JP4423022B2 - 2,1-Benzisothiazole compound and organic light emitting device using the same - Google Patents

2,1-Benzisothiazole compound and organic light emitting device using the same Download PDF

Info

Publication number
JP4423022B2
JP4423022B2 JP2003414264A JP2003414264A JP4423022B2 JP 4423022 B2 JP4423022 B2 JP 4423022B2 JP 2003414264 A JP2003414264 A JP 2003414264A JP 2003414264 A JP2003414264 A JP 2003414264A JP 4423022 B2 JP4423022 B2 JP 4423022B2
Authority
JP
Japan
Prior art keywords
group
compound
layer
light emitting
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003414264A
Other languages
Japanese (ja)
Other versions
JP2005170866A (en
JP2005170866A5 (en
Inventor
麻紀 岡島
幸一 鈴木
達人 川合
啓二 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003414264A priority Critical patent/JP4423022B2/en
Publication of JP2005170866A publication Critical patent/JP2005170866A/en
Publication of JP2005170866A5 publication Critical patent/JP2005170866A5/ja
Application granted granted Critical
Publication of JP4423022B2 publication Critical patent/JP4423022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、新規な有機化合物およびそれを用いた有機発光素子に関する。   The present invention relates to a novel organic compound and an organic light-emitting device using the same.

有機発光素子は、陽極と陰極間に蛍光性有機化合物または燐光性有機化合物を含む薄膜を挟持させて、各電極から電子およびホール(正孔)を注入することにより、蛍光性化合物または燐光性化合物の励起子を生成させ、この励起子が基底状態にもどる際に放射される光を利用する素子である。   An organic light-emitting device has a fluorescent compound or a phosphorescent compound by injecting electrons and holes from each electrode by sandwiching a thin film containing a fluorescent organic compound or a phosphorescent organic compound between an anode and a cathode. This is an element that utilizes the light emitted when the exciton is generated and the exciton returns to the ground state.

1987年コダック社の研究(非特許文献1)では、陽極にITO、陰極にマグネシウム銀の合金をそれぞれ用い、電子輸送材料および発光材料としてアルミニウムキノリノール錯体を用いホール輸送材料にトリフェニルアミン誘導体を用いた機能分離型2層構成の素子で、10V程度の印加電圧において1000cd/m2程度の発光が報告されている。関連の特許としては,特許文献1〜3等が挙げられる。 In 1987, Kodak Research (Non-patent Document 1) used ITO for the anode and magnesium silver alloy for the cathode, an aluminum quinolinol complex for the electron transport material and the light emitting material, and a triphenylamine derivative for the hole transport material. It has been reported that light emission of about 1000 cd / m 2 at an applied voltage of about 10 V has been reported with an element having a function separation type two-layer structure. Examples of related patents include Patent Documents 1 to 3 and the like.

また、蛍光性有機化合物の種類を変えることにより、紫外から赤外までの発光が可能であり、最近では様々な化合物の研究が活発に行われている。例えば、特許文献4〜11等に記載されている。   In addition, by changing the type of the fluorescent organic compound, light emission from ultraviolet to infrared is possible, and recently, various compounds have been actively researched. For example, it describes in patent documents 4-11.

近年、燐光性化合物を発光材料として用い、三重項状態のエネルギーをEL発光に用いる検討が多くなされている。プリンストン大学のグループにより、イリジウム錯体を発光材料として用いた有機発光素子が、高い発光効率を示すことが報告されている(非特許文献2)。   In recent years, many studies have been made on using phosphorescent compounds as light emitting materials and using triplet state energy for EL light emission. A group of Princeton University reports that an organic light emitting device using an iridium complex as a light emitting material exhibits high luminous efficiency (Non-Patent Document 2).

さらに、上記のような低分子材料を用いた有機発光素子の他にも、共役系高分子を用いた有機発光素子が、ケンブリッジ大学のグループ(非特許文献3)により報告されている。この報告ではポリフェニレンビニレン(PPV)を塗工系で成膜することにより、単層で発光を確認している。共役系高分子を用いた有機発光素子の関連特許としては、特許文献12〜16等が挙げられる。   Furthermore, in addition to the organic light-emitting device using the low-molecular material as described above, an organic light-emitting device using a conjugated polymer has been reported by a group of Cambridge University (Non-Patent Document 3). In this report, light emission was confirmed in a single layer by forming a film of polyphenylene vinylene (PPV) in a coating system. Patents 12 to 16 and the like can be cited as related patents of organic light emitting devices using conjugated polymers.

このように有機発光素子における最近の進歩は著しく、その特徴は低印加電圧で高輝度、発光波長の多様性、高速応答性、薄型、軽量の発光デバイス化が可能であることから、広汎な用途への可能性を示唆している。   As described above, recent advances in organic light-emitting devices are remarkable, and their features are high brightness, variety of emission wavelengths, high-speed response, low profile, and light-emitting devices with low applied voltage. Suggests the possibility to.

しかしながら、現状では更なる高輝度の光出力あるいは高変換効率が必要である。また、長時間の使用による経時変化や酸素を含む雰囲気気体や湿気などによる劣化等の耐久性の面で未だ多くの問題がある。さらにはフルカラーディスプレイ等への応用を考えた場合の色純度の良い青、緑、赤の発光が必要となるが、これらの問題に関してもまだ十分でない。   However, under the present circumstances, light output with higher brightness or higher conversion efficiency is required. In addition, there are still many problems in terms of durability, such as changes over time due to long-term use and deterioration due to atmospheric gas containing oxygen or moisture. Furthermore, it is necessary to emit blue, green, and red light with good color purity when considering application to a full color display or the like, but these problems are still not sufficient.

一方、ベンゾイソチアゾール化合物はその優れた電荷輸送性と発光性から電荷輸送材料や発光材料として用いられる。ベンゾイソチアゾール化合物を有機発光素子に用いた例として、特許文献17〜20などが挙げられるが、1、3−ベンゾイソチアゾールを有機発光素子に用いており、発光層材料として用いた際の特性は十分なものではない。   On the other hand, benzoisothiazole compounds are used as charge transport materials and light-emitting materials because of their excellent charge transport properties and light-emitting properties. Examples of using a benzoisothiazole compound in an organic light emitting device include Patent Documents 17 to 20 and the like. However, 1,3-benzoisothiazole is used in an organic light emitting device, and characteristics when used as a light emitting layer material Is not enough.

米国特許4,539,507号明細書US Pat. No. 4,539,507 米国特許4,720,432号明細書US Pat. No. 4,720,432 米国特許4,885,211号明細書US Pat. No. 4,885,211 米国特許5,151,629号明細書US Pat. No. 5,151,629 米国特許5,409,783号明細書US Pat. No. 5,409,783 米国特許5,382,477号明細書US Pat. No. 5,382,477 特開平2−247278号公報JP-A-2-247278 特開平3−255190号公報JP-A-3-255190 特開平5−202356号公報JP-A-5-202356 特開平9−202878号公報JP-A-9-202878 特開平9−227576号公報JP-A-9-227576 米国特許5,247,190号明細書US Pat. No. 5,247,190 米国特許5,514,878号明細書US Pat. No. 5,514,878 米国特許5,672,678号明細書US Pat. No. 5,672,678 特開平4−145192号公報JP-A-4-145192 特開平5−247460号公報Japanese Patent Application Laid-Open No. 5-247460 特開平11−283746号公報JP-A-11-283746 特開平11−185959号公報JP 11-185959 A 特開平10−298545号公報Japanese Patent Laid-Open No. 10-298545 特開平08−087123号公報Japanese Patent Laid-Open No. 08-087123 Appl.Phys.Lett.51,913(1987)Appl. Phys. Lett. 51,913 (1987) Nature,395,151(1998)Nature, 395, 151 (1998) Nature,347,539(1990)Nature, 347, 539 (1990)

本発明の目的は、新規な2,1−ベンゾイソチアゾール化合物を提供することにある。   An object of the present invention is to provide a novel 2,1-benzisothiazole compound.

また本発明の目的は、特定な2,1−ベンゾイソチアゾール化合物を用い、極めて高効率で高輝度な光出力を有する有機発光素子を提供することにある。また、極めて耐久性のある有機発光素子を提供することにある。さらには製造が容易でかつ比較的安価に作成可能な有機発光素子を提供する事にある。   It is another object of the present invention to provide an organic light-emitting device that uses a specific 2,1-benzoisothiazole compound and has an extremely high efficiency and high luminance light output. Another object of the present invention is to provide an extremely durable organic light emitting device. It is another object of the present invention to provide an organic light emitting device that is easy to manufacture and can be produced at a relatively low cost.

すなわち、本発明の2,1−ベンゾイソチアゾール化合物は、下記一般式[I]〜[IV]で示されることを特徴とする。尚、下記一般式[I]〜[IV]にて示される2,1−ベンゾイソチアゾール化合物のうち、下記に示される化合物が本発明に該当する。

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022
That is, the 2,1-benzisothiazole compound of the present invention is represented by the following general formulas [I] to [IV]. Of the 2,1-benzoisothiazole compounds represented by the following general formulas [I] to [IV], the compounds shown below correspond to the present invention.
Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022
Figure 0004423022

(式中、R1〜R5は、水素原子、ハロゲン原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換アミノ基を表わし、少なくとも1つは、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換アミノ基を表わす。R1〜R5は同じであっても異なっていてもよい。) Wherein R1 to R5 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic Represents a group, a substituted or unsubstituted condensed polycyclic heterocyclic group or a substituted amino group, at least one of which is a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic ring An aromatic group, a substituted or unsubstituted condensed polycyclic heterocyclic group, or a substituted amino group, R1 to R5 may be the same or different.

Figure 0004423022
Figure 0004423022

(式中、R6〜R8は、水素原子、ハロゲン原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換アミノ基を表わす。異なるベンゾイソチアゾール環に結合するR6同士、R7同士、R8同士、R9同士は、同じであっても異なっていてもよく、同じベンゾイソチアゾール環に結合するR6〜R8は、同じであっても異なっていてもよい。 Wherein R6 to R8 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic Represents a group, a substituted or unsubstituted condensed polycyclic heterocyclic group, and a substituted amino group, and R6, R7, R8, and R9 bonded to different benzoisothiazole rings may be the same or different. The R6 to R8 bonded to the same benzoisothiazole ring may be the same or different.

R9、R10は、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換アミノ基を表わし、同じであっても異なっていてもよい。   R9 and R10 are a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic group, a substituted or unsubstituted condensed polycyclic heterocyclic group, and a substituted amino group. May be the same or different.

nは2以上の整数である。)   n is an integer of 2 or more. )

Figure 0004423022
Figure 0004423022

(式中、R11〜R14は、水素原子、ハロゲン原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換アミノ基を表わす。異なるベンゾイソチアゾール環に結合するR11同士、R12同士、R13同士、R14同士は、同じであっても異なっていてもよく、同じベンゾイソチアゾール環に結合するR11〜R14は、同じであっても異なっていてもよい。 Wherein R11 to R14 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic Represents a group, a substituted or unsubstituted condensed polycyclic heterocyclic group, and a substituted amino group, and R11, R12, R13, and R14 bonded to different benzoisothiazole rings may be the same or different. The R11 to R14 bonded to the same benzoisothiazole ring may be the same or different.

R15は、置換または無置換の芳香族基、置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換アミノ基のいずれかを表わす。   R15 represents any of a substituted or unsubstituted aromatic group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic group, a substituted or unsubstituted condensed polycyclic heterocyclic group, and a substituted amino group. Represents.

mは2から6の整数を表わす。)   m represents an integer of 2 to 6. )

Figure 0004423022
Figure 0004423022

(式中、R17〜R20は、水素原子、ハロゲン原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換アミノ基を表わす。異なるベンゾイソチアゾール環に結合するR17同士、R18同士、R19同士、R20同士は、同じであっても異なっていてもよく、同じベンゾイソチアゾール環に結合するR17〜R20は、同じであっても異なっていてもよい。 Wherein R17 to R20 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic Represents a group, a substituted or unsubstituted condensed polycyclic heterocyclic group, and a substituted amino group, and R17, R18, R19, and R20 bonded to different benzoisothiazole rings may be the same or different. The R17 to R20 bonded to the same benzoisothiazole ring may be the same or different.

R16は、置換または無置換の芳香族基、置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換アミノ基のいずれかを表わす。   R16 represents any of a substituted or unsubstituted aromatic group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic group, a substituted or unsubstituted condensed polycyclic heterocyclic group, and a substituted amino group. Represents.

Lは2から6の整数を表わす。)   L represents an integer of 2 to 6. )

ここで、一般式[I]で示される2,1−ベンゾイソチアゾール化合物は、R1、R2、R5の少なくとも1つが置換アミノ基であることが好ましい。   Here, in the 2,1-benzisothiazole compound represented by the general formula [I], at least one of R1, R2, and R5 is preferably a substituted amino group.

また、本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に挟持され少なくとも発光層を含む有機化合物層と、を有し、前記発光層が記2,1−ベンゾチアゾール化合物のうち少なくとも一種を含有することを特徴とする。

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022
Further, the organic light-emitting device of the present invention comprises a pair of electrodes including an anode and a cathode, being interposed between the pair of electrodes has a, and an organic compound layer including at least a light emitting layer, the light-emitting layer is lower SL 2, It contains at least one of 1-benzothiazole compounds.
Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

本発明のベンゾイソチアゾール化合物を用いた有機発光素子は、低い印加電圧で高輝度な発光が得られ、耐久性にも優れている。特に本発明のベンゾイソチアゾール化合物を含有する有機層は、発光層として優れている。   The organic light-emitting device using the benzoisothiazole compound of the present invention can emit light with high luminance at a low applied voltage and has excellent durability. In particular, an organic layer containing the benzoisothiazole compound of the present invention is excellent as a light emitting layer.

さらに、素子の作成も真空蒸着あるいはキャステイング法等を用いて作成可能であり、比較的安価で大面積の素子を容易に作成できる。   Furthermore, the device can be formed using vacuum deposition, casting method, or the like, and a device with a large area can be easily manufactured at a relatively low cost.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の2,1−ベンゾイソチアゾール化合物について説明する。   First, the 2,1-benzisothiazole compound of the present invention will be described.

上記一般式[I]〜[IV]における置換基の具体例を以下に示す。   Specific examples of the substituents in the general formulas [I] to [IV] are shown below.

アルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、ter−ブチル基、オクチル基などが挙げられる。   Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a ter-butyl group, and an octyl group.

アリール基および2価から6価の芳香族基としては、フェニル基、ビフェニル基、ターフェニル基などが挙げられる。   Examples of the aryl group and the divalent to hexavalent aromatic group include a phenyl group, a biphenyl group, and a terphenyl group.

複素環基としては、チエニル基、ピロリル基、ピリジル基、ビピリジル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、ターチエニル基などが挙げられる。   Examples of the heterocyclic group include thienyl group, pyrrolyl group, pyridyl group, bipyridyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group, and tertenyl group.

縮合多環芳香族基としては、フルオレニル基、ナフチル基、フルオランテニル基、アンスリル基、フェナンスリル基、ピレニル基、テトラセニル基、ペンタセニル基、トリフェニレニル基、ペリレニル基などが挙げられる。   Examples of the condensed polycyclic aromatic group include a fluorenyl group, a naphthyl group, a fluoranthenyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a tetracenyl group, a pentacenyl group, a triphenylenyl group, and a perylenyl group.

縮合多環複素環基としては、カルバゾリル基、フェナントロリル基、アクリジニル基などが挙げられる。   Examples of the condensed polycyclic heterocyclic group include a carbazolyl group, a phenanthroyl group, and an acridinyl group.

置換アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基などが挙げられる。   Examples of the substituted amino group include a dimethylamino group, a diethylamino group, a dibenzylamino group, a diphenylamino group, a ditolylamino group, and a dianisolylamino group.

上記置換基が有してもよい置換基としては、メチル基、エチル基、プロピル基などのアルキル基、ベンジル基、フェネチル基などのアラルキル基、フェニル基、ビフェニル基などのアリール基、チエニル基、ピロリル基、ピリジル基などの複素環基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基などのアミノ基、メトキシル基、エトキシル基、プロポキシル基、フェノキシル基などのアルコキシル基、シアノ基、フッ素、塩素、臭素、ヨウ素などのハロゲン原子などが挙げられる。   Examples of the substituent that the substituent may have include an alkyl group such as a methyl group, an ethyl group, and a propyl group, an aralkyl group such as a benzyl group and a phenethyl group, an aryl group such as a phenyl group and a biphenyl group, a thienyl group, Heterocyclic groups such as pyrrolyl group and pyridyl group, amino groups such as dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, ditolylamino group, and dianisolylamino group, methoxyl group, ethoxyl group, propoxyl group, Examples include alkoxyl groups such as phenoxyl groups, cyano groups, halogen atoms such as fluorine, chlorine, bromine and iodine.

次に、本発明の2,1−ベンゾイソチアゾール化合物の代表例を以下に挙げるが、本発明はこれらに限定されるものではない。
一般式[I]で示される化合物
Next, typical examples of the 2,1-benzoisothiazole compound of the present invention will be given below, but the present invention is not limited thereto.
Compound represented by general formula [I]

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

一般式[II]で示される化合物 Compound represented by general formula [II]

Figure 0004423022
Figure 0004423022

一般式[III]で示される化合物 Compound represented by general formula [III]

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

一般式[IV]で示される化合物 Compound represented by general formula [IV]

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

本発明2,1−ベンゾイソチアゾール化合物は、一般的に知られている方法で合成でき、例えば、Advanced Heterocyclic.Chemisty.,38,105−133(1985)に記載の方法で2,1−ベンゾイソチアゾール化合物中間体を得ることができる。さらにパラジウム触媒を用いたSuzuki Coupling法(例えばChem.Rev.1995,95,2457.)などの合成法で2,1−ベンゾイソチアゾール化合物を得ることができる。   The 2,1-benzisothiazole compound of the present invention can be synthesized by a generally known method, for example, Advanced Heterocyclic. Chemisty. , 38, 105-133 (1985), an intermediate of 2,1-benzisothiazole compound can be obtained. Further, a 2,1-benzoisothiazole compound can be obtained by a synthesis method such as Suzuki Coupling method using a palladium catalyst (for example, Chem. Rev. 1995, 95, 2457.).

本発明の2,1−ベンゾイソチアゾール化合物は、従来の化合物に比べ発光性、電荷輸送性および耐久性の優れた化合物であり、有機発光素子の有機化合物を含む層に有用であり、また真空蒸着法や溶液塗布法などによって形成した層は結晶化などが起こりにくく経時安定性に優れている。   The 2,1-benzisothiazole compound of the present invention is a compound having excellent light-emitting property, charge transporting property and durability as compared with conventional compounds, and is useful for a layer containing an organic compound in an organic light-emitting device. A layer formed by a vapor deposition method or a solution coating method is less likely to be crystallized and has excellent temporal stability.

次に、本発明の有機発光素子について詳細に説明する。   Next, the organic light emitting device of the present invention will be described in detail.

本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に狭持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少なくとも一層が本発明の2,1−ベンゾイソチアゾール化合物の少なくとも一種を含有することを特徴とする。   The organic light-emitting device of the present invention includes the organic compound in an organic light-emitting device having at least a layer including a pair of electrodes composed of an anode and a cathode and one or more organic compounds sandwiched between the pair of electrodes. At least one of the layers contains at least one 2,1-benzisothiazole compound of the present invention.

本発明の有機発光素子においては、本発明の2,1−ベンゾイソチアゾール化合物を真空蒸着法や溶液塗布法により陽極及び陰極の間に形成する。その有機層の厚みは10μmより薄く、好ましくは0.5μm以下、より好ましくは0.01〜0.5μmの厚みに薄膜化することが好ましい。   In the organic light-emitting device of the present invention, the 2,1-benzoisothiazole compound of the present invention is formed between the anode and the cathode by a vacuum deposition method or a solution coating method. The thickness of the organic layer is less than 10 μm, preferably 0.5 μm or less, more preferably 0.01 to 0.5 μm.

図1〜図6に本発明の有機発光素子の好ましい例を示す。   1 to 6 show preferred examples of the organic light emitting device of the present invention.

図1は本発明の有機発光素子の一例を示す断面図である。図1は基板1上に陽極2、発光層3及び陰極4を順次設けた構成のものである。ここで使用する発光素子はそれ自体でホール輸送能、エレクトロン輸送能及び発光性の性能を単一で有している場合や、それぞれの特性を有する化合物を混ぜて使う場合に有用である。   FIG. 1 is a cross-sectional view showing an example of the organic light emitting device of the present invention. FIG. 1 shows a structure in which an anode 2, a light emitting layer 3 and a cathode 4 are sequentially provided on a substrate 1. The light-emitting element used here is useful when it has a single hole transport ability, electron transport ability, and light-emitting performance, or when a compound having each characteristic is mixed.

図2は本発明の有機発光素子における他の例を示す断面図である。図2は基板1上に陽極2、ホール輸送層5、電子輸送層6及び陰極4を順次設けた構成のものである。この場合は発光物質はホール輸送性かあるいは電子輸送性のいずかあるいは両方の機能を有している材料をそれぞれの層に用い、発光性の無い単なるホール輸送物質あるいは電子輸送物質と組み合わせて用いる場合に有用である。また、この場合、発光層はホール輸送層5あるいは電子輸送層6のいずれかから成る。   FIG. 2 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 2 shows a configuration in which an anode 2, a hole transport layer 5, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the luminescent material is either a hole transporting material or an electron transporting material, or a material having both functions is used for each layer, and it is combined with a simple hole transporting material or electron transporting material having no light emitting property. Useful when used. In this case, the light emitting layer is composed of either the hole transport layer 5 or the electron transport layer 6.

図3は本発明の有機発光素子における他の例を示す断面図である。図3は基板1上に陽極2、ホール輸送層5、発光層3,電子輸送層6及び陰極4を順次設けた構成のものである。これはキャリヤ輸送と発光の機能を分離したものであり、ホール輸送性、電子輸送性、発光性の各特性を有した化合物と適時組み合わせて用いられ極めて材料選択の自由度が増すとともに、発光波長を異にする種々の化合物が使用できるため、発光色相の多様化が可能になる。さらに、中央の発光層3に各キャリヤあるいは励起子を有効に閉じこめて発光効率の向上を図ることも可能になる。   FIG. 3 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 3 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is a separation of carrier transport and light emission functions. It is used in combination with compounds having hole transport properties, electron transport properties, and light emission properties in a timely manner. Since various compounds having different values can be used, it is possible to diversify the emission hue. Further, it is possible to effectively confine each carrier or exciton in the central light emitting layer 3 to improve the light emission efficiency.

図4は本発明の有機発光素子における他の例を示す断面図である。図4は図3に対してホール注入層7を陽極2側に挿入した構成であり、陽極2とホール輸送層5の密着性改善あるいはホールの注入性改善に効果があり、低電圧化に効果的である。   FIG. 4 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 4 shows a structure in which a hole injection layer 7 is inserted on the anode 2 side with respect to FIG. 3, which is effective in improving the adhesion between the anode 2 and the hole transport layer 5 or improving the hole injection property, and is effective in lowering the voltage. Is.

図5および図6は本発明の有機発光素子における他の例を示す断面図である。図5および図6は、図3および図4に対してホールあるいは励起子(エキシトン)を陰極4側に抜けることを阻害する層(ホール/エキシトンブロッキング層8)を、発光層3、電子輸送層6間に挿入した構成である。イオン化ポテンシャルの非常に高い化合物をホール/エキシトンブロッキング層8として用いる事により、発光効率の向上に効果的な構成である。   5 and 6 are cross-sectional views showing other examples of the organic light-emitting device of the present invention. 5 and FIG. 6 show a layer (hole / exciton blocking layer 8) that prevents holes or excitons (excitons) from passing to the cathode 4 side as compared with FIG. 3 and FIG. It is the structure inserted between 6. By using a compound having a very high ionization potential as the hole / exciton blocking layer 8, the structure is effective in improving the light emission efficiency.

ただし、図1〜図6はあくまでごく基本的な素子構成であり、本発明の2,1−ベンゾイソチアゾール化合物を用いた有機発光素子の構成はこれらに限定されるものではない。例えば、電極と有機層界面に絶縁性層を設ける、接着層あるいは干渉層を設ける、ホール輸送層がイオン化ポテンシャルの異なる2層から構成されるなど多様な層構成をとることができる。   However, FIGS. 1 to 6 are very basic device configurations, and the configuration of the organic light-emitting device using the 2,1-benzoisothiazole compound of the present invention is not limited to these. For example, various layer configurations such as providing an insulating layer at the interface between the electrode and the organic layer, providing an adhesive layer or interference layer, and the hole transporting layer are composed of two layers having different ionization potentials can be employed.

本発明の2,1−ベンゾイソチアゾール化合物は、従来の化合物に比べ電荷輸送性、発光性および耐久性の優れた化合物であり、図1〜図6のいずれの形態でも使用することができる。   The 2,1-benzoisothiazole compound of the present invention is a compound having excellent charge transporting property, light emitting property and durability as compared with conventional compounds, and can be used in any form of FIGS.

本発明の2,1−ベンゾイソチアゾールを用いた有機層は、真空蒸着法や溶液塗布法などによって形成すると結晶化などが起こりにくく経時安定性に優れている。   When the organic layer using 2,1-benzoisothiazole of the present invention is formed by a vacuum deposition method or a solution coating method, crystallization is unlikely to occur, and the stability over time is excellent.

本発明は、有機層の構成成分として一般式[I]〜[IV]で示される2,1−ベンゾイソチアゾール化合物を用いるものであるが、これまで知られているホール輸送性化合物、発光性化合物あるいは電子輸送性化合物などを必要に応じて一緒に使用することもできる。   In the present invention, a 2,1-benzoisothiazole compound represented by the general formulas [I] to [IV] is used as a constituent component of the organic layer. A compound, an electron transporting compound, or the like can be used together as necessary.

以下にこれらの化合物例を挙げる。   Examples of these compounds are given below.

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

本発明の有機発光素子において、一般式[I]〜[IV]で示される2,1−ベンゾイソチアゾール化合物を含有する層およびその他の有機化合物を含有する層は、一般には真空蒸着法あるいは、適当な溶媒に溶解させて塗布法により薄膜を形成する。特に塗布法で成膜する場合は、適当な結着樹脂と組み合わせて膜を形成することもできる。   In the organic light-emitting device of the present invention, the layer containing the 2,1-benzisothiazole compound represented by the general formulas [I] to [IV] and the layer containing another organic compound are generally deposited by vacuum evaporation or A thin film is formed by a coating method after dissolving in an appropriate solvent. In particular, when a film is formed by a coating method, the film can be formed in combination with an appropriate binder resin.

上記結着樹脂としては広範囲な結着性樹脂より選択でき、たとえばポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリスルホン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これらは単独または共重合体ポリマーとして1種または2種以上混合してもよい。   The binder resin can be selected from a wide range of binder resins such as polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, acrylic resin, methacrylic resin, butyral resin, polyvinyl acetal resin, diallyl phthalate resin. , Phenol resin, epoxy resin, silicone resin, polysulfone resin, urea resin and the like, but are not limited thereto. Moreover, you may mix these 1 type, or 2 or more types as a single or copolymer polymer.

陽極材料としては仕事関数がなるべく大きなものがよく、例えば、金、白金、ニッケル、パラジウム、コバルト、セレン、バナジウム等の金属単体あるいはこれらの合金、酸化錫、酸化亜鉛、酸化錫インジウム(ITO),酸化亜鉛インジウム等の金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレンスルフィド等の導電性ポリマーも使用できる。これらの電極物質は単独で用いてもよく、複数併用することもできる。   As the anode material, a material having a work function as large as possible is good. For example, simple metals such as gold, platinum, nickel, palladium, cobalt, selenium, vanadium or alloys thereof, tin oxide, zinc oxide, indium tin oxide (ITO), A metal oxide such as zinc indium oxide can be used. In addition, conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyphenylene sulfide can also be used. These electrode materials may be used alone or in combination.

一方、陰極材料としては仕事関数の小さなものがよく、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロム等の金属単体あるいは複数の合金として用いることができる。酸化錫インジウム(ITO)等の金属酸化物の利用も可能である。また、陰極は一層構成でもよく、多層構成をとることもできる。   On the other hand, the cathode material preferably has a small work function, and can be used as a single metal or a plurality of alloys such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, silver, lead, tin, and chromium. A metal oxide such as indium tin oxide (ITO) can also be used. Further, the cathode may have a single layer structure or a multilayer structure.

本発明で用いる基板としては、特に限定するものではないが、金属製基板、セラミックス製基板等の不透明性基板、ガラス、石英、プラスチックシート等の透明性基板が用いられる。また、基板にカラーフィルター膜、蛍光色変換フィルター膜、誘電体反射膜などを用いて発色光をコントロールする事も可能である。   Although it does not specifically limit as a board | substrate used by this invention, Transparent substrates, such as opaque board | substrates, such as a metal board | substrate and a ceramic board | substrate, glass, quartz, a plastic sheet, are used. It is also possible to control the color light by using a color filter film, a fluorescent color conversion filter film, a dielectric reflection film, or the like on the substrate.

なお、作成した素子に対して、酸素や水分等との接触を防止する目的で保護層あるいは封止層を設けることもできる。保護層としては、ダイヤモンド薄膜、金属酸化物、金属窒化物等の無機材料膜、フッソ樹脂、ポリパラキシレン、ポリエチレン、シリコーン樹脂、ポリスチレン樹脂等の高分子膜さらには、光硬化性樹脂等が挙げられる。また、ガラス、気体不透過性フィルム、金属などをカバーし、適当な封止樹脂により素子自体をパッケージングすることもできる。   Note that a protective layer or a sealing layer can be provided on the prepared element for the purpose of preventing contact with oxygen or moisture. Examples of the protective layer include diamond thin films, inorganic material films such as metal oxides and metal nitrides, polymer films such as fluorine resin, polyparaxylene, polyethylene, silicone resin, polystyrene resin, and photo-curing resins. It is done. Further, it is possible to cover glass, a gas impermeable film, a metal, etc., and to package the element itself with an appropriate sealing resin.

以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

<実施例1>[例示化合物No.4の合成]   <Example 1> [Exemplary Compound No. 1] Synthesis of 4]

Figure 0004423022
Figure 0004423022

*)Gary M.Singerman,
Journal of Heterocyclic Chemistry,12,877(1975)
*) Gary M.M. Singerman,
Journal of Heterocyclic Chemistry, 12, 877 (1975)

200ml三ツ口フラスコに、メタンスルホンアミド[1]25.4g(259mmol)およびベンゼン80mlを入れ、窒素雰囲気中、0度で攪拌下、塩化チオニル20.8ml(285mmol)を滴下した。室温まで徐々に昇温後、還流下10時間攪拌し、N−スルフィニルメタンスルホンアミド[2]*を調製した。 In a 200 ml three-necked flask, 25.4 g (259 mmol) of methanesulfonamide [1] and 80 ml of benzene were placed, and 20.8 ml (285 mmol) of thionyl chloride was added dropwise with stirring at 0 degree in a nitrogen atmosphere. After gradually raising the temperature to room temperature, the mixture was stirred for 10 hours under reflux to prepare N-sulfinylmethanesulfonamide [2] * .

300ml三ツ口フラスコに、3−ブロモ−2−メチルアニリン[3]30.2g(162mmol)およびベンゼン120mlを入れ、窒素雰囲気中、0度で攪拌下、塩化チオニル12.4ml(170mmol)を滴下した。室温まで徐々に昇温後、還流下10時間攪拌した。   In a 300 ml three-necked flask, 30.2 g (162 mmol) of 3-bromo-2-methylaniline [3] and 120 ml of benzene were placed, and 12.4 ml (170 mmol) of thionyl chloride was added dropwise with stirring at 0 degree in a nitrogen atmosphere. The mixture was gradually warmed to room temperature and stirred for 10 hours under reflux.

この反応液に、窒素雰囲気中、0度で攪拌下、前記方法で調製したN−スルフィニルメタンスルホンアミド[2]の反応分散液を添加した後、ピリジン19.0ml(232mmol)およびベンゼン20mlの溶液を滴下した。室温まで徐々に昇温後、還流下15時間攪拌した。反応液を水800mlに注加し有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、シリカゲルカラム(トルエン展開溶媒)で精製し、ベンゾイソチアゾール中間体[4](透明液体)7.3g(収率21%)を得た。   To this reaction liquid, the reaction dispersion liquid of N-sulfinylmethanesulfonamide [2] prepared by the above method was added with stirring at 0 degree in a nitrogen atmosphere, and then a solution of 19.0 ml (232 mmol) of pyridine and 20 ml of benzene. Was dripped. The mixture was gradually warmed to room temperature and stirred for 15 hours under reflux. The reaction solution was poured into 800 ml of water, and the organic layer was extracted with chloroform, dried over anhydrous sodium sulfate, and then purified with a silica gel column (toluene developing solvent) to obtain 7.3 g of benzoisothiazole intermediate [4] (transparent liquid) ( Yield 21%).

Figure 0004423022
Figure 0004423022

200ml三ツ口フラスコに、ベンゾイソチアゾール中間体[4]3.0g(14.0mmol)、4,4’−ジトリルアミン[5]3.04g(15.4mmol)およびキシレン100mlを入れ、窒素雰囲気中、室温で攪拌下、tBuONa1.48g(15.4mmol)を添加した。60度に昇温後、別途調製した酢酸パラジウム0.05g(0.23mmol)、トリtブチルホスフィン0.10g(0.48mmol)およびキシレン5mlの分散液を添加し、130度で2時間攪拌した。   A 200 ml three-necked flask was charged with 3.0 g (14.0 mmol) of benzoisothiazole intermediate [4], 3.04 g (15.4 mmol) of 4,4′-ditolylamine [5] and 100 ml of xylene in a nitrogen atmosphere at room temperature. Then, 1.48 g (15.4 mmol) of tBuONa was added with stirring. After raising the temperature to 60 ° C, a separately prepared dispersion of 0.05 g (0.23 mmol) of palladium acetate, 0.10 g (0.48 mmol) of tri-t-butylphosphine and 5 ml of xylene was added and stirred at 130 ° C for 2 hours. .

反応液に水100mlを注加し有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム(トルエン+酢酸エチル混合展開溶媒)で精製し、例示化合物No.4(黄色結晶)3.79g(収率82%)を得た。   100 ml of water was added to the reaction solution, and the organic layer was extracted with chloroform, dried over anhydrous sodium sulfate, and then purified with an alumina column (toluene + ethyl acetate mixed developing solvent). 4.79 g (82% yield) of 4 (yellow crystals) was obtained.

<実施例2>[例示化合物No.11の合成]   <Example 2> [Exemplary Compound No. Synthesis of 11]

Figure 0004423022
Figure 0004423022

200ml三ツ口フラスコに、例示化合物No.4 3.0g(9.08mmol)およびクロロホルム80mlを入れ、0度で攪拌下、塩化鉄(III)0.07g(0.45mmol)を添加した後、臭素1.45g(9.08mmol)およびクロロホルム30mlの溶液を滴下した。   In a 200 ml three-necked flask, Exemplified Compound No. 4 Add 3.0 g (9.08 mmol) and 80 ml of chloroform, add 0.07 g (0.45 mmol) of iron (III) chloride with stirring at 0 degree, then add 1.45 g (9.08 mmol) of bromine and chloroform 30 ml of solution was added dropwise.

室温で5時間攪拌した後、反応液に水100mlを注加し有機層をクロロホルムで抽出、次いでチオ硫酸ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥後、アルミナカラム(トルエン+酢酸エチル混合展開溶媒)で精製し、ベンゾイソチアゾール中間体[6](黄色結晶)3.16g(収率85%)を得た。   After stirring at room temperature for 5 hours, 100 ml of water was poured into the reaction solution, the organic layer was extracted with chloroform, then washed with an aqueous sodium thiosulfate solution, dried over anhydrous sodium sulfate, and then an alumina column (toluene + ethyl acetate mixed developing solvent). To obtain 3.16 g (yield: 85%) of benzoisothiazole intermediate [6] (yellow crystals).

Figure 0004423022
Figure 0004423022

200ml三ツ口フラスコに、ボロン酸化合物[7]0.54g(2.22mmol)、ベンゾイソチアゾール中間体[6]2.0g(4.89mmol)トルエン40mlおよびエタノール20mlを入れ、窒素雰囲気中、室温で攪拌下、炭酸ナトリウム4.0g(37.7mmol)および水20ml水溶液を滴下した。さらにテトラキストリフェニルホスフィン0.13g(0.11mmol)を添加した後、還流下3時間攪拌した。反応液に水50mlを注加し有機層をクロロホルムで抽出し、無水硫酸ナトリウムで乾燥後、アルミナカラム(トルエン+酢酸エチル混合展開溶媒)で精製し、例示化合物No.11(黄色結晶)1.40g(収率78%)を得た。   A 200 ml three-necked flask is charged with boronic acid compound [7] 0.54 g (2.22 mmol), benzoisothiazole intermediate [6] 2.0 g (4.89 mmol) toluene 40 ml and ethanol 20 ml at room temperature in a nitrogen atmosphere. Under stirring, 4.0 g (37.7 mmol) of sodium carbonate and a 20 ml aqueous solution of water were added dropwise. Further, 0.13 g (0.11 mmol) of tetrakistriphenylphosphine was added, followed by stirring under reflux for 3 hours. 50 ml of water was poured into the reaction solution, and the organic layer was extracted with chloroform, dried over anhydrous sodium sulfate, and purified with an alumina column (toluene + ethyl acetate mixed developing solvent). 11.40 g (yield 78%) of 11 (yellow crystal) was obtained.

<実施例3>
図3に示す構造の素子を作成した。
<Example 3>
An element having the structure shown in FIG. 3 was prepared.

基板1としてのガラス基板上に、陽極2としての酸化錫インジウム(ITO)をスパッタ法にて120nmの膜厚で成膜したものを透明導電性支持基板として用いた。これをアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄したものを透明導電性支持基板として使用した。   What formed indium tin oxide (ITO) as an anode 2 with a film thickness of 120 nm on a glass substrate as a substrate 1 by a sputtering method was used as a transparent conductive support substrate. This was ultrasonically washed successively with acetone and isopropyl alcohol (IPA), then boiled and washed with IPA and then dried. Furthermore, what was UV / ozone cleaned was used as a transparent conductive support substrate.

透明導電性支持基板上に下記構造式で示される化合物のクロロホルム溶液をスピンコート法により30nmの膜厚で成膜しホール輸送層5を形成した。   A hole transport layer 5 was formed by depositing a chloroform solution of a compound represented by the following structural formula on a transparent conductive support substrate with a film thickness of 30 nm by spin coating.

Figure 0004423022
Figure 0004423022

さらに例示化合物No.11を用い真空蒸着法により20nmの膜厚で成膜し発光層3を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Furthermore, Exemplified Compound No. 11 was formed to a thickness of 20 nm by vacuum deposition to form the light emitting layer 3. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

さらに下記一般式で示されるフェナントロリン化合物を真空蒸着法により40nmの膜厚で成膜し電子輸送層6を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Furthermore, the phenanthroline compound shown by the following general formula was formed into a film with a film thickness of 40 nm by the vacuum evaporation method, and the electron carrying layer 6 was formed. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

Figure 0004423022
Figure 0004423022

次に、陰極4として、アルミニウムとリチウム(リチウム濃度1原子%)からなる蒸着材料を用いて、上記有機層の上に真空蒸着法により厚さ50nmの金属層膜を形成し、さらに真空蒸着法により厚さ150nmのアルミニウム層を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は1.0〜1.2nm/secの条件で成膜した。 Next, a metal layer film having a thickness of 50 nm is formed on the organic layer by a vacuum deposition method using a deposition material composed of aluminum and lithium (lithium concentration: 1 atomic%) as the cathode 4, and further a vacuum deposition method. Thus, an aluminum layer having a thickness of 150 nm was formed. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 1.0 to 1.2 nm / sec.

さらに、窒素雰囲気中で保護用ガラス板をかぶせ、アクリル樹脂系接着材で封止した。   Further, a protective glass plate was placed in a nitrogen atmosphere and sealed with an acrylic resin adhesive.

この様にして得られた素子に、ITO電極(陽極2)を正極、Al−Li電極(陰極4)を負極にして、4Vの直流電圧を印加すると80mA/cm2の電流密度で電流が素子に流れ、10000cd/m2の輝度で緑色の発光が観測された。 When a 4V DC voltage was applied to the device thus obtained, with the ITO electrode (anode 2) as the positive electrode and the Al-Li electrode (cathode 4) as the negative electrode, the current flowed at a current density of 80 mA / cm 2. A green emission was observed at a luminance of 10,000 cd / m 2 .

さらに、電流密度を30mA/cm2に保ち100時間電圧を印加したところ、初期輝度4000cd/m2から100時間後3300cd/m2と輝度劣化は小さかった。 Further, when a voltage was applied for 100 hours while a current density was kept to 30 mA / cm 2, after the initial luminance 4000 cd / m 2 100 hours 3300cd / m 2 and luminance degradation was small.

<実施例4〜14>
例示化合物No.11に代えて、表1に示す例示化合物を用いた他は実施例3と同様に素子を作成し、同様な評価を行った。結果を表1に示す。
<Examples 4 to 14>
Exemplified Compound No. A device was prepared in the same manner as in Example 3 except that the exemplified compounds shown in Table 1 were used in place of 11, and the same evaluation was performed. The results are shown in Table 1.

<比較例1〜2>
例示化合物No.11に代えて、比較化合物No.1、2を用いた他は実施例3と同様に素子を作成し、同様な評価を行った。結果を表1に示す。
<Comparative Examples 1-2>
Exemplified Compound No. In place of Comparative compound No. 11 A device was prepared in the same manner as in Example 3 except that 1 and 2 were used, and the same evaluation was performed. The results are shown in Table 1.

Figure 0004423022
Figure 0004423022

Figure 0004423022
Figure 0004423022

<実施例15>
図3に示す構造の素子を作成した。
<Example 15>
An element having the structure shown in FIG. 3 was prepared.

実施例3と同様に、透明導電性支持基板上にホール輸送層5を形成した。   In the same manner as in Example 3, a hole transport layer 5 was formed on a transparent conductive support substrate.

さらにクマリン6および例示化合物No.2(重量比1:20)を真空蒸着法により20nmの膜厚で成膜し発光層3を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Further, Coumarin 6 and Exemplified Compound No. 2 (weight ratio 1:20) was formed into a film with a thickness of 20 nm by a vacuum vapor deposition method to form the light emitting layer 3. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

さらに、実施例3と同様にして電子輸送層6、陰極4を形成し、封止した。   Further, an electron transport layer 6 and a cathode 4 were formed and sealed in the same manner as in Example 3.

この様にして得られた素子に、ITO電極(陽極2)を正極、Al−Li電極(陰極4)を負極にして、10Vの直流電圧を印加すると1000mA/cm2の電流密度で電流が素子に流れ、60000cd/m2の輝度で緑色の発光が観測された。 When a 10V DC voltage was applied to the device thus obtained with the ITO electrode (anode 2) as the positive electrode and the Al-Li electrode (cathode 4) as the negative electrode, a current was generated at a current density of 1000 mA / cm 2. And emission of green light was observed at a luminance of 60000 cd / m 2 .

さらに、電流密度を200mA/cm2に保ち100時間電圧を印加したところ、初期輝度10000cd/m2から100時間後8500cd/m2と輝度劣化は小さかった。 Further, when a voltage was applied for 100 hours while keeping the current density at 200 mA / cm 2 , the luminance deterioration was small, from an initial luminance of 10000 cd / m 2 to 8500 cd / m 2 after 100 hours.

<実施例16〜18>
例示化合物No.2に代えて、表2に示す例示化合物を用いた他は実施例15と同様に素子を作成し、同様な評価を行った。結果を表2に示す。
<Examples 16 to 18>
Exemplified Compound No. A device was prepared in the same manner as in Example 15 except that the exemplified compounds shown in Table 2 were used instead of 2, and the same evaluation was performed. The results are shown in Table 2.

<比較例3>
例示化合物No.2に代えて、比較化合物No.1を用いた他は実施例15と同様に素子を作成し、同様な評価を行った。結果を表2に示す。
<Comparative Example 3>
Exemplified Compound No. In place of Comparative Compound No. 2 A device was prepared in the same manner as in Example 15 except that 1 was used, and the same evaluation was performed. The results are shown in Table 2.

Figure 0004423022
Figure 0004423022

<実施例19>
図3に示す構造の素子を作成した。
<Example 19>
An element having the structure shown in FIG. 3 was prepared.

実施例1と同様に、透明導電性支持基板上にホール輸送層5を形成した。   In the same manner as in Example 1, a hole transport layer 5 was formed on a transparent conductive support substrate.

さらに例示化合物No.3および下記一般式で示されるカルバゾール化合物(重量比20:100)を真空蒸着法により20nmの膜厚で成膜し発光層3を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Furthermore, Exemplified Compound No. 3 and a carbazole compound (weight ratio 20: 100) represented by the following general formula were formed into a film having a thickness of 20 nm by a vacuum deposition method, thereby forming a light emitting layer 3. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

Figure 0004423022
Figure 0004423022

次に、実施例3と同様にして、電子輸送層6、陰極4を形成し、封止した。   Next, in the same manner as in Example 3, the electron transport layer 6 and the cathode 4 were formed and sealed.

この様にして得られた素子に、ITO電極(陽極2)を正極、Al−Li電極(陰極4)を負極にして、4Vの直流電圧を印加すると90mA/cm2の電流密度で電流が素子に流れ、9000cd/m2の輝度で緑色の発光が観測された。 When a 4V DC voltage was applied to the device thus obtained with the ITO electrode (anode 2) as the positive electrode and the Al-Li electrode (cathode 4) as the negative electrode, a current was applied at a current density of 90 mA / cm 2. And emission of green light was observed at a luminance of 9000 cd / m 2 .

さらに、電流密度を30mA/cm2に保ち100時間電圧を印加したところ、初期輝度3800cd/m2から100時間後2700cd/m2と輝度劣化は小さかった。 Further, when a voltage was applied for 100 hours while maintaining the current density at 30 mA / cm 2 , the luminance deterioration was small, from the initial luminance of 3800 cd / m 2 to 2700 cd / m 2 after 100 hours.

<実施例20〜22>
例示化合物No.3に代えて、表3に示す例示化合物を用いた他は実施例19と同様に素子を作成し、同様な評価を行った。結果を表3に示す。
<Examples 20 to 22>
Exemplified Compound No. A device was prepared in the same manner as in Example 19 except that the exemplified compounds shown in Table 3 were used instead of 3, and the same evaluation was performed. The results are shown in Table 3.

<比較例4〜5>
例示化合物No.3に代えて、比較化合物No.1およびNo.2を用いた他は実施例19と同様に素子を作成し、同様な評価を行った。結果を表3に示す。
<Comparative Examples 4-5>
Exemplified Compound No. In place of Comparative compound No. 3 1 and no. A device was prepared in the same manner as in Example 19 except that 2 was used, and the same evaluation was performed. The results are shown in Table 3.

Figure 0004423022
Figure 0004423022

本発明における有機発光素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention.

符号の説明Explanation of symbols

1 基板
2 陽極
3 発光層
4 陰極
5 ホール輸送層
6 電子輸送層
7 ホール注入層
8 ホール/エキシトンブロッキング層
1 Substrate 2 Anode 3 Light-Emitting Layer 4 Cathode 5 Hole Transport Layer 6 Electron Transport Layer 7 Hole Injection Layer 8 Hole / Exciton Blocking Layer

Claims (2)

下記示されることを特徴とする2,1−ベンゾイソチアゾール化合物。
Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022
Characterized in that it is shown below 2,1 benzisothiazole compounds.
Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022

Figure 0004423022
陽極及び陰極からなる一対の電極と、該一対の電極間に挟持され少なくとも発光層を含む有機化合物層と、を有し、前記発光層が請求項1に記載の2,1−ベンゾイソチアゾール化合物及び下記に示される2,1−ベンゾイソチアゾール化合物のうち少なくとも一種を含有することを特徴とする有機発光素子。
Figure 0004423022
A pair of electrodes composed of an anode and a cathode, has a, and an organic compound layer including at least a light emitting layer sandwiched between the pair of electrodes, 2,1 benzisothiazole compounds of the light-emitting layer according to claim 1 And an organic light-emitting device comprising at least one of the following 1,1-benzisothiazole compounds .
Figure 0004423022
JP2003414264A 2003-12-12 2003-12-12 2,1-Benzisothiazole compound and organic light emitting device using the same Expired - Fee Related JP4423022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414264A JP4423022B2 (en) 2003-12-12 2003-12-12 2,1-Benzisothiazole compound and organic light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414264A JP4423022B2 (en) 2003-12-12 2003-12-12 2,1-Benzisothiazole compound and organic light emitting device using the same

Publications (3)

Publication Number Publication Date
JP2005170866A JP2005170866A (en) 2005-06-30
JP2005170866A5 JP2005170866A5 (en) 2006-02-09
JP4423022B2 true JP4423022B2 (en) 2010-03-03

Family

ID=34734116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414264A Expired - Fee Related JP4423022B2 (en) 2003-12-12 2003-12-12 2,1-Benzisothiazole compound and organic light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4423022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378225B2 (en) * 2004-06-08 2009-12-02 キヤノン株式会社 Organic light emitting device
DE102012011335A1 (en) 2012-06-06 2013-12-12 Merck Patent Gmbh Connections for Organic Electronic Devices

Also Published As

Publication number Publication date
JP2005170866A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4065547B2 (en) Fluorene compound and organic light emitting device using the same
JP4336483B2 (en) Diazafluorene compound and organic light-emitting device using the same
JP3902993B2 (en) Fluorene compound and organic light emitting device using the same
JP3848224B2 (en) Spiro compound and organic light emitting device using the same
JP4261855B2 (en) Phenanthroline compound and organic light emitting device using the same
JP4865258B2 (en) 1,8-naphthyridine compound and organic light-emitting device using the same
JP4585750B2 (en) Fused polycyclic compound and organic light emitting device using the same
JP3870102B2 (en) Organic light emitting device
JP4323935B2 (en) Organic light emitting device
JP4871464B2 (en) Organic light emitting device
JP5241256B2 (en) Fused ring aromatic compound and organic light emitting device using the same
JP4541809B2 (en) Organic compound and organic light emitting device
JP4336537B2 (en) Organic light emitting device
JP4994802B2 (en) Pyrene compounds and organic light emitting devices
JP2003109765A (en) Organic light emitting element
JP4065552B2 (en) Organic light emitting device
JP2003109763A (en) Organic light emitting element
JP4423022B2 (en) 2,1-Benzisothiazole compound and organic light emitting device using the same
JP4035499B2 (en) Organic light emitting device
JP2007001879A (en) 1, 9, 10-anthridine compound and organic light emitting device using the same
JP5072896B2 (en) Diazafluorene compound, organic light-emitting device and organic light-emitting device using the same
JP4566962B2 (en) Organic light emitting device
JP2008127314A (en) 1,3-azole condensed polycyclic compound and organic electroluminescent element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees