JP4422674B2 - Energy absorbing structural member - Google Patents

Energy absorbing structural member Download PDF

Info

Publication number
JP4422674B2
JP4422674B2 JP2005368028A JP2005368028A JP4422674B2 JP 4422674 B2 JP4422674 B2 JP 4422674B2 JP 2005368028 A JP2005368028 A JP 2005368028A JP 2005368028 A JP2005368028 A JP 2005368028A JP 4422674 B2 JP4422674 B2 JP 4422674B2
Authority
JP
Japan
Prior art keywords
energy absorbing
structural member
longitudinal direction
members
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005368028A
Other languages
Japanese (ja)
Other versions
JP2007170520A (en
Inventor
大生 阿部
雄太 漆山
状元 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005368028A priority Critical patent/JP4422674B2/en
Publication of JP2007170520A publication Critical patent/JP2007170520A/en
Application granted granted Critical
Publication of JP4422674B2 publication Critical patent/JP4422674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車用の衝撃吸収部材等に用いられる構造部材に係り、特に、曲げ変形を受けた際に小さな変形にて大きなエネルギーを吸収することができる構造部材に関する。   The present invention relates to a structural member used for an impact absorbing member for automobiles, and more particularly to a structural member capable of absorbing a large amount of energy with small deformation when subjected to bending deformation.

自動車の衝突時等に曲げ変形を受ける構造部材の従来技術の例として、ドア・サイドビーム材やバンパービーム材等として使用される衝撃吸収部材が挙げられる。これら構造材として設置されるフレームは単一材料を押出成形/プレス成形し、断面形状を閉断面化、大断面化して強度および剛性を上げ、衝突時のエネルギー吸収を図っている。   As an example of the prior art of a structural member that undergoes bending deformation at the time of an automobile collision, an impact absorbing member used as a door / side beam material, a bumper beam material, or the like can be given. These frames installed as structural materials are extruded / press-molded from a single material, and the cross-sectional shape is closed and enlarged to increase the strength and rigidity, thereby absorbing energy at the time of collision.

自動車の側面衝突時の変形モードを側部構造材であるセンターピラーを例に挙げて示すと、センターピラーは、上部サイドルーフレールと下部サイドシルを支点として折れ曲がるように3点曲げを受ける。図2(a)の模式図および図7の比較例1のグラフに示すように、この時の変形においては、荷重が最大強度に達した直後に構造材が破断して荷重が一気に減少するためエネルギー吸収量が少なく、車体の変形量も大きい。   When the deformation mode at the time of a side collision of an automobile is shown by taking a center pillar which is a side structure material as an example, the center pillar is subjected to three-point bending so as to be bent with an upper side roof rail and a lower side sill as fulcrums. As shown in the schematic diagram of FIG. 2A and the graph of Comparative Example 1 in FIG. 7, in the deformation at this time, the structural material breaks immediately after the load reaches the maximum strength, and the load decreases at a stretch. The amount of energy absorption is small, and the amount of deformation of the vehicle body is large.

この問題に対し、アルミ中空形材の引張面にFRP材を設けた、曲げ部材が提案されている(例えば、特許文献1参照)。これは圧縮側(図2において荷重Fのかかる上面)に塑性変形容易な部材を使用し、引張側(図2において下面)に高強度軽量部材を使用することで、圧縮側で衝撃吸収を受け持ち、引張側で変形量を少なくすることで大きなエネルギー吸収効率と小さな変形を実現しようとする技術である。   In order to solve this problem, a bending member has been proposed in which an FRP material is provided on a tensile surface of an aluminum hollow shape (see, for example, Patent Document 1). By using a member that is easy to plastically deform on the compression side (upper surface on which load F is applied in FIG. 2) and using a high-strength lightweight member on the tension side (lower surface in FIG. 2), it is responsible for shock absorption on the compression side. This is a technique for realizing large energy absorption efficiency and small deformation by reducing the amount of deformation on the tension side.

特開平6−101732号公報JP-A-6-101732

しかしながら、前記の複合曲げ部材においては、圧縮側に塑性変形し易いアルミを使用しているため、エネルギー吸収量は圧縮側の降伏応力が支配的要因となってしまう。つまり引張側の高強度FRP材はエネルギー吸収材としての寄与が低く、かつ、アルミを使用することで重量効率の向上にも限界がある。また、前記複合曲げ部材においてはFRPとアルミがボルト接合されているが、これにより荷重付加に伴ってボルト接合部に応力集中が発生し、破断に至る危険性がある。ボルトの代わりに接着剤を用いても、接着剤の強度でビーム材全体の強度の上限値が決まってしまう。このように、前記曲げ部材では変形量は抑えられてもエネルギー吸収効率は従来の単一材料曲げ部材に比べ大幅に改善することができず、かつ、アルミとFRPの接着部から破壊が起こる危険がある。   However, since the composite bending member uses aluminum that is easily plastically deformed on the compression side, the yield stress on the compression side is the dominant factor in the amount of energy absorption. That is, the high-strength FRP material on the tension side has a low contribution as an energy absorbing material, and there is a limit to the improvement in weight efficiency by using aluminum. Further, in the composite bending member, FRP and aluminum are bolt-bonded. As a result, stress concentration occurs in the bolt-joint portion with the addition of a load, and there is a risk of breaking. Even if an adhesive is used instead of the bolt, the upper limit of the strength of the entire beam material is determined by the strength of the adhesive. As described above, even if the amount of deformation is suppressed in the bending member, the energy absorption efficiency cannot be significantly improved as compared with the conventional single material bending member, and the risk of destruction from the bonded portion of aluminum and FRP occurs. There is.

本発明は、上記状況に鑑みてなされたものであり、短い変形ストロークと大きなエネルギー吸収効率を両立させ得るエネルギー吸収構造部材を提供することを目的としている。   This invention is made | formed in view of the said situation, and it aims at providing the energy absorption structure member which can make a short deformation | transformation stroke and large energy absorption efficiency compatible.

本発明は、曲げ変形を行うことでエネルギー吸収を行うエネルギー吸収構造部材であって、上記エネルギー吸収構造部材は中実材および板材であり、材料物性値に対して等方性または異方性を備えかつ引張・圧縮最大荷重および/または引張・圧縮最大変位量に差がある2種類以上の部材を、中実材および板材の厚さ方向の全面を占める層または中実材および板材の厚さ方向の一部の面を占める層にて、中実材および板材の長手方向に対して交互に配置し、2種類以上の部材の少なくとも一方は、任意の一方向に配向した異方性材料の薄層を、互いの配向方向が任意の角度をなしてエネルギー吸収構造部材の長手方向に垂直に積層した構造であることを特徴としている。 The present invention is an energy absorbing structural member that absorbs energy by bending deformation, and the energy absorbing structural member is a solid material and a plate material, and isotropic or anisotropic with respect to material property values. The thickness of the layer or solid material and plate that occupies the whole surface in the thickness direction of the solid material and plate material with two or more kinds of members that have different maximum tensile / compression load and / or maximum tensile and compression displacement In a layer that occupies a part of the direction, at least one of the two or more members is an anisotropic material oriented in any one direction. The thin layer has a structure in which the orientation directions of the thin layers are stacked at an arbitrary angle and perpendicular to the longitudinal direction of the energy absorbing structural member .

以上の構成を有するエネルギー吸収構造部材によれば、材料物性値が異なる2種類以上の部材が交互に配置されているので、曲げ変形が加えられた際に、相対的に強度が大きい部材においては変形せずに荷重が発生し、相対的に強度が小さい部材においては変形して荷重を伝える。結果として、曲げ変形時の変形と破壊の領域を拡大することができ、短いストロークで曲げ変形の高いエネルギー吸収を実現することができる。   According to the energy absorbing structural member having the above configuration, since two or more types of members having different material property values are alternately arranged, when bending deformation is applied, in a member having relatively high strength A load is generated without being deformed, and a member having a relatively low strength is deformed to transmit the load. As a result, it is possible to expand the deformation and destruction area during bending deformation, and to realize energy absorption with high bending deformation with a short stroke.

以下、本発明のエネルギー吸収構造部材の好適な実施形態について説明する。
本発明のエネルギー吸収構造部材の一実施態様を図1に示す。図1は、部材Aおよび部材Bからなる板状の長材であり、図1(a)に示すように、長材の長手方向に対し、部材Aと、部材Aとは材料物性値の異なる部材Bとが交互に積層されている。また、図1(b)に示すように、長材の長手方向に垂直な断面で切った場合に、長材の一部に部材Aと部材Bが交互に積層された形態とすることもできる。
Hereinafter, preferred embodiments of the energy absorbing structure member of the present invention will be described.
One embodiment of the energy absorbing structural member of the present invention is shown in FIG. FIG. 1 shows a plate-like long material composed of a member A and a member B. As shown in FIG. 1A, the material property values of the member A and the member A are different from each other in the longitudinal direction of the long material. The members B are alternately stacked. Moreover, as shown in FIG.1 (b), when cut in the cross section perpendicular | vertical to the longitudinal direction of a long material, it can also be set as the form by which the member A and the member B were alternately laminated | stacked on a part of long material. .

1種類の均質な部材からなる従来の構造部材では、図2(a)に示すように、荷重Fが与えられた際に応力が局所的に集中し、荷重が最大強度に達した直後に破断し、その際の変位量(ひずみ)Sが大きいのに対し、本発明のエネルギー吸収構造部材では、図2(b)に示すように、相対的に強度が低い部材を積層した複数の箇所において破断が生じるため、荷重が分散し、変位量Sが少ない。すなわち、短い変形ストロークと大きなエネルギー吸収効率を両立させ得る構造部材を提供することができる。   As shown in FIG. 2 (a), the conventional structural member composed of one kind of homogeneous member is concentrated when the load F is applied, and breaks immediately after the load reaches the maximum strength. However, while the displacement amount (strain) S at that time is large, in the energy absorbing structural member of the present invention, as shown in FIG. Since the fracture occurs, the load is dispersed and the displacement amount S is small. That is, it is possible to provide a structural member that can achieve both a short deformation stroke and a large energy absorption efficiency.

図3に、本発明のエネルギー吸収構造部材の他の実施態様を示す。図3(a)、(b)に示すように、部材Aおよび部材Bからなる本発明のエネルギー吸収部材に対して、任意の材質からなる連結材Cを接続して用いることもできる。また、図3(c)に示すように中空断面を有する中空材Dの中に本発明のエネルギー吸収構造部材を配置したり、図3(d)に示すように本発明のエネルギー吸収構造部材からなる中空材を作製し、さらにその中にエネルギー吸収構造部材を配置することも可能である。   FIG. 3 shows another embodiment of the energy absorbing structure member of the present invention. As shown in FIGS. 3A and 3B, a connecting material C made of any material can be connected to the energy absorbing member of the present invention made up of member A and member B. Further, the energy absorbing structural member of the present invention is arranged in a hollow material D having a hollow cross section as shown in FIG. 3 (c), or from the energy absorbing structural member of the present invention as shown in FIG. 3 (d). It is also possible to produce a hollow material and to dispose an energy absorbing structural member therein.

部材Aおよび部材Bを構成する物質としては、互いに異なる物性、すなわち変形して荷重を伝える特性と、大きな荷重を発生する特性とを有する範囲においては特に限定されない。そのような物質としては、例えば、等方性または異方性を備えた材料が挙げられ、具体的には、繊維強化プラスチック(以下、FRPと略称)や繊維強化金属(以下、FRMと略称)等の繊維強化材料、鉄、アルミ等の金属、各種樹脂等が挙げられる。   The materials constituting the member A and the member B are not particularly limited as long as they have different physical properties, i.e., a property of transmitting a load by deformation and a property of generating a large load. Examples of such substances include materials having isotropic or anisotropy, and specifically, fiber reinforced plastic (hereinafter abbreviated as FRP) and fiber reinforced metal (hereinafter abbreviated as FRM). Fiber reinforced materials such as iron, metals such as iron and aluminum, and various resins.

変形して荷重を伝える特性を有する部材Bとして、上述のように等方性あるいは異方性を有する材料いずれをも使用することができるが、特に、異方性を有する材料を積層する場合、異方性材料を任意の方向に配向させて配置することによって、所望の性質を有する部材Bを作製することができる。例えば、繊維が平行に設けられたFRPやFRMの繊維方向と長材の長手方向を同一に配向させて部材Bを積層した場合、長手方向の圧縮・引張に対して繊維方向と荷重方向が同一で拮抗するため、荷重が大きい。一方、FRPやFRMの繊維方向を長材の長手方向と直角に配向させて部材Bを積層した場合は、繊維が荷重に対して拮抗しないので、荷重が大きい。   As the member B having the property of transmitting a load by deformation, any material having isotropicity or anisotropy can be used as described above. In particular, when laminating materials having anisotropy, By arranging the anisotropic material so as to be oriented in an arbitrary direction, the member B having desired properties can be produced. For example, when the member B is laminated with the fiber direction of the FRP or FRM in which the fibers are provided in parallel and the longitudinal direction of the long material being oriented in the same direction, the fiber direction and the load direction are the same with respect to compression and tension in the longitudinal direction. Because it antagonizes, the load is large. On the other hand, when the member B is laminated with the fiber direction of FRP or FRM oriented at right angles to the longitudinal direction of the long material, the load is large because the fiber does not antagonize the load.

さらに、本発明では、FRPやFRMの繊維方向が互いに異なる複数の板状部材を用意し、これらを積層して部材Bとすることもできる。そのようなエネルギー吸収構造部材の例を図4に示す。図4(a)は、長材の長手方向に対して繊維が平行な部材と直角な部材を交互に積層して部材Bを設けた例であり、図4(b)は、長材の長手方向に対して繊維を45°および−45°に配向させた部材を交互に積層して部材Bを設けた例である。このようにして、部材Bの材料物性に変化を与えることができる。   Furthermore, in the present invention, a plurality of plate-like members having different fiber directions of FRP and FRM may be prepared, and these may be laminated to form member B. An example of such an energy absorbing structure member is shown in FIG. FIG. 4A is an example in which members B are provided by alternately laminating members perpendicular to the longitudinal direction of the long material and members perpendicular to the longitudinal direction of the long material, and FIG. This is an example in which members B are provided by alternately laminating members in which fibers are oriented at 45 ° and −45 ° with respect to the direction. In this way, the material physical properties of the member B can be changed.

図4(a)、(b)に示すエネルギー吸収構造部材に対する引張における物性値を応力−変位量(ひずみ)線図で表したグラフを図5に示す。図5のグラフから明らかなように、0°/90°配向の部材はひずみと応力が正比例の関係にあり、加えられるひずみに対して強い応力が発生するが、45°/−45°配向の部材は、ひずみが増大してもほぼ一定以上の応力は発生しない。つまり、前者には強くて脆い特性を、後者には弱くて伸びる特性を与えることができる。   FIG. 5 shows a graph representing physical property values in tension with respect to the energy absorbing structural member shown in FIGS. 4A and 4B in a stress-displacement (strain) diagram. As is clear from the graph of FIG. 5, a member with 0 ° / 90 ° orientation has a direct relationship between strain and stress, and a strong stress is generated with respect to the applied strain. Even if the strain increases, the member does not generate a stress exceeding a certain level. That is, the former can be given strong and brittle characteristics, and the latter can be given weak and elongated characteristics.

このような異なる性質を有する部材のそれぞれの役割と、これらの性質を組み合わせた場合の効果について以下に説明する。
強くて脆い材料のみで構成したビーム材は、引張・圧縮強度が高いため、大きな曲げモーメントに耐えて高い荷重を発生することができる。しかしながら、曲げモーメントが荷重部でピーク値を取ることから、最大荷重発生部は荷重周辺に限定され、変形・破壊領域が限定されるのでエネルギー吸収が少ない(図2(a)参照)。一方、弱くて伸びる材料の場合は、耐えられる曲げモーメント値は強くて脆い材料に比べて低いものの、低い荷重で大きく変形するため、変形領域が大きい。
Each role of the members having such different properties and effects when these properties are combined will be described below.
A beam material composed only of a strong and brittle material has a high tensile and compressive strength, and therefore can withstand a large bending moment and generate a high load. However, since the bending moment takes a peak value at the load portion, the maximum load generation portion is limited to the periphery of the load, and the deformation / fracture region is limited, so that energy absorption is small (see FIG. 2A). On the other hand, in the case of a weak and stretchable material, the bending moment value that can be withstood is lower than that of a strong and brittle material, but it deforms greatly under a low load, and therefore has a large deformation region.

したがって、強くて脆い材料で構成したビームの間に、弱くて伸びる材料を挟み込むことによって、変形の拡大・荷重負荷の分散を実現し、曲げモーメントの分布を分布荷重時のように荷重部から周辺部に向かって広げることができる(図2(b)参照)。それにより、荷重部以外に配置された強くて脆い材料にも大きな曲げモーメントがかかり、荷重を発生することができる。   Therefore, by sandwiching a weak and stretchable material between beams made of a strong and brittle material, expansion of deformation and distribution of load load are realized, and the distribution of bending moment is changed from the load part to the periphery as in distributed load. It can be expanded toward the part (see FIG. 2B). Thereby, a large bending moment is applied to a strong and brittle material arranged other than the load portion, and a load can be generated.

以下、実施例および比較例によって本発明のエネルギー吸収構造部材をより詳細に説明する。
[実施例1]
長さ600mm、幅50mmの長材であって、中央部長手方向95mmの区間に材料物性の異なる部材B(カーボン繊維(商品名HTA、東邦テナックス(株)製)およびマトリクス(エポキシ樹脂#112)からなるFRP)を複数箇所配置した長材A1〜A3を作製し、連結部材によって断面王字上に連結し、図6(a)に示す実施例1の構造部材を作製した。図6(a)に示すように、A1〜A3には、いずれも長材の幅方向のうちの半分に部材Bを設けた。部材Bの幅は2mm、同じ長材内で隣接する部材Bどうしの配置間隔は15mmとした。
Hereinafter, the energy absorbing structural member of the present invention will be described in more detail with reference to Examples and Comparative Examples.
[Example 1]
A member B (carbon fiber (trade name: HTA, manufactured by Toho Tenax Co., Ltd.)) and matrix (epoxy resin # 112) having a length of 600 mm and a width of 50 mm and having different material properties in a section of 95 mm in the longitudinal direction of the central portion The long members A1 to A3 in which a plurality of FRPs) are arranged are manufactured and connected to the top of the cross section by a connecting member, and the structural member of Example 1 shown in FIG. As shown to Fig.6 (a), in all A1-A3, the member B was provided in the half of the width direction of a long material. The width of the member B was 2 mm, and the arrangement interval between the adjacent members B in the same long material was 15 mm.

なお、部材BにおけるFRPの配向状態は図4において説明した方法に準じ、一方向に繊維が配向したFRP薄層を、長材の厚さ方向を0°として下記の角度に配向させて複数積層して作製した。
A1:(45°/0°/90°/135°/0°/90°の6層)×3層
A2:(45°/0°/135°の3層)×6層
A3:(45°/135°の2層)
The orientation state of the FRP in the member B is in accordance with the method described in FIG. 4 and a plurality of FRP thin layers in which fibers are oriented in one direction are oriented at the following angle with the thickness direction of the long material being 0 °. And produced.
A1: (6 layers of 45 ° / 0 ° / 90 ° / 135 ° / 0 ° / 90 °) × 3 layers A2: (3 layers of 45 ° / 0 ° / 135 °) × 6 layers A3: (45 ° / Two layers at 135 °)

[比較例1]
長さ600mm、幅50mmであって、交互配置部分を有さない均質な長材3枚を連結部材によって断面王字状に連結し、図6(b)に示す比較例1の構造部材を作製した。
[Comparative Example 1]
Three homogeneous long members having a length of 600 mm and a width of 50 mm, which do not have an alternately arranged portion, are connected in a cross-sectional shape with a connecting member to produce a structural member of Comparative Example 1 shown in FIG. did.

実施例1および比較例1の構造部材を用いて、平行方向に強制変位および強制荷重を加えた3点曲げ試験結果を行い、その結果を図7のグラフに示した。図7から明らかなように、比較例1の構造部材では、初期においては変位に比例して急激に荷重が発生し、ある点で局所的に破断が生じて一気に荷重が低下する。一方、実施例1の構造部材では、変位が大きい箇所が分散しているため、局所的な破断が生じず、全体として荷重の低下がなく維持される。その結果、大きなエネルギー吸収量を得ることができる。   Using the structural members of Example 1 and Comparative Example 1, a three-point bending test result in which a forced displacement and a forced load were applied in the parallel direction was performed, and the result is shown in the graph of FIG. As is clear from FIG. 7, in the structural member of Comparative Example 1, a load is suddenly generated in proportion to the displacement in the initial stage, and the fracture occurs locally at a certain point and the load is reduced at a stroke. On the other hand, in the structural member of Example 1, since the locations with large displacement are dispersed, local breakage does not occur, and the load is not reduced as a whole. As a result, a large amount of energy absorption can be obtained.

[比較例2]
全体に繊維強化材料(部材A)を用いた中空矩形断面を有する図8(a)に示す筒状の構造部材(長さ600mm、断面50mm×50mm)を作製した。
[Comparative Example 2]
A tubular structural member (length 600 mm, cross section 50 mm × 50 mm) shown in FIG. 8A having a hollow rectangular cross section using a fiber reinforced material (member A) as a whole was produced.

[比較例3]
比較例2の構造部材の中空断面構造内部に、同材料(部材A)からなる長材を配置し、中空矩形+単純縦板断面を有する図8(b)に示す構造部材を作製した。
[Comparative Example 3]
A long member made of the same material (member A) was placed inside the hollow cross-sectional structure of the structural member of Comparative Example 2, and a structural member shown in FIG. 8B having a hollow rectangular + simple vertical plate cross section was produced.

[実施例2]
比較例2と同材料(部材A)からなる中空矩形断面を有する構造部材(長さ600mm、断面50mm×50mm)のうち長手方向中央部の95mmの区間の、図8(c)において頂壁の長材の幅方向に、上記材料(部材A)とは材料物性の異なる部材B(カーボン繊維(商品名HTA、東邦テナックス(株)製)およびマトリクス(エポキシ樹脂#112)からなるFRP)を配置し、部材Aおよび部材Bを長手方向に交互に配置し、さらに側壁の長材の幅方向の半分の幅にて部材Bを長手方向に交互に配置し、実施例2の交互配置中空矩形断面を有する構造部材を作製した。部材Bの長手方向の幅は2mm、隣接する部材Bどうしの配置間隔は15mmとした。
[Example 2]
Of the structural member (length 600 mm, cross section 50 mm × 50 mm) made of the same material (member A) as in Comparative Example 2 (length: 600 mm, cross section: 50 mm × 50 mm), the section of the top wall in FIG. A member B (FRP made of carbon fiber (trade name HTA, manufactured by Toho Tenax Co., Ltd.) and a matrix (epoxy resin # 112)) having a material property different from that of the material (member A) is arranged in the width direction of the long material. Then, the members A and B are alternately arranged in the longitudinal direction, and the members B are alternately arranged in the longitudinal direction at half the width in the width direction of the long material of the side wall. The structural member which has was produced. The width in the longitudinal direction of the member B was 2 mm, and the arrangement interval between the adjacent members B was 15 mm.

なお、部材BにおけるFRPの配向状態は図4(b)において説明した方法と同様に、一方向に繊維が配向したFRP薄層を、長材の厚さ方向を0°として45°および135°に配向させて交互に複数積層して作製した。   The orientation state of the FRP in the member B is the same as the method described in FIG. 4B. The FRP thin layer in which the fibers are oriented in one direction is 45 ° and 135 ° with the thickness direction of the long material being 0 °. A plurality of layers were alternately stacked.

[実施例3]
実施例2の構造部材の中空断面構造内部に、部材Aおよび部材Bを交互に配置した構造を有する長材を配置し、交互配置中空矩形+交互配置縦板断面を有する図8(d)に示す構造部材を作製した。なお、この長材の部材Bは、図4(a)において説明した方法と同様に、一方向に繊維が配向したFRP薄層を、長材の厚さ方向を0°として0°および90°に配向させて交互に複数積層して作製した。
[Example 3]
In FIG. 8D, a long material having a structure in which the members A and B are alternately arranged is arranged inside the hollow cross-sectional structure of the structural member of the second embodiment, and the cross-sectional shape is a hollow rectangle + alternately arranged vertical plate cross section. The structural member shown was made. This long member B is made of an FRP thin layer in which fibers are oriented in one direction, as in the method described in FIG. 4A. A plurality of layers were alternately stacked.

これらの構造部材において長材と平行方向に強制変位および強制荷重を加えた3点曲げ試験を行い、その結果を図9に示す。図9から明らかなように、比較例2および比較例3の構造部材では、初期においては変位に比例して急激に荷重が発生し、荷重点部で局所的に破断が生じて一気に荷重が低下する。一方、実施例2および実施例3の構造部材では、変位が大きい箇所が分散しているため、変位量(ひずみ)の分布が長手方向に広くなりひずみが分散することで局所的な破断を生じさせずに荷重を維持する領域ができ、エネルギー吸収量が増加する。特に実施例3では、中空構造内部に長材が配置されているので、長手方向にひずみがより分散し、その結果、大変大きなエネルギー吸収量を得ることができる。   These structural members were subjected to a three-point bending test in which a forced displacement and a forced load were applied in a direction parallel to the long material, and the results are shown in FIG. As is clear from FIG. 9, in the structural members of Comparative Example 2 and Comparative Example 3, in the initial stage, a load was suddenly generated in proportion to the displacement, and the load was reduced at a stretch due to local breakage at the load point. To do. On the other hand, in the structural members of Example 2 and Example 3, since the locations where the displacement is large are dispersed, the distribution of the displacement (strain) is widened in the longitudinal direction, and the strain is dispersed to cause local fracture. An area where the load is maintained without being generated is generated, and the amount of energy absorption is increased. In particular, in Example 3, since the long material is disposed inside the hollow structure, the strain is further dispersed in the longitudinal direction, and as a result, a very large amount of energy absorption can be obtained.

また、実施例2,3および比較例2,3の構造部材において衝撃試験を行い、エネルギー吸収効率の測定結果を図10に示す。図10の縦軸は単位重量あたりのエネルギー吸収量を示す。図10に示すように、均質な材料から作製した従来の構造部材と比較して、部材Aと部材Bの交互配置構造を有する実施例2の構造部材はエネルギー吸収量が約2倍であり、これに縦板を追加した実施例3の構造部材では約3倍もの吸収量を有することが分かる。   Further, impact tests were performed on the structural members of Examples 2 and 3 and Comparative Examples 2 and 3, and the measurement results of energy absorption efficiency are shown in FIG. The vertical axis in FIG. 10 indicates the amount of energy absorbed per unit weight. As shown in FIG. 10, compared with the conventional structural member produced from a homogeneous material, the structural member of Example 2 having the alternate arrangement structure of the member A and the member B has an energy absorption amount of about twice, It can be seen that the structural member of Example 3 to which a vertical plate is added has an absorption amount of about three times.

本発明のエネルギー吸収構造部材は、エネルギー吸収量が多く変形量が少ない特性を有するので、自動車用の衝撃吸収部材等として応用することが可能である。   Since the energy absorbing structure member of the present invention has a characteristic that the amount of energy absorption is large and the amount of deformation is small, it can be applied as an impact absorbing member for automobiles.

本発明のエネルギー吸収構造部材の実施態様を示す斜視図である。It is a perspective view which shows the embodiment of the energy absorption structure member of this invention. (a)は従来の構造部材の荷重Fと破断時の変位量Sを示す模式図であり、(b)は本発明のエネルギー吸収構造部材の荷重Fと破断時の変位量Sを示す模式図である。(A) is a schematic diagram which shows the load F and the displacement amount S at the time of fracture | rupture of the conventional structural member, (b) is a schematic diagram which shows the load F and the displacement amount S at the time of fracture | rupture of this invention. It is. 本発明のエネルギー吸収構造部材の実施態様を示す斜視図である。It is a perspective view which shows the embodiment of the energy absorption structure member of this invention. (a)は繊維強化材料中の繊維が0°/90°配向した材料を積層したエネルギー吸収構造部材を示す斜視図であり、(b)は繊維が45°/−45°配向した材料を積層したエネルギー吸収構造部材を示す斜視図である。(A) is a perspective view which shows the energy absorption structure member which laminated | stacked the material which the fiber in a fiber reinforced material orientated 0 degree / 90 degree, (b) laminated | stacked the material which the fiber orientated 45 degree / -45 degree. It is a perspective view which shows the energy absorption structure member which was made. 0°/90°配向部材と45°/−45°配向部材の引張試験における変位量(ひずみ)と応力の関係を示すグラフである。It is a graph which shows the relationship between the displacement (strain) and the stress in the tensile test of a 0 degree / 90 degree orientation member and a 45 degree / -45 degree orientation member. 実施例および実施例における構造部材を示す斜視図である。It is a perspective view which shows the structural member in an Example and an Example. 実施例および比較例における変位量(ひずみ)と荷重の関係を示すグラフである。It is a graph which shows the relationship between the displacement amount (strain) and a load in an Example and a comparative example. 実施例および比較例における構造部材を示す斜視図である。It is a perspective view which shows the structural member in an Example and a comparative example. 実施例および比較例における構造部材の変位量(ひずみ)と荷重の関係を示すグラフである。It is a graph which shows the relationship between the displacement amount (strain) of a structural member and a load in an Example and a comparative example. 実施例および比較例における構造部材のエネルギー吸収効率の比較結果を示すグラフである。It is a graph which shows the comparison result of the energy absorption efficiency of the structural member in an Example and a comparative example.

符号の説明Explanation of symbols

A 部材A
B 部材B
C 連結材
D 中空材
F 荷重
S 変位量(ひずみ)
A Member A
B Member B
C Connecting material D Hollow material F Load S Displacement (strain)

Claims (10)

曲げ変形を行うことでエネルギー吸収を行うエネルギー吸収構造部材であって、上記エネルギー吸収構造部材は中実板材であり、
材料物性値に対して等方性または異方性を備えかつ引張・圧縮最大荷重および/または引張・圧縮最大変位量に差がある2種類以上の部材を、上記中実板材の厚さ方向の全面を占める層または上記中実板材の厚さ方向の一部の面を占める層にて、上記中実板材の長手方向に対して交互に配置し
前記2種類以上の部材の少なくとも一方は、任意の一方向に配向した異方性材料の薄層を、互いの配向方向が任意の角度をなして前記エネルギー吸収構造部材の長手方向に垂直に積層した構造であることを特徴とするエネルギー吸収構造部材。
An energy absorbing structure member for energy absorption by performing bending deformation, the energy absorbing structural member is a solid plate material,
Two or more members to the difference in isotropic or comprising anisotropic and tension and compression maximum load and / or tensile and compression maximum displacement with respect to material property value, the thickness direction of the solid plate at layer or the solid occupies the entire surface of the layer occupying a portion of the surface in the thickness direction of the sheet material, arranged alternately with respect to the longitudinal direction of the solid plate member,
At least one of the two or more types of members is formed by laminating a thin layer of anisotropic material oriented in any one direction perpendicular to the longitudinal direction of the energy absorbing structure member with each other having an arbitrary orientation direction. energy absorbing structural member, characterized in that the the structure.
前記エネルギー吸収構造部材は、2種類以上の部材を交互配置した部分の層の上記エネルギー吸収構造部材長手方向の厚さ、もしくは上記エネルギー吸収構造部材の厚さに差を設けることで、引張・圧縮最大荷重および/または引張・圧縮最大変位に差を設けたことを特徴とする請求項に記載のエネルギー吸収構造部材。 The energy absorbing structural member is tension / compressed by providing a difference in the thickness of the energy absorbing structural member in the longitudinal direction or the thickness of the energy absorbing structural member in a layer where two or more kinds of members are alternately arranged. The energy absorbing structural member according to claim 1 , wherein a difference is provided in the maximum load and / or the maximum tensile / compressive displacement. 前記2種類以上の部材の少なくとも一方は、前記エネルギー吸収構造部材の長手方向に平行に配向した第1の薄層と、前記エネルギー吸収構造部材の長手方向に直角に配向した第2の薄層とを交互に積層した構造であることを特徴とする請求項1または2に記載のエネルギー吸収構造部材。 At least one of the two or more types of members includes a first thin layer oriented parallel to the longitudinal direction of the energy absorbing structural member, and a second thin layer oriented perpendicular to the longitudinal direction of the energy absorbing structural member, energy absorbing structure according to claim 1 or 2, characterized in that the a structure of alternately laminated. 前記2種類以上の部材の少なくとも一方は、前記エネルギー吸収構造部材の長手方向に対して45℃に配向した第1の薄層と、前記エネルギー吸収構造部材の長手方向に対して−45℃に配向した第2の薄層とを交互に積層した構造であることを特徴とする請求項1または2に記載のエネルギー吸収構造部材。 At least one of the two or more types of members is oriented at -45 ° C with respect to the first thin layer oriented at 45 ° C with respect to the longitudinal direction of the energy absorbing structural member and with respect to the longitudinal direction of the energy absorbing structural member. energy absorbing structure according to claim 1 or 2, characterized in that a second thin layer is a structure formed by alternately laminating was. 前記2種類以上の部材の一方は、前記エネルギー吸収構造部材の長手方向に平行に配向した第1の薄層と、前記エネルギー吸収構造部材の長手方向に直角に配向した第2の薄層とを交互に積層した構造であり、前記2種類以上の部材の他方は、前記エネルギー吸収構造部材の長手方向に対して45℃に配向した第1の薄層と、前記エネルギー吸収構造部材の長手方向に対して−45℃に配向した第2の薄層とを交互に積層した構造であることを特徴とする請求項1または2に記載のエネルギー吸収構造部材。 One of the two or more types of members includes a first thin layer oriented parallel to the longitudinal direction of the energy absorbing structural member, and a second thin layer oriented perpendicular to the longitudinal direction of the energy absorbing structural member. The other of the two or more members is a first thin layer oriented at 45 ° C. with respect to the longitudinal direction of the energy absorbing structural member, and the longitudinal direction of the energy absorbing structural member. energy absorbing structure according to claim 1 or 2, characterized in that a structure formed by alternately laminating a second thin layer oriented to -45 ° C. for. 前記2種類以上の部材は、繊維強化プラスチック、繊維強化金属、鉄、アルミニウム、および樹脂からなる群から選択されたものであることを特徴とする請求項1〜5のいずれかに記載のエネルギー吸収構造部材。   The energy absorption according to any one of claims 1 to 5, wherein the two or more types of members are selected from the group consisting of fiber reinforced plastic, fiber reinforced metal, iron, aluminum, and resin. Structural member. 直方体の中実材であることを特徴とする請求項1〜のいずれかに記載のエネルギー吸収構造部材。 It is a solid material of a rectangular parallelepiped, The energy absorption structure member in any one of Claims 1-6 characterized by the above-mentioned. 連結材を用いて、請求項1〜のいずれかに記載の複数のエネルギー吸収構造部材を接合した構造を有することを特徴とするエネルギー吸収構造部材。 An energy absorbing structure member having a structure in which a plurality of energy absorbing structure members according to any one of claims 1 to 7 are joined using a connecting material. 長手方向に垂直な断面が略口字状の中空材であることを特徴とする請求項1〜のいずれかに記載のエネルギー吸収構造部材。 The energy absorption structure member according to any one of claims 1 to 6 , wherein the energy absorption structure member is a hollow material having a substantially square shape in a cross section perpendicular to the longitudinal direction. 前記略口字状断面を有する中空材の内部に矩形の連結材を設けることによって断面が略日字状の中空材としたことを特徴とする請求項に記載のエネルギー吸収構造部材。 The energy absorbing structure member according to claim 9 , wherein a hollow connecting member having a rectangular shape is provided by providing a rectangular connecting member inside the hollow member having a substantially mouth-shaped cross section.
JP2005368028A 2005-12-21 2005-12-21 Energy absorbing structural member Expired - Fee Related JP4422674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005368028A JP4422674B2 (en) 2005-12-21 2005-12-21 Energy absorbing structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005368028A JP4422674B2 (en) 2005-12-21 2005-12-21 Energy absorbing structural member

Publications (2)

Publication Number Publication Date
JP2007170520A JP2007170520A (en) 2007-07-05
JP4422674B2 true JP4422674B2 (en) 2010-02-24

Family

ID=38297339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368028A Expired - Fee Related JP4422674B2 (en) 2005-12-21 2005-12-21 Energy absorbing structural member

Country Status (1)

Country Link
JP (1) JP4422674B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413182B2 (en) * 2009-12-22 2014-02-12 アイシン精機株式会社 Doorlin force
JP5735826B2 (en) 2011-03-10 2015-06-17 日本発條株式会社 Fiber reinforced plastic spring

Also Published As

Publication number Publication date
JP2007170520A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US7404474B2 (en) Shock absorbing component
JP4420830B2 (en) Shock absorbing member
EP1617098B1 (en) Shock absorbing component for automobiles
JP2005507342A (en) Shock beam for car body
DE102014217033B4 (en) impact cushion
US8828513B2 (en) Energy absorbing stitch ripping composite tubes containing collapsible cells
JPWO2015129110A1 (en) Manufacturing method of automobile body structure and body floor
US4742899A (en) Fiber reinforced tubular component
US20030175455A1 (en) Structural element made from fibre-reinforced plastic
Basily et al. Dynamic axial crushing of multilayer core structures of folded Chevron patterns
JP4583775B2 (en) Shock absorber for automobile
JP2006200702A (en) Shock absorbing member
JP4422674B2 (en) Energy absorbing structural member
JP2002240658A (en) Impact absorber member made of metal/frp
JP2944967B2 (en) High-speed vehicle outer wall structure and high-speed vehicle outer wall manufacturing method
JP2003129611A (en) Flexural strength member
CN206884960U (en) A kind of foamed aluminium/fiber weaving cloth compound vehicle collision prevention girders
JP6035654B2 (en) Auto body structure
JP2006207679A (en) Shock absorbing member manufacturing method
CN109624449A (en) A kind of shock resistance curved bar dot matrix Sandwich Plates
JP4467378B2 (en) Shock absorbing structure
JP2008045736A (en) Resin member, and method for manufacturing the same
JP5328401B2 (en) Shock absorbing member
JP2018069905A (en) Vehicle impact absorption structure
JP2006188141A (en) Shock absorbing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees