびj=0乃至6である。また、以下において、特に断りがない限り、変数iは、i=0乃至13、および、変数jは、j=0乃至6の整数を表すものとする。
【1402】
上述の式(140)の14個のそれぞれの式で発生する誤差をeiとすると、式(140)は、式(141)のように表すことができる。
【1403】
【数141】
Figure 0004423536
・・・(141)
【1404】
式(141)を、係数a(i)jをコンポーネントとする行列A、近似値Q0乃至Q6をコンポーネントとする列ベクトルx,混合画素値P0乃至P13をコンポーネントとする列ベクトルy,誤差eiをコンポーネントとする列ベクトルeを用いて、式(142)に置き換える。
【1405】
【数142】
Figure 0004423536
・・・(142)
【1406】
この場合、式(141)の誤差eiの二乗誤差の総和Eは、次式で表すことができる。
【1407】
【数143】
Figure 0004423536
・・・(143)
【1408】
なお、式(143)において、上付きのTは転置を表す。
【1409】
二乗誤差の総和Eを最小にする近似値Qjを求めるためには、式(143)の二乗誤差の総和Eを、近似値Qjをコンポーネントとする列ベクトルxで偏微分した値が0となればよいことから、次式が導かれる。
【1410】
【数144】
Figure 0004423536
・・・(144)
【1411】
式(144)から、求める列ベクトルx(近似値Qjをコンポーネントとする列ベクトルx)は、式(145)で表すことができる。
【1412】
【数145】
Figure 0004423536
・・・(145)
【1413】
なお、式(145)において、上付きのTは転置を表し、上付きの−1は、逆行列を表す。
【1414】
式(145)に混合画素値Piをコンポーネントとする列ベクトルyを代入して演算することにより、近似値Qjを求める(近似関数(によって近似される実世界1の光信号)を推定する)ことができる。
【1415】
さて、次に、上述の式(142)の行列Aに相当する、係数a(i)jそれぞれの算出方法について説明する。
【1416】
係数a(i)jそれぞれは、上述した図129右側に示した、1画素の角柱全体に対する、近似値Qjの成分が占める体積比として求めることができる。
【1417】
従って、この近似値Qjの(成分が占める)体積を計算することを考える。近似値Qjの体積の算出方法は、次の3つのケースにより異なってくる。第1のケースは、近似値Qjの体積が、図129右側の角柱で示す、例えば、近似値Q3のような、角柱の上面、下面(底面)にかからない場合である(以下、第1の場合とも称する)。
【1418】
第2のケースは、近似値Qjの体積が、角柱の上面、または下面(底面)にかかる場合で、かつ、図131の画素Gに示すように、近似値Qj(の体積)の境界が、入力画像の移動方向の画素の境界BRおよびBLにかからない場合である(以下、第2の場合とも称する)。
【1419】
第3のケースは、近似値Qjの体積が、角柱の上面、または下面(底面)にかかる場合で、かつ、図131の画素Hに示すように、近似値Qj(の体積)の境界が、入力画像の移動方向の画素の境界BRおよびBLにかかる場合である(以下、第3の場合とも称する)。
【1420】
以下、第1乃至第3の場合それぞれについて、係数a(i)jの算出方法について順に説明する。
【1421】
まず、第1の場合、近似値Qjの体積は、図132に示すように、空間方向XとYそれぞれの1辺の長さが入力画像の画素の幅(=1)と等しく、高さhの角柱の体積を求める場合と同じように求めることができる。即ち、第1の場合の係数a(i)jは、次の式(146)で表すことができる。
【1422】
【数146】
Figure 0004423536
・・・(146)
【1423】
ここで、高さhは、0.5画素幅の近似値Qjが移動するにつれて、近似値Qjの0.5画素幅の右端が注目画素に入射してから、近似値Qjの0.5画素幅の左端が注目画素に入射するまでの時間に等しい。即ち、高さhは、近似値Qjが0.5画素幅を移動する時間と等価である。いま、近似値Qjの動き量はv画素であるから、近似値Qjが1画素を移動する時間は1/v時間である。従って、近似値Qjが0.5画素を移動する時間は、さらにその1/2の1/(2v)時間となる。
【1424】
図133は、第2の場合の近似値Qjの体積の算出方法を説明する図である。
【1425】
第2の場合においては、図133左上の画素Gに示されるように、注目画素の角柱の上面(または下面)に、3つの近似値Ga,Gb,およびGcの体積がかかる。ここで、注目画素の上面には、3つの近似値Ga,Gb,Gcの体積は、それぞれ台形、平行四辺形、台形として、それぞれ現れる。いま、近似値Gaの台形の上辺の長さをαとし、下辺の長さをβとする。注目画素のX方向の幅は1であり、近似値Gaの台形と隣り合う近似値Gbの平行四辺形の上辺および下辺の長さは、仮想的な画素のX方向の幅である0.5であるから、近似値Gbの平行四辺形と隣り合う近似値Gcの台形の上辺の長さは(0.5−α)となり、その下辺の長さは(0.5−β)となる。なお、3つの近似値Ga,Gb,Gcの台形、平行四辺形、台形の境界線と、Y方向がつくる角度は定常性の角度θである。このとき、αとβには、定常性の角度θを用いて式(147)が成り立つ。
【1426】
【数147】
Figure 0004423536
・・・(147)
【1427】
次に、ベースとなる三角錐を考える。図133右側上段に示すように、ベースとなる三角錐Ge(以下、基準三角錐Geと称する)は、底面の三角形の2つの辺のうちの1辺の長さが入力画像のX方向の幅と同一である1であり、他方の1辺の長さがシャッタ時間である1の直角三角形、即ち、2つの辺の長さが1の直角二等辺三角形で、高さが方向θで表される1/tanθ(=1/(α―β))の三角錐である。この基準三角錐Geの体積σは、次の式(148)で与えられる。
【1428】
【数148】
Figure 0004423536
・・・(148)
【1429】
近似値Gaの体積は、図133に示すように、基準三角錐Geとの相似比がα倍の三角錐の体積から、基準三角錐Geとの相似比がβ倍の三角錐の体積を引いた差分値となる。従って、近似値Gaの体積をS0とすると、体積S0は、式(149)で表すことができる。
【1430】
【数149】
Figure 0004423536
・・・(149)
【1431】
次に、近似値Gbの体積は、図133に示すように、基準三角錐Geとの相似比が(0.5+α)倍の三角錐の体積から、基準三角錐Geとの相似比が(0.5+β)倍の三角錐の体積と、近似値Gaの体積S0とを引いた差分値となる。従って、近似値Gbの体積をS1とすると、体積S1は、式(150)で表すことができる。
【1432】
【数150】
Figure 0004423536
・・・(150)
【1433】
さらに、近似値Gcの体積は、図133に示すように、基準三角錐Geとの相似比が(1+α)倍の三角錐の体積から、基準三角錐Geとの相似比が(1+β)倍の三角錐の体積、近似値Gbの体積S1、および2個の近似値Gaの体積S0を引いた差分値となる。従って、近似値Gcの体積をS2とすると、体積S2は、式(151)で表すことができる。
【1434】
【数151】
Figure 0004423536
・・・(151)
【1435】
上述の式(149),(150),(151)で表される体積S0,S1,S2は、基準三角錐Geを基準とする、いわば相対的な値であるため、シャッタ時間である1の間の動き量が入力画像の画素のX方向の幅である1に等しいことを前提としている。つまり、入力画像の画素のX方向の幅である1だけ移動するのに、シャッタ時間である1だけ要することを前提としている。一方、本実施の形態では、シャッタ時間である1の間の動き量はv画素(入力画像のX方向に並ぶv画素分)であるから、入力画像の画素のX方向の幅である1だけ移動するのに要する時間は、1/vである。従って、絶対的な近似値Ga,Gb,Gcの体積S0,S1,S2は、式(149),(150),(151)に示した値の1/vになる。以上により、近似値Ga,Gb,およびGcに対応する係数aa,ab,およびacは、次式(152)となる。
【1436】
【数152】
Figure 0004423536
・・・(152)
【1437】
図134は、第3の場合の近似値Qjの体積の算出方法を説明する図である。
【1438】
第3の場合においては、図134左上の画素Hに示されるように、注目画素の角柱の上面(または下面)に、4つの近似値Ha,Hb,HcおよびHdの体積がかかる。ここで、注目画素の上面には、4つの近似値Ha,Hb,Hc,Hdの体積は、それぞれ、三角形、五角形、五角形、三角形として、それぞれ現れる。いま、近似値Haの三角形の底辺(角柱の上面の上側の辺)の長さをαとし、近似値Hdの三角形の底辺(角柱の上面の下側の辺)の長さをβとする。注目画素のX方向の幅は1であり、近似値Haの三角形と隣り合う近似値Hbの五角形の上辺(角柱の上面の上側の辺の一部と重なる辺)の長さは、仮想的な画素のX方向の幅である0.5であるから、近似値Hbの五角形と隣り合う近似値Hcの五角形の上辺の長さは、(0.5−α)となる。また、近似値Hdの三角形と隣り合う近似値Hcの下辺(角柱の上面の下側の辺の一部と重なる辺)の長さは、仮想的な画素のX方向の幅である0.5であるから、近似値Hcの五角形と隣り合う近似値Hbの五角形の下辺の長さは、(0.5−β)となる。さらに、近似値Haの三角形の高さをγとすると、近似値Hdの三角形の高さは、注目画素のY方向の幅である1からγを減算した(1−γ)となる。なお、4つの近似値Ha,Hb,Hc,Hdの三角形、五角形、五角形、三角形の境界線と、Y方向とがつくる角度は定常性の角度θである。このとき、α,βおよびγには、定常性の角度θを用いて式(153)が成り立つ。
【1439】
【数153】
Figure 0004423536
・・・(153)
【1440】
次に、図133で示した第2の場合と同様に、ベースとなる三角錐を考える。図134右側上段に示すように、ベースとなる三角錐He(以下、基準三角錐Heと称する)は、底面の三角形の2つの辺のうちの1辺の長さが入力画像のX方向の幅と同一である1であり、他方の1辺の長さがシャッタ時間である1の直角三角形、即ち、2つの辺の長さが1の直角二等辺三角形で、高さが方向θで表される1/tanθ(=1/(α―β))の三角錐である。この基準三角錐Geの体積σは、次の式(154)で与えられる。
【1441】
【数154】
Figure 0004423536
・・・(154)
【1442】
近似値Haの体積は、図134に示すように、基準三角錐Heとの相似比がα倍の三角錐の体積と考えることができる。従って、近似値Haの体積をS0とすると、体積S0は、式(155)で表すことができる。
【1443】
【数155】
Figure 0004423536
・・・(155)
【1444】
次に、近似値Hbの体積は、図134に示すように、基準三角錐Heとの相似比が(0.5+α)倍の三角錐の体積から、基準三角錐Heとの相似比が(0.5−β)倍の三角錐の体積と、近似値Haの体積S0とを引いた差分値となる。従って、近似値Hbの体積をS1とすると、体積S1は、式(156)で表すことができる。
【1445】
【数156】
Figure 0004423536
・・・(156)
【1446】
さらに、近似値Hcの体積は、図134に示すように、基準三角錐Heとの相似比が(1+α)倍の三角錐の体積から、基準三角錐Heとの相似比が(1−β)倍の三角錐の体積、近似値Hbの体積S1、および2個の近似値Haの体積S0を引いた差分値となる。従って、近似値Hcの体積をS2とすると、体積S2は、式(157)で表すことができる。
【1447】
【数157】
Figure 0004423536
・・・(157)
【1448】
また、近似値Hdの体積は、図134に示すように、高さh'の(平行四辺形型の)角柱の体積から、基準三角錐Heとの相似比がβ倍の三角錐の体積を引いた差分値と考えることができる。ここで、高さh'は、上述した第1の場合と同様に、0.5画素幅をもつ近似値Hdの右端が注目画素に入射してから、近似値Hdの左端が注目画素に入射するまでの時間に等しい。即ち、高さh'は、近似値Hdが0.5画素幅を移動する時間と等価である。いま、基準三角錐Heでは、X方向の幅1だけ移動するのに、シャッタ時間である1だけ要することを前提としているので、近似値Hdが0.5画素幅を移動する時間も同様の速度から、1/2シャッタ時間となる。また、XおよびY方向の幅は1なので、高さh'の角柱の体積は、1/2×1×1=1/2となる。そこで、近似値Hdの体積をS3とすると、体積S3は、式(158)で表すことができる。
【1449】
【数158】
Figure 0004423536
・・・(158)
【1450】
第2の場合と同様に、上述の式(155),(156),(157),(158)で表される体積S0,S1,S2,S3は、基準三角錐Heを基準とする相対的な値であるから、動き量v画素に対応する絶対的な近似値Ha,Hb,Hc,Hdの体積S0,S1,S2,S3にする。つまり、近似値Ha,Hb,Hc,およびHdに対応する係数aa,ab,ac,およびadは、次式(159)となる。
【1451】
【数159】
Figure 0004423536
・・・(159)
【1452】
以上のようにして、第1乃至第3のいずれの場合においても、係数a(i)jは、動き量vと角度θが既知であれば、求めることができる。従って、図130の注目領域の各注目画素について立てたモデル方程式(式(140))から得られる正規方程式を演算することにより、実世界1の光信号(動きボケがない画像)の近似関数f(x)の近似値Qjを求めることができる。
【1453】
図135は、図113の実世界推定部11013の内部の構成例を示している。
【1454】
実世界推定部11013は、上述したように、モデル生成部11021、方程式生成部11022、および実世界波形推定部11023で構成されている。実世界推定部11013には、センサ2(図1)から、動きボケ画像としての入力画像と、処理領域設定部11011から処理領域情報が入力される。実世界推定部11013は、処理領域設定部11011から供給された処理領域情報から、入力画像における処理領域を認識する。
【1455】
モデル生成部11021には、図115で説明したように、定常性設定部11012から定常性情報として、動き量vと角度θが供給される。モデル生成部11021は、図130で説明したような、処理領域内の所定の注目領域の各画素に対して、上述の式(140)で表される、入力画像の画素値と実世界1の信号との関係をモデル化したモデル(関係モデル)の方程式(モデル方程式)を生成し、方程式生成部11022に供給する。なお、上述した例では、注目領域が14個の画素で構成されるようにして、モデル生成部11021は、14個のモデル方程式を生成するようにしたが、注目領域を構成する画素の数は、少なくとも変数(近似値Qj)の数以上であれば良く、14個に限らない。即ち、注目領域を構成する画素の数が、変数(近似値Qj)の数と同一である場合、求めるべき変数(近似値Qj)は、モデル方程式を連立方程式として解くことができる。また、注目領域を構成する画素の数が、変数(近似値Qj)の数より多い場合、上述したように、例えば、最小自乗法を適用することにより解くことができる。
【1456】
方程式生成部11022は、処理領域内の各画素の混合画素値Piを、モデル生成部11021から供給されたモデル方程式で構成される式(142)の列ベクトルyに代入して、正規方程式を生成する。なお、この実施の形態においては、近似関数f(x)は、図126で説明したように、関数値が一定の、近似値Qjで構成される関数を採用しているため、式(142)は、実世界1の信号をモデル化したモデルとしての近似関数を求める方程式である。
【1457】
また、方程式生成部11022は、式(142)の行列Aのコンポーネントである係数a(i)jそれぞれを、上述の第1乃至第3の場合に応じて、それぞれの方法を用いて算出する。
【1458】
さらに、方程式生成部11022は、混合画素値Piおよび係数a(i)jそれぞれが代入され、係数a(i)jが算出された式(142)を、実世界波形推定部11023に供給する。
【1459】
実世界波形推定部11023は、方程式生成部11022から供給された式(142)から得られる式(145)を演算することにより、動きボケが生じていない、実世界1の光信号の近似関数(の近似値Qj)を求める(推定する)。そして、実世界波形推定部11023は、求めた近似関数を、実世界1の信号の波形の推定結果として、画像生成部11014(図1)に供給する。
【1460】
次に、図136のフローチャートを参照して、図135の実世界推定部11013における、図114のステップS11005の実世界推定処理について説明する。
【1461】
最初に、ステップS12001において、モデル生成部11021は、入力画像の画素値と、実世界1の信号との関係をモデル化したモデル(関係モデル)の方程式(モデル方程式)を生成し、方程式生成部11022に供給して、ステップS12002に進む。即ち、モデル生成部11021は、入力画像の画素値Piと近似値Qjとの関係をモデル化した式(140)を生成し、方程式生成部11022に供給する。
【1462】
ステップS12002では、方程式生成部11022は、各画素の混合画素値Piを、モデル生成部11021から供給されたモデル方程式で構成される式(142)の列ベクトルyに代入して、正規方程式を生成する。そして、ステップS12003に進む。
【1463】
ステップS12003では、方程式生成部11022は、式(142)の行列Aのコンポーネントである係数a(i)jそれぞれを算出して、ステップS12004に進む。
【1464】
なお、ステップS12002とS12003の処理は、順序が逆であっても良い。即ち、方程式生成部11022は、最初にステップS12003の、式(142)の行列Aのコンポーネントである係数a(i)jそれぞれを算出する処理を行い、その後、ステップS12002の、各画素の混合画素値Piを、式(142)の列ベクトルyに代入する処理を行うようにしてもよい。
【1465】
ステップS12004では、実世界波形推定部11023は、正規方程式を演算する。即ち、実世界波形推定部11023は、方程式生成部11022から供給された式(142)から、上述の式(145)を演算し、動きボケが生じていない、実世界1の光信号の近似値Qjを求めて、処理を終了し、リターンする。
【1466】
以上のように、入力画像の画素値と、実世界1の信号との関係をモデル化したモデル(関係モデル)の方程式(モデル方程式)からなる正規方程式(142)を演算することにより、実世界1の信号を近似した近似値Qjで表される近似関数f(x)を求めることができる。
【1467】
また、近似値Qjを、角度θの方向(空間的な定常性の方向)に連なる、動きボケが生じていない(実世界1の信号の)各画素の画素値と見ると、モデル生成部11021が生成するモデル方程式は、入力画像の各画素の画素値は、動オブジェクトに対応する動きボケが生じていない各画素の画素値が、現実世界の光信号の定常性の空間的な方向に続いており、その画素値が、動きベクトルvに対応して移動しながら積分された値であるとして、入力画像の各画素の画素値と、動きボケが生じていない各画素の画素値との関係をモデル化した方程式であるといえる。また、モデル方程式は、動きボケが生じていない各画素の画素幅が入力画像の各画素の画素幅よりも小さいとして、入力画像の各画素の画素値と、動きボケが生じていない各画素の画素値との関係をモデル化した方程式である。
【1468】
また、実世界波形推定部11023は、上述したように、センサ2の画素幅の、動オブジェクトの移動方向と同一の方向、即ち、X方向に、2倍の密度の幅の近似値(画素値)を求める(推定する)ことができるので、入力画像のセンサ2の各画素の画素幅よりも画素幅の小さい、即ち、(空間)解像度の高い画素の画素値を推定することができる。
【1469】
図137は、画像生成部11014が行う、動きボケがない画像の生成について説明する図である。
【1470】
図137左側は、図113の信号処理装置4において、画像生成部11014により生成される複数の画素を示している。この実施の形態では、実世界推定部11013の処理により、空間方向Xの方向では、センサ2の画素の2倍の密度の画素が生成されることとしたため、図137では、1画素の横(空間方向X)と縦(空間方向Y)の辺の長さの比が、1対2となっている。
【1471】
また、図中のQ'0乃至Q'9は、実世界推定部11013により推定された近似関数f(x)、即ち、実世界推定部11013が求めた近似値Q'0乃至Q'9である。
【1472】
実世界推定部11013により、図137に示すような、近似値Q'0乃至Q'9が画像生成部11014に供給された場合、画像生成部11014が画像を生成する方法について説明する。初めに、図131で説明した第2の場合に相当する画素Kの生成について説明し、次に、図131で説明した第3の場合に相当する画素Lの生成について説明する。
【1473】
最初に、入力画像における画素Kを注目画素として、画像生成部11014が実世界推定部11013から供給された動きボケが生じていない近似値Q'0乃至Q'9に基づいて、新しい画素値を生成する場合について説明する。画素Kは、図131の画素Gに相当するような、第2の場合が適用される画素である。この実施の形態では、空間方向Xの方向のN倍密度をN=2としているため、図137右側に示したように、入力画像の画素Kは、画像生成部11014による画像生成後には、右半分の画素K1と左半分の画素K2となる(以下、新画素K1,K2と称する)。
【1474】
画像生成部11014は、図132乃至図134で説明したような、近似値Qjの係数a(i)jを求めるときと同様の考え方を、2次元のX−Y空間(画像)に適用し、新しい画素値(以下、新画素値と称する)を生成する。即ち、画像生成部11014により生成される新画素値は、注目画素となる画素において、その面積全体に対する近似値Q'0乃至Q'9の成分が占める面積比の和として得られる。
【1475】
図137の図中、画素Kには、近似値Q'5乃至Q'7で近似される実世界1の光信号が射影されている。画素Kのうちの新画素K1には、近似値Q'6,Q'7で近似される実世界1の光信号が射影され、新画素K2には、近似値Q'5,Q'6で近似される実世界1の光信号が射影されている。
【1476】
画素Kの図中上側の辺(以下、上辺と称する)の、近似値Q'7の辺の長さをα'とすると、新画素K1における、上辺の近似値Q'6の辺の長さは(0.5−α')となる。同様に、新画素K2における、上辺の近似値Q'6の辺の長さをα'とすると、上辺の近似値Q'5の辺の長さは、(0.5−α')となる。
【1477】
一方、画素Kの図中下側の辺(以下、下辺と称する)の、近似値Q'7の辺の長さをβ'とすると、新画素K1における、下辺の近似値Q'6の辺の長さは(0.5−β')となる。同様に、新画素K2における、下辺の近似値Q'6の辺の長さをβ'とすると、下辺の近似値Q'5の辺の長さは、(0.5−β')となる。このとき、α'とβ'には、上述の式(147)と同様の、次のような関係がある。
【1478】
【数160】
Figure 0004423536
・・・(160)
【1479】
図138は、図137の新画素K1およびK2の拡大図である。
【1480】
図138上側の新画素K1において、近似値Q'6の面積は、縦(空間方向Y)の辺の長さが1で横(空間方向X)の辺の長さが(0.5−α')の長方形の面積と、底辺(空間方向X)の長さが(α'−β')で、高さ(空間方向Y)が1の三角形の面積との和で表される。従って、新画素K1の近似値Q'6が射影される面積は、
((0.5−α')+(α'−β')/2)
となる。
【1481】
また、近似値Q'7の面積は、底辺(空間方向X)の長さが(α'−β')で、高さ(空間方向Y)が1の三角形と、縦(空間方向Y)の辺の長さが1で横(空間方向X)の辺の長さがβ'の長方形の面積との和で表される。従って、新画素K1の近似値Q'7が射影される面積は、
((α'−β')/2+β')
となる。
【1482】
以上から、新画素K1の面積S1'は、1画素の面積全体に対する近似値Q'6およびQ'7成分の面積比の和として、次の式(161)のように表すことができる。
【1483】
【数161】
Figure 0004423536
・・・(161)
【1484】
図138下側の新画素K2において、近似値Q'5の面積は、縦(空間方向Y)の辺の長さが1で横(空間方向X)の辺の長さが(0.5−α')の長方形の面積と、底辺(空間方向X)の長さが(α'−β')で、高さ(空間方向Y)が1の三角形の面積との和で表される。従って、新画素K2の近似値Q'5が射影される面積は、
((0.5−α')+(α'−β')/2)
となる。
【1485】
また、近似値Q'6の面積は、底辺(空間方向X)の長さが(α'−β')で、高さ(空間方向Y)が1の三角形と、縦(空間方向Y)の辺の長さが1で横(空間方向X)の辺の長さがβ'の長方形の面積との和で表される。従って、新画素K2の近似値Q'6が射影される面積は、
((α'−β')/2+β')
となる。
【1486】
以上から、新画素K2の面積S2'は、1画素の面積全体に対する近似値Q'5およびQ'6成分の面積比の和として、次の式(162)のように表すことができる。
【1487】
【数162】
Figure 0004423536
・・・(162)
【1488】
上述の式(161)および(162)から、第2の場合の、新画素K1の画素値Q1および新画素K2の画素値Q2は、式(163)となる。
【1489】
【数163】
Figure 0004423536
・・・(163)
【1490】
次に、図137で示される入力画像における画素Lを注目画素として、画像生成部11014が実世界推定部11013から供給された動きボケが生じていない近似値Q'0乃至Q'9に基づいて、新しい画素値を生成する場合について説明する。画素Lは、図131の画素Hに相当するような、第3の場合が適用される画素である。入力画像の画素Lは、上述の画素Kと同様に空間方向Xの方向に2倍密度なので、画像生成部11014による画像生成後には、右半分の画素L1と左半分の画素L2となる(以下、新画素L1,L2と称する)。
【1491】
画素Lについても上述の画素Kの場合と同様に、画像生成部11014は、図132乃至図134で説明したような、近似値Qjの係数a(i)jを求めるときと同様の考え方を、2次元のX−Y空間(画像)に適用し、新しい画素値(以下、新画素値と称する)を生成することができる。即ち、画像生成部11014により生成される新画素値は、注目画素となる画素において、その面積全体に対する近似値Q'0乃至Q'9の成分が占める面積比の和として得られる。
【1492】
図137の図中、画素Lには、近似値Q'5乃至Q'8で近似される実世界1の光信号が射影されている。画素Lのうちの新画素L1には、近似値Q'6乃至Q'8で近似される実世界1の光信号が射影され、新画素L2には、近似値Q'5乃至Q'7で近似される実世界1の光信号が射影されている。
【1493】
画素Lの図中上側の辺(以下、上辺と称する)の、近似値Q'8の辺の長さをα'とすると、新画素L1における、上辺の近似値Q'7の辺の長さは(0.5−α')となる。同様に、新画素L2における、上辺の近似値Q'7の辺の長さをα'とすると、上辺の近似値Q'6の辺の長さは、(0.5−α')となる。
【1494】
一方、画素Lの図中下側の辺(以下、下辺と称する)の、近似値Q'5の辺の長さをβ'とすると、新画素L2における、下辺の近似値Q'6の辺の長さは(0.5−β')となる。同様に、新画素L1における、下辺の近似値Q'6の辺の長さをβ'とすると、下辺の近似値Q'7の辺の長さは、(0.5−β')となる。また、画素Lの図中左側の辺(以下、左辺と称する)の、近似値Q'6の辺の長さをγ'とすると、左辺の近似値Q'5の辺の長さは、(1−γ')となる。このとき、α',β'およびγ'には、上述の式(153)と同様の、次のような関係がある。
【1495】
【数164】
Figure 0004423536
・・・(164)
【1496】
図139は、図137の新画素L1およびL2の拡大図である。
【1497】
新画素L1の面積S1'は、1画素の面積全体に対する近似値Q'6,Q'7およびQ'8成分の面積比の和として、式(165)のように表すことができる。
【1498】
図139上側の新画素L1において、近似値Q'6の面積は、底辺(空間方向X)の長さがβ'で、高さ(空間方向Y)が(1−γ')の三角形の面積で表される。従って、新画素L1の近似値Q'6が射影される面積は、
(β'(1−γ')/2)
となる。
【1499】
また、近似値Q'7の面積は、近似値Q'7の面積を三分割する左側の、上底と下底の辺の長さがそれぞれγ'と1で高さがβ'の台形と、近似値Q'7の面積を三分割する真ん中の、縦(空間方向Y)の辺の長さが1で横(空間方向X)の辺の長さが(0.5−α'−β')の長方形の面積と、近似値Q'7の面積を三分割する右側の、上底と下底の辺の長さがそれぞれ(1−γ')と1で高さがα'の台形との和で表される。従って、新画素L1の近似値Q'7が射影される面積は、
(β'(γ'+1)/2+(0.5−α'−β')+α'(2−γ')/2)
となる。
【1500】
さらに、近似値Q'8の面積は、底辺(空間方向X)の長さがα'で、高さ(空間方向Y)がγ'の三角形の面積で表される。従って、新画素L1の近似値Q'8が射影される面積は、
α'γ'/2
となる。
【1501】
以上から、新画素L1の面積S1'は、1画素の面積全体に対する近似値Q'6乃至Q'8成分の面積比の和として、次の式(165)のように表すことができる。
【1502】
【数165】
Figure 0004423536
・・・(165)
【1503】
図139下側の新画素L2において、近似値Q'5の面積は、底辺(空間方向X)の長さがβ'で、高さ(空間方向Y)が(1−γ')の三角形の面積で表される。従って、新画素L2の近似値Q'5が射影される面積は、
(β'(1−γ')/2)
となる。
【1504】
また、近似値Q'6の面積は、近似値Q'6の面積を三分割する左側の、上底と下底の辺の長さがそれぞれγ'と1で高さがβ'の台形と、近似値Q'6の面積を三分割する真ん中の、縦(空間方向Y)の辺の長さが1で横(空間方向X)の辺の長さが(0.5−α'−β')の長方形の面積と、近似値Q'6の面積を三分割する右側の、上底と下底の辺の長さがそれぞれ(1−γ')と1で高さがα'の台形との和で表される。従って、新画素L2の近似値Q'6が射影される面積は、
(β'(γ'+1)/2+(0.5−α'−β')+α'(2−γ')/2)
となる。
【1505】
さらに、近似値Q'7の面積は、底辺(空間方向X)の長さがα'で、高さ(空間方向Y)がγ'の三角形の面積で表される。従って、新画素L2の近似値Q'7が射影される面積は、
α'γ'/2
となる。
【1506】
以上から、新画素L2の面積S2'は、1画素の面積全体に対する近似値Q'5乃至Q'7成分の面積比の和として、次の式(166)のように表すことができる。
【1507】
【数166】
Figure 0004423536
・・・(166)
【1508】
上述の式(165)および(166)から、第3の場合の、新画素L1の画素値Q1および新画素L2の画素値Q2は、次の式(167)となる。
【1509】
【数167】
Figure 0004423536
・・・(167)
【1510】
以上のように、画像生成部11014では、実世界波形推定部11023から供給された近似関数である近似値Q'0乃至Q'9に基づいて、処理領域内の各画素について、動きボケが生じていない、高解像度の新しい画素の画素値を算出し、動きボケのない画像を生成することができる。
【1511】
図113に示した実施の形態においては、定常性情報としての動き量vと角度θに基づいて、入力画像の画素値と、動きボケがない画像である、実世界1の信号との関係をモデル化したモデル(関係モデル)としてのモデル方程式を、処理領域内の所定の複数画素について立て、そのモデル方程式から得られる正規方程式を演算するようにしたので、入力画像の動きボケが除去された、つまり、動きボケがない、画質の良い画像を生成することができる。
【1512】
さらに、図113に示した実施の形態においては、実世界1の光信号(動オブジェクト)の移動方向に対して、(空間)解像度を高くした画素値を生成することができる。なお、N倍密度に(空間)解像度を高くする画像を生成する場合には、実世界1の信号がもつ定常性の角度θ(エッジの傾き)は、Nより大か、または、1/Nより小である必要がある。
【1513】
以上の実施の形態は、実世界1の光信号(動オブジェクト)が、図122で説明したように、角度θの定常性を有しており、実世界1の光信号の移動方向が定常性の方向と、同一方向または垂直な方向以外の方向に動いている場合(領域)に採用することができる。それ以外の領域については、例えば、以下に示すような方法により、入力画像の画素値と、動きボケがない画像である、実世界1の信号との関係をモデル化し、そのモデル方程式からなる正規方程式を演算することにより、動きボケのない画像を生成することができる。
【1514】
図113の信号処理装置4と同様に、入力画像に表示されている所定の形状を有する物体(動オブジェクト)が、画像の水平方向(横方向)にシャッタ時間(露光時間)あたりv画素の一定速度で移動しているとする。このとき、物体の動き量vを、図140に示すような簡略化した形態で考えることにする。
【1515】
即ち、図140において、物体は、1/v時間おきに、瞬時にx方向に1つ隣の画素の中心へ移動し、1/v時間はそこに留まる。従って、1/v時間の間は、物体が動いていないときと同様の値の画素値が、センサの画素に蓄積される。そして、次の1/v時間は、x方向に1だけ進んだ画素に対して、物体が動いていないときと同様の画素値が、蓄積される。
【1516】
つまり、物体(実世界1の光信号)が動き量vで移動している場合、1つの画素には、物体が動き量vで移動していないときと同じ画素値の1/v倍の画素値が、1/v時間ごとに順次、蓄積されていくと考えることができる。
【1517】
なお、上述のように、物体が1/v時間おきに瞬時にx方向に1画素分だけ移動するという考え方を採用しても、図140において直線で示すように、いわゆるマクロ的には、物体は、単位時間あたりv画素の動き量でx方向に等速で移動していると見ることができる。
【1518】
図113の信号処理装置4に入力される画像(入力画像)の所定の処理領域の空間方向Xの方向の1列を抽出し、その1ラインが10画素で構成され、各画素の画素値(動きボケのある画素値)がP0乃至P9であるとする。
【1519】
即ち、図141は、処理領域の空間方向Xの方向に10画素で構成される1ラインの、各画素の画素値P0乃至P9を示している。
【1520】
図141において、X方向の画素の幅は1であり、t方向の高さは、シャッタ時間(=1)である。そして、それぞれの画素の面積(X方向の幅×t方向の高さ)が、それぞれの画素に蓄積される(電荷の総量で表される)画素値P0乃至P9となっている。この画素値P0乃至P9は、動きボケのある画像の画素値である。
【1521】
一方、動きボケがない画像の画素値を、図141と同じ処理領域内の1ラインについて、Q0乃至Q9とすると、図141に対応して、図142のように表すことができる。
【1522】
即ち、図142において、X方向の画素の幅は1であり、t方向の高さは、シャッタ時間(=1)である。そして、それぞれの画素の面積(X方向の幅×t方向の高さ)が、それぞれの画素に蓄積される(電荷の総量で表される)画素値Q0乃至Q9となっている。この画素値Q0乃至Q9は、動きボケがない画像の画素値である。
【1523】
例えば、v=4(画素)として、上述の図140で説明した物体の動きに基づいて、図141の画素値P0乃至P9を、図142の画素値Q0乃至Q9を用いて表すと、図143に示すようになる。
【1524】
即ち、シャッタ時間のうち、最初の1/v時間は、動きボケのない画素値Qh(h=0乃至9)の1/vに相当する画素値(に対応する電荷)が、x=hのそれぞれの画素に蓄積される。そして、次の1/v時間には、X方向の移動方向側(図中、右側の画素)に1画素ずれて、同様の画素値Qh(h=0乃至8)の1/vに相当する画素値が、x=hのそれぞれの画素に蓄積される。以下、同様に、1/v時間ごとに、1画素ずつX方向の移動方向側にずれながら、画素値Qh(h=0乃至9)の1/vに相当する画素値が蓄積されていく。なお、以下において、添え字の変数hについて特に断りがない限り、変数hは、h=0乃至9の整数を表すものとする。
【1525】
即ち、X=0を中心とする画素(以下において、X=0の画素と称する)では、画素値Q0の1/vの画素値(Q0/v)が蓄積される。X=0の画素の右隣のX=1を中心とする画素(以下において、X=1の画素と称する)では、画素値Q1の1/vの画素値(Q1/v)と画素値Q0の1/vの画素値(Q1/v)が蓄積される。X=1の画素の右隣のX=2を中心とする画素(以下において、X=2の画素と称する)では、画素値Q0の1/vの画素値(Q0/v)、画素値Q1の1/vの画素値(Q1/v)、および画素値Q2の1/vの画素値(Q2/v)が蓄積される。以下、同様に画素値Qhの1/vの画素値が、それぞれの画素に1/v時間ごとにずれて、蓄積されていく。
【1526】
図141と図143に示される関係を式で表すと、次の式(168)が得られる。
【1527】
【数168】
Figure 0004423536
・・・(168)
【1528】
ここで、x=0,1,および2の画素には、蓄積される画素値が空白(未知)の領域が存在する。そのため、P0,P1,およびP2のそれぞれは、シャッタ時間内の全てにおいて蓄積される画素値が得られていないので、式をたてることができない。
【1529】
そこで、式の数を変数の数以上にするために、例えば、処理領域の端部を「平坦である」と仮定する。即ち、図144に示すように、画素値の空白(未知)領域11051に対して、蓄積される画素値は、最初の1/v時間の端部である、画素値Q0の1/vの画素値(Q0/v)と同一であると仮定する。
【1530】
この場合、新たに次の式(169)を得ることができる。
【1531】
【数169】
Figure 0004423536
・・・(169)
【1532】
式(168)と式(169)とにより、式の数が10個、変数の数が10個となり、連立方程式を解くことにより、画素値Qhを求めることができる。
【1533】
その他の、式の数を変数の数以上にする方法としては、例えば、各画素について、隣り合う画素間の画素値は、「なだらかに画素値が変化している」という条件を仮定し、その条件を表す条件式を式(168)に付加する方法などがある。
【1534】
以上のように、動きボケ画像の各画素の画素値を、動きボケが生じていない画像の各画素の画素値が、動き量vで移動しながら蓄積(積分)された値であるとして、動きボケ発生のメカニズムをモデル化し、そのモデル方程式からなる正規方程式を演算することにより、動きボケのない画像を生成することができる。
【1535】
【発明の効果】
以上のごとく本発明によれば、現実世界の信号により近似した画像等を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の原理を示す図である。
【図2】信号処理装置4のハードウェア構成の例を示すブロック図である。
【図3】図1の信号処理装置4の一実施の形態の構成例を示すブロック図である。
【図4】信号処理装置4の信号処理の原理をより具体的に説明する図である。
【図5】イメージセンサ上の画素の配置の例を説明する図である。
【図6】 CCDである検出素子の動作を説明する図である。
【図7】画素D乃至画素Fに対応する検出素子に入射される光と、画素値との関係を説明する図である。
【図8】時間の経過と、1つの画素に対応する検出素子に入射される光と、画素値との関係を説明する図である。
【図9】実世界1の線状の物の画像の例を示す図である。
【図10】実際の撮像により得られた画像データの画素値の例を示す図である。
【図11】背景とは異なる色であって、単色の、直線状の縁を有する物の実世界1の画像の例を示す図である。
【図12】実際の撮像により得られた画像データの画素値の例を示す図である。
【図13】画像データの模式図である。
【図14】M個のデータ162によるモデル161の推定を説明する図である。
【図15】実世界1の信号とデータ3との関係を説明する図である。
【図16】式を立てるときに注目するデータ3の例を示す図である。
【図17】式を立てる場合における、実世界1における2つの物体に対する信号および混合領域に属する値を説明する図である。
【図18】式(18)、式(19)、および式(22)で表される定常性を説明する図である。
【図19】データ3から抽出される、M個のデータ162の例を示す図である。
【図20】データ3における、時間方向および2次元の空間方向の実世界1の信号の積分を説明する図である。
【図21】空間方向により解像度の高い高解像度データを生成するときの、積分の領域を説明する図である。
【図22】時間方向により解像度の高い高解像度データを生成するときの、積分の領域を説明する図である。
【図23】時間空間方向により解像度の高い高解像度データを生成するときの、積分の領域を説明する図である。
【図24】入力画像の元の画像を示す図である。
【図25】入力画像の例を示す図である。
【図26】従来のクラス分類適応処理を適用して得られた画像を示す図である。
【図27】細線の領域を検出した結果を示す図である。
【図28】信号処理装置4から出力された出力画像の例を示す図である。
【図29】信号処理装置4による、信号の処理を説明するフローチャートである。
【図30】データ定常性検出部101の構成を示すブロック図である。
【図31】背景の前に細線がある実世界1の画像を示す図である。
【図32】平面による背景の近似を説明する図である。
【図33】細線の画像が射影された画像データの断面形状を示す図である。
【図34】細線の画像が射影された画像データの断面形状を示す図である。
【図35】細線の画像が射影された画像データの断面形状を示す図である。
【図36】頂点の検出および単調増減領域の検出の処理を説明する図である。
【図37】頂点の画素値が閾値を超え、隣接する画素の画素値が閾値以下である細線領域を検出する処理を説明する図である。
【図38】図37の点線AA'で示す方向に並ぶ画素の画素値を表す図である。
【図39】単調増減領域の連続性の検出の処理を説明する図である。
【図40】細線の画像が射影された領域の検出の他の処理の例を示す図である。
【図41】定常性検出の処理を説明するフローチャートである。
【図42】時間方向のデータの定常性を検出の処理を説明する図である。
【図43】非定常成分抽出部201の構成を示すブロック図である。
【図44】棄却される回数を説明する図である。
【図45】非定常成分の抽出の処理を説明するフローチャートである。
【図46】定常成分の抽出の処理を説明するフローチャートである。
【図47】定常成分の抽出の他の処理を説明するフローチャートである。
【図48】定常成分の抽出のさらに他の処理を説明するフローチャートである。
【図49】データ定常性検出部101の他の構成を示すブロック図である。
【図50】データの定常性を有する入力画像におけるアクティビティを説明する図である。
【図51】アクティビティを検出するためのブロックを説明する図である。
【図52】アクティビティに対するデータの定常性の角度を説明する図である。
【図53】データ定常性検出部101のより詳細な構成を示すブロック図である。
【図54】画素の組を説明する図である。
【図55】画素の組の位置とデータの定常性の角度との関係を説明する図である。
【図56】データの定常性の検出の処理を説明するフローチャートである。
【図57】時間方向および空間方向のデータの定常性の角度を検出するとき、抽出される画素の組を示す図である。
【図58】図3の実世界推定部の実施の形態の1例である、関数近似手法の原理を説明する図である。
【図59】センサがCCDとされる場合の積分効果を説明する図である。
【図60】図59のセンサの積分効果の具体的な例を説明する図である。
【図61】図59のセンサの積分効果の具体的な他の例を説明する図である。
【図62】図60で示される細線含有実世界領域を表した図である。
【図63】図3の実世界推定部の実施の形態の1例の原理を、図58の例と対比させて説明する図である。
【図64】図60で示される細線含有データ領域を表した図である。
【図65】図64の細線含有データ領域に含まれる各画素値のそれぞれをグラフ化した図である。
【図66】図65の細線含有データ領域に含まれる各画素値を近似した近似関数をグラフ化した図である。
【図67】図60で示される細線含有実世界領域が有する空間方向の定常性を説明する図である。
【図68】図64の細線含有データ領域に含まれる各画素値のそれぞれをグラフ化した図である。
【図69】図68で示される入力画素値のそれぞれを、所定のシフト量だけシフトさせた状態を説明する図である。
【図70】空間方向の定常性を考慮して、図65の細線含有データ領域に含まれる各画素値を近似した近似関数をグラフ化した図である。
【図71】空間混合領域を説明する図である。
【図72】空間混合領域における、実世界の信号を近似した近似関数を説明する図である。
【図73】センサの積分特性と空間方向の定常性の両方を考慮して、図65の細線含有データ領域に対応する実世界の信号を近似した近似関数をグラフ化した図である。
【図74】図58で示される原理を有する関数近似手法のうちの、1次多項式近似手法を利用する実世界推定部の構成例を説明するブロック図である。
【図75】図74の構成の実世界推定部が実行する実世界の推定処理を説明するフローチャートである。
【図76】タップ範囲を説明する図である。
【図77】空間方向の定常性を有する実世界の信号を説明する図である。
【図78】センサがCCDとされる場合の積分効果を説明する図である。
【図79】断面方向距離を説明する図である。
【図80】図58で示される原理を有する関数近似手法のうちの、2次多項式近似手法を利用する実世界推定部の構成例を説明するブロック図である。
【図81】図80の構成の実世界推定部が実行する実世界の推定処理を説明するフローチャートである。
【図82】タップ範囲を説明する図である。
【図83】時空間方向の定常性の方向を説明する図である。
【図84】センサがCCDとされる場合の積分効果を説明する図である。
【図85】空間方向の定常性を有する実世界の信号を説明する図である。
【図86】時空間方向の定常性を有する実世界の信号を説明する図である。
【図87】図58で示される原理を有する関数近似手法のうちの、3次元近似手法を利用する実世界推定部の構成例を説明するブロック図である。
【図88】図87の構成の実世界推定部が実行する実世界の推定処理を説明するフローチャートである。
【図89】図3の画像生成部の実施の形態の1例である、再積分手法の原理を説明する図である。
【図90】入力画素と、その入力画素に対応する、実世界の信号を近似する近似関数の例を説明する図である。
【図91】図90で示される近似関数から、図90で示される1つの入力画素における、高解像度の4つの画素を創造する例を説明する図である。
【図92】図89で示される原理を有する再積分手法のうちの、1次元再積分手法を利用する画像生成部の構成例を説明するブロック図である。
【図93】図92の構成の画像生成部が実行する画像の生成処理を説明するフローチャートである。
【図94】入力画像の元の画像の例を表す図である。
【図95】図94の画像に対応する画像データの例を表す図である。
【図96】入力画像の例を表す図である。
【図97】図96の画像に対応する画像データの例を表す図である。
【図98】入力画像に対して従来のクラス分類適応処理を施して得られる画像の例を表す図である。
【図99】図98の画像に対応する画像データの例を表す図である。
【図100】入力画像に対して1次元再積分手法の処理を施して得られる画像の例を表す図である。
【図101】図100の画像に対応する画像データの例を表す図である。
【図102】空間方向の定常性を有する実世界の信号を説明する図である。
【図103】図89で示される原理を有する再積分手法のうちの、2次元再積分手法を利用する画像生成部の構成例を説明するブロック図である。
【図104】断面方向距離を説明する図である。
【図105】図103の構成の画像生成部が実行する画像の生成処理を説明するフローチャートである。
【図106】入力画素の1例を説明する図である。
【図107】2次元再積分手法により、図106で示される1つの入力画素における、高解像度の4つの画素を創造する例を説明する図である。
【図108】時空間方向の定常性の方向を説明する図である。
【図109】図89で示される原理を有する再積分手法のうちの、3次元再積分手法を利用する画像生成部の構成例を説明するブロック図である。
【図110】図109の構成の画像生成部が実行する画像の生成処理を説明するフローチャートである。
【図111】図1の信号処理装置4の他の一実施の形態の構成例を示すブロック図である。
【図112】図111の信号処理装置4の処理を説明するフローチャートである。
【図113】図111の信号処理装置4の応用例の一実施の形態の構成例を示すブロック図である。
【図114】図113の信号処理装置4の処理を説明するフローチャートである。
【図115】図113の定常性設定部11012の構成例を示すブロック図である。
【図116】図115の動きベクトル設定部11032の構成例を示すブロック図である。
【図117】動き量を説明する図である。
【図118】背景オブジェクトの前を移動する前景オブジェクトをカメラで撮像したときに、カメラから出力される画像の画素値を示す図である。
【図119】図118で示される画像の画素の画素値の差分値を示す図である。
【図120】動き量の検出の処理を説明するフローチャートである。
【図121】相関の検出の処理を説明するフローチャートである。
【図122】本発明が適用可能な、実世界1の信号がもつ定常性である、動き量vと角度θについて説明する図である。
【図123】 CCDであるセンサ2の積分効果について説明する図である。
【図124】センサ2の空間方向(X−Y方向)の積分効果(空間混合)について説明する図である。
【図125】センサ2の時間方向(t方向)の積分効果(時間混合)について説明する図である。
【図126】図113の実施の形態における近似関数f(x)を示す図である。
【図127】図122の実世界1の光信号が空間方向Xに動き量vで移動する様子を模式的に表した図である。
【図128】図127の実世界1の光信号の移動において、CCDとされるセンサ2の、あるシャッタ時間の最初と最後を示す図である。
【図129】図128の、あるシャッタ時間の実世界1の光信号の移動を、X−Y−t空間で示した図である。
【図130】注目領域を説明する図である。
【図131】近似値Qjの体積を求める第2と第3の場合を説明する図である。
【図132】近似値Qjの体積を求める第1の場合を説明する図である。
【図133】近似値Qjの体積を求める第2の場合を説明する図である。
【図134】近似値Qjの体積を求める第3の場合を説明する図である。
【図135】図113の実世界推定部11013の構成例を示すブロック図である。
【図136】図114のステップS11005の実世界推定処理を説明するフローチャートである。
【図137】画像生成部11014の動きボケがない画像の生成について説明する図である。
【図138】画像生成部11014の動きボケがない画像の生成について説明する図である。
【図139】画像生成部11014の動きボケがない画像の生成について説明する図である。
【図140】簡略化した物体の動き量vを説明する図である。
【図141】動きボケのある画像の画素値P0乃至P9を説明する図である。
【図142】動きボケがない画像の画素値Q0乃至Q9を説明する図である。
【図143】画素値P0乃至P9を画素値Q0乃至Q9を用いて表した場合を説明する図である。
【図144】画素値の空白領域について説明する図である。
【符号の説明】
4 信号処理装置, 21 CPU, 22 ROM, 23 RAM, 28 記憶部, 51 磁気ディスク, 52 光ディスク, 53 光磁気ディスク, 54 半導体メモリ, 101 データ定常性検出部, 102 実世界推定部, 103 画像生成部, 11011 処理領域設定部, 11012 定常性設定部, 11013 実世界推定部, 11014 画像生成部, 11015 画像表示部, 11016 ユーザI/F, 11021 モデル生成部, 11022 方程式生成部, 11023 実世界波形推定部, 11031 空間方向定常性設定部, 11032 動きベクトル設定部

Claims (6)

  1. それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルを設定する動きベクトル設定手段と、
    前記画像データにおいて、前記動オブジェクトと前記動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定手段と、
    前記画像データの各画素の画素値は、前記動オブジェクトに対応する動きボケが生じていない各画素の画素値が、前記定常性の空間方向に続いており、その画素値が、前記動きベクトルに対応して移動しながら積分された値であるとして、前記画像データの各画素の画素値と、前記動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成手段と、
    前記モデル生成手段により生成されたモデルに対して、前記画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成手段と、
    前記正規方程式生成手段により生成された前記正規方程式を演算することにより、前記動きボケが生じていない各画素の画素値を推定する実世界推定手段と
    を備えることを特徴とする信号処理装置。
  2. 前記モデル生成手段は、前記空間方向定常性設定手段により設定される前記方向と同一方向、または、垂直な方向以外に動いている前記動オブジェクトについて、
    前記画像データの各画素の画素値と、前記動きボケが生じていない各画素の画素値との関係をモデル化する
    ことを特徴とする請求項1に記載の信号処理装置。
  3. 前記モデル生成手段は、前記動きボケが生じていない各画素の画素幅が、前記画像データの各画素の画素幅よりも小さいとして、前記画像データの各画素の画素値と、前記動きボケが生じていない各画素の画素値との関係をモデル化し、
    前記実世界推定手段は、前記画像データの各画素よりも画素幅の小さい、前記動きボケが生じていない各画素の画素値を推定する
    ことを特徴とする請求項1に記載の信号処理装置。
  4. それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルを設定する動きベクトル設定ステップと、
    前記画像データにおいて、前記動オブジェクトと前記動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定ステップと、
    前記画像データの各画素の画素値は、前記動オブジェクトに対応する動きボケが生じていない各画素の画素値が、前記定常性の空間方向に続いており、その画素値が、前記動きベクトルに対応して移動しながら積分された値であるとして、前記画像データの各画素の画素値と、前記動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成ステップと、
    前記モデル生成ステップの処理により生成されたモデルに対して、前記画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成ステップと、
    前記正規方程式生成ステップの処理により生成された前記正規方程式を演算することにより、前記動きボケが生じていない各画素の画素値を推定する実世界推定ステップと
    を含むことを特徴とする信号処理方法。
  5. コンピュータに所定の信号処理を行わせるプログラムにおいて、
    それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルを設定する動きベクトル設定ステップと、
    前記画像データにおいて、前記動オブジェクトと前記動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定ステップと、
    前記画像データの各画素の画素値は、前記動オブジェクトに対応する動きボケが生じていない各画素の画素値が、前記定常性の空間方向に続いており、その画素値が、前記動きベクトルに対応して移動しながら積分された値であるとして、前記画像データの各画素の画素値と、前記動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成ステップと、
    前記モデル生成ステップの処理により生成されたモデルに対して、前記画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成ステップと、
    前記正規方程式生成ステップの処理により生成された前記正規方程式を演算することにより、前記動きボケが生じていない各画素の画素値を推定する実世界推定ステップと
    を含むことを特徴とするプログラム。
  6. コンピュータに所定の信号処理を行わせるプログラムが記録されている記録媒体において、
    それぞれ時間積分効果を有する複数の画素に現実世界の光信号が射影されて取得された画像データ内の動オブジェクト動きベクトルを設定する動きベクトル設定ステップと、
    前記画像データにおいて、前記動オブジェクトと前記動オブジェクト以外の部分の境界と所定の軸とがなす角度を、定常性の空間方向として設定する空間方向定常性設定ステップと、
    前記画像データの各画素の画素値は、前記動オブジェクトに対応する動きボケが生じていない各画素の画素値が、前記定常性の空間方向に続いており、その画素値が、前記動きベクトルに対応して移動しながら積分された値であるとして、前記画像データの各画素の画素値と、前記動きボケが生じていない各画素の画素値との関係をモデル化するモデル生成ステップと、
    前記モデル生成ステップの処理により生成されたモデルに対して、前記画像データの各画素の画素値を代入して正規方程式を生成する正規方程式生成ステップと、
    前記正規方程式生成ステップの処理により生成された前記正規方程式を演算することにより、前記動きボケが生じていない各画素の画素値を推定する実世界推定ステップと
    を含むプログラムが記録されていることを特徴とする記録媒体。
JP2003184018A 2003-06-27 2003-06-27 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体 Expired - Fee Related JP4423536B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184018A JP4423536B2 (ja) 2003-06-27 2003-06-27 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184018A JP4423536B2 (ja) 2003-06-27 2003-06-27 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体

Publications (3)

Publication Number Publication Date
JP2005018536A JP2005018536A (ja) 2005-01-20
JP2005018536A5 JP2005018536A5 (ja) 2006-08-03
JP4423536B2 true JP4423536B2 (ja) 2010-03-03

Family

ID=34183915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184018A Expired - Fee Related JP4423536B2 (ja) 2003-06-27 2003-06-27 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体

Country Status (1)

Country Link
JP (1) JP4423536B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226520A (ja) * 2006-02-23 2007-09-06 Nippon Computer System Co Ltd 画像処理プログラム及びこれが記録されたコンピュータ読み取り可能な記録媒体、ならびに画像処理装置

Also Published As

Publication number Publication date
JP2005018536A (ja) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4148041B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4392584B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4144374B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4392583B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4143916B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4423537B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4423536B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4423535B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4419453B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4182827B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4325296B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4419454B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4182826B2 (ja) 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体
JP4161729B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4161733B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4161732B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4161734B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4161727B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4161735B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4182776B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4161730B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP4161728B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees